直线与平面位置关系典型例题
直线与平面的位置关系
α
n
思考: 思考:拿一张矩形的纸 对折后略为展开, 对折后略为展开,竖立 在桌面上, 在桌面上,折痕和桌面 的位置关系如何? 的位置关系如何?
直线与平面垂直的判定定理
如果一条直线和一个平面内的两条相交直 线垂直,那么这条直线垂 因为 ⊥m, a⊥n,m∩n=A, , m⊂ α,n⊂ α, ⊂ ⊂ 所以a⊥ 所以 ⊥α.
Q
D
α
直线与平面相交时,通过什么量来刻画 直线与平面相交时, 倾斜程度? 倾斜程度?
直线与平面所成的角 (1)平面的一条斜线与它在平面内的射线所成的锐 ) 角叫这条斜线与平面所成的角; 角叫这条斜线与平面所成的角; 因为PD⊥α于点 ,PQ与平面 相 于点D, 与平面 与平面α相 因为 ⊥ 于点 交于点Q,所以∠PQD是PQ与平 交于点 所以∠ 是 与平 所成的角. 面α所成的角. 所成的角 比较∠ 大小. 比较∠PQD与∠PQM大小. 大小
B
思考( )定义中“任何”两字能否改为“ 思考(1)定义中“任何”两字能否改为“无 为什么? 数”,为什么? 为什么
(2)过空间一点有几条直线与已知平面垂直? )过空间一点有几条直线与已知平面垂直? (3)过空间一点有几个平面与已知直线垂直? )过空间一点有几个平面与已知直线垂直?
定理: 定理:
Q D
P
α
M
(2)平面的垂线与平面所成的角是直角; )平面的垂线与平面所成的角是直角; (3)直线与平面平行或在平面内,所成的角 )直线与平面平行或在平面内, 是0°角. °
已知AC, 分别是平面 分别是平面α 例1 已知 ,AB分别是平面α的垂线与斜 分别是垂足和斜足, ⊂ 线,C,B分别是垂足和斜足,n⊂ α, , 分别是垂足和斜足 AB 若 n ⊥ CB.. 若 求证: n ⊥ AB 求证:n ⊥ CB..
用空间向量研究直线、平面的位置关系4种常见考法归类(80题)(学生版)25学年高二数学(人教A选修一
专题1.4.1 用空间向量研究直线、平面的位置关系4种常见考法归类(80题)题型一 求直线的方向向量题型二 求平面的法向量题型三 用空间向量证明平行问题(一)判断直线、平面的位置关系(二)已知直线、平面的平行关系求参数(三)证明直线、平面的平行问题(1)利用向量方法证明线线平行(2)利用向量方法证明线面平行(3)利用向量方法证明面面平行(4)与平行有关的探索性问题题型四 利用空间向量证明垂直问题(一)判断直线、平面的位置关系(二)已知直线、平面的垂直关系求参数(三)证明直线、平面的垂直问题(1)利用向量方法证明线线垂直(2)利用向量方法证明线面垂直(3)利用向量方法证明面面垂直(4)与垂直有关的探索性问题在空间中,我们取一定点O 作为基点,那么空间中任意一点P 就可以用向量OP 表示.我们把向量OP称为点P 的位置向量.如图.注:线段中点的向量表达式:对于AP → =tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM → =12(OA → +OB →),这就是线段AB 中点的向量表达式.2、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=3、空间直线的向量表示式如图②,取定空间中的任意一点O ,可以得到点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①或OP OA t AB =+ ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.4、用向量表示空间平面的位置根据平面向量基本定理,存在唯一实数对(,)x y ,使得AP xa yb =+,如图;取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP OA xAB y AC =++ .5.直线的方向向量若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量.【注意】①在直线上取有向线段表示的向量,或在与它平行的直线上取有向线段表示的向量,均为直线的方向向量;②在解具体立体几何题时,直线的方向向量一般不再叙述而直接应用,可以参与向量运算或向量的坐标运算.6.平面的法向量定义:AB l ABl直线l ⊥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a.注:一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量.已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量.7.平面法向量的性质(1)平面a 的一个法向量垂直于平面a 内的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.8.平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面a 的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ì×=ïí×=ïî列出方程组解方程组:解方程组00n AB n AC ì×=ïí×=ïî赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.题型一 求直线的方向向量解题策略:1、理解直线方向向量的概念(1)直线上任意两个不同的点都可构成直线的方向向量.(2)直线的方向向量不唯一.(空间中一条直线的方向向量有无数个).2.求直线的方向向量,首先是找到直线上两点,然后用坐标表示以这两点为起点和终点的向量,该向量就是直线的一个方向向量.1.(23-24高二下·江苏扬州·期末)已知一直线经过点()()2,3,2,1,0,1A B --,下列向量中是该直线的方向向量的为( )A .()1,1,1a =-B .()1,1,1a =-C .()1,1,1a =-D .()1,1,1a =2.【多选】(2024·湖北十堰·高二校联考阶段练习)如图,在正方体1111ABCD A B C D -中,E 为棱1CC上不与1C ,C 重合的任意一点,则能作为直线1AA 的方向向量的是( )A .1AAB .1C EC .ABD .1A A3.(2024·高二课时练习)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD的中点,AB =AP =1,AD PC 的一个方向向量.4.(2024·高二课时练习)已知直线1l 的一个方向向量为()5,3,2-,另一个方向向量为(),,8x y ,则x =________,y = ________.5.(2024·江苏常州·高二校联考期中)已知直线l 的一个方向向量()2,1,3m =-,且直线l 过A (0,y ,3)和B (-1,2,z )两点,则y -z 等于( )A .0B .1C .2D .36.(23-24高二上·江西赣州·期中)已知直线1l 的方向向量是()2,2,a x =-,直线2l 的方向向量是()2,,2b y =-,若3a = ,且12l l ^,则x y -的值是( )A .-4或0B .4或1C .-4D .07.(23-24高二上·湖北武汉·期中)两条不同直线1l ,2l 的方向向量分别为()1,1,2m =-,()2,2,1n =- ,则这两条直线( )A .相交或异面B .相交C .异面D .平行题型二 求平面的法向量解题策略:1.求平面法向量的方法①设出平面的法向量为n =(x ,y ,z );②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,a 2,a 3),b =(b 1,b 2,b 3);③依据法向量的定义建立关于x ,y ,z 的方程组00{=×=×b n a n ④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.注:利用待定系数法求平面的法向量,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量(3)注意0:提前假定法向量n =(x ,y ,z )的某个坐标为某特定值时一定要注意这个坐标不为08.【多选】(23-24高二上·浙江绍兴·期中)直线l 的方向向量是(1,2,0)a =,若l a ^,则平面a 的法向量可以是( )A .()1,2,0n = B .()2,4,0n =--C .()2,1,0n =-D .()2,1,2n =-9.(2024·江苏淮安·高二校考阶段练习)空间直角坐标系O xyz -中,已知点()2,0,2A ,()2,1,0B ,()0,2,0C ,则平面ABC 的一个法向量可以是( ).A .()2,1,2B .()1,2,1-C .()2,4,2D .()2,1,2-10.(2024·高二课时练习)已知()()()1,1,0,1,0,1,0,1,1A B C ,则平面ABC 的一个单位法向量是( )A .()1,1,1B .C .111(,,)333D .11.(2023秋·湖北荆州·高二沙市中学校考期末)已知正方体1111ABCD A B C D -的棱长为 1, 以D 为原点, {}1,,DA DC DD为单位正交基底, 建立空间直角坐标系, 则平面1AB C 的一个法向量是( )A .(1,1,1)B .(1,1,1)-C .(1,1,1)-D .(1,1,1)-12.(2024·高二课时练习)在如图所示的坐标系中,1111ABCD A B C D -为正方体,给出下列结论:①直线1DD 的一个方向向量为(0,0,1);②直线1BC 的一个方向向量为(0,1,1);③平面11ABB A 的一个法向量为(0,1,0);④平面1B CD 的一个法向量为(1,1,1).其中正确的个数为( )A .1个B .2个C .3个D .4个13.(2023春·高二课时练习)已知四边形ABCD 是直角梯形,90ABC ∠= ,SA ^平面ABCD ,1SA AB BC ===,12A D =,求平面SCD 的一个法向量.14.(2024·高二课时练习)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1111,A D A B 的中点,在如图所示的空间直角坐标系中,求:(1)平面11BDD B 的一个法向量;(2)平面BDEF 的一个法向量.15.(2024·福建龙岩·高二校联考期中)《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在鳖臑A BCD -中,AB ^平面BCD ,=90BDC ∠°,BD AB CD ==.若建立如图所示的“空间直角坐标系,则平面ACD 的一个法向量为( )A .()0,1,0B .()0,1,1C .()1,1,1D .()1,1,016.(2024·全国·高三专题练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ^平面ABC ,写出:平面BHD 的一个法向量___________;17.(2023春·高二课时练习)如图的空间直角坐标系中,PD 垂直于正方形ABCD 所在平面,2,AB PB =与平面xDy 的所成角为4p,E 为PB 中点,则平面ABE 的单位法向量0n =______.(用坐标表示)18.【多选】(2024·福建宁德·高二校联考期中)已知空间中三个向量()2,1,0AB =,()1,2,1AC =- ,()3,1,1BC =-,则下列说法正确的是( )A .AB与AC 是共线向量B .与AB同向的单位向量是ö÷÷øC .BC 在AB方向上的投影向量是()2,1,0--D .平面ABC 的一个法向量是()1,2,5-19.(2024·四川成都·高二成都市锦江区嘉祥外国语高级中学校考期中)已知()2,0,2a =,()3,0,0= b 分别是平面a ,b 的法向量,则平面a ,b 交线的方向向量可以是( )A .()1,0,0B .()0,1,0C .()0,0,1D .()1,1,120.(2024·湖北·高二校联考阶段练习)已知点()2,6,2A -在平面a 内,()3,1,2=n 是平面a 的一个法向量,则下列点P 中,在平面a 内的是( )A .()1,1,1P -B .31,3,2P æöç÷èøC .31,3,2P æö-ç÷èøD .31,3,4P æö---ç÷èø(1)线线平行的向量表示:设u 1,u 2分别是直线l 1,l 2的方向向量,则l 1∥l 2⇔u 1∥u 2⇔∃λ∈R ,使得u 1=λu 2.(2)线面平行的向量表示:设u 是直线 l 的方向向量,n 是平面α的法向量,l ⊄α,则l ∥α⇔u ⊥n ⇔u ·n =0.注:(1)在平面a 内取一个非零向量a ,若存在实数x ,使得u xa =,且l a Ë,则//l a .(2)在平面a 内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l a Ë,则//l a .(3)面面平行的向量表示:设n 1 ,n 2 分别是平面α,β的法向量,则α∥β⇔n 1∥n 2⇔∃λ∈R ,使得n 1=λn 2 .2.利用向量证明线线平行的思路:证明线线平行只需证明两条直线的方向向量共线即可.3.证明线面平行问题的方法:(1)证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;(2)证明直线的方向向量可以用平面内两个不共线向量表示且直线不在平面内;(3)证明直线的方向向量与平面的法向量垂直且直线不在平面内.4.证明面面平行问题的方法:(1)利用空间向量证明面面平行,通常是证明两平面的法向量平行.(2)将面面平行转化为线线平行然后用向量共线进行证明.题型三 用空间向量证明平行问题(一)判断直线、平面的位置关系21.(2024·湖北黄石·高二校考阶段练习)若直线l 的一个方向向量为()257,,a =,平面α的一个法向量为()111,,u ®=-,则( )A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交22.(2024·高二单元测试)若平面a 与b 的法向量分别是()1,0,2a =- ,()1,0,2b =-r,则平面a 与b 的位置关系是( )A .平行B .垂直C .相交不垂直D .无法判断23.(2024·山东菏泽·高二统考期末)已知平面a 与平面ABC 是不重合的两个平面,若平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,则平面a 与平面ABC 的位置关系是________.24.(2024·陕西宝鸡·高二统考期末)在长方体ABCD A B C D -¢¢¢¢中,222AA AB AD ¢===,以点D 为坐标原点,以,,DA DC DD ¢分别为x 轴,y 轴,z 轴建立空间直角坐标系,设对角面ACD ¢所在法向量为(,,)x y z ,则::x y z =__________.25.【多选】(2024·甘肃张掖·高二高台县第一中学校考期中)下列利用方向向量、法向量判断线、面位置关系的结论中正确的是( )A .若两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,则12//l l B .若直线l 的方向向量()0,3,0a = ,平面a 的法向量是()0,5,0m =-,则l //a C .若两个不同平面a ,b 的法向量分别为()12,1,0n =- ,()24,2,0n =-,则//a bD .若平面a 经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,向量()11,,n u t =是平面a 的法向量,则1u t +=(二)已知直线、平面的平行关系求参数26.(2023春·四川成都·高二四川省成都市新都一中校联考期中)已知直线l 的方向向量为1,2,4)m (-=,平面a 的法向量为,1,2)n x =(-,若直线l 与平面a 平行,则实数x 的值为( )A .12B .12-C .10D .10-27.(2024·广东广州·高二广州市第九十七中学校考阶段练习)直线l 的方向向量是()1,1,1s =-,平面a 的法向量()222,,n x x x =+- ,若直线//l 平面a ,则x =______.28.(2024·上海浦东新·高二上海南汇中学校考期末)已知直线l 的一个方向向量为(1,2,1)d =-,平面a 的一个法向量(,4,2)n x =-,若//l a ,则实数x =_______.29.(2024·天津蓟州·高二校考期中)直线l 的方向向量是()1,1,1s ®=,平面a 的法向量()21,,n x x x ®=--,若直线l a ∥,则x =___________.30.(2023·全国·高三专题练习)在长方体1111ABCD A B C D -中,E 是1BB 的中点,111B F B D l =,且//EF 平面1ACD ,则实数l 的值为( )A .15B .14C .13D .1231.【多选】(2023春·高二课时练习)在正方体1111ABCD A B C D -中,E 为1AA 中点,若直线//EF 平面11A BC ,则点F 的位置可能是( )A .线段1CC 中点B .线段BC 中点C .线段CD 中点D .线段11C D 中点32.(2024·上海·高二校联考阶段练习)已知平面a 的一个法向量为()11,2,3n =-,平面b 的一个法向量为()22,4,n k =--,若//a b ,则k 的值为______(三)证明直线、平面的平行问题(1)利用向量方法证明线线平行解题策略:向量法证明两条直线平行的方法:两直线的方向向量共线时,两直线平行或共线,否则两直线相交或异面.33.(2023·江苏·高二专题练习)在正方体1111ABCD A B C D -中,点P 在线段1A D 上,点Q 在线段AC 上,线段PQ 与直线1A D 和AC 都垂直,求证:1PQ BD .34.(2023·江苏·高二专题练习)已知长方体1111ABCD A B C D -中,4AB =,3AD =,13AA =,点S 、P 在棱1CC 、1AA 上,且112CS SC =,12AP PA =,点R 、Q 分别为AB 、11D C 的中点.求证:直线PQ ∥直线RS .35.(2023·江苏·高二专题练习)已知在正四棱柱1111ABCD A B C D -中,1AB =,12AA =,点E 为1CC 的中点,点F 为1BD 的中点.(1)求证:1EF BD ^ 且1EF CC ^ ;(2)求证:EF AC ∥.(2)利用向量方法证明线面平行解题策略:1.利用向量法证明平行问题的两种途径(1)利用三角形法则、平行四边形法则和空间向量基本定理实现向量间的相互转化,得到向量的共线关系.(2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.2.利用向量法证明线面平行的三种思路(1)与法向量垂直:设直线l 的方向向量是a ,平面α的法向量是u , 则要证明l //α,只需证明u a ^,即0=×u a .(2)与平面内一个向量平行:在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)用平面内两个不共线向量线性表示:证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.注:证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的两个不共线的向量共面,或证直线的方向向量与平面内某直线的方向向量共线,再说明直线在平面外即可.这样就把几何的证明问题转化为向量的运算.36.(2022春·江苏镇江·高二江苏省镇江第一中学校联考期末)如图,三棱柱11ABC AB C -中侧棱与底面垂直,且AB =AC =2,AA 1=4,AB ⊥AC ,M ,N ,P ,D 分别为CC 1,BC ,AB ,11B C 的中点.求证:PN ∥面ACC 1A 1;37.(2024·湖北黄冈·浠水县第一中学校考模拟预测)如图,在三棱柱111ABC A B C -中,1BB ^平面ABC ,D ,E 分别为棱AB ,11B C 的中点,2BC =,AB =114A C =.证明://DE 平面11ACC A ;38.(2023春·高二课时练习)如图,在四面体A BCD -中,AD ^平面BCD ,BC CD ^,2AD =,BD =.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =.证明:PQ 平面BCD ;39.(2023·全国·高二专题练习)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中//AD BC .,3,2,AD AB AD AB BC PA ^===^平面ABCD ,且3PA =,点M 在棱PD 上,点N 为BC 中点.若2DM MP =,证明:直线//MN 平面PAB .40.(2024·天津和平·耀华中学校考二模)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形,线段AD 的中点为O 且PO ^底面ABCD ,112AB BC AD ===,π2BAD ABC ∠==∠,E 是PD 的中点.证明:CE ∥平面PAB ;41.(2024·江苏盐城·高二盐城市大丰区南阳中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ^底面ABC ,90BAC ∠=°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ==,1AB =.求证://MN 平面BDE ;42.(2024·天津南开·南开中学校考模拟预测)在四棱锥P ABCD -中,PA ^底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ^,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =.求证://DM 平面PAB ;43.(2024·高二课时练习)如图所示,在直角梯形ABCP 中,AP BC ∥,AP AB ^,122AB BC AP ===,D 是AP 的中点,,,E F G 分别为,,PC PD CB 的中点,将PCD V 沿CD 折起,使得PD ^平面ABCD ,试用向量方法证明AP 平面EFG .(3)利用向量方法证明面面平行解题策略:(1)由面面平行的判定定理,要证明面面平行,只要转化为证明相应的线面平行、线线平行即可;(2)若能求出平面b a ,的法向量υm ,,则要证明b a //,只需证明υm //.值得注意的是,虽然空间向量的坐标运算比线性运 算更为简单,但法向量的求解有时比较烦琐,有时在 平面内找与直线平行的向量也不直观,因此求解时,需要灵活选择解题方法.44.(2024·高二课时练习)如图,在长方体1111ABCD A B C D -中,点E ,F ,G 分别在棱1A A ,11A B ,11A D 上,1111A E A F A G ===;点P ,Q ,R 分别在棱1CC ,CD ,CB 上,1CP CQ CR ===.求证:平面//EFG 平面PQR .45.(2024·上海普陀·曹杨二中校考模拟预测)如图所示,正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长1,侧棱长4,AA 1中点为E ,CC 1中点为F .求证:平面BDE ∥平面B 1D 1F ;46.(2023春·高二课时练习)如图所示,平面PAD ^平面ABCD ,四边形ABCD 为正方形,PAD ∆是直角三角形,且2PA AD ==,E ,F ,G 分别是线段PA ,PD ,CD 的中点,求证:平面EFG 平面PBC .47.(23-24高二上·新疆·期末)已知正方体1111ABCD A B C D -的棱长为a ,M ,N ,E ,F 分别是棱11A D ,11A B ,11D C ,11B C 的中点.求证:平面//AMN 平面BDEF .(4)与平行有关的探索性问题解题策略:平行关系中的探究性问题探究点的位置时,可先设出对应点的坐标,然后根据面面平行的判定定理转化为向量共线问题或者利用两个平面的法向量共线,建立与所求点的坐标有关的方程,通过解方程可得点的坐标.48.(2023秋·高二课时练习)如图,已知空间几何体P ABCD -的底面ABCD 是一个直角梯形,其中90BAD ∠=,//AD BC ,BA BC a ==,2AD a =,且PA ^底面ABCD ,PD 与底面成30 角.(1)若8BC PD ×= ,求该几何体的体积;(2)若AE 垂直PD 于E ,证明:BE PD ^;(3)在(2)的条件下,PB 上是否存在点F ,使得//EF BD ,若存在,求出该点的坐标;若不存在,请说明理由.49.(2023·全国·高三专题练习)如图,在斜三棱柱111ABC A B C - 中,已知ABC ∆为正三角形,四边形11ACC A 是菱形,D ,E 分别是AC ,1CC 的中点,平面11ACC A ⊥平面ABC .(1)求证:1A C ^平面BDE ;(2)若160C CA ∠= ,在线段1DB 上是否存在点M ,使得//AM 平面BDE ?若存在,求1DM DB 的值,若不存在,请说明理由.50.(2023·江苏·高二专题练习)如图所示,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =.(1)求证:1AC BC ^;(2)在AB 上是否存在点D ,使得1//AC 平面1CDB ,若存在,确定D 点位置并说明理由,若不存在,说明理由.51.(2022·高二课时练习)如图,在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,P 是1DD 的中点.在棱1CC 上是否存在一点Q ,使得平面1//D BQ 平面PAO ?若存在,指出点Q 的位置;若不存在,请说明理由.(1)线线垂直的向量表示:设 u 1,u 2 分别是直线 l 1 , l 2 的方向向量,则l 1⊥l 2⇔u 1⊥u 2⇔u 1·u 2=0.(2)线面垂直的向量表示:设u 是直线 l 的方向向量,n 是平面α的法向量, l ⊄α,则l ⊥α⇔u ∥n ⇔∃λ∈R ,使得u =λn .注:在平面a 内取两个不共线向量,a b ,若0a u b u ×=×= .则l a ^.(3)面面垂直的向量表示:设n 1,n 2 分别是平面α,β的法向量,则α⊥β⇔n 1⊥n 2⇔n 1·n 2=0.2.利用向量法证明空间中的平行、垂直可以通过建立空间直角坐标系,把要证的空间中的平行与垂直问题转化为证明空间向量之间的平行和垂直问题.破解此类题的关键点如下:①合理建系,抓住空间几何体的结构特征,充分利用图形中的垂直关系(或在图形中构造垂直关系)建立空间直角坐标系.②确定坐标,利用题设条件写出相关点的坐标,进而获得相关向量的坐标.③准确运算,验证两向量平行或垂直的条件成立.④得出结论,由运算结果说明原问题得证.题型四 利用空间向量证明垂直问题(一)判断直线、平面的位置关系52.(2021秋·北京·高二校考期中)直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--= ,则( )A .12l l ^B .1l ∥2lC .1l 与2l 相交不平行D .1l 与2l 重合53.(2024·北京·高二校考阶段练习)若直线l 的方向向量为e (2,3,1)=- ,平面a 的法向量为311,,22n æö=--ç÷èø ,则直线l 和平面a 位置关系是( )A .l a ^B .//l a C .l a ÌD .不确定54.【多选】(2024·广东珠海·高二珠海市斗门区第一中学校考期末)已知v 为直线l 的方向向量,12,n n 分别为平面a ,b 的法向量(a ,b 不重合),那么下列说法中正确的有( ).A .12n n a bÛ∥∥ B .12n n a b ^Û^ C .1v n l Û a ∥∥D .1v n l ^Û^ a55.(23-24高二上·浙江·期中)如图,在正方体1111ABCD A B C D -中,不能互相垂直的两条直线是( )A .1AB 和1AC B .1A B 和1CD C .1C D 和1B C D .1A B 和11B C 56.(2024·江苏·高二南师大二附中校联考阶段练习)下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是( )A .两条不重合直线12,l l 的方向向量分别是()()2,3,1,2,3,1a b =-=-- ,则12l l ∥B .直线l 的方向向量()112a ,,=- ,平面a 的法向量是()6,4,1u =- ,则l a^C .两个不同的平面,a b 的法向量分别是()()2,2,1,3,4,2u v =-=- ,则a b^D .直线l 的方向向量()0,3,0a = ,平面a 的法向量是()0,5,0u =- ,则l a∥57.【多选】(2024·高二课时练习)下列命题是真命题的有( )A .A ,B ,M ,N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =- ,直线m 的方向向量12,1,2b æö=-ç÷èør 为,则l 与m 垂直C .直线l 的方向向量为()1,1,2a =- ,平面α的法向量为10,1,2n æö=ç÷èø ,则l ⊥αD .平面α经过三点()()()1,0,1,0,1,0,1,2,0A B C --,()1,,=r n u t 是平面α的法向量,则u +t =1(二)已知直线、平面的垂直关系求参数58.(2023·全国·高三专题练习)设直线12,l l 的方向向量分别为(1,2,2),(2,3,)a b m =-=- ,若12l l ^,则实数m等于()A .1B .2C .3D .459.(2024·北京海淀·高二中央民族大学附属中学校考开学考试)已知平面a 的法向量为()1,2,0n = ,直线l的方向向量为v ,则下列选项中使得l a ^的是( )A .()2,1,0v =- B .()2,1,0v = C .()2,4,0v = D .()1,2,0v =- 60.(江苏省扬州市2023-2024学年高二下学期6月期末数学试题)已知直线l 的方向向量为()2,1,2e =- ,平面a 的法向量为()()2,,,n a b a b a b =--+ÎR .若l a ^,则3a b +的值为( )A .5-B .2-C .1D .461.(2024·高二课时练习)已知()()3,,,R u a b a b a b =-+Î 是直线l 的方向向量,()1,2,4n =r 是平面a 的法向量.若l a ^,则ab =______.62.(2024·广东珠海·高二珠海市实验中学校考阶段练习)若直线l 方向向量为()2,1,m ,平面a 的法向量为11,,22æöç÷èø,且l a ^,则m 为( )A .1B .2C .4D .54-63.(2023秋·北京石景山·高二统考期末)已知(2,,)(,)=-+-Î m a b a b a b R 是直线l 的方向向量,(2,1,2)=- n 是平面a 的法向量.若l a ^,则下列选项正确的是( )A .340a b --=B .350a b --=C .13,22a b =-=D .13,22a b ==-64.(2024·江苏盐城·高二江苏省响水中学校考阶段练习)如图,在正三棱锥D -ABC 中,AB =2DA =,O 为底面ABC 的中心,点P 在线段DO 上,且PO DO l =uuu r uuu r ,若PA ^平面PBC ,则实数l =( )A .12B .13-C D 65.(2023春·高二课时练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为棱11B C ,1BB 的中点,G 为面对角线1A D 上的一点,且1(01)DG DA l l =££ ,若1A C ^平面EFG ,则l =( )A .14B .13C D .1266.(2023·江苏·高二专题练习)如图,在四棱锥E ABCD -中,平面ADE ^平面ABCD ,O ,M 分别为AD ,DE 的中点,四边形BCDO 是边长为1的正方形,AE DE =,AE DE ^.点N 在直线AD 上,若平面BMN ^平面ABE ,则线段AN 的长为_________.(三)证明直线、平面的垂直问题(1)利用向量方法证明线线垂直解题策略:利用空间向量证明两直线垂直的常用方法及步骤(1)基向量法:①选取三个不共面的已知向量(通常是它们的模及其两两夹角为已知)为空间的一个基底;②把两直线的方向向量用基底表示;③利用向量的数量积运算,计算出两直线的方向向量的数量积为0;④由方向向量垂直得到两直线垂直.(2)坐标法:①根据已知条件和图形特征,建立适当的空间直角坐标系,正确地写出各点的坐标;②根据所求出点的坐标求出两直线方向向量的坐标;③计算两直线方向向量的数量积为0;④由方向向量垂直得到两直线垂直.67.【多选】(2023春·江苏盐城·高二盐城中学校考期中)点P 在正方体1111ABCD A B C D -的侧面11CDD C 及其边界上运动,并保持1BP A C ^,若正方体边长为,则1A P 的可能取值是( )A B C D 68.(2023秋·高二课时练习)如图,在棱长为1的正方体1111ABCD A B C D -中,,E F 分别是1DD BD 、的中点,建立适当的空间直角坐标系,证明:1EF B C ^.69.(2023·江苏·高二专题练习)如图,在直棱柱111ABC A B C -中,12AA AB AC ===,π2BAC ∠=,,,D E F 分别是11A B ,1CC ,BC 的中点.求证:AE DF ^;70.(2023·四川雅安·统考模拟预测)已知下面给出的四个图都是各棱长均相等的直三棱柱,A 为一个顶点,D ,E ,F 分别是所在棱的中点.则满足直线AD EF ^的图形个数是( )A .1B .2C .3D .4(2)利用向量方法证明线面垂直解题策略:向量法证明线面垂直的两种思路(1)根据线面垂直的判定定理证明:求出直线的方向向量,在平面内找两条相交直线,并分别求出表示它们的方向向量,计算两组向量的数量积为0,得到该直线与平面内的两条相交直线都垂直.(2)法向量法:求出直线的方向向量与平面的法向量,用向量法判断直线的方向向量与平面的法向量平行.71.(2024·高二课时练习)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3,试证明AM ⊥平面BMC .72.(2023春·高二课时练习)如图所示,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 的中点.求证:1AB ^平面1A BD .73.(2024·安徽合肥·合肥市第八中学校考模拟预测)如图,在三棱柱111ABC A B C -中,底面ABC V 是等腰三角形,且π,26ACB AB AC ∠===,又侧棱1BB =面对角线116A C A B ==,点,D F 分别是棱11,A B CB 的中点,11344AE AC AC =+ .证明:1B E ^平面AEF ;74.(2024·河北唐山·唐山市第十中学校考模拟预测)如图,在四棱台1111ABCD A B C D -中,平面11ADD A ^平面ABCD ,底面ABCD 为正方形,2AD =,11111DD D A A A ===.求证:1AD ^平面11CDD C .(3)利用向量方法证明面面垂直解题策略:证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.75.(2024秋·广东深圳·高二深圳外国语学校校考期末)已知:在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ^平面ABCD ,点M 为PD 中点,1PA AD ==.求证:平面MAC ^平面PCD ;76.(2024·高二课时练习)如图所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .求证:平面DEA ⊥平面ECA .77.(2024·全国·高二专题练习)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,底面ABCD 是梯形,点E 在BC 上,,,22248AD BC AB AD BC AB AD AP BE ^=====∥.求证:平面PDE ^平面PAC ;(4)与垂直有关的探索性问题解题策略:解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP → =λAB →,表示出点P 的坐标,或直接利用向量运算.78.(2024·江苏连云港·高二统考期中)如图,在多面体ABCDE 中,ABC V ,BCD △,CDE V 都是边长为2的等边三角形,平面ABC ^平面BCD ,平面CDE ^平面BCD .(1)判断A ,B ,D ,E 四点是否共面,并说明理由;(2)在ABC V 中,试在边BC 的中线上确定一点Q ,使得DQ ^平面BCE .79.(2023春·广东汕尾·高二陆丰市龙山中学校考阶段练习)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,正方形ABCD 的边长为2,E 是PA 的中点.(1)求证://PC 平面BDE .(2)若2PA =,线段PC 上是否存在一点F ,使AF ^平面BDE ?若存在,求出PF 的长度;若不存在,请说明理由.80.(2023春·高二课时练习)如图1,在边长为2的菱形ABCD 中,60,BAD DE AB ∠=^ 于点E ,将ADE △沿DE 折起到1A DE △的位置,使1A D BE ^,如图2.(1)求证:1A E ^平面BCDE ;(2)在线段BD 上是否存在点P ,使平面1A EP ^平面1A BD ?若存在,求BP BD 的值;若不存在,说明理由.。
直线与平面的位置关系练习题
直线与平面的位置关系练习题直线和平面是几何中常见的基本要素,它们之间的位置关系也是我们在学习几何时需要掌握的重要内容。
下面我们来做一些关于直线与平面的位置关系的练习题。
1. 已知直线l与平面α相交于点A,直线l上的一点B在平面α内部。
则直线l和平面α的位置关系是________。
解析:直线l与平面α相交于点A,说明直线l与平面α有交集。
又由于直线上的一点B在平面α内部,说明直线l与平面α也有一些其他的点在平面α内部。
综上所述,直线l和平面α的位置关系是“有交集”。
2. 平面β包含直线m,且直线l与直线m平行,则直线l和平面β的位置关系是________。
解析:直线l与直线m平行,说明直线l与平面β没有交点。
但由于直线l和直线m的位置关系,直线l和平面β的位置关系可以是以下三种情况之一:1) 直线l在平面β内部;2) 直线l与平面β重合;3) 直线l与平面β平行但不重合。
根据题意,我们可以确定直线l和平面β的位置关系是“直线l在平面β内部”。
3. 直线n与平面γ相交于点P,直线n与平面δ相交于点Q,点P 与点Q在空间中重合,则直线n和平面γ、δ的位置关系是________。
解析:由于点P与点Q在空间中重合,说明直线n与平面γ、δ有一个公共的点。
因此直线n必然与平面γ和平面δ都有交点。
综上所述,直线n和平面γ、δ的位置关系是“有交集”。
4. 直线p与平面η相交于点M,直线p包含于平面η内。
则直线p和平面η的位置关系是________。
解析:直线p与平面η相交于点M,说明直线p与平面η有交集。
并且由于直线p包含于平面η内部,说明直线p上的其他点也在平面η内部。
综上所述,直线p和平面η的位置关系是“直线p包含于平面η内”。
5. 直线q与平面ζ平行但不在平面ζ内,直线r与平面ζ相交于点N,则直线q和直线r的位置关系是________。
解析:直线q与平面ζ平行但不在平面ζ内,说明直线q与平面ζ没有交点。
而直线r与平面ζ相交于点N,说明直线r与平面ζ有交点。
空间点,直线,平面的位置关系试题(含答案)2
空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是( )A .一个平面B .一条直线C .两条直线D .空集 2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a与平面β所成的角( )A .与θ相等B .与θ互余C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为( ) A .3πB .4π C .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG中必有( )A .SG ⊥△EFG 所在平面B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面 5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了( )A .1002米 B .502米 C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos33 B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( ) A .45︒ B .60︒ C.90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为( )A .43aB .43 a C .23 aD .46 a9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是( )A .0<α<6πB .6π<α<4πC .4π<α<3πD .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA〉的大小为( )A .6πB .65π C .3πD .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________.13.在三棱锥P-ABC中,90=∠ABC,30=∠BAC,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D . (1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小.16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM⊥交1AA 于点M,1BB PN ⊥交1CC 于点N.(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFEEF DF EFDFDE∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.17.(本小题满分12分)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=3.(1)求证BC SC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=1AB=a,(如图一)将△ADC 沿AC折起,使2D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若a=)BNCM=<a.20(<(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.参考答案一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共4小题,每小题6分,共24分) 11.750 ,150 12.900 ,300 13.35 14.π32三、解答题(本大题共6题,共76分)15.(12分) (1)证明:(1)∵SB=BC E 是SC 的中点 ∴BE ⊥SC ∵DE ⊥SC ∴SC ⊥面BDE(2)解:由(1)SC ⊥BD ∵SA ⊥面ABC ∴SA ⊥BD ∴BD ⊥面SAC ∴∠EDC 为二面角E-BD-C 的平面角设SA=AB=a,则SB=BC=a2.,2,a SC SBC Rt =∆∴中在,30,0=∠∆∴DCESAC Rt 中在60,=∠∆∴EDC DEC Rt 中在.16.(12分) (1) 证:MNCC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ; (2)解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=,其中α为 平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MNP ∠,在PMN ∆中,cos 2222⇒∠⋅-+=MNP MN PN MNPNPMMNPCC MN CC PN CCMN CC PN CCPM ∠⋅⋅⋅-+=cos )()(211111222222, 由于111111111,,BB PM S CCMN S CCPN S A ABBA ACCB BCC⋅=⋅=⋅=,∴有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=.17.(12分) (1)证法一:如,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影, 由三垂线定理得BC ⊥SC .证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴SD ⊥BC ,又DC ∩SD=D ,∴BC ⊥平面SDC ,∴BC ⊥SC .(2)解:如图2,过点S 作直线,//AD l l ∴在面ASD 上,∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上,l ∴为面ASD 与面BSC 的交线.l ∴,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角.(以下同解法一) (3)解1:如图2,∵SD=AD=1,∠SDA=90°, ∴△SDA 是等腰直角三角形.又M 是斜边SA 的中点,∴DM ⊥SA .∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影.由三垂线定理得DM ⊥SB .∴异面直线DM 与SB 所成的角为90°.图1图2解2:如图3,取AB 中点P ,连结MP ,DP .在△ABS 中,由中位线定理得 MP//SB ,DMP ∠∴是异面直线DM 与SB 所成的角.2321==SB MP,又,25)21(1,222=+==DP DM∴在△DMP 中,有DP 2=MP 2+DM 2,︒=∠∴90DMP∴异面直线DM 与SB 所成的角为90°.18.(12分) 解:(1)在直角梯形ABCD 中, 由已知∆DAC 为等腰直角三角形, ∴45,2=∠=CAB a AC , 过C 作CH ⊥AB ,由AB=2a ,可推得 AC=BC=.2a∴ AC ⊥BC .取 AC 的中点E ,连结ED ',则 ED '⊥AC 又 ∵ 二面角β--AC a 为直二面角,∴ED '⊥β 又 ∵ ⊂BC 平面β ∴ BC ⊥E D ' ∴ BC ⊥a ,而a C D ⊂',∴ BC ⊥C D ' ∴ CAD '∠为二面角γβ--BC 的平面角.由于45='∠CAD , ∴二面角γβ--BC 为 45.(2)取AC 的中点E ,连结E D ',再过D '作β⊥'O D ,垂足为O ,连结OE .∵ AC ⊥E D ', ∴ AC ⊥OE ∴ EOD '∠为二面角β--ACa 的平面角, ∴ EO D '∠60=. 在OE D Rt '∆中,aACE D 2221==',∴O D S V ABC ABC D '⋅=∆-'31O D BC AC '⋅⋅⨯=2131a a a 462261⨯⨯⨯=.1263a =19.(14分)解法一: (1)记AC 与BD 的交点为O,连接OE, ∵O 、M 分别是AC 、EF 的中点,图3ACEF 是矩形,∴四边形AOEM 是平行四边形, ∴AM ∥OE .∵⊂OE平面BDE ,⊄AM 平面BDE ,∴AM ∥平面BDE .(2)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS ,∵AB ⊥AF , AB ⊥AD , ,A AF AD = ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影,由三垂线定理得BS ⊥DF .∴∠BSA 是二面角A —DF —B 的平面角. 在RtΔASB 中,,2,36==AB AS∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º.(3)设CP=t (0≤t≤2),作PQ ⊥AB 于Q ,则PQ ∥AD , ∵PQ ⊥AB ,PQ ⊥AF ,A AFAB = ,∴PQ ⊥平面ABF ,⊂QE平面ABF ,∴PQ ⊥QF .在RtΔPQF 中,∠FPQ=60º,PF=2PQ . ∵ΔPAQ 为等腰直角三角形,∴).2(22t PQ -=又∵ΔPAF 为直角三角形,∴1)2(2+-=t PF,∴).2(2221)2(2t t -⋅=+-所以t=1或t=3(舍去),即点P是AC 的中点.解法二: (1)建立如图所示的空间直角坐标系. 设NBD AC = ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1),∴)1,22,22(--=NE, 又点A 、M 的坐标分别是)0,2,2(,()1,22,22∴AM =()1,22,22--∴AMNE =且NE与AM 不共线,∴NE ∥AM .又∵⊂NE 平面BDE , ⊄AM 平面BDE ,∴AM ∥平面BDF .(2)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD = ∴AB ⊥平面ADF .∴AB)0,0,2(-=为平面DAF 的法向量.∵DBNE ⋅=()1,22,22--·)0,2,2(-=0, ∴NFNE⋅=()1,22,22--·)0,2,2(=0得DBNE ⊥,NFNE⋅,∴NE 为平面BDF 的法向量.∴cos<>⋅NE AB =21∴AB 与NE 的夹角是60º.即所求二面角A —DF —B的大小是60º. (3)设P(t,t,0)(0≤t≤2)得PF),1,2,2(t t --=∴BC =(2,0,0)又∵PF 和BC 所成的角是60º.∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去),即点P 是AC 的中点.20.(14分) 解:(1)作MP ∥AB 交BC 于点P NQ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP =NQ,即MNQP 是平行四边形∴MN =PQ由已知a BN CM ==,1===BE AB CB∴2==BF AC 又21a CP =,21a BQ =,即2a BQ CP ==∴MN=PQ =22)1(BQCP +-=22)2()21(a a +-=21)22(2+-a )20(<<a(2)由(Ⅰ),MN=21)22(2+-a ,所以,当22=a 时,MN=22即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为22.(3)取MN 的中点G ,连结AG 、BG ,∵ANAM =,BNBM=,G 为MN的中点 ∴AG⊥MN,BG ⊥MN,∠A G B即为二面角α的平面角,又AG =BG 46=,所以,由余弦定理有314646214646cos 22-=⋅⋅-⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=α, 故所求二面角⎪⎭⎫⎝⎛-=31arccos α。
专题11 空间点、直线、平面之间的位置关系(核心素养练习)(原卷版)附答案.pdf
专题十一空间点、直线、平面之间的位置关系核心素养练习一、核心素养聚焦考点一逻辑推理-证明直线共面例题9.已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.考点二直观想象-直线之间的关系例题10.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( ) A.平行 B.异面C.相交D.以上均有可能二、学业质量测评一、选择题1.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条()3.如图是一个正方体的平面展开图,则在正方体中直线AB与CD的位置关系为 A.相交B.平行C.异面而且垂直D.异面但不垂直4.若是异面直线,且//平面,那么与平面的位置关系是( ),a b a αb αA .B .与相交C .D .以上三种情况都有可能//b αb αb α⊂5.已知平面平面,直线,直线,则直线,的位置关系为( )//αβm α⊂n β⊂m n A .平行或相交B .相交或异面C .平行或异面D .平行、相交或异面6.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l ∥αD .如果两个平面有三个大众点,则这两个平面重合.二、多选题7.(多选)下列说法中错误的是( )A .不共面的四点中,任意三点不共线B .三条两两相交的直线在同一平面内C .有三个不同大众点的两个平面重合D .依次首尾相接的四条线段不一定共面8.(多选)已知表示不同的点,表示直线,表示不同的平面,则下列推理正确的是()A B C ,,l αβ,A .,,,∈A l A α∈B l ∈B l αα∈⇒⊂B .,,,A α∈A β∈B α∈B ABβαβ∈⇒= C .,l αÚA l A α∈⇒∉D .,,A α∈∈A l l l Aαα⊄⇒⋂=三、填空题9.如图,在正方体中,分别为棱的中点,有以下四个结论:1111—ABCD A B C D M N ,111C D C C ,①直线与是相交直线;AM 1CC ②直线与是平行直线;AM BN ③直线与是异面直线;BN 1MB ④直线与是异面直线.AM 1DD 其中正确的结论的序号为________.10.棱长为的正方体中,是棱的中点,过作正方体的截面,则截面的面21111ABCD A B C D -M 1AA 1,,C M D 积是_________________.11.如图是表示一个正方体表面的一种平面展开图,图中的四条线段、、和在原正方体中AB CD EF GH 相互异面的有__________对.12.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有______组互相平行的面,与其中一个侧面相交的面共有______个.四、解答题13.已知四点和直线,且,,,,求证:直线共面.A B C D ,,,l ∈A l B l ∈C l ∈D l ∉AD BD CD ,,14.如图,AB ∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D 三点共线.15.如图所示的几何体中,,,,且,,,.求证:直11//AB A B 11//AC A C 11//BC B C 11AB A B <11AC A C <11BC B C <线,,相交于同一点.1A A 1B B 1C C专题十一空间点、直线、平面之间的位置关系核心素养练习一、核心素养聚焦考点一逻辑推理-证明直线共面例题9.已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.【证明】法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α,又A∈α,所以AB⊂α.同理AC⊂α,故直线AB,BC,AC共面.法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.考点二直观想象-直线之间的关系例题10.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( ) A.平行 B.异面C.相交D.以上均有可能【参考答案】B 【解析】假设BE 与CF 是共面直线,设此平面为α,则E ,F ,B ,C ∈α,所以BF ,CE ⊂α,而A ∈CE ,D ∈BF ,所以A ,D ∈α,即有A ,B ,C ,D ∈α,与ABCD 为空间四边形矛盾,所以BE 与CF 是异面直线.二、学业质量测评一、选择题1.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【参考答案】B【解析】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质αβ//αβ定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条//αβαβαβ//αβ件,故选B .2.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A .1条或2条B .2条或3条C .1条或3条D .1条或2条或3条【参考答案】D【解析】分类讨论:当α过平面β与γ的交线时,这三个平面有1条交线;当β∥γ时,α与β和γ各有一条交线,共有2条交线;当β∩γ=b ,α∩β=a ,α∩γ=c 时,有3条交线.本题选择D 选项.3.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为 ()A .相交B .平行C .异面而且垂直D .异面但不垂直【参考答案】D【解析】利用展开图可知,线段AB 与CD 是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D4.若是异面直线,且//平面,那么与平面的位置关系是( ),a b a αb αA .B .与相交C .D .以上三种情况都有可能//b αb αb α⊂【参考答案】D【解析】若a 、b 是异面直线,且a ∥平面α,则根据空间中线面的位置关系可得:b ∥a 或者b ⊂α或者b 与α相交.故选:D .5.已知平面平面,直线,直线,则直线,的位置关系为( )//αβm α⊂n β⊂m n A .平行或相交B .相交或异面C .平行或异面D .平行、相交或异面【参考答案】C【解析】因为平面平面,直线,直线,//αβm α⊂n β⊂所以直线没有大众点,m n ,所以两条直线平行或异面.故选:C.6.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l ∥αD .如果两个平面有三个大众点,则这两个平面重合.【参考答案】A【解析】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个大众点且它们共线,这两个平面可以相交,故D 错.综上,选A .二、多选题7.(多选)下列说法中错误的是( )A .不共面的四点中,任意三点不共线B .三条两两相交的直线在同一平面内C .有三个不同大众点的两个平面重合D .依次首尾相接的四条线段不一定共面【参考答案】BC【解析】由公理2易知选项AD 正确;对于选项B :如正方体中,具有同一顶点的三条棱不在同一平面内,故选项B 错误;对于选项C:三个不同的大众点可在两平面的交线上.,故选项C 错误;故选: BC8.(多选)已知表示不同的点,表示直线,表示不同的平面,则下列推理正确的是()A B C ,,l αβ,A .,,,∈A l A α∈B l ∈B l αα∈⇒⊂B .,,,A α∈A β∈B α∈B ABβαβ∈⇒= C .,l αÚA l A α∈⇒∉D .,,A α∈∈A l l l Aαα⊄⇒⋂=【参考答案】ABD【解析】对于选项A:由公理1知,,故选项A 正确;l α⊂对于选项B :因为表示不同的平面,由公理3知,平面相交,且,故选项B 正确;αβ,αβ,AB αβ= 对于选项C:分两种情况:与相交或.当与相交时,若交点为A,则,故选项C 错误;l α⊄l α//l a l αA α∈对于选项D :由公理1逆推可得结论成立,故选项D 成立;故选:ABD三、填空题9.如图,在正方体中,分别为棱的中点,有以下四个结论:1111—ABCD A B C D M N ,111C D C C ,①直线与是相交直线;AM 1CC ②直线与是平行直线;AM BN ③直线与是异面直线;BN 1MB ④直线与是异面直线.AM 1DD 其中正确的结论的序号为________.【参考答案】③④【解析】因为四边不共面,所以直线与是异面直线,所以①错误的;同理,直线与1,,,A M C C AM 1CC AM 也是异面直线,直线与是异面直线,直线与是异面直线,所以②是错误的;③是正确BN BN 1MB AM 1DD 的,④是正确的,故填③④.10.棱长为的正方体中,是棱的中点,过作正方体的截面,则截面的面21111ABCD A B C D M 1AA 1,,C M D 积是_________________.【参考答案】92【解析】如图,由面面平行的性质知截面与平面AB 1的交线MN 是△AA 1B 的中位线,所以截面是梯形CD 1MN ,又,.11MN CD CN MD ====92故参考答案为92AB CD EF GH11.如图是表示一个正方体表面的一种平面展开图,图中的四条线段、、和在原正方体中相互异面的有__________对.【参考答案】3【解析】画出展开图复原的几何体,所以C与G重合,F,B重合,所以:四条线段AB、CD、EF和GH在原正方体中相互异面的有:AB与GH,AB与CD,GH与EF,共有3对.故参考答案为3.12.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有______组互相平行的面,与其中一个侧面相交的面共有______个.【参考答案】4. 6.【解析】六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共由8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.故参考答案为:;46四、解答题13.已知四点和直线,且,,,,求证:直线共面.A B C D ,,,l ∈A l B l ∈C l ∈D l ∉AD BD CD ,,【参考答案】证明见解析【解析】证明:因为,所以直线与点可以确定平面,如图所示,D l ∉l D α因为,所以,又,所以.∈A l A α∈D α∈AD α⊂同理可证,,BD α⊂CD α⊂所以,,在同一平面内,AD BD CD α即直线,,共面AD BD CD 14.如图,AB ∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D 三点共线.【参考答案】略【解析】证明:∵AB ∥CD,∴AB,CD 可确定一个平面,设为平面β,∴AC 在平面β内,即E 在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E 为平面α与平面β的大众点,根据公理3可得,B,D,E 三点共线.15.如图所示的几何体中,,,,且,,,.求证:直11//AB A B 11//AC A C 11//BC B C 11AB A B <11AC A C <11BC B C <11线,,相交于同一点.1A A 1B B 1CC 【参考答案】证明见解析【解析】证明∵,,11//AB A B 11AB A B <∴直线,确定一个平面,并且直线,相交,设.①1A A 1B B 11AA B B 1A A 1B B 11A A B B D ⋂=∵,∴与确定一个平面,11//AC A C AC 11A C 11AA C C ∵平面,∴平面.1A A ⊂11AA C C D ∈11AA C C 同理平面.D ∈11BB C C 又因为平面平面,∴.②11AA C C 111BB C C C C =1D C C ∈由①②可知,,,三线共点,即直线,,相交于同一点.1A A 1B B 1C C 1A A 1B B 1C C D 知识改变命运。
直线与平面的位置关系练习题
直线与平面的位置关系练习题直线与平面的位置关系是几何学中的基础概念之一,理解和掌握这一概念对于解决几何题目非常重要。
本文将为你提供一些直线与平面的位置关系的练习题,帮助你巩固这一知识点。
练习题1:已知直线l与平面α相交于点A,点B在直线l上。
连接点B与平面α的交点为点C,若AB的垂直平分线交平面α于点D,则下列哪个选项是正确的?A) 线段CD平分线段BC的长度。
B) 线段AD平分线段AB的长度。
C) 三角形BCD垂直于平面α。
D) 线段CD平分角A。
练习题2:已知平面α与平面β垂直,直线p在平面α上,点A在直线p上。
连接点A与平面β的交点为点B,在平面β上取一点C。
若AB平行于平面β,那么以下哪个选项是正确的?A) 直线p与平面β交于一条直线上的所有点。
B) 线段BC与线段AB平行。
C) 线段AC垂直于平面α。
D) 线段CB平分角A。
练习题3:已知平面α与平面β相交于直线l,点A在平面α上且不在直线l上。
连接点A与平面β的交点为点B,连接点A与直线l的交点为点C。
以下哪个选项是正确的?A) 点A、点B、点C不共线。
B) 线段AC在平面β上的投影是线段BC。
C) 直线l是平面α与平面β的交线。
D) 点A在直线BC上。
练习题4:已知平面α与平面β相交于直线l,点A在直线l上,点B在平面β上,且线段AB平行于平面α。
连接点B与直线l的交点为点C。
若点D是线段AC的中点,那么下列哪个选项是正确的?A) 直线BC平分线段AD。
B) 线段CD平行于平面β。
C) 三角形ABC垂直于平面β。
D) 点D在直线l上。
练习题5:已知平面α与平面β相交于直线l,点A在平面α上,点B在平面β上,且线段AB垂直于直线l。
连接点A与平面β的交点为点C。
以下哪个选项是正确的?A) 点B、点C、点A共线。
B) 线段CB平分线段AB。
C) 点C、点B、点A不共面。
D) 三角形ABC是等腰三角形。
以上是直线与平面的位置关系练习题,通过解答这些题目,你可以巩固理解直线与平面的位置关系的概念,并提高解决几何问题的能力。
中职数学拓展模块一(上册)4.3直线与平面的位置关系
容易看出,当笔平放在桌面上时,它与桌面有无数多个公共点;将 笔水平拿起,它与桌面没有公共点; 当笔竖直放置时,它与桌面只有一 个公共点.事实上,根据公理2,当一条直线与一个平面有两个公共点时, 这条直线上的所有点都在这个平面内.除此之外,直线与平面或者只有 1个公共点,或者没有公共点.因此,直线与平面有三种 位置关系.
直线l与平面α相交或平行,称直线 l 在平面α外,记作l与⊈α.
4.3.1
直线与平面平行
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
如图所示,一本打开的书的封面右边沿所在直线m已经不 在书内页所在平面α内,那么,m与α是相交还是平行呢?
观察发现,书脊所在直线n是封面所在平面 与书内页所在平面的交线,且m∥n.
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
显然,m与n共面于平面B内,则n与n要么相交,要么平行.若 m与n相交,且交点为P,如图(2)所示,则P也是直线m与平面α 的交点,这与条件m//α相矛盾.所以m//n.于是,有下面的结论:
直线与平面平行的性质定理 如果一条直线和一个 平面平行, 那么经过这条直线的任一平面和这个平面的交 线与这条直线平行.
能否通过m∥n来判断直线m与平面α之 间的位置关系呢?
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
一般情形为,m⊈α,n⊆α,且m∥n,如图(1)所示. 假设直线m与平面α相交,记交点为点P,如图(2)所示. 由m∥n知P∉n.根据异面直线判定定理,m与n是异面直线,这 与m∥n矛盾.故直线 m 与平面α不相交,从而m∥α.
练习
2. 填空题.
(1) 如果一条直线与一个平面平行,那么这条直线与这个平面有
个公共点;
空间点、直线、平面之间的位置关系和平行判定习题
1.点A 在直线上,记作 ;点A 在平面α内,记作 ;直线α在平面α内,记作 .2.平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:3.公理的作用:(1)公理1作用:判断直线是否在平面内;(2)公理2作用:确定一个平面的依据;(3)公理3作用:判定两个平面是否相交的依据. 4. 空间两条直线的位置关系:5. 等角定理:6. 已知两条异面直线,经过空间任一点作直线,把所成的锐角(或直角)叫异面直线所成的角(或夹角). 所成的角的大小与点的选择无关,为了简便,点通常取在异面直线的一条上;异面直线所成的角的范围为,如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作. 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.7. 公理4:8. 公理4作用:判断空间两条直线 的依据.9.直线与平面有三种位置关系:(1) —— 有无数个公共点(2)——有且只有一个公共点(3)——没有公共点10. 两个平面之间有两种位置关系:(1)——没有公共点(2)——有且只有一条公共直线2.2 直线、平面平行的判定及其性质11.判定定理的符号表示为:.12. 证明线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.13.面面平行判定定理:.用符号表示为:.14. 垂直于同一条直线的两个平面平行.15. 平面α上有不在同一直线上的三点到平面β的距离相等,则α与β的位置关系是.16.线面平行的性质定理:符号语言:18. 面面平行的性质:. 用符号语言表示为:.19. 其它性质:①;②;③夹在平行平面间的平行线段相等.1.四面体ABCD中,AB=CD=2,E、F分别是AC、BD的中点,且EF=3,则AB与CD所成的角为__________.3 / 72.在空间四边形ABCD 中,已知AD =1,BC =3,且AD ⊥BC ,对角线BD =213,AC =23,求AC 和BD 所成的角.3.已知E 、F 、G 、H 分别是空间四边形ABCD 各边AB 、AD 、CB 、CD 上的点,并且有GB CG EB AB =,HD CH FD AF =,试证EF 、GH 、BD 共点或两两平行.4 已知异面直线a 、b 所成的角为60°,在过空间一定点P 的直线中,与a ,b 所成的角均为60°的直线有多少条?过P 与a 、b 所成角均为50°,或均为70°的直线又各有多少呢?希望读者通过对上述三个具体问题的求解,总结解题方法,然后再探讨关于与异面直线成等角的直线的存在性问题的一般性情况:已知异面直线a ,b 所成的角为θ0且θ0<90°,过空间一点P 的直线中与a ,b 所成的角均为θ的直线有多少条?5.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值。
点线面位置关系例题与练习(含答案)
点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。
公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。
1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。
范围:[]0,90θ∈︒︒ 3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。
高一数学点直线平面之间的位置关系试题答案及解析
高一数学点直线平面之间的位置关系试题答案及解析1.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为()A.B.C.D.【答案】C【解析】设BC的中点为D,连接易知即为异面直线与所成的角,设三棱柱的侧棱与底面边长为1,则,由余弦定理可以求得【考点】本小题主要考查空间两条异面直线所成的角的求法,考查学生的空间想象能力和运算求解能力.点评:求空间两条异面直线所成的角,关键是先做出空间两条异面直线所成的角,另外需要注意空间两条异面直线所成的角的取值范围.2.在正方体中,E是棱的中点,F是侧面上的动点,且平面,则与平面所成角的正切值构成的集合是()A.B.C.D.【答案】D【解析】设分别为边上的中点,则四点共面,且平面平面,又因为平面,所以点落在线段上,设的中点为,则当与重合时,与平面所成角的正切值有最大值为,当与或重合时,与平面所成角的正切值有最小值为2,故与平面所成角的正切值构成的集合是【考点】本小题主要考查点是直线与平面所成的角,其中分析出F落在线段HI上,是解答本题的关键.点评:求线面角,关键是先作出所成的角.3.四棱锥中,底面是边长为的正方形,其他四个侧面都是侧棱长为的等腰三角形,则二面角的平面角为_____________。
【答案】【解析】如图:E、F分别是AB,CD中点,连VE,EF,VF;则就是二面角的平面角;又所以三角形VEF为正三角形,所以4.直角△ABC的斜边BC在平面a内,顶点A在平面a外,则△ABC的两条直角边在平面a内的射影与斜边BC组成的图形只能是()A.一条线段B.一个锐角三角形C.一个钝角三角形D.一条线段或一个钝角三角形【答案】D【解析】当面ABC⊥α时,射影为一条线段,当面ABC不垂于α时,射影为钝角三角形.5.如果△ABC的三个顶点到平面的距离相等且不为零,那么△ABC的()A.三边均与平面平行B.三边中至少有一边与平面平行C.三边中至多有一边与平面平行D.三边中至多有两边与平面平行【答案】B【解析】三个顶点正在平面同一侧,则三边都平行平面;两个顶点在同一侧,一个顶点在另一侧,则在同一侧的两个顶点所在的边平行平面.故选B6.过直线外一点作直线的垂线有条;垂面有个;平行线有条;平行平面有个.【答案】无数,一,一,无数【解析】过直线外一点作直线的垂线与该直线相交的只有一条,而与该直线异面的有无数条,所以过直线外一点作直线的垂线有无数条。
空间点直线平面之间的位置关系例题
空间点直线平面之间的位置关系例题空间几何是数学中一个非常重要的分支,在空间几何中,点、直线和平面是最基本的元素。
它们之间的位置关系既复杂又深刻,需要我们用深度和广度兼具的方式进行全面评估。
在本文中,我们将从简到繁,由浅入深地探讨空间点、直线和平面之间的位置关系,以及解决一些典型的例题。
一、空间点、直线和平面的基本概念1. 点:在几何中,点是最基本的概念,它是没有大小,没有形状,只有位置的。
点在空间中是唯一的,通过坐标来表示。
2. 直线:直线是由无数个点组成的,在空间中是一条无限延伸的路径。
直线有方向和长度,可以根据方向向量来表示。
3. 平面:平面是由无数个点和直线组成的,在空间中是没有边界的二维图形。
平面可以通过点和法向量来表示。
二、点、直线和平面之间的位置关系1. 点和直线的位置关系:(1)点是否在直线上:给定点P(x,y,z),直线L:Ax+By+Cz+D=0,要判断点P是否在直线L上,可以将点P的坐标代入直线方程,若等式成立,则点P在直线L上。
(2)点到直线的距离:点P到直线L的距离可以通过点到直线的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。
(3)点和直线的位置关系还包括点在直线的上、下、左、右、内、外等方面。
2. 点、直线和平面的位置关系:(1)点是否在平面上:给定点P(x,y,z),平面π:Ax+By+Cz+D=0,要判断点P是否在平面π上,可以将点P的坐标代入平面方程,若等式成立,则点P在平面π上。
(2)点到平面的距离:点P到平面π的距离可以通过点到平面的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。
(3)点和平面的位置关系还包括点在平面的前、后、内、外等方面。
三、例题解析:空间点、直线、平面的位置关系1. 例题一:已知点A(1,2,3)、直线L:2x-3y+z+4=0和平面π:3x+y-2z-7=0,判断点A是否在直线L上和平面π上,若不在,求点A到直线L和平面π的距离。
数学必修二空间点_直线_平面的位置关系练习题含答案
数学必修二空间点、直线、平面的位置关系学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,平面不能用( )表示.A.平面αB.平面ABC.平面ACD.平面ABCD2. 已知m,n,l为三条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是()A.若m⊥l,n⊥l,则m // nB.若m // α,n // α,则m // nC.若m⊥α,n⊥α,则m // nD.若α⊥γ,β⊥γ,则α // β3. 对于不同点A、B,不同直线a、b、l,不同平面α,β,下面推理错误的是()A.若A∈a,A∈β,B∈a,B∈β,则a⊂βB.若A∈α,A∈β,B∈α,B∈β,则α∩β=直线ABC.若l⊄α,A∈l,则A∉αD.a∩b=Φ,a不平行于b,则a、b为异面直线4. 若点B在直线b上,b在平面β内,则B、b、β之间的关系可记作()A.B∈b∈βB.B∈b⊂βC.B⊂b⊂βD.B⊂b∈β5. 直线a、b为两异面直线,下列结论正确的是()A.过不在a、b上的任何一点,可作一个平面与a、b都平行B.过不在a、b上的任一点,可作一直线与a、b都相交C.过不在a、b上任一点,可作一直线与a、b都平行D.过a可以并且只可以作一个平面与b平行6. 如图所示,平面α∩平面β=l,点A,B∈α,点C∈β,直线AB∩l=R.设过A,B,C三点的平面为γ,则β∩γ=()A.直线ACB.直线BCC.直线CRD.以上均不正确7. 一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不确定8. 若点P为两条异面直线a,b外的任意一点,则下列说法一定正确的是( )A.过点P有且仅有一条直线与a,b都平行B.过点P有且仅有一条直线与a,b都垂直C.过点P有且仅有一条直线与a,b都相交D.过点P有且仅有一条直线与a,b都异面9. 在正方体ABCD−A1B1C1D1中,E为棱CC1上一点且CE=2EC1,则异面直线AE与A1B所成角的余弦值为()A.√1144B.√1122C.3√1144D.√111110. 空间中,如果一个角的两边和另一个角的两边分别对应平行,那么这两个角的大小关系为()A.相等B.互补C.相等或互补D.互余11. 在棱长为2的正方体ABCD−A1B1C1D1中,异面直线AB和CC1的距离为________.12. 如图所示是一个正方体的表面展开图,A,B,C均为棱的中点,D是顶点,则在正方体中,异面直线AB和CD的夹角的余弦值为________.13. 如果一条直线不在平面内,那么这条直线与这个平面的位置关系是________.14. 已知a // β,a⊂α,α∩β=b,则a和b的位置关系是________.15. 设a、b为两条直线,α、β为两个平面,有下列四个命题:①若a⊂α,b⊂β,且a // b,则α // β;②若a⊂α,b⊂β,且a⊥b,则α⊥β;③若a // α,b⊂α,则a // b;④若a⊥α,b⊥α,则a // b;其中正确命题的序号为________.16. 设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).17. 在空间直角坐标系O−xyz中,经过A(1, 0, 2),B(1, 1, −1),C(2, −1, 1)三个点的平面方程为________.18. 如图,在三棱柱ABC−A1B1C1中,D、E、F分别是A1B1、BC、B1C1的中点,则平面DEF与平面ACC1A1的位置关系是________.19. 如图,正方体的底面与正四面体的底面在同一平面α上,且AB // CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.20. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直;③垂直干同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中真命题是________(写出所有真命题的序号)21. 已知直线a,b,c,且a∩b=A,a∩c=B,b和c异面,试画出图形表示它们之间的关系.22. 举几对既不相交也不平行的直线的例子.23. 如图,已知E,F,G,H分别是空间四边形(四条线段首尾相接,且连接点不在同一个平面内,所组成的空间图形叫空间四边形)各边AB,AD,CB,CD上的点,且直线EF和HG交于点P,求证:点B,D,P在同一条直线上.24. 如图,过直线l外一点P,作直线a,b,c分别交直线l于点A,B,C,求证:直线a、b、c共面.25. 如图,已知E、F分别是正方体ABCD−A1B1C1D1的棱AA1和棱CC1上的中点,求证:四边形EBFD1是菱形.26. 在正方体ABCD−A1B1C1D1中,底面ABCD是正方形,若AC1=3,BC1=√5,则异面直线BC1与AD所成的角的正切值为________.27. 在长方体ABCD−A1B1C1D1中,E为DD1的中点.(1)判断BD1与平面AEC的位置关系,并证明你的结论.(2)若AB=BC=√3,CC1=2,求异面直线AE、BD1所成的角的余弦值.28. 如图,长方体ABCD−A1B1C1D1中,AB=AD=2,AA1=3,求异面直线A1B与B1C夹角的余弦值.29. 如图,已知长方体的长宽都是4cm,高为2cm.(1)求BC与A′C′,A′D与BC′所成角的余弦值;(2)求AA′与BC,AA′与CC′所成角的大小.30. 已知m,n是两条不同直线,α,β,γ是三个不同平面(1)若α⊥γ,β⊥γ,则α // β;(2)若m // α,m // β,则α // β;(3)若m // α,n // α,则m // n;(4)若m⊥α,n⊥α,则m // n.上述命题中正确的为________.31. 如图,已知ABCD是空间四边形,AB=AD,CB=CD,求证:BD⊥AC.32. 已知三条直线a、b、c,若这三条直线两两相交,且交点分别为A、B、C,试判断这三条直线是否共面.33. 如图,△ABC中,∠ABC=90∘,SA⊥平面ABC,E、F分别为点A在SC、SB上的射影.(1)求证:BC⊥SB;(2)求证:EF⊥SC.34. 三棱柱ABC−A1B1C1中,侧棱与底面垂直,∠ABC=90∘,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(Ⅰ)求证:MN // 平面BCC1B1;(Ⅱ)求证:MN⊥平面A1B1C.35. 如图所示的一块木料中,棱BC平行于面A′C′.(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(写出画法步骤,并在图中画出)(2)说明所画的线与平面AC的位置关系.36. 直线a // b,a与平面α相交,判定b与平面α的位置关系,并证明你的结论.37. 如图,在四棱锥P−ABCD中,有同学说平面PAD∩平面PBC=P,这句话对吗?请说明理由.38.(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1, 2, 3, 4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1, 2, 3, 4),求该正四面体A1A2A3A4的体积.39. 如图,a,b是异面直线,A,C与B,D分别是a,b上的两点,直线a // 平面a,直线b // 平面a,AB∩a=M,CD∩a=N,若AM=BM,求证:CN=DN.40. 如图,已知平面α、β,且α∩β=l.设梯形ABCD中,AD // BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点(相交于一点).参考答案与试题解析数学必修二空间点、直线、平面的位置关系一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】平面的概念、画法及表示【解析】利用平面的表示方法,对每个选项逐一判断即可.【解答】解:A.平面可用希腊字母α,β,γ表示,故A正确;B.平面不可用平行四边形的某条边表示,故B错误;C.平面可用平行四边形的对角的两个字母表示,故C正确;D.平面可用平行四边形的顶点表示,故D正确.故选B.2.【答案】C【考点】空间中直线与平面之间的位置关系空间中平面与平面之间的位置关系【解析】根据空间线面位置关系的情况举出反例判断或根据性质说明.【解答】对于A,当l⊥α,m⊂α,n⊂α时,显然有m⊥l,n⊥l,单m与n可能平行,也可能相交,故A错误.对于B,若α // β,m⊂β,n⊂β,则m // α,n // α,但m,n可能平行也可能相交,故B错误.对于C,由线面平行的性质“垂直于同一个平面的两条直线平行“可知C正确.对于D,当三个平面α,β,γ两两垂直时,显然结论错误.3.【答案】C【考点】平面的基本性质及推论【解析】在A中,由直线a上有两个点A,B都在β内,知a⊂β;在B中,由不同点A、B分别是两个不同平面α,β的公共点,知α∩β=直线AB;在C中,由l⊄α,A∈l,知A有可能是l与α的交点;在D中,因a∩b=Φ,a不平行于b,知a、b为异面直线.【解答】解:在A中,∵直线a上有两个点A,B都在β内,∴a⊂β,故A正确;在B中,∵不同点A、B分别是两个不同平面α,β的公共点,∴α∩β=直线AB,故B正确;在C中,∵l⊄α,A∈l,∴A有可能是l与α的交点,故C错误;在D中,∵a∩b=Φ,a不平行于b,∴a、b为异面直线,故D正确.故选C.4.【答案】B【考点】平面的概念、画法及表示【解析】由题意,点B在直线b上,b在平面β内,点与面之间的关系是属于关系,线与面之间的关系是包含关系,由此三者之间的关系易得【解答】解:由题意,点B在直线b上,b在平面β内,则B、b、β之间的关系可记作B∈b⊂β故选B5.【答案】D【考点】异面直线的判定【解析】若此点与直线a确定一平面β恰好与直线b平行,可得a⊂β,可判断A的真假;结合空间中直线关系的定义及几何特征,可判断B的真假;依据平行公理,即可判断C的真假;由公理2及其推论,我们可以判断D的真假.【解答】解:A中:若此点与直线a确定一平面β恰好与直线b平行,此时直线a在已知平面上,并非与已知平面平行,故A错误;B中:由①可得,当此点在β平面上时,结论B不成立;C中:若存在这样的直线l,则l // a,l // b,有平行公理知,必有a // b,与已知矛盾,故C错误;D中:在直线a上取A、B点,过A、B分别作直线c、d与直线b平行,c、d可确定平面α,即b平行于α,此时a在α平面上,故D正确;故答案为D6.【答案】C【考点】平面的基本性质及推论【解析】此题暂无解析【解答】解:由题意知,∵AB∩l=R,平面α∩平面β=l,∴ R ∈l ,l ⊂β,R ∈AB ,∴ R ∈β.又∵ A ,B ,C 三点确定的平面为γ,∴ C ∈γ,AB ⊂γ,∴ R ∈γ.又∵ C ∈β,∴ C ,R 是平面β和γ的公共点,∴ β∩γ=CR .故选C .7.【答案】D【考点】平行公理【解析】根据题意,可在正方体中,举例说明,得到答案【解答】如图所示,在正方体ABCD −A 1B 1C 1D 1中,二面角D −AA 1−F 与二面角D 1−DC −A 的两个半平面分别对应垂直,但是这两个二面角既不相等,也不互补,所以这两个二面角不一定相等或互补..AB例如:开门的过程中,门所在平面及门轴所在墙面分别垂直于地面与另一墙面,但门所在平面与门轴所在墙面所成二面角的大小不定,而另一二面角却是90∘,所以这两个二面角不一定相等或互补.8.【答案】B【考点】异面直线的判定【解析】A 通过反证法可以判定;B 由异面直线公垂线的唯一性可以判定;C 、D 利用常见的图形举出反例即可.【解答】解:设过点P 的直线为n ,且{n//a,n//b,, ∴ a // b ,这与a ,b 异面矛盾,选项A 错误;∵ 异面直线a ,b 有唯一的公垂线,∴ 过点P 与公垂线平行的直线有且只有一条,选项B 正确;如图所示的正方体中,设AD 为直线a ,A′B′为直线b ,若点P 在P 1点处,则无法作出直线与两直线都相交, ∴ 选项C 错误;如图所示的正方体中,若P 在P 2点,则由图中可知直线CC′及D′P 2均与a ,b 异面, ∴ 选项D 错误.故选B .9.【答案】B【考点】异面直线及其所成的角【解析】本题考查建立适当的空间直角坐标系,利用向量方法求解即可.【解答】解:建立如图所示空间直角坐标系,如图,设正方体棱长为1,则A(0,0,0),E (1,1,23),A 1(0,0,1),B(1,0,0),∴ AE →=(1,1,23),A 1B →=(1,0,−1),∴ cos <AE →,A 1B →>=AE →⋅A 1B →|AE||A 1B|=1−2 3√12+12+(23)2⋅√12+(−1)2=√1122.故选B.10.【答案】C【考点】平行公理【解析】根据等角定理:如果一个角的两边和另一个角的两边分别对应平行并且方向相同,那么这两个角的相等,从而易知本题答案.【解答】解:根据等角定理:如果一个角的两边和另一个角的两边分别对应平行并且方向相同,那么这两个角的相等.本题的条件是:一个角的两边和另一个角的两边分别对应平行,由于没有指出角的对应两边的方向情况,故两个角可能相等或互补.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】2【考点】空间中直线与直线之间的位置关系【解析】由题意,异面直线AB和CC1的距离为BC,即可得出结论.【解答】解:由题意,异面直线AB和CC1的距离为BC=2.故答案为:2.12.【答案】√105【考点】异面直线及其所成的角【解析】建立空间坐标系,分别求出两条异面直线的方向向量,利用向量的夹角公式即可得出.【解答】解:如图所示,建立空间坐标坐标系.取正方体的棱长为2.则B(1, 2, 0),A(2, 2, 1),D(2, 0, 2),C(2, 1, 0).∴ BA →=(1, 0, 1),CD →=(0, −1, 2).∴ cos <BA →,CD →>=|BA →|⋅|CD →|˙=2√2⋅√5=√105. ∴ 异面直线AB 和CD 的夹角的余弦值为√105. 故答案为:√105. 13. 【答案】平行或相交【考点】空间中直线与平面之间的位置关系【解析】利用直线与平面的位置关系求解.【解答】解:∵ 直线与平面的位置关系有三种:平行、相交或直线在平面内,∴ 如果一条直线不在平面内,那么这条直线与这个平面的位置关系是平行或相交.故答案为:平行或相交.14.【答案】平行【考点】空间中直线与直线之间的位置关系【解析】根据线面平行的性质定理判断出a // b .【解答】解:∵ a // β,a ⊂α,α∩β=b ,∴ 由线面平行的性质定理得,a // b ,故答案为:平行.15.【答案】④【考点】空间中平面与平面之间的位置关系空间中直线与直线之间的位置关系【解析】根据空间中面面平行的判定方法,面面垂直的判定方法,线面平行的性质及线面垂直的性质,我们对已知中四个结论逐一进行判断即可得到结论.【解答】解:若a⊂α,b⊂β,且a // b,则α与β可能平行与可能相交,故①错误;若a⊂α,b⊂β,且a⊥b,则α与β可能平行与可能相交,故②错误;若a // α,b⊂α,则a与b可能平行与可能异面,故③错误;若a⊥α,b⊥α,则a // b,故④正确;故答案为:④16.【答案】①③④⇒②(或②③④⇒①)【考点】空间中平面与平面之间的位置关系空间中直线与平面之间的位置关系【解析】分析本题中的条件,四个条件取三个,有四种组合,由于本题是一开放式题答案不唯一,故选取其一即可.【解答】解:观察发现,①③④⇒②与②③④⇒①是正确的命题,证明如下:证①③④⇒②,即证若m⊥n,n⊥β,m⊥α,则α⊥β,因为m⊥n,n⊥β,则m⊂β或m // β,又m⊥α故可得α⊥β,命题正确;证②③④⇒①,即证若n⊥β,m⊥α,α⊥β,则m⊥n,因为m⊥α,α⊥β则m⊂β或m // β,又m⊥α故可得m⊥n,命题正确.故答案为:①③④⇒②(或②③④⇒①).17.【答案】4x+3y+z=6【考点】平面的概念、画法及表示【解析】设过A、B、C三点的平面方程为Ax+By+Cz=D,把点的坐标代入方程求得A、B、C的值,从而求得平面方程.【解答】设过A(1, 0, 2),B(1, 1, −1),C(2, −1, 1)三点的平面方程为Ax+By+Cz=D,则A+2C=D①,A+B−C=D②,2A−B+C=D③,由①②③组成方程组,解得A=2D3,B=D2,C=D6;∴2D3x+D2y+D6z=D,化简得4x+3y+z=(6)18.【答案】平行【考点】空间中平面与平面之间的位置关系【解析】根据面面平行的判定定理,判断两个平面平行即可.【解答】解:因为D、E、F分别是A1B1、BC、B1C1的中点,所以BD // A1C1,BE // C1C,所以BD // 面A1B1C1,BE // 面A1B1C1,因为DB∩BE=E,所以平面DEF // ACC1A1.故答案为:平行.19.【答案】4【考点】平面的基本性质及推论【解析】判断EF与正方体表面的关系,即可推出正方体的六个面所在的平面与直线EF相交的平面个数即可.【解答】由题意可知直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以直线EF与正方体的六个面所在的平面相交的平面个数为4.20.【答案】②④【考点】平面的基本性质及推论【解析】利用两个平面平行的判断判断出①错;利用两个平面垂直的判断判断出②对;利用垂直于同一条直线的直线的位置关系判断出③错;利用两个平面垂直的性质判断出④对.【解答】解:对于①,若一个平面内的两条相交直线与另一个平面都平行,那么这两个平面相互平行,故①错对于②,若一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直是两个平面垂直的判断定理,故②对对于③,垂直干同一直线的两条直线相互平行、相交或异面,故③错.对于④,若两个平面垂直,那么一个平面内与它们的交线垂直的直线与另一个平面也垂直.故④对故答案为:②④.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】∵ a ∩b =A ,a ∩c =B ,b 和c 异面,∴ 画图表示如下:.【考点】异面直线的判定【解析】根据直线a ,b ,c 的关系,画出图形即可.【解答】∵ a ∩b =A ,a ∩c =B ,b 和c 异面,∴ 画图表示如下:.22.【答案】既不相交也不平行的直线是异面直线,如图,在正方体A 1B 1C 1D 1−ABCD 中,AB 和A 1D 1,B 1C 1都构成异面直线,BC 和A 1B 1,C 1D 1→都构成异面直线.【考点】异面直线的判定【解析】可知,既不相交也不平行的直线是异面直线,可画出一个正方体,找出几对上面的异面直线即可.【解答】既不相交也不平行的直线是异面直线,如图,在正方体A 1B 1C 1D 1−ABCD 中,AB 和A 1D 1,B 1C 1都构成异面直线,BC 和A 1B 1,C 1D 1→都构成异面直线.23.【答案】证明:∵ E ,F ,G ,H 分别是空间四边形ABCD 各边AB ,AD ,CB ,CD 上的点, ∴ 由公理一,得EF ⊂平面ABD ,GH ⊂平面CBD ,∵ 面ABD ∩面CBD =BD ,直线EF 和HG 交于点P ,∴ 由公理三得P ∈BD ,∴ 点B ,D ,P 在同一条直线上..【考点】平面的基本性质及推论【解析】由公理一,得EF⊂平面ABD,GH⊂平面CBD,由公理三得P∈BD,由此能证明点B,D,P在同一条直线上..【解答】证明:∵E,F,G,H分别是空间四边形ABCD各边AB,AD,CB,CD上的点,∴由公理一,得EF⊂平面ABD,GH⊂平面CBD,∵面ABD∩面CBD=BD,直线EF和HG交于点P,∴由公理三得P∈BD,∴点B,D,P在同一条直线上..24.【答案】证明:设直线l与l外一点P确定的平面为α,则P∈平面α,又A∈直线l,∴A∈平面α;又P∈直线a,A∈直线a,∴直线a⊂平面α;同理直线b⊂平面α,直线c⊂平面α,∴直线a、b、c共面.【考点】平面的基本性质及推论【解析】先设直线l与l外一点P确定一个平面α,再证明直线a⊂平面α,同理得出直线b、c⊂平面α即可.【解答】证明:设直线l与l外一点P确定的平面为α,则P∈平面α,又A∈直线l,∴A∈平面α;又P∈直线a,A∈直线a,∴直线a⊂平面α;同理直线b⊂平面α,直线c⊂平面α,∴直线a、b、c共面.25.【答案】证明:取棱BB1中点为G,连C1G、EG,由正方体性质,侧面ABB1A1为正方形,又E、G分别为边AA1、BB1中点,所以EG=A1B1=C1D1,EG // A1B1 // C1D1,从而四边形EGC1D1为平行四边形,∴D1E // C1G,D1E=C1G,又F、G分别为棱CC1、BB1中点,由侧面CBB1C1为正方形,知四边形BGC1F为平行四边形,所以BF // C1G,BF=C1G,又∴D1E // C1G,D1E=C1G,由平行公理可知D1E=BF,D1E // BF,从而四边形EBFD1为平行四边形.由ABCD−A1B1C1D1为正方体,不妨设其棱长为a,易a知BE=BF=√52而由四边形EBFD1为平行四边形,从而即为菱形.【考点】平行公理【解析】根据菱形的定义直接证明即可.【解答】证明:取棱BB1中点为G,连C1G、EG,由正方体性质,侧面ABB1A1为正方形,又E、G分别为边AA1、BB1中点,所以EG=A1B1=C1D1,EG // A1B1 // C1D1,从而四边形EGC1D1为平行四边形,∴D1E // C1G,D1E=C1G,又F、G分别为棱CC1、BB1中点,由侧面CBB1C1为正方形,知四边形BGC1F为平行四边形,所以BF // C1G,BF=C1G,又∴D1E // C1G,D1E=C1G,由平行公理可知D1E=BF,D1E // BF,从而四边形EBFD1为平行四边形.由ABCD−A1B1C1D1为正方体,不妨设其棱长为a,易a知BE=BF=√52而由四边形EBFD1为平行四边形,从而即为菱形.26.【答案】12【考点】异面直线及其所成的角【解析】此题暂无解析【解答】解:设AB=a,因为ABCD是正方形,所以AC=√2a.所以CC1⊥AC,CC1⊥BC,所以CC12=AC12−AC2=BC12−BC2,即9−2a2=5−a2,解得a=2.所以CC1=1,因为AD//BC,所以∠CBC1即异面直线BC1与AD所成的角,tan∠CBC1=CC1BC =12.故答案为:12.27.【答案】解:(1)BD1 // 平面AEC,如图,连结BD交AC于O,则O为BD中点,连结OE;∵E为DD1的中点,∴OE // BD1;∵OE⊂平面AEC,BD1⊄平面AEC;∴BD1 // 平面AEC;(2)∵OE // BD1;∴异面直线AE,BD1所成的角为∠AEO;∵AB=BC=√3,CC1=2;∴EA=EC=2,EO=12BD1=√102;∴EO⊥AC;∴Rt△AEO中,cos∠AEO=EOEA =√104;因此,异面直线AE,BD1所成的角的余弦值为√104.【考点】异面直线及其所成的角空间中直线与平面之间的位置关系【解析】(1)连接BD,设交AC于O,连接EO,便可说明BD1 // OE,由线面平行的判定定理即(2)由上面BD1 // OE即可得到异面直线AE、BD1所成的角为∠AEO,而通过条件可说明OE⊥AC,并且可求出AE,OE,从而根据直角三角形的边角关系cos∠AEO=EOAE,这样即可求出异面直线AE,BD1所成角的余弦值.【解答】解:(1)BD1 // 平面AEC,如图,连结BD交AC于O,则O为BD中点,连结OE;∵E为DD1的中点,∴OE // BD1;∵OE⊂平面AEC,BD1⊄平面AEC;∴BD1 // 平面AEC;(2)∵OE // BD1;∴异面直线AE,BD1所成的角为∠AEO;∵AB=BC=√3,CC1=2;∴EA=EC=2,EO=12BD1=√102;∴EO⊥AC;∴Rt△AEO中,cos∠AEO=EOEA =√104;因此,异面直线AE,BD1所成的角的余弦值为√104.28.【答案】【考点】异面直线及其所成的角【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:(1)∵ 长方体ABCD −A ′B ′C ′D ′中,BC // A′C′∴ ∠A ′C ′B ′就是异面直线BC 与A′C′所成角 Rt △A ′B ′C ′中,A′C′=√42+42=4√2 ∴ cos ∠A ′C ′B ′=B ′C‘A′C′=√22; 连结B ′C ,可得四边形A ′DCB ′是平行四边形,∴ A ′D // CB ′,直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角 矩形BB ′C ′C 中,BC ′=B ′C =√42+22=2√5 设A′D 与BC′所成的角为θ,则由余弦定理得cos θ=2×√5×√5=35综上所述,可得BC 与A′C′,A′D 与BC′所成角的余弦值分别为√22和35; (2)∵ 长方体ABCD −A ′B ′C ′D ′中,AA ′ // BB ′∴ ∠B ′BC (或其补角)就是AA′与BC 所成的角 矩形BB ′C ′C 中,可得∠B ′BC =90∘;又∵ AA′ // CC′,∴ AA′与CC′所成角为0∘综上所述AA′与BC ,AA′与CC′所成角的大小分别为90∘和0∘.【考点】异面直线及其所成的角 【解析】(1)根据长方体的性质,可得∠A ′C ′B ′就是异面直线BC 与A′C′所成角,在Rt △A ′B ′C ′中,利用三角函数的定义可得cos ∠A ′C ′B ′=√22,即为BC 与A′C′所成角的余弦值.同理可得直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角,结合余弦定理加以计算即可得到A′D 与BC′所成角的余弦值;(2)根据长方体的性质可得AA ′ // BB ′,因此矩形BB ′C ′C 中,∠B ′BC =90∘就是AA′与BC 所成的角;再由AA′ // CC′,得到AA′与CC′所成角为0∘. 【解答】解:(1)∵ 长方体ABCD −A ′B ′C ′D ′中,BC // A′C′∴ ∠A ′C ′B ′就是异面直线BC 与A′C′所成角 Rt △A ′B ′C ′中,A′C′=√42+42=4√2 ∴ cos ∠A ′C ′B ′=B ′C‘A′C′=√22; 连结B ′C ,可得四边形A ′DCB ′是平行四边形,∴ A ′D // CB ′,直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角 矩形BB ′C ′C 中,BC ′=B ′C =√42+22=2√5设A′D 与BC′所成的角为θ,则由余弦定理得cos θ=5+5−162×√5×√5=35综上所述,可得BC 与A′C′,A′D 与BC′所成角的余弦值分别为√22和35;(2)∵ 长方体ABCD −A ′B ′C ′D ′中,AA ′ // BB ′ ∴ ∠B ′BC (或其补角)就是AA′与BC 所成的角 矩形BB ′C ′C 中,可得∠B ′BC =90∘;又∵ AA′ // CC′,∴ AA′与CC′所成角为0∘综上所述AA′与BC ,AA′与CC′所成角的大小分别为90∘和0∘. 30.【答案】 (4). 【考点】空间中平面与平面之间的位置关系 空间中直线与直线之间的位置关系【解析】根据题意,分析4个命题:(1)由α⊥γ,β⊥γ,得α // β,或α∩β; (2)由m // α,m // β,得α // β,或α∩β;(3)由m // α,n // α,得m // n ,或m ∩n ,或m ,n 异面;(4)由m ⊥α,n ⊥α,根据线面垂直的性质,得m // n .进而可得答案. 【解答】 解:(1)命题不一定成立,因为α⊥γ,β⊥γ时,α,β可能平行,也可能相交; (2)命题不一定成立,因为m // α,m // β时,α,β可能平行,也可能相交; (3)命题不一定成立,因为m // α,n // α时,直线m ,n 可能平行,也可能相交,也可能异面;(4)命题是正确的,因为m ⊥α,n ⊥α时,由垂直于同一平面的两条直线平行,得m // n .所以,上述正确的命题只有(4). 31.【答案】证明:取BD 的中点O ,连接AO ,CO . ∵ AB =AD ,∴ AO ⊥BD , ∵ CB =CD ,∴ CO ⊥BD , 又AO ∩CO =O , ∴ BD ⊥平面ACO , AC ⊂平面ACO ,∴BD⊥AC.【考点】空间中直线与直线之间的位置关系【解析】取BD的中点O,连接AO,CO.由等腰三角形的三线合一,得到AO⊥BD,CO⊥BD,再由线面垂直的判定定理得到BD⊥平面ACO,运用线面垂直的性质即可得证.【解答】证明:取BD的中点O,连接AO,CO.∵AB=AD,∴AO⊥BD,∵CB=CD,∴CO⊥BD,又AO∩CO=O,∴BD⊥平面ACO,AC⊂平面ACO,∴BD⊥AC.32.【答案】解:如图,三条直线a、b、c两两相交,且交点分别为A、B、C,设a,b确定一个平面α,∵B∈a,C∈a,A∈b,C∈b,∴A∈α,B∈α,又∵A∈c,B∈c,∴c⊂α,∴三条直线a,b,c共面于α.∴这三条直线共面.【考点】空间中直线与直线之间的位置关系【解析】利用设a,b确定一个平面α,由已知条件利用公理二能推导出c⊂α,从而这三条直线a,b,c共面于α.【解答】解:如图,三条直线a、b、c两两相交,且交点分别为A、B、C,设a,b确定一个平面α,∵B∈a,C∈a,A∈b,C∈b,∴A∈α,B∈α,又∵A∈c,B∈c,∴c⊂α,∴三条直线a,b,c共面于α.∴这三条直线共面.33.【答案】证明:(1)∵ SA ⊥面ABC ,BC ⊂平面ABC , ∴ SA ⊥BC ,又∵ AB ⊥BC ,SA ∩AB =A , ∴ BC ⊥平面SAB , ∵ SB ⊂平面SAB , ∴ BC ⊥SB ;(2)∵ AF ⊂平面SAB ,BC ⊥平面SAB , ∴ BC ⊥AF ,∵ AF ⊥SB ,且BC ∩SB =B , ∴ AF ⊥平面SBC , ∵ SC ⊂平面SBC ,∴ SC ⊥AF ,又AE ⊥SC ,且AF ∩AE =A , ∴ SC ⊥平面AEF , ∴ EF ⊥SC .【考点】空间中直线与直线之间的位置关系 【解析】(1)证明BC ⊥平面SAB ,然后,从而得到BC ⊥SB ;(2)对于EF ⊥SC 的证明,可以先证明SC ⊥平面EF ,然后,很容易得到EF ⊥SC . 【解答】 证明:(1)∵ SA ⊥面ABC ,BC ⊂平面ABC , ∴ SA ⊥BC ,又∵ AB ⊥BC ,SA ∩AB =A , ∴ BC ⊥平面SAB , ∵ SB ⊂平面SAB , ∴ BC ⊥SB ;(2)∵ AF ⊂平面SAB ,BC ⊥平面SAB , ∴ BC ⊥AF ,∵ AF ⊥SB ,且BC ∩SB =B , ∴ AF ⊥平面SBC , ∵ SC ⊂平面SBC ,∴ SC ⊥AF ,又AE ⊥SC ,且AF ∩AE =A , ∴ SC ⊥平面AEF , ∴ EF ⊥SC . 34.【答案】证明:(Ⅰ)证明:连接BC 1,AC 1.在△ABC 1中,∵ M ,N 是AB ,A 1C 的中点,∴ MN||BC 1. 又∵ MN ⊄平面BCC 1B 1,∴ MN||平面BCC 1B 1.(2)如图,以B 1为原点建立空间直角坐标系B 1−xyz .则B 1(0, 0, 0),C(0, 2, 2),A 1(−2, 0, 0),M(−1, 0, 2),N(−1, 1, 1) ∴ B 1C →=(0, 2, 2),A 1B 1→=(2,0,0),NM →=(0,−1,1). 设平面A 1B 1C 的法向量为n =(x, y, z).{n ⋅B 1C →=0n ⋅A 1B 1→=0⇒{x =0y =−z令z =1,则x =0,y =−1,∴ n =(0, −1, 1). ∴ n =NM →.∴ MN ⊥平面A 1B 1C .【考点】空间中直线与平面之间的位置关系 【解析】(Ⅰ)欲证MN||平面BCC 1B 1,根据直线与平面平行的判定定理可知只需证MN 与平面BCC 1B 1内一直线平行即可,而连接BC 1,AC 1.根据中位线定理可知MN||BC 1,又MN ⊄平面BCC 1B 1满足定理所需条件;(Ⅱ)以B 1为原点,A 1B 1为x 轴,B 1B 为y 轴,B 1C 1为z 轴建立空间直角坐标系B 1−xyz ,求出平面A 1B 1C 的法向量为n =(x, y, z),而n =NM →,根据法向量的意义可知MN ⊥平面A 1B 1C . 【解答】证明:(Ⅰ)证明:连接BC 1,AC 1.在△ABC 1中,∵ M ,N 是AB ,A 1C 的中点,∴ MN||BC 1. 又∵ MN ⊄平面BCC 1B 1,∴ MN||平面BCC 1B 1.(2)如图,以B 1为原点建立空间直角坐标系B 1−xyz .则B 1(0, 0, 0),C(0, 2, 2),A 1(−2, 0, 0),M(−1, 0, 2),N(−1, 1, 1) ∴ B 1C →=(0, 2, 2),A 1B 1→=(2,0,0),NM →=(0,−1,1). 设平面A 1B 1C 的法向量为n =(x, y, z).{n ⋅B 1C →=0n ⋅A 1B 1→=0 ⇒{x =0y =−z令z =1,则x =0,y =−1,∴ n =(0, −1, 1). ∴ n =NM →.∴ MN ⊥平面A 1B 1C .35.【答案】解:(1)过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;作图如右图,(2)易知BE,CF与平面AC的相交,∵BC // 平面A′C′,又∵平面B′C′CB∩平面A′C′=B′C′,∴BC // B′C′,∴EF // BC,又∵EF⊄平面AC,BC⊂平面AC,∴EF // 平面AC.【考点】空间中直线与平面之间的位置关系【解析】(1)注意到棱BC平行于面A′C′,故过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;(2)易知BE,CF与平面AC的相交,可证EF // 平面AC.【解答】解:(1)过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;作图如右图,(2)易知BE,CF与平面AC的相交,∵BC // 平面A′C′,又∵平面B′C′CB∩平面A′C′=B′C′,∴BC // B′C′,∴EF // BC,又∵EF⊄平面AC,BC⊂平面AC,∴EF // 平面AC.36.【答案】解:判定b与平面α的位置关系是b∩α=Q,下面给出证明:如图所示,∵a // b,∴可以经过直线a,b确定一个平面β.∵a∩α=P,∴α∩β=l.则b与直线l必然相交,否则b // l,则a // l,与a∩l=P相矛盾.因此b∩l=Q,∴b∩α=Q.【考点】空间中直线与平面之间的位置关系【解析】判定b与平面α的位置关系是b∩α=Q,可用反证法给出证明:如图所示,由于a // b,可以经过直线a,b确定一个平面β.由于a∩α=P,可得α∩β=l.可得b与直线l必然相交,否则b // l,得出矛盾.【解答】解:判定b与平面α的位置关系是b∩α=Q,下面给出证明:如图所示,∵a // b,∴可以经过直线a,b确定一个平面β.∵a∩α=P,∴α∩β=l.则b与直线l必然相交,否则b // l,则a // l,与a∩l=P相矛盾.因此b∩l=Q,∴b∩α=Q.37.【答案】解:由平面与平面的基本性质可知,如果两个平面相交,有且仅有结果该点的公共直线,所以如图,在四棱锥P −ABCD 中,有同学说平面PAD ∩平面PBC =P ,这句话不正确.【考点】平面的基本性质及推论空间中直线与平面之间的位置关系【解析】利用平面的基本性质判断即可.【解答】解:由平面与平面的基本性质可知,如果两个平面相交,有且仅有结果该点的公共直线,所以如图,在四棱锥P −ABCD 中,有同学说平面PAD ∩平面PBC =P ,这句话不正确. 38.【答案】解:(1)如图所示,取A 1A 4的三等分点p 2,p 3,A 1A 3的中点M ,A 2A 4,的中点N , 过三点A 2,P 2,M ,作平面α2,过三点A 3,P 3,N 作平面α3,因为A 2P 2 // NP 3,A 3P 3 // MP 2,所以平面α2 // α3,再过点A 1,A 4,分别作平面α1,α4,与平面α3平行,那么四个平面α1,α2,α3,α4依次互相平行,由线段A 1A 4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2):当(1)中的四面体为正四面体,若所得的四个平行平面每相邻两平面之间的距离为1,则正四面体A 1A 2A 3A 4就是满足题意的正四面体.设正四面体的棱长为a ,以△A 2A 3A 4的中心O 为坐标原点,以直线A 4O 为y 轴,直线OA 1为Z 轴建立如图所示的右手直角坐标系,则A 1(0, 0, √63a),A 2(−a 2, √36a, 0),A 3(a 2, √36a, 0),A 4(0, −√33a, 0). 令P 2,P 3为.A 1A 4的三等分点,N 为A 2A 4的中点,有P 3(0, −2√39a, √69a),N(−a 4, −√312a, 0),所以P 3N →=(−a 4, 5√336a, −√69a),NA 3→=(34a, √34a, 0),A 4N →=(−a 4, √34a, 0)。
高中数学空间点、直线、平面之间的位置关系解析!
高中数学空间点、直线、平面之间的位置关系解析!一、空间点、直线、平面之间的位置关系1、平面的基本性质的应用① 公理1:公理1② 公理2:公理2③ 公理3:2、平行公理主要用来证明空间中的线线平行 .3、公理 2 三推论:① 一条直线和直线外一点唯一确定一个平面;② 两条平行直线唯一确定一个平面;③ 两条相交直线唯一确定一个平面 .4、点共线、线共点、点线共面问题① 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理 3 证明这些点都在这两个平面的交线上 .② 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上 .③ 证明点线共面问题的常用方法:方法一:先确定一个平面,再证明有关点、线在此平面内;方法二:先证明有关的点、线确定平面α ,再证明其余元素确定平面β,最后证明平面α,β 重合 .【例题1】如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD = ∠FAB = 90°,BC ∥且= ½ AD,BE ∥且= ½ FA,G , H 分别为 FA , FD 的中点 .(1) 证明:四边形 BCHG 是平行四边形;(2) C , D , F , E 四点是否共面?请说明理由 .例题1图【解析】(1) 证明:∵ G , H 分别为 FA , FD 的中点,∴ GH 是△FAD 的中位线,∴ GH ∥且= ½ AD ,又∵ BC ∥且= ½ AD,∴ GH ∥且 = BC,∴ 四边形 BCHG 是平行四边形 .(2) 证明:方法一:证明点 D 在 EF 和 CH 确定的平面内 .∵ BE ∥且= ½ FA,点 G 为 FA 的中点,∴ BE ∥且= FG,则四边形 BEFG 为平行四边形,∴ EF∥BG .由 (1) 可知BG∥CH,∴ EF∥CH,即 EF 与 CH 共面,又∵ D∈FH,∴ C , D , F , E 四点共面 .方法二:分别延长 FE 和 DC,交 AB 于点 M 和 M'',在证点 M 和 M’重合,从而 FE 和 DC 相交 .如上图所示,分别延长 FE 和 DC,交 AB 于点 M 和 M'',∵ BE ∥且= ½ FA,∴ 点 B 为 MA 的中点,∵ BC ∥且= ½ AD,∴ 点 B 为 M''A 的中点,∴ M 与 M'' 重合,即 FE 与 DC 相交于点 M (M'') ,∴ C , D , F , E 四点共面 .二、异面直线的判定(方法)1、定义法(不易操作);2、反证法先假设两条直线不是异面直线,即两直线平行或相交;再由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面 .假设法在异面直线的判定中会经常用到 .3、常用结论过平面外一点和平面内一点的直线,与平面内不过该点(A) 的直线是异面直线 .【例题2】如图所示,正方体 ABCD-A1B1C1D1 中,点 M , N 分别是 A1B1 , B1C1 的中点 .(1) AM 和 CN 是否是异面直线?请说明理由;(2) D1B 和 CC1 是否是异面直线?请说明理由 .例题2图【解析】(注:先给结论,再给理由,注意答题规范!)(1) AM 和 CN 不是异面直线 .理由:如图上图所示,分别连接 MN , A1C1 和 AC,∵ 点 M , N 分别是 A1B1 , B1C1 的中点,∴ MN∥A1C1 ,又∵ AA1∥且=CC1 ,∴ 四边形 AA1C1C 是平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ 点 A , M , N , C 在同一平面内,故 AM 和 CN 不是异面直线 .(2) D1B 和 CC1 是异面直线 .证明:∵ ABCD-A1B1C1D1 是正方体,∴ B , C , C1 , D1 四点不共面 .假设 D1B 和 CC1 不是异面直线,则存在平面α,使 D1Bㄷ平面α,CC1ㄷ平面α,∴ D1 , B , C , C1 ∈平面α,∴ 与ABCD-A1B1C1D1 是正方体矛盾,∴ 假设不成立,∴ D1B 和 CC1 是异面直线 .三、异面直线所成的角1、求异面直线所成角的方法关键是将其中一条直线平移到某个位置使其与令一条直线相交,或将两条直线同时平移到某个位置,使其相交 .2、求异面直线所成角的步骤① 通过作出平行线,得到相交直线;② 证明相交直线所成的角为异面直线所成的角;③ 通过解三角形求出该角的大小 .【例题3】如图所示,在空间四边形 ABCD 中,已知 AB = CD 且 AB 与 CD 所成的角为30°,点 E , F 分别是 BC 和 AD 的中点,求 EF 与 AB 所成角的大小 .例题3图【解析】要求 EF 与 AB 所成的角,可以经过某一点作两条直线的平行线,因为 E,F 都是中点,所以可以过点 E 或点 F 作 AB 的平行线找到异面直线所成的角 .取 AC 的中点,平移 AB 和 CD,使已知角和所求的角在同一个三角形中求解 .【解答过程】取 AC 的中点 G,分别连接 EG 和 FG ,则有EG∥AB,FG∥CD,∵ AB = CD ,∴ EG = FG ,∴ ∠GEF (或它的补角)为 EF 与 AB 所成的角,∠EGF (或它的补角)为 AB 与 CD 所成的角,又∵ AB 与 CD 所成的角为30°,∴ ∠EGF = 150° 或30°,由 EG = FG , 可知△GEF为等腰三角形,当∠EGF = 30° 时,∠GEF = 75°,当∠EGF = 150° 时,∠GEF = 15°,∴ EF 与 AB 所成的角为15° 或75° .。
专题练 第18练 空间点、直线、平面之间的位置关系
第18练空间点、直线、平面之间的位置关系1.(2019·全国Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B解析对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确;对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确.2.(多选)(2020·全国Ⅱ改编)设有下列四个命题,则下述命题是真命题的是()A.两两相交且不过同一点的三条直线必在同一平面内B.过空间中任意三点有且仅有一个平面C.若空间两条直线不相交,则这两条直线平行D.若直线l⊂平面α,直线m⊥平面α,则m⊥l答案AD解析A是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由基本事实1“经过不在同一直线上的三个点,有且只有一个平面”,可知A为真命题;B是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;C是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;D是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.3.(多选)(2021·新高考全国Ⅱ)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足MN⊥OP的是()答案 BC解析 设正方体的棱长为2, 对于A ,建系如图(1),则M (2,0,2),N (0,2,2), P (0,2,1),O (1,1,0), MN →=(-2,2,0), OP →=(-1,1,1),MN →·OP →=(-2)×(-1)+2×1+0×1=4≠0, ∴MN ⊥OP 不成立,故A 错误; 对于B ,建系如图(2),则M (2,0,0),N (0,0,2), P (2,0,1),O (1,1,0), MN →=(-2,0,2), OP →=(1,-1,1), MN →·OP →=-2+0+2=0, ∴MN ⊥OP ,故B 正确. 同理可知,C 正确,D 错误.4.(2019·全国Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 答案 B解析 取CD 的中点O ,连接ON ,EO ,如图所示.因为△ECD 为正三角形, 所以EO ⊥CD ,又平面ECD ⊥平面ABCD ,平面ECD ∩平面ABCD =CD , 所以EO ⊥平面ABCD . 设正方形ABCD 的边长为2, 则EO =3,ON =1,所以EN 2=EO 2+ON 2=4,得EN =2. 过M 作CD 的垂线,垂足为P ,连接BP , 则MP =32,CP =32, 所以BM 2=MP 2+BP 2 =⎝⎛⎭⎫322+⎝⎛⎭⎫322+22=7, 得BM =7,所以BM ≠EN .连接BD ,BE , 因为四边形ABCD 为正方形, 所以N 为BD 的中点, 即EN ,MB 均在平面BDE 内, 所以直线BM ,EN 是相交直线.5.(2022·全国乙卷)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AB ,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF ∥平面A 1AC D .平面B 1EF ∥平面A 1C 1D 答案 A解析 在正方体ABCD -A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD , 所以EF ⊥DD 1,因为E ,F 分别为AB ,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD ,又BD ∩DD 1=D ,BD ,DD 1⊂平面BDD 1, 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确; 如图,以点D 为原点,建立空间直角坐标系,设AB =2,则B 1(2,2,2),E (2,1,0),F (1,2,0),B (2,2,0),A 1(2,0,2),A (2,0,0),C (0,2,0), C 1(0,2,2),则EF →=(-1,1,0),EB 1―→=(0,1,2), DB →=(2,2,0),DA 1―→=(2,0,2), AA 1―→=(0,0,2),AC →=(-2,2,0), A 1C 1―→=(-2,2,0),设平面B 1EF 的法向量为m =(x 1,y 1,z 1), 则有⎩⎪⎨⎪⎧m ·EF →=-x 1+y 1=0,m ·EB 1―→=y 1+2z 1=0,可取m =(2,2,-1),同理可得平面A 1BD 的法向量为 n 1=(1,-1,-1),平面A 1AC 的法向量为n 2=(1,1,0), 平面A 1C 1D 的法向量为n 3=(1,1,-1), 则m ·n 1=2-2+1=1≠0,所以平面B 1EF 与平面A 1BD 不垂直,故B 错误; 因为m 与n 2不平行,所以平面B 1EF 与平面A 1AC 不平行,故C 错误;因为m 与n 3不平行,所以平面B 1EF 与平面A 1C 1D 不平行,故D 错误.6.(多选)(2021·新高考全国Ⅰ)在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=1,点P 满足BP →=λBC →+μBB 1―→,其中λ∈[0,1],μ∈[0,1],则( ) A .当λ=1时,△AB 1P 的周长为定值 B .当μ=1时,三棱锥P -A 1BC 的体积为定值 C .当λ=12时,有且仅有一个点P ,使得A 1P ⊥BPD .当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P答案 BD解析 BP →=λBC →+μBB 1―→(0≤λ≤1,0≤μ≤1).对于选项A ,当λ=1时,点P 在棱CC 1上运动,如图1所示,此时△AB 1P 的周长为AB 1+AP +PB 1=2+1+μ2+1+(1-μ)2=2+1+μ2+2-2μ+μ2,不是定值,A 错误;图1对于选项B ,当μ=1时,点P 在棱B 1C 1上运动,如图2所示,图2则11P A BC A PBC V V =--=13S △PBC ×32=36S △PBC =36×12×1×1=312,为定值,故B 正确;对于选项C ,取BC 的中点D ,B 1C 1的中点D 1,连接DD 1,A 1B ,则当λ=12时,点P 在线段DD 1上运动,假设A 1P ⊥BP ,则A 1P 2+BP 2=A 1B 2,即⎝⎛⎭⎫322+(1-μ)2+⎝⎛⎭⎫122+μ2=2,解得μ=0或μ=1,所以点P 与点D 或D 1重合时,A 1P ⊥BP ;方法一 对于选项D ,易知四边形ABB 1A 1为正方形,所以A 1B ⊥AB 1,设AB 1与A 1B 交于点K ,连接PK ,要使A 1B ⊥平面AB 1P ,需A 1B ⊥KP ,所以点P 只能是棱CC 1的中点,故选项D 正确.方法二 对于选项D ,分别取BB 1,CC 1的中点E ,F ,连接EF ,则当μ=12时,点P 在线段EF 上运动,以点C 1为原点建立如图所示的空间直角坐标系,则B (0,1,1),B 1(0,1,0),A 1⎝⎛⎭⎫32,12,0,P ⎝⎛⎭⎫0,1-λ,12,所以A 1B ―→=⎝⎛⎭⎫-32,12,1,B 1P ―→=⎝⎛⎭⎫0,-λ,12,若A 1B ⊥平面AB 1P ,则A 1B ⊥B 1P ,所以-λ2+12=0,解得λ=1,所以只存在一个点P ,使得A 1B ⊥平面AB 1P ,此时点P 与F 重合,故D 正确.7.(2022·全国乙卷)如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.(1)证明 因为AD =CD ,E 为AC 的中点,所以AC ⊥DE . 在△ADB 和△CDB 中,因为AD =CD ,∠ADB =∠CDB , DB =DB ,所以△ADB ≌△CDB ,所以AB =BC .因为E 为AC 的中点,所以AC ⊥BE . 又BE ∩DE =E ,BE ,DE ⊂平面BED , 所以AC ⊥平面BED , 又AC ⊂平面ACD , 所以平面BED ⊥平面ACD . (2)解 由(1)可知AB =BC , 又∠ACB =60°,AB =2,所以△ABC 为边长为2的正三角形, 则AC =2,BE =3,AE =1. 因为AD =CD ,AD ⊥CD , 所以△ADC 为等腰直角三角形, 所以DE =1.所以DE 2+BE 2=BD 2,则DE ⊥BE . 由(1)可知,AC ⊥平面BED . 连接EF ,因为EF ⊂平面BED , 所以AC ⊥EF ,当△AFC 的面积最小时,点F 到直线AC 的距离最小, 即EF 的长度最小.在Rt △BED 中,当EF 的长度最小时, EF ⊥BD ,EF =DE ·BE BD =32.方法一 由(1)可知,DE ⊥AC ,BE ⊥AC , 所以EA ,EB ,ED 两两垂直,以E 为坐标原点,EA ,EB ,ED 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,0,1),C (-1,0,0),AB →=(-1,3,0),DB →=(0,3,-1). 易得DF =12,FB =32,所以3DF →=FB →.设F (0,y ,z ),则DF →=(0,y ,z -1), FB →=(0,3-y ,-z ),所以3(0,y ,z -1)=(0,3-y ,-z ), 得y =34,z =34, 即F ⎝⎛⎭⎫0,34,34, 所以CF →=⎝⎛⎭⎫1,34,34.设平面ABD 的法向量为 n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n ·AB →=-x 1+3y 1=0,n ·DB →=3y 1-z 1=0,不妨取y 1=1,则x 1=3,z 1=3, n =(3,1,3).记CF 与平面ABD 所成的角为α, 则sin α=|cos 〈CF →,n 〉|=|CF →·n ||CF →|·|n |=437.方法二 因为E 为AC 的中点,所以点C 到平面ABD 的距离等于点E 到平面ABD 的距离的2倍.因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC , 所以DE ⊥平面ABC .因为V D -AEB =V E -ADB ,所以13·12AE ·BE ·DE =13·S △ABD ·d 2,其中d 为点C 到平面ABD 的距离.在△ABD 中,BA =BD =2,AD =2, 所以S △ABD =72, 所以d =2217.因为AC ⊥平面BED ,EF ⊂平面BED , 所以AC ⊥EF , 所以FC =FE 2+EC 2=72. 记CF 与平面ABD 所成的角为α, 则sin α=d CF =437.方法三 如图,过点E 作EM ⊥AB 交AB 于点M ,连接DM ,过点E 作EG ⊥DM 交DM 于点G .因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC , 所以DE ⊥平面ABC ,又AB ⊂平面ABC , 所以DE ⊥AB ,又EM ∩DE =E ,EM ,DE ⊂平面DEM , 所以AB ⊥平面DEM ,又EG ⊂平面DEM ,所以AB ⊥EG , 又AB ∩DM =M ,AB ,DM ⊂平面ABD ,所以EG ⊥平面ABD ,则EG 的长度等于点E 到平面ABD 的距离. 因为E 为AC 的中点,所以EG 的长度等于点C 到平面ABD 的距离的12.因为EM =AE ·sin 60°=32,所以EG =DE ·EMDM=DE ·EMDE 2+EM 2=217, 所以点C 到平面ABD 的距离d =2217.FC =FE 2+EC 2=72. 记CF 与平面ABD 所成的角为α, 则sin α=d CF =437.8.(2021·新高考全国Ⅰ)如图,在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点.(1)证明:OA ⊥CD ;(2)若△OCD 是边长为1的等边三角形,点E 在棱AD 上,DE =2EA ,且二面角E -BC -D 的大小为45°,求三棱锥A -BCD 的体积.(1)证明 因为AB =AD ,O 为BD 的中点,所以OA ⊥BD ,又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,AO ⊂平面ABD , 所以AO ⊥平面BCD ,又CD ⊂平面BCD ,所以AO ⊥CD .(2)解 方法一 因为△OCD 是边长为1的正三角形,且O 为BD 的中点,所以OC =OB =OD =1,所以△BCD 是直角三角形,且∠BCD =90°,BC =3,所以S △BCD =32. 如图,过点E 作EF ∥AO ,交BD 于F ,过点F 作FG ⊥BC ,垂足为G ,连接EG .因为AO ⊥平面BCD , 所以EF ⊥平面BCD ,又BC ⊂平面BCD ,所以EF ⊥BC ,又FG ⊥BC ,且EF ∩FG =F ,EF ,FG ⊂平面EFG , 所以BC ⊥平面EFG ,则∠EGF 为二面角E -BC -D 的平面角, 所以∠EGF =45°,则GF =EF .因为DE =2EA ,所以EF =23OA ,DF =2OF ,所以BFFD=2.因为FG ⊥BC ,CD ⊥BC ,所以GF ∥CD , 则GF CD =23,所以GF =23. 所以EF =GF =23,所以OA =1,所以V A -BCD =13S △BCD ·AO =13×32×1=36.方法二 如图所示,以O 为坐标原点,OB ,OA 所在直线分别为x ,z 轴,在平面BCD 内,以过点O 且与BD 垂直的直线为y 轴建立空间直角坐标系.因为△OCD 是边长为1的正三角形,且O 为BD 的中点, 所以OC =OB =OD =1,所以B (1,0,0),D (-1,0,0),C ⎝⎛⎭⎫-12,32,0.设A (0,0,a ),a >0,因为DE =2EA ,所以E ⎝⎛⎭⎫-13,0,2a 3. 由题意可知平面BCD 的法向量可取n =(0,0,1). 设平面BCE 的法向量为m =(x ,y ,z ), 因为BC →=⎝⎛⎭⎫-32,32,0,BE →=⎝⎛⎭⎫-43,0,2a 3,所以⎩⎪⎨⎪⎧m ·BC →=0,m ·BE →=0,即⎩⎨⎧-32x +32y =0,-43x +2a 3z =0,令x =1,则y =3,z =2a ,所以m =⎝⎛⎭⎫1,3,2a . 因为二面角E -BC -D 的大小为45°, 所以cos 45°=⎪⎪⎪⎪m ·n |m ||n |=2a 4+4a 2=22, 得a =1,即OA =1,因为S △BCD =12BD ·CD sin 60°=12×2×1×32=32, 所以V A -BCD =13S △BCD ·OA =13×32×1=36.9.(2022·咸阳模拟)已知m ,n 是不重合的直线,α,β,γ是不重合的平面,下列说法正确的是( )A .若α⊥γ,β⊥γ,则α∥βB .若m ⊥α,n ⊥α,则m ⊥nC .若α∥β,γ∥β,则γ∥αD .若α⊥β,m ⊥β,则m ∥α 答案 C解析 垂直于同一个平面的两个平面可以平行或相交,故A 错误; 垂直于同一个平面的两条直线平行,故B 错误; 若α∥β,γ∥β,则γ∥α,故C 正确;若α⊥β,m ⊥β,则m ∥α或m ⊂α,故D 错误.10.(多选)(2022·重庆模拟)如图,已知正方体ABCD -A 1B 1C 1D 1,P 是棱CC 1的中点,以下说法正确的是( )A .过点P 有且只有一条直线与直线AB ,A 1D 1都相交 B .过点P 有且只有一条直线与直线AB ,A 1D 1都平行C .过点P 有且只有一条直线与直线AB ,A 1D 1都垂直 D .过点P 有且只有一条直线与直线AB ,A 1D 1所成角均为45° 答案 AC解析 过点P 与直线AB 相交的直线必在平面P AB 内,过点P 与直线A 1D 1相交的直线必在平面P A 1D 1内,故满足条件的直线必为两平面的交线,显然两平面有唯一交线,A 正确;若存在一条直线与AB ,A 1D 1都平行,则AB ∥A 1D 1,矛盾,B 不正确; 因为A 1D 1∥AD ,若l ⊥A 1D 1则l ⊥AD ,若l ⊥AB ,则l ⊥平面ABCD , 显然满足条件的直线唯一,即CC 1,C 正确;取BB 1,DD 1的中点E ,F ,连接PE ,PF ,如图,则PE ∥A 1D 1,PF ∥AB ,若l 与直线AB ,A 1D 1所成角为45°,则l 与PE ,PF 所成角为45°, 显然∠EPF 的角平分线及其外角平分线均符合题意,D 不正确.11.(多选)(2022·怀仁模拟)将正方形ABCD 沿对角线BD 翻折,使平面ABD 与平面BCD 的夹角为90°,则下列四个结论中正确的是( ) A .AC ⊥BDB .△ACD 是等边三角形C .直线AB 与平面BCD 所成的角为π3D .AB 与CD 所成的角为π3答案 ABD解析 如图,取BD 的中点E ,连接AE ,CE ,则AE ⊥BD ,CE ⊥BD ,∵AE ∩CE =E ,AE ,CE ⊂平面AEC , ∴BD ⊥平面ACE , ∵AC ⊂平面ACE , ∴BD ⊥AC ,故A 正确; 设折叠前正方形的边长为2, 则BD =22,AE =CE =2,∵平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,AE ⊥BD ,AE ⊂平面ABD , ∴AE ⊥平面BCD , ∴AE ⊥CE , ∴AC =AE 2+CE 2=2=AD =CD ,即△ACD 是等边三角形,故B 正确; ∵AE ⊥平面BCD ,∴AB 与平面BCD 所成角是∠ABE =π4,故C 错误;取BC 的中点F ,AC 的中点G ,连接EF ,FG ,EG , 则EF ∥CD ,FG ∥AB ,∴∠EFG 为异面直线AB ,CD 所成的角, ∵EF =12CD =1,FG =12AB =1,EG =12AC =1,∴△EFG 是等边三角形, 则∠EFG =π3,故D 正确.12.(多选)(2022·重庆质检)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M 在线段BC 1(不包含端点)上运动,则下列结论正确的是( )A .正方体ABCD -A 1B 1C 1D 1外接球的表面积为48π B .异面直线A 1M 与AD 1所成角的取值范围是⎝⎛⎦⎤π3,π2 C .直线A 1M ∥平面ACD 1D .三棱锥D 1-AMC 的体积随着点M 的运动而变化 答案 BC解析 正方体体对角线长为23,即该正方体外接球直径为23,因此外接球的半径为r =3,外接球的表面积为S =4πr 2=12π,因此A 错误;在正方体ABCD -A 1B 1C 1D 1中,AB 与C 1D 1平行且相等,则四边形ABC 1D 1是平行四边形,AD 1∥BC 1,又△A 1BC 1是正三角形,A 1M 与BC 1的夹角(锐角或直角)的范围是⎝⎛⎦⎤π3,π2,因此B 正确;由B 知BC 1∥AD 1,而BC 1⊄平面ACD 1,AD 1⊂平面ACD 1, 所以BC 1∥平面ACD 1, 同理A 1B ∥平面ACD 1,又A 1B ∩BC 1=B ,A 1B ,BC 1⊂平面A 1BC 1,所以平面A 1BC 1∥平面ACD 1,而A 1M ⊂平面A 1BC 1, 所以A 1M ∥平面ACD 1,因此C 正确; 由BC 1∥平面ACD 1,因此随着点M 的运动,点M 到平面ACD 1的距离不变, 又△ACD 1的面积为定值,所以11D AMC M ACD V V =--不变,因此D 错误.13.(2022·西安模拟)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面四边形BCC 1B 1内(不含边界)一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是________.答案 ⎣⎡⎭⎫322,5 解析 在正方体ABCD -A 1B 1C 1D 1中,分别取棱B 1C 1,BB 1的中点M ,N ,连接A 1M ,MN ,A 1N ,ME ,BC 1,如图,因为点E ,F 分别是棱BC ,CC 1的中点,则MN ∥BC 1∥EF ,EF ⊂平面AEF ,MN ⊄平面AEF , 则有MN ∥平面AEF ,显然四边形BEMB 1为矩形,有ME ∥BB 1∥AA 1,ME =BB 1=AA 1, 即有四边形AEMA 1为平行四边形,则A 1M ∥AE ,而AE ⊂平面AEF ,A 1M ⊄平面AEF ,有A 1M ∥平面AEF , 又A 1M ∩MN =M ,A 1M ,MN ⊂平面A 1MN , 因此,平面A 1MN ∥平面AEF , 因为A 1P ∥平面AEF , 则有A 1P ⊂平面A 1MN ,又点P 在平面BCC 1B 1上,平面A 1MN ∩平面BCC 1B 1=MN , 从而得点P 在线段MN 上(不含端点), 在△A 1MN 中,A 1M =A 1N =5,MN =2, 等腰△A 1MN 底边MN 上的高 h =A 1M 2-⎝⎛⎭⎫12MN 2=322,于是得322≤A 1P <5,所以线段A 1P 长度的取值范围是⎣⎡⎭⎫322,5. 14.(2022·南昌模拟)如图,四棱锥P -ABCD 的底面是边长为1的正方形,点E 是棱PD 上一点,PE =3ED ,若PF →=λPC →且满足BF ∥平面ACE ,则λ=________.答案 23解析 如图,连接BD ,交AC 于点O ,连接OE ,则BO =OD ,在线段PE 上取一点G 使得GE =ED , 则PG PE =23. 连接BG ,FG ,则BG ∥OE ,又因为OE ⊂平面ACE ,BG ⊄平面ACE , 所以BG ∥平面ACE .因为BF ∥平面ACE 且满足BG ∩BF =B , 故平面BGF ∥平面ACE .因为平面PCD ∩平面BGF =GF ,平面PCD ∩平面ACE =EC ,则GF ∥EC . 所以PF PC =PG PE =23,即λ=23.15.(2022·黄山检测)在矩形ABCD 所在平面α的同一侧取两点E ,F ,使DE ⊥α且AF ⊥α,若AB =AF =3,AD =4,DE =1.(1)求证:AD ⊥BF ;(2)取BF 的中点G ,求证DF ∥平面AGC ; (3)求多面体ABF -DCE 的体积. (1)证明 ∵四边形ABCD 是矩形, ∴AD ⊥AB ,又∵AF ⊥α,∴AF ⊥AD ,又AF ∩AB =A ,AF ,AB ⊂平面ABF , ∴AD ⊥平面ABF ,又∵BF ⊂平面ABF ,∴AD ⊥BF .(2)证明 连接BD 交AC 于点O ,连接OG (图略), 则OG 是△BDF 的中位线,OG ∥DF , ∵OG ⊂平面AGC ,DF ⊄平面AGC , ∴DF ∥平面AGC .(3)解 V ABF -DCE =V F -ABCD +V E -FCD =V F -ABCD +V F -ECD=13×3×4×3+13×12×3×1×4=14. 16.(2022·西宁模拟)如图,AB 是圆O 的直径,P A ⊥圆O 所在的平面,C 为圆周上一点,D 为线段PC 的中点,∠CBA =30°,AB =2P A .(1)证明:平面ABD ⊥平面PBC ;(2)若G 为AD 的中点,AB =4,求点P 到平面BCG 的距离. (1)证明 因为P A ⊥圆O 所在的平面, 即P A ⊥平面ABC ,而BC ⊂平面ABC ,所以P A ⊥BC , 因为AB 是圆O 的直径,C 为圆周上一点,所以AC ⊥BC ,又P A ∩AC =A ,P A ,AC ⊂平面P AC , 所以BC ⊥平面P AC ,而AD ⊂平面P AC , 则BC ⊥AD ,因为AC ⊥BC ,∠CBA =30°, 所以AB =2AC ,又AB =2P A ,所以P A =AC ,又D 为线段PC 的中点,所以AD ⊥PC , 又PC ∩BC =C ,PC ,BC ⊂平面PBC , 所以AD ⊥平面PBC ,而AD ⊂平面ABD , 故平面ABD ⊥平面PBC .(2)解 由(1)得P A =AC ,BC ⊥平面P AC ,CG ⊂平面P AC ,则BC ⊥CG ,BC ⊥平面PCG , 由题可知,G 为AD 的中点,AB =4, 则P A =AC =2,所以BC =23,PC =22,AD =2, DG =22,CG =⎝⎛⎭⎫222+(2)2=102,由于三棱锥P -BCG 的体积等于三棱锥B -PCG 的体积, 而S △BCG =12BC ·CG =12×23×102=302,S △PCG =12PC ·DG =12×22×22=1,由于BC ⊥平面PCG ,则点B 到平面PCG 的距离为BC =23, 设点P 到平面BCG 的距离为d , 由V P -BCG =V B -PCG , 得13S △BCG ·d =13S △PCG ·BC ,则1 3×302d=13×1×23,解得d=2105,所以点P到平面BCG的距离为2105.[考情分析]高考必考内容,主要以几何体为载体考查空间点、线、面位置关系的判断,主要以选择题、填空题的形式出现,题目难度较小,或者以解答题的形式考查空间平行、垂直的证明,并与空间角的计算综合命题.一、空间直线、平面位置关系的判定核心提炼1.判断与空间位置关系有关的命题的方法:借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.2.两点注意:(1)平面几何中的结论不能完全引用到立体几何中.(2)当从正面入手较难时,可先假设结论成立,然后推出与题设或公认的结论相矛盾的命题,进而作出判断.练后反馈题目23410正误错题整理:二、空间平行、垂直关系核心提炼1.直线、平面平行的判定定理及其性质定理(1)线面平行的判定定理:a⊄α,b⊂α,且a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定定理及其性质定理(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.练后反馈题目1591415正误错题整理:三、空间直线、平面位置关系中的综合问题核心提炼1.处理空间点、直线、平面的综合问题,要认真审题,并仔细观察所给的图形,利用空间直线、平面平行与垂直的判定定理和性质定理求解.2.解决与折叠有关的问题的关键是弄清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.练后反馈题目67811121316正误错题整理:1.[T3补偿](2022·北京模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是()答案 C解析如图1,因为M,N,Q为所在棱的中点,故由正方体的性质易得BB1⊥AB,CD⊥AB,MQ∥CD,MN∥BB1,所以MQ⊥AB,MN⊥AB,由于MQ∩MN=M,MQ,MN⊂平面MNQ,故AB⊥平面MNQ,故A不符合题意;如图2,因为M,N,Q为所在棱的中点,所以MN∥CD,MQ∥A1C,由正方体的性质得AB1⊥CD,CD⊥BB1,AB1∩BB1=B1,AB1,BB1⊂平面ABB1,所以CD⊥平面ABB1,故CD⊥AB,所以MN⊥AB,同理得MQ⊥AB,MN∩MQ=M,MQ,MN⊂平面MNQ,故AB⊥平面MNQ,故B不符合题意;如图3,因为M,N,Q为所在棱的中点,所以MN∥A1B1,AC∥A1B1,,又在△ABC中,AB与AC的夹角为π3,故异面直线MN与AB所成的角为π3故AB⊥平面MNQ不成立,故C符合题意;D选项同A选项,可判断AB⊥平面MNQ.2.[T4补偿](2022·湖南师大附中模拟)已知E,F,G,H分别是三棱锥A-BCD的棱AB,AD,CD,CB上的点(不是顶点),则下列说法正确的是()A.若直线EF,HG相交,则交点一定在直线BD上B.若直线EF,HG相交,则交点一定在直线AC上C.若直线EF,HG异面,则直线EF,HG中必有一条与直线BD平行D.若直线EF,HG异面,则直线EF,HG与直线BD分别相交答案 A解析若直线EF,HG相交,设EF∩GH=P,则P∈EF,P∈GH,又EF⊂平面ABD,GH⊂平面BDC,所以P是平面ABD与平面CBD的公共点,则必在其交线BD上,即P∈BD,A正确,B错误;如图所示的情况满足EF,HG异面,但EF,HG均与BD相交,故C错误;当EF∥BD,且HG∩BD=P时,EF与HG异面,但EF与BD不相交,故D错误.3.[T5补偿](多选)(2022·安庆模拟)已知ABCD-A1B1C1D1为正方体,P,Q,R分别为棱AD,A1B1,CC1的中点,则下列结论正确的是()A.AB∥平面PQRB.AC∥平面PQRC.BP⊥QRD.BD1⊥平面PQR答案BCD解析取DC,B1C1,A1A的中点分别为L,M,N,连接LR,LP,RM,QM,QN,NP,由己知平面PQR 即截面PLRMQN 所在平面,其顶点分别为所在棱的中点, 在△ACD 中,PL 为中位线,则AC ∥PL ,AC ⊄平面PQR ,PL ⊂平面PQR , 故AC ∥平面PQR ,三棱锥B -PQR 为正三棱锥,故BP ⊥QR . 因为AC ⊥BD ,AC ⊥DD 1,BD ∩DD 1=D , 所以AC ⊥平面BDD 1,又BD 1⊂平面BDD 1,则AC ⊥BD 1. 所以BD 1⊥PL ,同理可得BD 1⊥RL ,PL ,RL ⊂平面PQR , 即可证得BD 1⊥平面PQR .4.[T12补偿](多选)(2022·太原模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,E 是棱DD 1上的动点,则下列说法不正确的是( )A .当E 为DD 1的中点时,直线B 1E ∥平面A 1BD B .三棱锥C 1-B 1CE 的体积为定值13a 3C .当E 为DD 1的中点时,B 1E ⊥BD 1D .当E 为DD 1的中点时,直线B 1E 与平面CDD 1C 1所成的角正切值为255答案 ABC解析 因为B 1E ⊂平面BDEB 1,平面BDEB 1∩平面A 1BD =BD ,若直线B 1E ∥平面A 1BD , 则由线面平行的性质可知,B 1E ∥BD ,但是B 1E 与BD 不平行,故A 错误;VC 1-B 1CE =VE -B 1CC 1=13⎝⎛⎭⎫12a 2·a =16a 3,故B 错误; 如图所示,当E 为DD 1的中点时,连接BD 1交DB 1于点O ,若B 1E ⊥BD 1,设垂足为F , 根据题意得BB 1=a ,D 1B 1=2a , 因为BB 1<D 1B 1,所以过点B 1作D 1B 的垂线,垂足必在OB 上且除去两个端点,而点F 不在OB 上, 所以B 1E 和BD 1不垂直,故C 错误; 因为B 1C 1⊥平面CDD 1C 1,所以直线B 1E 与平面CDD 1C 1所成的角为∠C 1EB 1, EC 1=a 2+a 24=52a , tan ∠C 1EB 1=B 1C 1EC 1=255,故D 正确.5.[T16补偿](2022·兰州模拟)如图1,在正方形ABCD 中,DM =12MA =1,CN =12NB =1,将四边形CDMN 沿MN 折起到四边形PQMN 的位置,使得∠QMA =60°(如图2).(1)证明:平面MNPQ ⊥平面ABPQ ;(2)若E ,F 分别为AM ,BN 的中点,求三棱锥F -QEB 的体积. (1)证明 ∵在正方形ABCD 中, DM =12MA =1,CN =12NB =1,∴QM ⊥QP ,QM =1,AM =2, 又∵∠AMQ =60°,∴在△AMQ 中,由余弦定理得 AQ 2=AM 2+QM 2-2AM ·QM ·cos ∠AMQ =4+1-2×2×1×12=3,∴AQ 2+QM 2=AM 2, ∴AQ ⊥QM ,又∵AQ ∩QP =Q ,AQ ,QP ⊂平面ABPQ , ∴QM ⊥平面ABPQ , 又∵QM ⊂平面MNPQ , ∴平面MNPQ ⊥平面ABPQ .(2)解 由(1)知AQ ⊥QM ,QM ⊥QP , ∵在正方形ABCD 中,DM =12MA =1,CN =12NB =1,∴四边形CDMN 为矩形, ∴MN ⊥AM ,MN ⊥DM , ∴MN ⊥MQ ,MN ⊥MA ,∵MQ ∩MA =M ,MQ ,MA ⊂平面AMQ , ∴MN ⊥平面AMQ , ∵MN ⊂平面ABNM , ∴平面ABNM ⊥平面AMQ , 如图,过点Q 作QH ⊥AM 于H ,则QH ⊥平面ABNM , 即QH ⊥平面BEF ,QH =QM sin 60°=32, ∴V F -QEB =V Q -BEF =13·S △BEF ·QH=13×⎝⎛⎭⎫12×3×1×32=34.。
直线与平面位置关系练习题
直线与平面位置关系练习题直线与平面位置关系练习题直线与平面的位置关系是几何学中的基础概念之一。
理解和熟练掌握这一概念对于解决几何问题至关重要。
本文将给出一些直线与平面位置关系的练习题,帮助读者加深对该概念的理解。
练习题1:已知直线L上有两个点A、B,平面P上有一点C。
求证:若直线L与平面P相交于点O,则点O必定在线段AB上。
解答:首先,我们需要明确直线与平面的相交关系。
当直线与平面相交时,它们的交点可以是一个点、一条直线或者不存在。
在这个问题中,我们已知直线L与平面P相交于点O,因此点O存在于直线L上。
接下来,我们需要证明点O必定在线段AB上。
根据直线的定义,直线是无限延伸的,因此直线L上的点可以有无数个。
而线段是有两个端点的有限延长线段,因此线段AB上的点是有限的。
假设点O不在线段AB上,那么点O必定在线段AB的延长线上。
在这种情况下,直线L将与线段AB的延长线相交于点O,而不是与线段AB本身相交。
这与已知条件直线L与平面P相交于点O矛盾,因此假设不成立。
因此,我们可以得出结论:点O必定在线段AB上。
练习题2:已知直线L与平面P相交于点O,且直线L与平面P的交点O在直线L上的投影点为点A。
证明:直线L上的任意一点B都在平面P上。
解答:首先,我们需要明确直线与平面的相交关系。
根据已知条件,直线L与平面P相交于点O,即直线L上至少存在一个点在平面P上。
接下来,我们需要证明直线L上的任意一点B都在平面P上。
假设存在直线L上的某一点B不在平面P上,那么点B必定在平面P的一侧。
根据直线的定义,直线是无限延伸的,因此直线L上的点可以有无数个。
而平面是一个二维空间,它可以把空间分为两个部分。
如果点B在平面P的一侧,那么直线L上的其他点也会在平面P的同一侧。
然而,根据已知条件直线L与平面P相交于点O,即直线L上至少存在一个点在平面P上。
因此,直线L上的任意一点B都在平面P上。
练习题3:已知直线L与平面P相交于点O,且直线L与平面P的交点O在直线L上的投影点为点A。
直线与平面位置关系(1)练习
立体几何 直线与平面的位置关系(一)1.给出下列四个命题:①若直线垂直于平面内的两条直线,则这条直线与平面垂直;②若直线与平面内的任意一条直线都垂直,则这条直线与平面垂直;③若直线垂直于梯形的两腰所在的直线,则这条直线垂直于两底边所在的直线;④若直线垂直于梯形的两底边所在的直线,则这条直线垂直于两腰所在的直线. 其中正确的命题共有 个.2.在下列三个正方体中,能使CD AB ⊥的是 .(填写所有符合要求的图形的序号)(1)DCBA(2)DCBA(3)DCBA(4)DCBA3.三棱锥S —ABC 中,面SAB ,SBC ,SAC 都是以S 为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S —ABC 的表面积是 .4.在ABC ∆中,⊥===∠=∠PC PC AB BAC ACB ,,,,486090平面ABC ,M 是AB 边上的一动点,则PM 的最小值为 .5.设βα,为互不重合的平面,n m ,为互不重合的直线,给出下列四个命题:①若α⊥m ,α⊂n ,则n m ⊥;②若ββαα////n m n m ,,,⊂⊂,则α∥β;③若m n n m ⊥⊂=⊥,,,αβαβα ,则β⊥n ;④若n m m //,,βαα⊥⊥,则β//n .其中所有正确命题的序号是________.6.在正三棱锥ABC P -中,E D ,分别是BC AB ,的中点,有下列三个论断:①PB AC ⊥;②//AC 平面PDE ;③AB ⊥平面PDE .其中正确的论断是 .(填写所有正确论断的序号)7.对于四面体ABCD ,给出下列四个命题: ①若AB=AC ,BD=CD ,则BC ⊥AD ;②若AB=CD ,AC=BD ,则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ;④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD .其中真命题的序号是 .(写出所有真命题的序号)8.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线P A 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题:①P A ∥平面MOB ;②MO ∥平面P AC ;③OC ⊥平面P AC ;④平面P AC ⊥平面PB C .其中正确的命题是 .(填上所有正确命题的序号)9.如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90°,且AB =2AD =2DC =2PD =4,E 为PA 的中点.(1)证明:DE ∥平面PBC ; (2)证明:DE ⊥平面P AB .10.如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF //AC ,AB 2=,CE =EF 1=.(Ⅰ)求证:AF //平面BDE ; (Ⅱ)求证:CF ⊥平面BDE .11.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题一例1 简述下列问题的结论,并画图说明:(1)直线⊂a 平面α,直线A a b = ,则b 和α的位置关系如何? (2)直线α⊂a ,直线a b //,则直线b 和α的位置关系如何? 分析:(1)由图(1)可知:α⊂b 或A b =α ; (2)由图(2)可知:α//b 或α⊂b .说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法.典型例题二例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面BDQ .分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.证明:如图所示,连结AC ,交BD 于点O , ∵四边形ABCD 是平行四边形∴CO AO =,连结OQ ,则OQ 在平面BDQ 内,且OQ 是APC ∆的中位线,∴OQ PC //. ∵PC 在平面BDQ 外, ∴//PC 平面BDQ .说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢?由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,若线线平行,则线面平行.典型例题三例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论.分析:可考虑P 点的不同位置分两种情况讨论. 解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面;(2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a ='' ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行.故应作“0个或1个”平面.说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论.典型例题四例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.已知:直线b a //,//a 平面α,α⊄b . 求证:α//b .证明:如图所示,过a 及平面α内一点A 作平面β. 设c =βα ,∵α//a , ∴c a //. 又∵b a //, ∴c b //.∵α⊄b ,α⊂c , ∴α//b .说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.典型例题五例5 已知四面体ABC S -的所有棱长均为a .求: (1)异面直线AB SC 、的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.分析:依异面直线的公垂线的概念求作异面直线AB SC 、的公垂线段,进而求出其距离;对于异面直线所成的角可采取平移构造法求解.解:(1)如图,分别取AB SC 、的中点F E 、,连结CF SF 、.由已知,得SAB ∆≌CAB ∆. ∴CF SF =,E 是SC 的中点, ∴SC EF ⊥.同理可证AB EF ⊥∴EF 是AB SC 、的公垂线段.在SEF Rt ∆中,a SF 23=,a SE 21=. ∴22SE SF EF -=a a a 22414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角. 连结FG ,在EFG Rt ∆中,a EG 21=,a GF 21=,a EF 22=. 由余弦定理,得22222124142412cos 222222=⋅⋅-+=⋅⋅-+=∠a a aa a EF EG GF EF EG GEF . ∴45=∠GEF .故异面直线EF 和SA 所成的角为45.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 如果一条直线与一个平面平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.已知:直线α//a ,α∈B ,b B ∈,a b //. 求证:α⊂b . 分析:由于过点B 与a 平行的直线是惟一存在的,因此,本题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否定性命题,所以使用反证法.证明:如图所示,设α⊄b ,过直线a 和点B 作平面β,且'b =αβ . ∵α//a ,∴α//'b .这样过B 点就有两条直线b 和'b 同时平行于直线a ,与平行公理矛盾. ∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的依据. (2)本例还可以用同一法来证明,只要改变一下叙述方式.如上图,过直线a 及点B 作平面β,设'b =αβ .∵α//a ,∴α//'b .这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条, ∴b 与'b 重合.∵α⊂'b ,∴α⊂b .典型例题七例7 下列命题正确的个数是( ).(1)若直线l 上有无数个点不在平面α内,则α//l ; (2)若直线l 平行于平面α内的无数条直线,则α//l ;(3)若直线l 与平面α平行,则l 与平面α内的任一直线平行; (4)若直线l 在平面α外,则α//l .A .0个B .1个C .2个D .3个 分析:本题考查的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解本题的关键.要注意直线和平面的位置关系除了按照直线和平面公共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l 上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因而直线可能与平面平行亦有可能与直线相交.解题时要注意“无数”并非“所有”.(2)直线l 虽与α内无数条直线平行,但l 有可能在平面α内,所以直线l 不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当α//l 时,若α⊂m 且l m //,则在平面α内,除了与m 平行的直线以外的每一条直线与l 都是异面直线.(4)直线l 在平面α外,应包括两种情况:α//l 和l 与α相交,所以l 与α不一定平行. 故选A .说明:如果题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完整,考虑要全面.如直线l 、m 都平行于α,则l 与m 的位置关系可能平行,可能相交也有可能异面;再如直线m l //、α//l ,则m 与α的位置关系可能是平行,可能是m 在α内.典型例题八例8 如图,求证:两条平行线中的一条和已知平面相交,则另一条也与该平面相交. 已知:直线b a //,P a =α平面 .求证:直线b 与平面α相交.分析:利用b a //转化为平面问题来解决,由b a //可确定一辅助平面β,这样可以把题中相关元素集中使用,既创造了新的线面关系,又将三维降至二维,使得平几知识能够运用.解:∵b a //,∴a 和b 可确定平面β. ∵P a =α ,∴平面α和平面β相交于过点P 的直线l .∵在平面β内l 与两条平行直线a 、b 中一条直线a 相交,∴l 必定与直线b 也相交,不妨设Q l b = ,又因为b 不在平面α内(若b 在平面α内,则α和β都过相交直线b 和l ,因此α与β重合,a 在α内,和已知矛盾). 所以直线b 和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公共点;否定直线在平面内以及直线和平面平行;用此结论:一条直线如果经过平面内一点,又经过平面外一点,则此直线必与平面相交(此结论可用反证法证明).典型例题九例9 如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行. 已知:a 与b 是异面直线.求证:过b 且与a 平行的平面有且只有一个.分析:本题考查存在性与唯一性命题的证明方法.解题时要理解“有且只有”的含义.“有”就是要证明过直线b 存在一个平面α,且α//a ,“只有”就是要证满足这样条件的平面是唯一的.存在性常用构造法找出(或作出)平面,唯一性常借助于反证法或其它唯一性的结论.证明:(1)在直线b 上任取一点A ,由点A 和直线a 可确定平面β. 在平面β内过点A 作直线'a ,使a a //',则'a 和b 为两相交直线, 所以过'a 和b 可确定一平面α. ∵α⊂b ,a 与b 为异面直线, ∴α⊄a .又∵'//a a ,α⊂'a ,∴α//a .故经过b 存在一个平面α与a 平行.(2)如果平面γ也是经过b 且与a 平行的另一个平面, 由上面的推导过程可知γ也是经过相交直线b 和'a 的.由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合,即满足条件的平面是唯一的.说明:对于两异面直线a 和b ,过b 存在一平面α且与a 平行,同样过a 也存在一平面β且与b 平行.而且这两个平面也是平行的(以后可证).对于异面直线a 和b 的距离,也可转化为直线a 到平面α的距离,这也是求异面直线的距离的一种方法.典型例题十例10 如图,求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.已知:l =βα ,α//a ,β//a ,求证:l a //.分析:本题考查综合运用线面平行的判定定理和性质定理的能力.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线平行,即线面平行可得线线平行.然后再用线面平行的判定定理和性质定理来证明a 与l 平行.证明:在平面α内取点P ,使l P ∉,过P 和直线a 作平面γ交α于b . ∵α//a ,γ⊂a ,b =αγ , ∴b a //.同理过a 作平面δ交β于c . ∵β//a ,δ⊂a ,c =βδ , ∴c a //. ∴c b //.∵β⊄b ,β⊂c , ∴β//b .又∵α⊂b ,l =βα , ∴l b //. 又∵b a //, ∴l a //.另证:如图,在直线l 上取点M ,过M 点和直线a 作平面和α相交于直线1l ,和β相交于直线2l .∵α//a ,∴1//l a , ∵β//a ,∴2//l a ,但过一点只能作一条直线与另一直线平行. ∴直线1l 和2l 重合.又∵α⊂1l ,β⊂2l , ∴直线1l 、2l 都重合于直线l ,∴l a //. 说明:“线线平行”与“线面平行”在一定条件下是可以相互转化的,这种转化的思想在立体几何中非常重要.典型例题十一例11 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各取一点P 、Q ,且DQ AP =.求证://PQ 面BCE .分析:要证线面平行,可以根据判定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与PQ 平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作AB PM //交BE 于M ,在平面ABCD 内过Q 作AB QN //交BC 于N ,连结MN .∵AB PM //,∴AEPEAB PM =. 又∵CD AB QN ////,∴BD BQ DC QN =,即BDBQAB QN =. ∵正方形ABEF 与ABCD 有公共边AB , ∴DB AE =.∵DQ AP =,∴BQ PE =. ∴QN PM =.又∵AB PM //,AB QN //, ∴QN PM //.∴四边形PQNM 为平行四边形.∴MN PQ //. 又∵⊂MN 面BCE , ∴//PQ 面BCE .证明二:如图,连结AQ 并延长交BC 于S ,连结ES .∵AD BS //,∴QBDQQS AQ =. 又∵正方形ABEF 与正方形ABCD 有公共边AB , ∴DB AE =,∵DQ AP =,∴QB PE =.∴QSAQQB DQ PE AP ==. ∴ES PQ //, 又∵⊂ES 面BEC , ∴//PQ 面BEC .说明:从本题中我们可以看出,证线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.此题中我们可以把“两个有公共边的正方形”这一条件改为“两个全等的矩形”,那么题中的结论是否仍然成立?典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或平行、或相交于一点. 已知:a =βα ,b =γβ ,c =αγ .求证:a 、b 、c 互相平行或相交于一点.分析:本题考查的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据共面的两条直线平行或相交来推论三条交线的位置关系.证明:∵a =βα ,b =γβ , ∴β⊂b a 、.∴a 与b 平行或相交. ①若b a //,如图∵γ⊂b ,γ⊄a ,∴γ//a . 又∵c =αγ ,α⊂a ,∴c a //. ∴c b a ////.②若a 与b 相交,如图,设O b a = ,∴a O ∈,b O ∈.又∵βα =a ,γβ =b . ∴α∈O ,γ∈O又∵c =γα ,∴c O ∈.∴直线a 、b 、c 交于同一点O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中,M 、N 分别是1CC 、11B A 的中点,画出点D 、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ∆的BC 边上的高,DF 是BCD ∆的BC 边上的中线,求证:AE 和DF 是异面直线.证法一:(定理法)如图由题设条件可知点E 、F 不重合,设BCD ∆所在平面α.∴⇒⎪⎪⎩⎪⎪⎨⎧∉∈∉⊂DFE E A DF αααAE 和DF 是异面直线. 证法二:(反证法)若AE 和DF 不是异面直线,则AE 和DF 共面,设过AE 、DF 的平面为β.(1)若E 、F 重合,则E 是BC 的中点,这与题设AC AB ≠相矛盾.(2)若E 、F 不重合,∵EF B ∈,EF C ∈,β⊂EF ,∴β⊂BC .∵β∈A ,β∈D ,∴A 、B 、C 、D 四点共面,这与题设ABCD 是空间四边形相矛盾.综上,假设不成立.故AE 和DF 是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用. 首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?”对于这个问题,同学们可试验做一做.也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.典型例题十四例14 已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别是AB 、BC 、CD 的中点,求证:平面EFG 和AC 平行,也和BD 平行.分析:欲证明AC //平面EFG ,根据直线和平面平等的判定定理只须证明AC 平行平面EFG 内的一条直线,由图可知,只须证明EF AC //.证明:如图,连结AE 、EG 、EF 、GF .在ABC ∆中,E 、F 分别是AB 、BC 的中点.∴EF AC //.于是AC //平面EFG .同理可证,BD //平面EFG .说明:到目前为止,判定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的判定定理.典型例题十五例15 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心, 求证:ACD PQ 平面//.分析:欲证线面平行,须证线线平行,即要证明PQ 与平面ACD 中的某条直线平行,根据条件,此直线为AD ,如图.证明:取BC 的中点E .∵P 是ABC ∆的重心,连结AE ,则1∶3=PE AE ∶,连结DE ,∵Q 为BCD ∆的重心,∴1∶3=QE DE ∶,∴在AED ∆中,AD PQ //.又ACD AD 平面⊂,ACD PQ 平面⊄,∴ACD PQ 平面//.说明:(1)本例中构造直线AD 与PQ 平行,是充分借助于题目的条件:P 、Q 分别是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行”.判定定理给我们提供了一种证明线面平等的方法.根据问题具体情况要熟练运用.典型例题十六例16 正方体1111D C B A ABCD -中,E 、G 分别是BC 、11D C 的中点如下图. 求证:D D BB EG 11//平面.分析:要证明D D BB EG 11//平面,根据线面平等的判定定理,需要在平面D D BB 11内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件.证明:取BD 的中点F ,连结EF 、F D 1.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,则DC EF //,且CD EF 21=. ∵G 为11D C 的中点,∴CD G D //1且CD G D 211=, ∴G D EF 1//且G D EF 1=,∴四边形G EFD 1为平行四边形,∴EG F D //1,而111B BDD F D 平面⊂,11B BDD EG 平面⊄,∴11//B BDD EG 平面.典型例题十七例17 如果直线α平面//a ,那么直线a 与平面α内的( ).A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确. ∴应选D .说明:本题主要考查直线与平面平行的定义.典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是( ).A .一定平行B .一定相交C .一定异面D .相交或异面解:如图中的甲图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系; 如图中的乙图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系.综上,可知应选D .说明:本题主要考查有关平面、线面平行等基础知识以及空间想象能力.典型例题十九例19 a 、b 是两条异面直线,下列结论正确的是( ).A .过不在a 、b 上的任一点,可作一个平面与a 、b 平行B .过不在a 、b 上的任一点,可作一个直线与a 、b 相交C .过不在a 、b 上的任一点,可作一个直线与a 、b 都平行D .过a 可以并且只可以作一平面与b 平行解:A 错,若点与a 所确定的平面与b 平行时,就不能使这个平面与α平行了. B 错,若点与a 所确定的平面与b 平等时,就不能作一条直线与a ,b 相交. C 错,假如这样的直线存在,根据公理4就可有b a //,这与a ,b 异面矛盾. D 正确,在a 上任取一点A ,过A 点做直线b c //,则c 与a 确定一个平面与b 平行,这个平面是惟一的.∴应选D.说明:本题主要考查异面直线、线线平行、线面平行等基本概念.典型例题二十例20 (1)直线b a //,α平面//a ,则b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行.解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b . ∴应填:α//b 或α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,(分别称'a ,'b )经过'a ,'b 的平面也是惟一的.所以只能作一个平面;还有不能作的可能,当这个平面经过a 或b 时,这个平面就不满足条件了. ∴应填:1.说明:考虑问题要全面,各种可能性都要想到,是解答本题的关键.典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.解:∵α//a ,ABD EG 平面 α=.∴EG a //,即EG BD //, ∴FCAF AF BD EG CD BC FG EF AC AF CD FG BC EF +==++===. 则9204545=+⨯=+⋅=FC AF BD AF EG . ∴应填:920. 说明:本题是一道综合题,考查知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考查了综合运用知识,分析和解决问题的能力.。