80C51单片机存储器的扩展

合集下载

2.3 80C51单片机的并行端口结构

2.3 80C51单片机的并行端口结构

80C51单片机的并行端口结构80C51共有4个8位的并行I/O口,分别记作P0、P1、P2、P3。

被归入专用寄存器。

I/O端口有串行和并行之分,串行I/O端口一次只能传送一位二进制信息,并行I/O端口一次能传送一组二进制信息。

(1)并行I/O口的功能①PO口:电路中包括一个数据输出锁存器和两个三态数据输入缓存器,另外还有一个数据输出的驱动和控制电路。

这两组端口用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口的总线接口,而不像P1、P3直接用做输出口。

P0.0~P0.7,P0口是8位双向I/O口,P0.i引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。

该8位都是漏极开路(漏极开路即高阻状态,适用于输入/输出,其可独立输入/输出低电平和高阻状态)输出,每个引脚可以驱动8个LS型TTL负载且内部没有上拉电阻,执行输出功能时外部必须接上拉电阻(10K 即可)。

若要执行输入功能,必须先输出高电平方能读取该端口所连接的外部数据;若在访问外部存储器(RAM、ROM)和扩展的I/O口时,P0可作为地址总线(A0~A7)和数据总线(D0~D7),分时进行工作。

在指令的前半周期,P0口作为地址总线的低8位,在指令的后半周期为8位的数据总线。

P1口的各个单元:输入缓冲器:在P0口中,有两个三态的缓冲器,三态门有三个状态,即在其输出端可以是高电平、低电平和高阻状态(或称为禁止状态)。

上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为…读锁存器‟端)有效。

要读取P0.i引脚上的数据,也要使标号为…读引脚‟的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的内部数据总线上。

D锁存器:存储器中可以存放电荷,加一个小的存储器的单元,并在它的面前加一个开关,要让这一位输出时,就把开关打开,信号就进入存储器的单元,然后马上关闭开关,这一位的状态就被保存下来,直到下一次命令让它把开关再打开为止,这就是锁存器。

80C51单片机的硬件结构之CPU与存储器

80C51单片机的硬件结构之CPU与存储器

2.1 80C51系列单片机结构
2.1.1 内部结构框图
1.1个8位的CPU 2.1个片内振荡器和时钟电路 3.程序存储器 4 KB的掩膜ROM,用于存放程序、原始数 据或表格。 4.数据存储器 5.64KB总线扩展控制器 6.4个8位并行I/O口(P0、P1、P2、P3)
7.1个全双工串行接口
堆栈指针SP:存放栈顶的地址,内容可软件设置初值,单片机 复位时SP = 07H。CPU每往堆栈中存放一个数,SP都会先自动 加1,CPU每从堆栈中取走一个数,SP都会自动减1,SP始终指向 堆栈最顶部的数据的地址。
(5)数据指针DPTR
分成DPL(低8位)和DPH(高8位)两个寄存器,用来存放16 位地址值。
P0.4 84H
P0.3 83H
P0.2 82H
P0.1 81H
P0.0 80H
(1)累加器Acc
最常用的寄存器,所有的运算类指令都要使用它。累加器 在指令中的助记符为A,自身带有全零标志Z,若A=0则Z=1; 若A≠0则Z=0。该标志常用作程序分支转移的判断条件。
(2)B寄存器
80C51中,在做乘、除法时必须使用B寄存器,不做乘、除法 时,可作为一般的寄存器使用。
① 掩膜ROM。 ② 可编程的只读存储器(PROM)。 ③ 可改写的只读存储器EPROM。 ④ 可电改写只读存储器(EEPROM)。
随机存取存储器(RAM)
① 静态SRAM。 ② 动态DRAM。
可现场改写的非易失性存储器
① 快擦写存储器(FLASH)。 ② 铁电存储器FRAM。
2.存储单元和存储单元地址
1.80C51片内数据存储空间(低128B)
(1)工作寄存器区(00H~1FH) 作用:有专用于工作寄存器操作的指令,读写速度比一般内 RAM要快,指令字节比一般直接寻址指令要短,还具有间 址功能,能给编程和应用带来方便。 工作寄存器区分为4个区:0区、1区、2区、3区。每区有8 个寄存器:R0~R7,寄存器名称相同。但是,当前工作的 寄存器区只能有一个,由PSW中的D4、D3位决定。

《单片机原理与应用及上机指导》第7章:80C51单片机系统扩展

《单片机原理与应用及上机指导》第7章:80C51单片机系统扩展


表7.4 常用SRAM芯片的主要性能

表7.6 80C51与6264的线路连接

7.2 并行I/O扩展


MCS-51系列单片机共有4个并行I/O口,分别是P0、P1、 P2和P3。其中P0口一般作地址线的低8位和数据线使用; P2口作地址线的高8位使用;P3口是一个双功能口,其第 二功能是一些很重要的控制信号,所以P3一般使用其第二 功能。这样供用户使用的I/O口就只剩下P1口了。另外,这 些I/O口没有状态寄存和命令寄存的功能,所以难以满足复 杂的I/O操作要求。因此,在大部分MCS-5l单片机应用系 统的设计中都不可避免地要进行I/O口的扩展。 7.2.1 并行I/O扩展原理 7.2.2 常用的并行I/O扩展芯片

线选法

若系统只扩展少量的RAM和I/O口芯片,可采用线选法。 线选法是把单片机高位地址分别与要扩展芯片的片选端相连,控制选 择各条线的电路以达到选片目的,其优点是接线简单,适用于扩展芯 片较少的场合,缺点是芯片的地址不连续,地址空间的利用率低。
图7.7 片外RAM的读时序

图7.8 片外RAM的写时序

4.数据存储器芯片及扩展电路


(1) 数据存储器 数据存储器扩展常使用随机存储器芯片,用得较多的是 Intel公司的6116(容量为2KB)和6264(容量为8KB), 其性能 如表7.4所示。 (2) 数据存储器扩展电路 80C51与6264的连接 如表7.6所示。

全地址译码法

利用译码器对系统地址总线中未被外扩芯片用到的高位地址线进行译 码,以译码器的输出作为外围芯片的片选信号。常用的译码器有 74LS139、74LS138、74LS154等。优点是存储器的每个存储单元只 有唯一的一个系统空间地址,不存在地址重叠现象;对存储空间的使 用是连续的,能有效地利用系统的存储空间。缺点是所需地址译码电 路较多,全地址译码法是单片机应用系统设计中经常采用的方法 。

n第6章80C51单片机的系统扩展

n第6章80C51单片机的系统扩展

第六章80C51单片机的系统扩展
系统扩展是指单片机内部各功能部件不 能满足应用系统要求时,在片外连接相应的外 围芯片以满足应用系统要求。80C5l系列单片 机有很强的外部扩展能力,外围扩展电路芯片 大多是一些常规芯片,扩展电路及扩展方法较 典型、规范。用户很容易通过标准扩展电路来 构成较大规模的应用系统。 80C51系列单片机的系统扩展有程序存 储器(ROM)扩展、数据存储器(RAM)扩展、I/O 口扩展、中断系统扩展以及其它特殊功能扩展
第六章80C51单片机的系统扩展
6.1.2外部串行扩展性能 1 80C51系列单片机的串行总线结构 80C51系列单片机的串行总线包括: SPI(Serial Peripheral Interface)三线总线 和I2C公用双总线两种。 • (1) SPI三线总线结构 SPI三线总线结构是一个同步外围接口,允 许MCU与各种外围设备以串行方式进行通信。 一个完整的SPI系统有如下的特性:
第六章80C51单片机的系统扩展
(2) I2C公用二总线结构
在器件(IC为集成电路芯片)之间, 使用两根信号线(SDA和SCL)串行的 方法进行信息传送的并允许若干兼容器 件共享的二线总线,称为I2C总线。I2C 总线系统的示意图见图6-4。SDA线称 为串行数据线,其上传输双向的数据; SCL线称为串行时钟线,其上传输时钟 信号,用来同步串行数据线上的数据。
第六章80C51单片机的系统扩展
通常情况下,采用80C51/87C51的 最小应用系统最能发挥单片机体积小、 成本低的优点。但在许多情况下,构成 一个工业测控系统时,考虑到传感器接 口、伺服控制接口以及人机对话接口等 的需要,最小应用系统常常不能满足要 求,因此,系统扩展是单片机应用系统 硬件设计中最常遇到的问题。

第9章 80C51单片机系统扩展技术

第9章 80C51单片机系统扩展技术

15
9.2.2 地址锁存器芯片
1. 锁存器74LS373
74LS373的结构及引脚
04:17
16
2. 锁存器8282
功能及内部结构与74LS373完全一样,只是其引脚的排列与 74LS373不同 ,8282的引脚如下图。
04:17
17
引脚的排列为绘制印刷 电路板时的布线提供了方便。
04:17
18
04:17
10
地址总线(AB): 由P2口提供高8位地址线, 此口具有输出锁存 的功能, 能保留地址信息。 由P0口提供低8位地址线。
数据总线(DB): 由P0口提供。 此口是双向、 输入三态控制的 8位通道口。
控制总线(CB): 扩展系统时常用的控制信号为:
ALE——地址锁存信号, 用以实现对低8位地址的锁存。
04:17
13
9.2.1 数据存储器芯片
典型型号有:6116、6264、62128、62256。+5V电源供电, 双列直插,6116为24引脚封装,6264、62128、62256为28 引脚封装。
6116:2KB 6264:8KB 62128:16KB 62256:32KB
04:17
14
04:17
3. 锁存器74LS573
输入的D端和输出的Q端也是依次排在芯片的两侧,与锁存 器8282一样,为绘制印刷电路板时的布线提供了方便。
04:17
19
9.2.3 数据存储器的扩展电路
需要考虑与80C51相连的存储芯片引脚:
80C51 CPU
存储芯片
(1)地址总线P0.0-P0.7 74LS373 (2)地址总线P2.0-P2.n-9 (3)数据总线的P0.0-P0.7

80C51单片机原理

80C51单片机原理

80C51单片机原理RAM地址寄存器 RAM 128B 程序地址寄存器P0驱动器 P2锁存器 P2驱动器P1锁存器 暂存器2 B 寄存器 4KB ROM暂存器1ACC SP P0锁存器 PC PC 增1 缓冲器 P3锁存器 OSC中断、串行口及定时器PSW ALU DPTRP1驱动器 P3驱动器XTAL1XTAL2 P0.0~P0.7 P2.0~P2.7 P3.0~P3.7 P1.0~P1.7 RST ALEV CCV SS定时控制 指令译码器 指令寄存器 PSEN EA表2-1 P3口各引脚与第二功能表PSW 的各位定义见表80C51 P0~P3接口功能简见大多数口线都有双重功能,介绍如下: 1、P0口具有双重功能:(1) 作为通用I/O ,外接I/O 设备。

(2) 作为地址/数据总线。

在有片外扩展存储器的系统 中,低8位地址和数据由P0口分时传送。

PSW 位地址 PS W.7PSW .6PSW .5 PSW .4 PSW .3 PSW .2 PSW .1 PSW .0 位标志CY ACF0RS1RS0OVF1P2、P1口是唯一的单功能口:作为输入/输出口,P1口的每一位都可作为输入/输出口。

3、P2口具有双重功能:(1)作为输入/输出口。

(2)作为高8位地址总线。

在有片外扩展存储器的系统中,高8位地址由P2口传送。

4、P3口具有双重功能:(1)作第一功能使用时,其功能为输入/输出口。

(2)作第二功能使用时,每一位功能定义如表2.1所示。

80C51单片机的4个I/O口都是8位双向口,这些口在结构和特性上是基本相同的,但又各具特点,以下将分别介绍之。

图2-9 P0口某位的结构图2-10 P1口某位的结构图2-11 P2口某位的结构图2-12 P3口某位的结构P0~P3口使用时应注意事项1、如果80C51单片机内部程序存贮器ROM够用,不需要扩展外部存贮器和I/O接口,80C51的四个口均可作I/O口使用。

单片机存储器的扩展(part 1 80C51)

单片机存储器的扩展(part 1 80C51)
数据存储器扩展常用随机存储器芯片,用的较多的是Intel的 6116(2K×8)、6264(8K×8) 、62128(16K×8 、62256(32K×8) 、 62512(64K×8)等型号,它们都是SRAM,CMOS工艺,因此具有低功耗 的特点。在维持状态下只需几个微安电流,很适宜作需断电保护或 需长期低功耗状态下工作的存储器。另外EEPROM除可用作程序存储 器扩展外,还可作为数据存储器扩展。 6116 SRAM引脚见教材P127图5.10(P127图6.8)所示,说明如下: A10~A0:地址线 D7~D0:数据线 /WE:写选通信号 /CE:片选信号
在软件中,可用数据查询方式检测写操作中”页存 储周期“是否完成。“页存储”期间,如果对2864执行 读操作,那么读出的是最后写入的字节,若芯片的转储 工作未完成,则读出数据的最高位是原来写入字节最高 位的反码。据此,CPU可判断芯片的编程是否结束。如 果CPU读出的数据与写入的数据相同,表示芯片已完成 编程,CPU可继续向芯片加载下一页数据。
/OE:数据输出允许信号
6116共有四种工作方式:未选中、禁止、读出、写入(见教材 P127表5-4/表6.2)。
5.4.4数据存储器扩展举例 在 80C51 的扩展系统中,片外数据存储器一般由随 机存取存储器组成,最大可扩展64KB。数据存储器扩展 与程序存储器扩展在数据线、地址线的连接上是完全相 同的。所不同的只在于控制信号,程序存储器使用 /PSEN作为读选通信号,而数据存储器则使用/RD和/WR 分别作为读、写选通信号 1、单片数据存储器扩展 例:见图所示(或见教材P127图5.11/图6.9)。这里使用 了一片 6116 实现了 2KB RAM 扩展。在扩展连接中,以 /RD 信号接芯片的 /OE 端,以 /WR 信号接 /WE 端,进行 RAM芯片的读写控制。由于假定系统只有一片 6116,因 此没有使用片选信号,而把/CE端直接接地。这种情况下, 6116的地址范围是0000~07FFH。 与程序存储器相比较,数据存储器的扩展连接在数 据线、地址线的连接方法上是一致的,所不同的只是在 控制信号线上的差别。

第6章 80C51单片机的系统扩展

第6章 80C51单片机的系统扩展

80C51单片机的系统扩展 第6章 80C51单片机的系统扩展
6.1.2 常用程序存储器芯片
1、Flash(闪速 、 闪速)ROM 闪速
FlashROM是一种新型的电擦除式存储器,它是在EPROM工艺的基础上 增添了芯片整体电擦除和可再编程功能。它即可作数据存储器用,又可作程序 存储器用,其主要性能特点为: (1)电可擦除、可改写、数据保持时间长。 (2)可重复擦写/编程大于1万次。 (3)有些芯片具有在系统可编程ISP功能。 (4)读出时间为ns级,写入和擦除时间为ms级。 (5)低功耗、单一电源供电、价格低、可靠性高,性能比EEPROM优越。 FlashROM型号很多,常用的有29系列和28F系列。29系列有29C256 (32K×8)、29C512(64K×8)、29C010(128K×8)、29C020 (256K×8)、29040(512K×8)等,28F系列有28F512(64K×8)、 28F010(128K×8)、28F020(256K×8)、28F040(512K×8)等。
80C51单片机的系统扩展 第6章 80C51单片机的系统扩展
6.2.1 常用数据存储器芯片
静态存储器(SRAM)具有存取速度快、使用方便和价 格低等优点。但它的缺点是,一旦掉电,内部所有数据信 息都会丢失。常用的SRAM有6116(2KB×8)、6264 (8KB×8)、62128(16KB×8)、62256(32KB×8) 等芯片。常用SRAM芯片管脚和封装如图6-8所示,引脚功 能如下。 ① A0~A15:地址输入线。 ② D0~D7:双向三态数据总线,有时也用I/O0~I/O7表示。 ③CE:片选线,低电平有效。6264的26脚(CS)必须接高 电平,并且CE为低电平时才选中该芯片。 ④OE:读选通线,低电平有效。 ⑤WE:写选通线,低电平有效。 ⑥ VCC:电源线,接+5V电源。 ⑦ NC:空。 ⑧ GND:接地。

80C51单片机存储器物理结构参考

80C51单片机存储器物理结构参考

详述80C51单片机存储器物理结构、工作特点、地址范围大小并且图示说明?
1、80C51单片机的存储器在物理结构上可分为4个存储空间:片内程序存储器、片外程序存储器、片内数据存储器和片外数据存储器。

在逻辑上可分为3个空间,64KB程序存储器(片内、外统一编址)、256B片内数据存储器和64KB片外数据存储器。

其容量大小和地址如下图。

2、80C51片内256B数据存储器分两部分,特殊功能寄存器区(80H-FFH)和低128BRAM (00H-7FH)区。

特殊功能寄存器区有21个特殊功能寄存器(SFR),字节地址能被8整除的特殊功能寄存器可位寻址。

3、低128BRAM可分为用户RAM区(30H-7FH)可作数据缓冲和堆栈区、位寻址区(20H-2FH )共128位(位地址00H-7FH)和4组通用工作寄存器区(00H-1FH)。

在4组通用工作寄存器区(00H-1FH)中,每组有8个工作寄存器(R0-R7)。

CPU当前使用的工作寄存器组,是由程序状态寄存器PSW中的RS1、RS0的设置来选择的。

单片机扩展外部ROM或RAM读写时序

单片机扩展外部ROM或RAM读写时序

10
19
11
18
12
17
13
16
14
15
2764 27128 27256 27512
Vcc Vcc Vcc
Vcc
PGM PGM A14
A14
NC
A13 A13
A13
A8
A8
A8
A8
A9
A9
A9
A9
A11 A11 A11
A11
OE
OE
OE
OE/Vpp
A10 A10 A10
A10
CE
CE
CE
CE
Q7
Q7
Q7
Q7
Q6
Q6
Q6
Q6
Q5
Q5
Q5
Q5
Q4
Q4
Q4
Q4
Q3
Q3
Q3
Q3
EPROM存储器扩展电路:
P2.0-P2.4
ALE
P0
80C31
EA
74LS373
G OE
D7 Q7 :: :: D0 Q0
PSEN
A8-A12
A7
: :
2764A
A0
D0~D7
CE OE
2、EEPROM存储器及扩展
常用的EEPROM芯片有2864、2817等 。
由于80C51采用不同的控制信号和指令 ,尽管ROM 与RAM的地址是重叠的,也不会发生混乱。
80C51对片内和片外ROM的访问使用相同的指令,两 者的选择是由硬件实现的。
芯片选择现在多采用线选法,地址译码法用的渐少。 ROM与RAM共享数据总线和地址总线。
访问片外ROM的时序 :

第8章80C51的串行总线扩展

第8章80C51的串行总线扩展

MSB
D6 D5~D2 D1
LSB
单片机读(从器件输出)时,在选通有效的情况下,SCK的下降 沿时从器件将数据放在MISO线上,单片机延时并采样MISO线,将 数据位读入。然后将SCK置为高电平形成上升沿,数据被锁存。
单片机写(从器件输入)操作类似。
2020/5/9
20
【例8-3】单片机与具有SPI总线接口的E2PROM器件X25F008的
2020/5/9
13
基本操作子程序
1.应答位检查 (正常操作时F0标志为 “0”,否则为“1”) ASKC:SETB SDA
SETB SCL CLR F0;预设F0=0 MOV C,SDA JNC EXIT;应答正常 SETB F0 ;应答不正常 EXIT:CLR SCL RET
2.发送一个字节(先将欲发送的数据送入A中)
它可以使具有I2C总线的单片机(如PHILIPS公司的8xC552 )直接 与具有I2C总线接口的各种扩展器件(如存储器、I/O口、A/D、D/A、 键盘、显示器、日历/时钟)连接。
对不带有I2C接口的单片机(如89C51)可采用普通的I/O口结合软 件模拟I2C串行接口总线时序的方法,完成I2C总线的串行接口功能。
MOV @R0,#11H INC R0 MOV @R0,#22H
RET END
R0 @R0,#33H R0 @R0,#44H R0 @R0,#55H R0 @R0,#66H R0 @R0,#77H R0
2020/5/9
17
【例8-2】接口电路如前图所 示。编程实现从AT24C02的50H57H单元读出8个字节数据,并 将其存入内部RAM的40H-47H单 元。
2020/5/9
15
5.读取n个字节(由E2PROM) 入口条件:R1发送缓冲区首址

80C51单片机存储器的扩展

80C51单片机存储器的扩展

接口技术课程设计说明书设计题目80C51单片机存储器的扩展指导教师:设计者:系别:班级:学号:机械工程学院班学生课程设计题目:80C51单片机存储器的扩展一、课程设计工作日自年月日至年月日二、同组学生:三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资料等)1、目的及意义(1)巩固及深化《单片机原理及应用》课程的理论知识,培养,分析,解决实际问题的能力。

(2)掌握80C51系统的总线构成,能根据题目要求确定设计思路、绘制所需的硬件电路图。

2、主要内容用两片Intel2732为80C51单片机扩展一个8KB的外部程序存储器,要求使用73LS138译码器,地址范围为B000H~CFFFH,请连线并写明扩展步骤。

3、基本要求(1)熟悉各芯片的使用方法和注意事项。

(2)绘制电路原理图(3)答辩4、主要参考资料单片机基础及应用,赵巍,冯娜,马苏常,刘玉山等,清华大学出版社,2009年指导教师签字:教研室主任签字:分析题目:根据题意知用2片Intel2732给80C51单片机扩展8KB的外程序存储器,分配的地址范围为B000H~CFFFH,分别采用线选法和译码法。

2732以HMOS-E(高速NMOS硅栅)工艺制成,24脚双列直插式,为4KB容量,地址线12条A0~A11;,数据线8条D0~D7,远为片选端,低电平有效,OE/VPP是输出允许信号,低电平有效,该引脚在编程时也作为编程电压VPP的输入端。

VCC为十5V电源,GND 为地。

(参考《微型计算机原理及应用》)由于80C51单片机对外没有专用的地址总线(AB),数据总线(DB)和控制总线(CB),那么在进行系统扩展时,首先需要扩展系统的三总线。

1地址总线:(address bus AB)(《参考单片机基础及应用》P81)1)AB的特点地址总线用来传递地址信号,用于外扩展储存单元和I/O端口地址。

地址总线总是单向的,因为地址信号只能从单片机向外传送。

《单片机微型计算机原理与接口技术》第八章 80C51单片微机的系统扩展原理与接口技术

《单片机微型计算机原理与接口技术》第八章 80C51单片微机的系统扩展原理与接口技术

②开始数据传送 在串行时钟线(SCL)保持高电平的情况下,串行数据线(SDA )上发生一个由高电平到低电平的变化作为起始信号(START) ,启动I2C 总线。I2C总线所有命令必须在起始信号以后进行。 ③停止数据传送 在串行时钟线(SCL)保持高电平的情况下,串行数据线 (SDA)上发生一个由低电平到高电平的变化,称为停止信号( STOP)。这时将停止I2C 总线上的数据传送。 ④数据有效性 在开始信号以后,串行时钟线(SCL)保持高电平的周期 期间,当串行数据线(SDA)稳定时.串行数据线的状态表示数 据线是有效的。需要一个时钟脉冲。 每次数据传送在起始信号(START)下启动,在停止信号 (STOP)下结束。 在I2C总线上数据传送方式有两种,主发送到从接收和从发 送到主接收。它们由起始信号(START)后的第一个字节的最低 位(即方向位R/W)决定。
①串行数据线(MISO、MOSI) 主机输入/从机输出数据线(MISO)和主机输出/ 从机输入数据线(MOSI),用于串行数据的发送和接收。 数据发送时.先传送MSB(高位),后传送LSB(低位)。 在SPI设置为主机方式时,MISO线是从机数据输入线 ,MOSI是主机数据输出线;在SPI设置为从机方式时, MISO线是从机数据输出线,MOSI是从机数据输入线。
8.1.1外部并行扩展原理
单片微机是通过芯片的引脚进行系统扩展的。 80C51系列带总线的单片微机芯片引脚可以构成图8-1所 示的三总线结构.即地址总线(AB)数据总线(DB)和控制总 线(CB)。具有总线的外部芯片都通过这三组总线进行扩展。 (1)地址总线(AB) 地址总线由单片微机P0口提供 低8位地址A0~A7,P2口提 供高8位地址A8~A15。P0口是地址总线低8位和8位数据总线复 用口,只能分时用作地址线。故P0口输出的低8位地址A0~A7必 须用锁存器锁存。 锁存器的锁存控制信号为单片微机ALE引脚输出的控制信 号。在ALE的下降沿将P0口输出的地址A0~A7锁存。P0、P2口 在系统扩展中用做地址线后便不能作为一般I/O口使用。 由于地址总线宽度为16位,故可寻址范围为64 KB。 (2)数据总线(DB) 数据总线由P0口提供,用D0~D7表示。P0口为三态双向

80C51存储器扩展

80C51存储器扩展

第六章 存储器扩展
6-1 程序存储器的扩展 一、外部存储器与单片机的连接原理 1、内、外部存储器的地址分配 内部程序存储器的地址为0000H 0FFFH; 0000H~ ① 内部程序存储器的地址为0000H~0FFFH; /EA=1时 ② 当/EA=1时: 外存储器地址相接,内部从0000H 0FFFH, 0000H~ 内、外存储器地址相接,内部从0000H~0FFFH, 外部从1000H 0FFFFH,内外连成一个整体; 1000H~ 外部从1000H~0FFFFH,内外连成一个整体; /EA=0时 ③ 当/EA=0时: 只有外存储器能使用,其地址从0000H 0FFFFH。 0000H~ 只有外存储器能使用,其地址从0000H~0FFFFH。
第六章 存储器扩展
第六章 存储器扩展
1.P0口的39~32脚输出的8位信号,并分为两路。 1.P0口的39~32脚输出的8位信号,并分为两路。 口的39 脚输出的 一路作为地址总线送74LS373地址锁存器, 27256提供低 74LS373地址锁存器 提供低8 ① 一路作为地址总线送74LS373地址锁存器,为27256提供低8位地址信 号。 另一路作为数据总线,直接与27256相连接用于8位数据信号的读取。 27256相连接用于 ② 另一路作为数据总线,直接与27256相连接用于8位数据信号的读取。
第六章 存储器扩展
MCS-51单片机内部有4KB的程序存储器(8031除外) MCS-51单片机内部有4KB的程序存储器(8031除外)和 单片机内部有4KB的程序存储器(8031除外 128B数据存储器 在实用中往往不够用,必须加以扩展。 数据存储器。 128B数据存储器。在实用中往往不够用,必须加以扩展。而 8031没有内部的程序存储器也必须通过扩展才能使用 没有内部的程序存储器也必须通过扩展才能使用。 8031没有内部的程序存储器也必须通过扩展才能使用。 在扩展时采用了外部三总线结构:地址总线、 在扩展时采用了外部三总线结构:地址总线、数据总线 控制总线。它们分别传递各自的信息。 、控制总线。它们分别传递各自的信息。 地址总线(16根 一、地址总线(16根) P0口传递低 位地址信息(A7 A0); 口传递低8 (A7~ P0口传递低8位地址信息(A7~A0); P2口传递高 位地址信息(A15 A8)。 口传递高8 (A15~ P2口传递高8位地址信息(A15~A8)。 数据总线( 二、数据总线(8根) P0口传递 位数据信息(分时传送)。 口传递8 P0口传递8位数据信息(分时传送)。 控制总线( 三、控制总线(5根) 程序存储器读控制信号为/PSEN /PSEN; 1、程序存储器读控制信号为/PSEN; 数据存储器的读控制信/RD或写控制信号/WR /RD或写控制信号/WR; 2、数据存储器的读控制信/RD或写控制信号/WR; 地址锁存控制信号为ALE ALE; 3、地址锁存控制信号为ALE; 4、片内/片外选择信号为/EA。 片内/片外选择信号为/EA。 /EA

80c51内部RAM空间分配

80c51内部RAM空间分配

80c51内部RAM空间分配keil编译的时候,在开始时候会清零所有内存.在main之前,所以,只要复位, 内存肯定是0MCS-51单片机的内部数据存储器在物理上和逻辑上都分为两个地址空间,即:数据存储器空间(低128单元),用户可用的;特殊功能寄存器空间(高128单元);这两个空间是相连的,从用户角度而言,低128单元才是真正的数据存储器。

下面我们就来详细的与大家讲解一下:低128单元:片内数据存储器为8位地址,所以最大可寻址的范围为256个单元地址,对片外数据存储器采用间接寻址方式,R0、R1和DPTR都可以做为间接寻址寄存器,R0、R1是8位的寄存器,即R0、R1的寻址范围最大为256个单元,而DPTR是16位地址指针,寻址范围就可达到64KB。

也就是说在寻址片外数据存储器时,寻址范围超过了256B,就不能用R0、R1做为间接寻址寄存器,而必须用DPTR寄存器做为间接寻址寄存器。

1、通用寄存器区(00H-1FH)在00H1FH共32个单元中被均匀地分为四块,每块包含八个8位寄存器,均以R0R7来命名,我们常称这些寄存器为通用寄存器。

这四块中的寄存器都称为R0R7,那么在程序中怎么区分和使用它们呢?聪明的INTEL工程师们又安排了一个寄存器程序状态字寄存器(PSW)来管理它们,CPU只要定义这个寄存的PSW的D3和D4位(RS0和RS1),即可选中这四组通用寄存器。

程序中并不需要用4组,那么其余的可用做一般的数据缓冲器,CPU在复位后,选中第0组工作寄存器。

2、位寻址区(20H-2FH)片内RAM的20H2FH单元为位寻址区,既可作单元用字节寻址,也可对它们的位进行寻址。

位寻址区共有16 个字节,128个位,位地址为00H7FH。

CPU能直接寻址这些位,执行例如置1、清0、求反、转移,传送和逻辑等操作。

我们常称MCS-51具有布尔处理功能,布尔处理的存储空间指的就是这些为寻址区。

3、用户RAM区(30H-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

程设计任务书
机械工程学院学院机制1211 班学生张会利-39号
课程设计题目:
单片ROM扩展
一、课程设计工作日自 2015 年 1 月 19 日至 2015 年 2 月 23 日
二、同组学生:张会利
三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资
料等):
1、目的及意义
(1)巩固和深化《单片机原理及应用》课程的理论知识,培养,分析、解决实际问题的能力。

(2)掌握单片机基本运用技术及汇编语言的基本方法,能根据题目要求确定设计思路、绘制流程图、编制并调试汇编语言程序,得出结果。

2、主要内容
用一片Intel2732为80C51单片机扩展一个4KB的外部程序存储器,要求使用73LS138译码器,地址范围为A000H~AFFFH。

请连线并写明扩展步骤。

3、基本要求
(1)分析题目,写出详细分析过程。

(2)绘制工作流程图。

(3)编制程序,画出硬件线路图。

(4)上机调试程序,运行结果。

(5)编写设计说明书,包括1—4个步骤的内容。

(6)答辩。

4、主要参考资料
单片机基础及应用,赵巍,冯娜,马苏常,刘玉山等,清华大学出版社,2009年指导教师签字:教研室主任签字:
程序设计说明书
(一)芯片简介
1.2732简介:
2732是容量为4k×8位(4KB)。

采用单一+5V供电,最大静态工作电流100mA, 电流35mA出时间最大为250ns. 2732的封装形式为DIP24,管脚如图所示。

●A0~A11 :12条地址线,表示有212个地址单元
●O0~O7 :8条数据线,表示地址单元字长8位
●CE :片选控制输入端,低电平有效
●OE/Vpp :双功能管脚,低电平时,允许2732输出数据
●Vcc :工作电平+5V
●GND :芯片接地端
2.74LS373简介:
74LS373是带三态缓冲输出的8D锁存器,由于单片机的三片总线结构中,数据线与地址线的低8位公用P0口,因此必须用地址所存器将地址信号和数据信号区分开。

74L373的锁存控制端G直接与单片机的锁存控制信号和数据信号ALE相连,在AEL的下降沿锁存低8位地址。

3.74LS138简介:
74LS138有3个“选择输入端”C.B.A.它可以选择8个输出线Y0—Y7,当C.B.A 的信号组合选择到某个输出线时,这个输出线有效,即输出为低电平,74LS138还有3个“使能输入端”(又称为“允许端或控制端”)G1. G2A.G2B, 当其有效时,即G1。

G2A=0. G2B=0时译码器才能工作。

(二)程序说明
1)芯片的选择及确定片数
根据题目容量要求扩展4KB的外部程序存储器。

选择一片Intel2732芯片。

74LS138译码器。

2)分配地址范围。

采用一片2732芯片扩展80C51的片外程序存储空间,分配的地址范围为A000H~AFFFH,如表1表示采用完全译码芯片选择。

即所在地址线全部连接,所以每一个单元只占用唯一一个地址,不存在地址重复问题。

3)连线说明如下:
(1)地址线:单片机扩展片外存储器时,按照分配地址范围连线图所示:地址是由P0和P2口提供的,2732的12条地址线(A0—A11)中。

低八位A0~A7通过所存器74LS373与P0口连接,高4位A8—A11直接与P2.0—P2.3连接,P2口本身有所存功能。

注意,锁存器的所存使能端G必须和单片机的ALE管脚相连。

(2)数据线:2732的8位数据线直接与单片机的P0口相连,因此,P0口使一个分时复用的地址数据线。

(3)控制线:CPU执行2732中存放的程序指令时,取指令阶段就是对2732进行操作。

注意,CPU对EPROM只能进行读操作,不能进行写操作。

CPU对2732的读操作控制都是通过控制线实现的。

2732控制线的连接有以下几条:
CE:Intel2732的片选信号由3-8译码器产生,
OE:接80C51的读选通信号PSEN端,在访问片外程序存储器时,只要PSEN 端出现负脉冲,即可从2732中读出程序。

2732的片选信号由3—8译码器产生。

80C51的P2口的高四位线与3-8译码器片选端连线如下:
P2.7:G1
P2.6:A P2.5:B P2.4:C
Y2:2732的CE
3/8译码器的功能真值表。

G1=1 G2A=0 G2B=0,当选中,P2.4=0 P2.5=1 P2.6=0 P2.7=1时,符合所分配的地址范围。

注意,80C51中在扩展并使用外部程序存储器时,必须使EA接地。

(4)存储器扩展连接图如图所示:
两片2732的扩展连接图
一片2732扩展后地址范围
外部程序存储器扩展小结
通过一周的程序设计的练习,我们巩固和深化《单片机原理及应用》课程的理论知识,分析,解决实际问题的能力。

初步掌握了外部程序扩展设计的思路和方法,了解了73LS138译码器和2732锁存器的使用,掌握了如何设计电路原理图,最重要是提高了我们的动手操作能力。

相关文档
最新文档