无机材料物理性能 期末复习

合集下载

无机材料物理性能试题及答案

无机材料物理性能试题及答案

无机材料物理性能试题及答案Happy First, written on the morning of August 16, 2022无机材料物理性能试题及答案无机材料物理性能试题及答案一、填空题每题2分;共36分1、电子电导时;载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射..2、无机材料的热容与材料结构的关系不大 ;CaO和SiO2的混合物与CaSiO3的热容-温度曲线基本一致 ..3、离子晶体中的电导主要为离子电导 ..可以分为两类:固有离子电导本征电导和杂质电导..在高温下本征电导特别显着;在低温下杂质电导最为显着..4、固体材料质点间结合力越强;热膨胀系数越小 ..5、电流吸收现象主要发生在离子电导为主的陶瓷材料中..电子电导为主的陶瓷材料;因电子迁移率很高;所以不存在空间电荷和吸收电流现象..6、导电材料中载流子是离子、电子和空位..7. 电子电导具有霍尔效应;离子电导具有电解效应;从而可以通过这两种效应检查材料中载流子的类型..8. 非晶体的导热率不考虑光子导热的贡献在所有温度下都比晶体的小 ..在高温下;二者的导热率比较接近 ..9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增大 ..10. 电导率的一般表达式为∑=∑=iiiiiqnμσσ..其各参数ni、qi和i的含义分别是载流子的浓度、载流子的电荷量、载流子的迁移率 ..11. 晶体结构愈复杂;晶格振动的非线性程度愈大 ..格波受到的散射大 ; 因此声子的平均自由程小 ;热导率低 ..12、波矢和频率之间的关系为色散关系..13、对于热射线高度透明的材料;它们的光子传导效应较大;但是在有微小气孔存在时;由于气孔与固体间折射率有很大的差异;使这些微气孔形成了散射中心;导致透明度强烈降低..14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级;其原因是前者有微量的气孔存在;从而显着地降低射线的传播;导致光子自由程显着减小..15、当光照射到光滑材料表面时;发生镜面反射 ;当光照射到粗糙的材料表面时;发生 漫反射 ..16、作为乳浊剂必须满足:具有与基体显着不同的折射率;能够形成小颗粒..用高反射率;厚釉层和高的散射系数;可以得到良好的乳浊效果..17、材料的折射随着入射光的频率的减少或波长的增加而减少的性质;称为折射率的色散..二、 问答题每题8分;共48分1、简述以下概念:顺磁体、铁磁体、软磁材料..答:1顺磁体:原子内部存在永久磁矩;无外磁场;材料无规则的热运动使得材料没有磁性..当外磁场作用;每个原子的磁矩比较规则取向;物质显示弱磁场..2铁磁体:在较弱的磁场内;材料也能够获得强的磁化强度;而且在外磁场移去;材料保留强的磁性..3软磁材料:容易退磁和磁化磁滞回线瘦长;具有磁导率高;饱和磁感应强度大;矫顽力小;稳定型好等特性..2、简述以下概念:亚铁磁体、反磁体、磁致伸缩效应答:1亚铁磁体:铁氧体:含铁酸盐的陶瓷磁性材料..它和铁磁体的相同是有自发磁化强度和磁畴;不同是:铁氧体包含多种金属氧化物;有二种不同的磁矩;自发磁化;也称亚铁磁体..2反磁体:由于“交换能”是负值;电子自旋反向平行..3磁致伸缩效应:使消磁状态的铁磁体磁化;一般情况下其尺寸、形状会发生变化;这种现象称为磁致伸缩效应..3、简述以下概念:热应力、柯普定律、光的双折射..答:1由于材料热膨胀或收缩引起的内应力称为热应力..2柯普定律:化合物分子热容等于构成该化合物各元素原子热容之和..理论解释:i i c n C ∑=..3光进入非均质介质时;一般要分为振动方向相互垂直、传播速度不等的两个波;它们构成两条折射光线;这个现象称为双折射..4、什么是铁氧体 铁氧体按结构分有哪六种主要结构答:以氧化铁Fe3+2O3为主要成分的强磁性氧化物叫做铁氧体..铁氧体按结构:尖晶石型、石榴石型、磁铅石型、钙钛矿型、钛铁矿型和钨青铜型..5、影响材料透光性的主要因素是什么提高无机材料透光性的措施有哪些答:影响透光性的因素:1吸收系数可见光范围内;吸收系数低1分2反射系数材料对周围环境的相对折射率大;反射损失也大..1分3散射系数材料宏观及微观缺陷;晶体排列方向;气孔..1分提高无机材料透光性的措施: 1提高原材料纯度减少反射和散射损失2分.. 2掺外加剂降低材料的气孔率2分..3采用热压法便于排除气孔2分6、影响离子电导率的因素有哪些并简述之..答:1温度..随着温度的升高;离子电导按指数规律增加..低温下杂质电导占主要地位..这是由于杂质活化能比基本点阵离子的活化能小许多的缘故..高温下;固有电导起主要作用..2分2晶体结构..电导率随活化能按指数规律变化;而活化能反映离子的固定程度;它与晶体结构有关..熔点高的晶体;晶体结合力大;相应活化能也高;电导率就低..2分结构紧密的离子晶体;由于可供移动的间隙小;则间隙离子迁移困难;即活化能高;因而可获得较低的电导率..2分3晶格缺陷..离子晶格缺陷浓度大并参与电导..因此离子性晶格缺陷的生成及其浓度大小是决定离子电导的关键..2分7、比较爱因斯坦模型和德拜比热模型的热容理论;并说明哪种模型更符合实际..答:1爱因斯坦模型Einstein model他提出的假设是:每个原子都是一个独立的振子;原子之间彼此无关;并且都是以相同的角频w振动2分;即在高温时;爱因斯坦的简化模型与杜隆—珀替公式相一致..但在低温时;说明CV值按指数规律随温度T而变化;而不是从实验中得出的按T 3变化的规律..这样在低温区域;爱斯斯坦模型与实验值相差较大;这是因为原子振动间有耦合作用的结果2分..2德拜比热模型德拜考虑了晶体中原子的相互作用;把晶体近似为连续介质2分..当温度较高时;与实验值相符合;当温度很低时;这表明当T →0时;C V 与T 3成正比并趋于0;这就是德拜T 3定律;它与实验结果十分吻合;温度越低;近似越好2分..8、晶态固体热容的量子理论有哪两个模型 它们分别说明了什么问题答:爱因斯坦模型在高温时;爱因斯坦的简化模型与杜隆—珀替公式相一致..2分但在低温时;V C 值按指数规律随温度T 而变化;而不是从实验中得出的按T 3变化的规律..这样在低温区域;爱斯斯坦模型与实验值相差较大;这是因为原子振动间有耦合作用的结果..2分德拜比热模型1) 当温度较高时;即D T θ>>;R Nk C V 33==;即杜隆—珀替定律..2分2) 当温度很低时;表明当T →0时;C V 与T 3成正比并趋于0;这就是德拜T 3定律;它与实验结果十分吻合;温度越低;近似越好..2分9、如何判断材料的电导是离子电导或是电子电导 试说明其理论依据..答:1材料的电子电导和离子电导具有不同的物理效应;由此可以确定材料的电导性质..2分利用霍尔效应可检验材料是否存在电子电导;1分利用电解效应可检验材料是否存在离子电导..1分2霍尔效应的产生是由于电子在磁场作用下;产生横向移动的结果;离子的质量比电子大得多;磁场作用力不足以使它产生横向位移;因而纯离子电导不呈现霍尔效应..2分3电解效应离子电导特征离子的迁移伴随着一定的物质变化;离子在电极附近发生电子得失;产生新的物质..由此可以检验材料是否存在离子电导..2分三、 计算题共16分1、一陶瓷零件上有一垂直于拉应力的边裂;如边裂长度为:12 mm20.049mm32 m ;分别求上述三种情况下的临界应力..设此材料的断裂韧性为162Mpa·m 1/2; 讨论诸结果.. c K c c πσ=I 2分MPa c c K 4.20310262.1=-I ⨯⨯=ππσ= 2分 MPa c c K 5.646610262.1=-I ⨯⨯=ππσ= 2分3 c =577.19Gpa2分2c 为4mm 的陶瓷零件容易断裂;说明裂纹尺寸越大;材料的断裂强度越低..2分2、光通过厚度为X 厘米的透明陶瓷片;入射光的强度为I 0;该陶瓷片的反射系数和散射系数分别为m 、 cm -1和scm -1..请在如下图示中用以上参数表达各种光能的损失..当X=1;m=0.04;透光率I/I 0=50%;计算吸收系数和散射系数之和..图中标识每个1分;计算5分。

材料物理性能复习资料

材料物理性能复习资料

材料物理性能复习资料材料物理性能总复习(⽆材⼀)考试题型:1 名词解释 5个*3分,共15分;2 简答 7个*5分,共35分;3 计算 2个*10分,共20分;4 论述 2个*15分,共30分。

考试时间:2013-1-14. 考试重点1 材料的受⼒形变不同材料应⼒应变曲线的区别A (A 点):⽐例极限; E (B 点):弹性极限; P (C 点):屈服极限; U (D 点):断裂极限;E ,可逆线性正⽐例关系,当应⼒在 E 和 P 之间,外⼒去除后有⼀定程度的永久变形,即发⽣塑性变形陶瓷材料⼀般没有塑性变形,发⽣脆性断裂应⼒:单位⾯积上所受内⼒。

ζ=F/A由于材料的⾯积在外⼒作⽤下,可能有变化,A 就有变化,有名义应⼒和实际(真实)应⼒ P4. 应变:描述物质内部各质点之间的相对位移名义位移的应变:实际应变和L0有关,可以通过公式推导获得由于材料的不同⽅向的应变,因此考虑可以采⽤和应⼒分解的办法来解决,具体看教材第6-7页虎克定律:σ=E ε⽐例系数E 成为弹性模量(Elastic Modulus ),⼜称弹性刚度相关概念:应⼒应变虎克定律弹性模量001L L L L L ?=-=ε三种应变类型的弹性模量杨⽒模量E ;剪切模量G ;体积模量B 弹性模量:原⼦间结合强度的标志之⼀两类原⼦间结合⼒与原⼦间距关系曲线弹性模量实际与曲线上受⼒点的曲线斜率成正⽐结合键、原⼦之间的距离、外⼒作⽤也将改变弹性模量的值温度升⾼,原⼦之间距离变⼤,弹性模量下降弹性模量的本质特征;弹性模量的影响因素;晶粒、异相、⽓孔、杂质等,弹性模量的计算公式及⽅法;把材料看成材料的串联或者并联,我们可以得到其上限模量和下限模量,如下⾯的公式表⽰:(P13)复合材料弹性模量及应⼒的计算。

陶瓷材料弹性常数和⽓孔率关系多⽓孔陶瓷材料可以看成⼆相材料,其中⼀相的刚度为0 陶瓷材料的弹性模量随⽓孔率变化的表达式是:b 是与制备⼯艺有关常数.当泊松⽐0.3,f1和f2分别是1.9和0.9,和教材上p13公式1.21⼀样粘弹性:⼀些⾮晶体,有时甚⾄多晶体在⽐较⼩的应⼒时同时表现出粘性和弹性。

大学《材料物理性能》复习核心知识点、习题库及期末考试试题答案解析

大学《材料物理性能》复习核心知识点、习题库及期末考试试题答案解析

大学《材料物理性能》复习核心知识点、习题库及期末考试试题答案解析目录《材料物理性能》习题库(填空、判断、选择、简答计算题) (1)《材料物理性能》复习核心知识点 (15)清华大学《材料物理性能》期末考试试题及答案解析 (25)上海交通大学《材料物理性能》期末考试试题 (31)《材料物理性能》习题库(填空、判断、选择、简答计算题)一、填空1.相对无序的固溶体合金,有序化后,固溶体合金的电阻率将。

2.马基申定则指出,金属材料的电阻来源于两个部分,其中一个部分对应于声子散射与电子散射,此部分是与温度的金属基本电阻,另一部分来源于与化学缺陷和物理缺陷而与温度的残余电阻。

3.某材料的能带结构是允带内的能级未被填满,则该材料属于。

4.离子晶体的导电性主要是离子电导,离子电导可分为两大类,其中第一类源于离子点阵中基本离子的运动,称为或,第二类是结合力比较弱的离子运动造成的,这些离子主要是,因而称为。

在低温下,离子晶体的电导主要由决定。

5.绝缘体又叫电介质,按其内部正负电荷的分布状况又可分为,,与。

6.半导体的导电性随温度变化的规律与金属,。

在讨论时要考虑两种散射机制,即与。

7.超导体的三个基本特性包括、与。

金属的电阻8.在弹性范围内,单向拉应力会使金属的电阻率;单向压应力会使率。

9.某合金是等轴晶粒组成的两相机械混合物,并且两相的电导率相近。

其中一相电导率为σ1,所占体积分数为φ,另一相电导率为σ2,则该合金的电导率σ = 。

10.用双臂电桥法测定金属电阻率时,测量精度不仅与电阻的测量有关,还与试样的的测量精度有关,因而必须考虑的影响所造成的误差。

11.适合测量绝缘体电阻的方法是。

12.适合测量半导体电阻的方法是。

13.原子磁矩包括、与三个部分。

14.材料的顺磁性来源于。

15.抗磁体和顺磁体都属于弱磁体,可以使用测量磁化率。

16.随着温度的增加,铁磁体的饱和磁化强度。

17.弹性的铁磁性反常是由于铁磁体中的存在引起所造成的。

无机材料物理性能 复习

无机材料物理性能 复习

无机材料的弹性变形行为
材料的受力形变三种情况:
脆性材料(非金属材料):只有弹性形变,无塑性
形或塑性形变很小。

延性材料(金属材料) :有弹性形变和塑性形变。 弹性材料 (橡
胶) :弹性变形很大,没有残
余形变(无塑性形变)。
应力与应变曲线
脆 性 材 料
应力与应变曲线
韧性金属材料
应力与应变曲线
G和体积模量B: 杨氏模量,即弹性模量: 反映材料抵抗正应变的能力 剪切模量:
E
G
反映材料抵抗切应变的能力
P B 体积模量: 表示材料在三向压缩(流体静压力)之下,压强 p与体积变化率
ΔV/V0之间的线性比例关系。
弹性模量
x A E x L
F
L
弹性模量的单位和应力的单位相同为 Pa。 对于同一种各向同性体材料弹性模量是一个常数
当铁加热到910ºС时发生 α-γ转变,点阵密度增大造 成模量的突然增大,冷却时 在900ºС发生α-γ的逆转变使 模量降低。 钴也有类似的情况,当温 度升高到480ºС时从六方晶 系的α-Co转变为立方晶系αCo,弹性模且增大。温度 降低时同样在400ºС左右观 察到模量的跳跃。
Fe、Co、Ni的多晶型转变与铁磁 转变对模量的影响。
• 无弛豫模量------测量时间小于松弛时间,随时间的形变
还没有机会发生时的弹性模量;
• 弛豫模量------测量的时间大于松弛时间,随时间的形变
已发生的弹性模量。
1.5 材料的高温蠕变
蠕变:当对材料施加恒定应力σ时,其
应变随时间而增加的现象。
低温表现脆性,高温往往蠕变。 1.5.1 蠕变曲线
多晶的的塑性形变

材料物理性能复习重点

材料物理性能复习重点

1.热容:热容是使材料温度升高1K所需的热量。

公式为C=ΔQ/ΔT=dQ/dT (J/K);它反映材料从周围环境中吸收热量的能力,与材料的质量、组成、过程、温度有关。

在加热过程中过程不同分为定容热容和定压热容。

2.比热容:质量为1kg的物质在没有相变和化学反应的条件下升高1K所需的热量称为比热容每个物质中有两种比热容,其中c p>c v,c v不能直接测得。

3.摩尔热容:1mol的物质在没有相变或化学反应条件下升高1K所需的能量称为摩尔热容,用Cm表示,单位为J/(mol·K)4.热容的微观物理本质:材料的各种性能(包括热容)的物理本质均与晶格热振动有关。

5.热容的实验规律:1.对于金属:2.对于无机材料(了解)1.符合德拜热容理论,但是德拜温度不同,它取决于键的强度、材料的弹性模量、熔点等。

2.对于绝大多数氧化物,碳化物,摩尔热容都是从低温时一个最低值增到到1273K左右近似于3R,温度进一步升高,摩尔热容基本没有任何变化。

3.相变时会发生摩尔热容的突变4.固体材料单位体积热容与气孔率有关,多孔材料质量越小,热容越小。

因此提高轻质隔热砖的温度所需要的热量远低于致密度的耐火砖所需的热量。

6.经典理论传统理论不能解决低温下Cv的变化,低温下热容随温度的下降而降低而下降,当温度接近0K时热容趋向于07.量子理论1.爱因斯坦模型三个假设:1.谐振子能量量子化2.每个原子是一个独立的谐振子3.所有原子都以相同的频率振动。

爱因斯坦温度:爱因斯坦模型在T >> θE 时,Cv,m=3R,与实验相符合,在低温下,T当T << θE时Cv,m比实验更快趋于0,在T趋于0时,Cv,m也趋于零。

爱因斯坦模型不足之处在于:爱因斯坦模型假定原子振动不相关,且以相同频率振动,而实际晶体中,各原子的振动不是彼此独立地以同样的频率振动,而是原子间有耦合作用,点阵波的频率也有差异。

温度低尤为明显2.德拜模型德拜在爱因斯坦的基础上,考虑了晶体间的相互作用力,原子间的作用力遵从胡克定律,固体热容应是原子的各种频率振动贡献的总和。

材料物理性能期末复习考点教学内容

材料物理性能期末复习考点教学内容

材料物理性能期末复习考点一名词解释1.声频支振动:震动着的质点中所包含的频率甚低的格波,质点彼此之间的相位差不大,格波类似于弹性体中的应变波,称声频支振动。

2.光频支振动:格波中频率甚高的振动波,质点间的相位差很大,临近质点的运动几乎相反,频率往往在红外光区,称光频支振动。

3.格波:材料中一个质点的振动会影响到其临近质点的振动,相邻质点间的振,动会形成一定的相位差,使得晶格振动以波的形式在整个材料内传播的波。

4.热容:材料在温度升高和降低时要时吸收或放出热量,在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。

5.一级相变:相变在某一温度点上完成,除体积变化外,还同时吸收和放出潜热的相变。

6.二级相变:在一定温度区间内逐步完成的,热焓无突变,仅是在靠近相变点的狭窄区域内变化加剧,其热熔在转变温度附近也发生剧烈变化,但为有限值的相变。

7.热膨胀:物体的体积或长度随温度升高而增大的现象。

8.热膨胀分析:利用试样体积变化研究材料内部组织的变化规律的方法。

9.热传导:当材料相邻部分间存在温度差时,热量将从温度高的区域自动流向温度低的区域的现象。

10.热稳定性(抗热震性):材料称受温度的急剧变化而不致破坏的能力。

11.热应力:由于材料的热胀冷缩而引起的内应力。

12.材料的导电性:在电场作用下,材料中的带电粒子发生定向移动从而产生宏观电流13.载流子:材料中参与传导电流的带电粒子称为载流子14.精密电阻合金:需要电阻率温度系数TRC或者α数值很小的合金,工程上称其为精密电阻合金15.本征半导体:半导体材料中所有价电子都参与成键,并且所有键都处于饱和(原子外电子层填满)状态,这类半导体称为本征半导体。

16. n型半导体:掺杂半导体中或者所有结合键处被价电子填满后仍有部分富余的价电子的这类半导体。

17. p型半导体:在所有价电子都成键后仍有些结合键上缺少价电子,而出现一些空穴的一类半导体。

18.光致电导:半导体材料材料受到适当波长的电磁波辐射时,导电性会大幅升高的现象。

无机材料物理性能复习资料

无机材料物理性能复习资料

一、名词解释塑性形变:指一种在外力移去后不能恢复的形变延展性:材料在经受塑性形变而不破坏的能力称为材料的延展性黏弹性:一些非晶体和多晶体在受到比较小的应力作用时可以同时表现出弹性和粘性,这种现象称为黏弹性滞弹性:对于实际固体,弹性应变的产生与消除都需要有限的时间,无机固体和金属表现出的这种与时间有关的弹性称为滞弹性蠕变:当对黏弹性体施加恒定压力σ0时,其应变随时间增加而增加。

这种现象叫蠕变,此时弹性模量Ec也将随时间而减小Ec(t)=σ0/ε(t)弛豫:如果施加恒定应变ε0,则应力将随时间而减小,这种现象叫弛豫。

此时弹性模量Er也随时间降低Er=σ(t)/ε0Grffith微裂纹理论:实际材料中总是存在许多细小的裂纹或缺陷;在外力作用下,这些裂纹和缺陷附近产生应力集中现象;当应力到达一定程度时,裂纹的扩展导致了材料断裂。

(为什么某物质尖端易断?)攀移运动:位错在垂直于滑移面方向的运动称为攀移运动。

热容:描述材料中分子热运动的能量随温度而变化的一个物理量,定义为使物体温度升高1K所需要外界提供的能量。

德拜热容理论(德拜三次方定律):在高于德拜温度θD时,热容趋于常数25 J/(mol·K),而在低于θD时热容则与T3成正比。

热稳定性:是指材料承受温度急剧变化而不破坏的能力,又称抗热震性。

抗热冲击断裂性能:材料发生瞬时断裂,抵抗这类破坏的性能为~抗热冲击损伤性能:在热冲击循环作用下,材料表面开裂、剥落,并不断发展,最终破裂或变质,抵抗这类破坏的性能为~本征电导(固有电导):晶体点阵中基本离子的运动,称为~电介质的极化:电介质在电场作用下产生束缚电荷,也是电容器贮存电荷能力增强的原因。

居里温度:是指材料可以在铁磁体和顺磁体之间改变的温度,即铁磁体从铁磁相转变成顺磁相的相变温度。

也可以说是发生二级相变的转变温度。

低于居里点温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。

当温度高于居里点温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。

材料物理性能复习

材料物理性能复习

无机材料物理性能复习考试题(含答案)一、名词解释(选做5个,每个5分,共15分)1. KIC:平面应变断裂韧度,表示材料在平面应变条件下抵抗裂纹失稳扩展的能力。

2.偶极子(电偶极子):正负电荷的平均中心不相重合的带电系统。

3.电偶极矩:偶极子的电荷量与位移矢量的乘积,。

(P288)4.格波:原子热振动的一种描述。

从整体上看,处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波。

格波的一个特点是,其传播介质并非连续介质,而是由原子、离子等形成的晶格,即晶格的振动模。

晶格具有周期性,因而,晶格的振动模具有波的形式。

格波和一般连续介质波有共同的波的特性,但也有它不同的特点。

5.光频支:格波中频率很高的振动波,质点间的相位差很大,邻近的质点运动几乎相反时,频率往往在红外光区,称为“光频支振动”。

(P109)6.声频支:如果振动着的质点中包含频率很低的格波,质点之间的相位差不大,则格波类似于弹性体中的应变波,称为“.声频支振动”。

(P109)7.色散:材料的折射率随入射光频率的减小(或波长的增加)而减小的性质,称为折射率的色散。

8.光的散射:物质中存在的不均匀团块使进入物质的光偏离入射方向而向四面八方散开,这种现象称为光的散射,向四面八方散开的光,就是散射光。

与光的吸收一样,光的散射也会使通过物质的光的强度减弱。

9.双折射:光进入非均匀介质时,一般要分为振动方向相互垂直、传播速度不等的两个波,它们分别构成两条折射光线,这个现象就称为双折射。

(P172)10.本征半导体(intrinsic semiconductor):完全不含杂质且无晶格缺陷的、导电能力主要由材料的本征激发决定的纯净半导体称为本征半导体。

11.P/N型半导体:在半导体中掺入施主杂质,就得到N型半导体;在半导体中掺入受主杂质,就得到P型半导体。

12.超导体:超导材料(superconductor),又称为超导体,指可以在特定温度以下,呈现电阻为零的导体。

材料物理性能考试重点

材料物理性能考试重点

第一章无机材料的受力形变1.形变:材料在外力的作用下发生形状与尺寸的变化2.影响弹性模量大小的因素?①化学键(本质):共价键、离子键结合力强,弹性模量大。

分子键结合力弱,弹性模量小。

②原子间距:正应力使原子间距减小,弹性模量增大;张应力使原子间距增大,弹性模量减小。

温度升高,原子间距增大,弹性模量降低。

3.弹性模量的测定⏹静态法:采用常规三点弯曲试验加载方式;在正式读数前,在低载荷进行几次反复加载、卸载;试样尺寸有要求。

误差较大⏹动态法:三点弯曲受力,外加载荷周期性性变化,产生谐振;弯曲振动测E,扭曲振动测G;试样尺寸有要求。

误差较小4.塑性:材料在外力去除后仍保持部分应变而不能恢复的特性5.延展性:材料发生塑性形变而不断裂(破坏)的能力6.晶体塑性形变两种基本形式:•滑移是指在剪切应力作用下晶体一部分相对于另部分发生平移滑动。

在显微镜下可观察到晶体表面出现宏观裂纹,并构成滑移带。

•孪晶是晶体材料中原子格点排列一部分与另部分呈镜像对称的现象。

镜界两侧的晶格常数可能相同、也可能不同。

7.晶体滑移的条件几何条件:滑移一般发生在晶面指数小、原子密度大的晶面(主要晶面)和晶面指数小的晶向(主要晶向)上:由于晶面指数小的面,面间距越大,原子间的作用力越小,易产生相对滑动;晶面指数小的面,原子的面密度大,滑过滑动平面使结构复原所需的位移量最小,即柏氏矢量小,也易于产生相对滑动。

静电作用因素:同号离子存在巨大的斥力,如果在滑动过程中相遇,滑动将无法实现。

8.粘度定义:使相距一定距离的两个平行平面以一定速度相对移动所需的力。

单位:Pa· s,9.影响粘度的因素?温度:一般温度升高,粘度下降。

时间:从高温状态冷却到退火点,再加热其粘度随时间增加而增加;而预先在退火点以下保持一定时间后,其粘度随时间增加而降低,但时间大大缩短。

组成:改性阳离子不同,粘度变化不同;但改性阳离子的加入,在任何温度下总会使粘度降低。

无机材料物理性能复习题

无机材料物理性能复习题

1.影响无机材料强度的因素有哪些?答:在晶体结构既定的情况下,影响材料强度的主要因素有三个:弹性模量E,断裂功γ和裂纹尺寸C。

还与其他因素有关,如:内在因素:材料的物性,如:弹性模量、热膨胀系数、导热性、断裂能;显微结构:相组成、气孔、晶界(晶相、玻璃相、微晶相)、微裂纹(长度、尖端的曲率大小);外界因素:温度、应力、气氛环境、式样的形状大小、表面;工艺因素:原料的纯度、降温速率。

2.请对氧化铝单晶的λ-T曲线分析说明。

答:在很低温度时,主要是热容Cv对热导率λ的贡献,Cv与T^3成正比,因而λ也近似随T^3而变化。

随温度升高热导率迅速增大,然而温度继续升高,平均自由程l要减小,这时热导率随温度T升高而缓慢增大,并在德拜温度θd左右趋于一定值,这时平均自由程l成了影响热容的主要因素,因而,热导率λ随温度T升高而迅速减小。

在低温(40K),热导率出现极大值,在高温区,变化趋于缓和,在1600K,由于光子热导的贡献是热导率有所回升。

3.试比较石英玻璃、石英多晶体和石英单晶热导率的大小,并解释产生差异的原因。

答:石英单晶体热导率最大,其次是石英多晶体,最后是石英玻璃。

原因:多晶体中晶粒尺寸小,晶界多,缺陷多,晶界处杂质也多,声子更易受到散射,因而它的平均自由程度小的多,所以多晶体的热导率比单晶体小。

玻璃属于非晶体,在不考虑光子导热的温度下,非晶体声子的平均自由程度比晶体的平均自由程度小的多,所以非晶体的热导率小于晶体的热导率。

4..裂纹形成原因有哪些?裂纹扩展的方式有哪些?哪些措施可防止裂纹扩展?答:裂纹形成的原因:1晶体微观结构中的缺陷受外力引起应力集中会形成裂纹2.材料表面的机械损伤与化学腐蚀形成表面裂纹3.热应力形成裂纹4.由于晶体的各向异性引起扩展方式:张开型,划开型,撕开型阻止裂纹的扩展:1.作用力不超过临界应力2.加入吸收能量的机构3.在材料中造成大量极细微的裂纹。

5.热压Al2O3(晶粒尺寸小于1μm,气孔率约为0)、烧结Al2O3(晶粒尺寸约15μm,气孔率约为1.3%)以及Al2O3单晶(气孔率为0)等三种材料中,哪一种强度最高?哪一种强度最低?为什么?答:强度最高的是Al2O3单晶,强度最低的是烧结Al2O3。

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案材料无机材料物理性能考试及答案————————————————————————————————作者:————————————————————————————————日期:无机材料物理性能试卷一.填空(1×20=20分)1.CsCl结构中,Cs+与Cl-分别构成____格子。

2.影响黏度的因素有____、____、____.3.影响蠕变的因素有温度、____、____、____.4.在____、____的情况下,室温时绝缘体转化为半导体。

5.一般材料的____远大于____。

6.裂纹尖端出高度的____导致了较大的裂纹扩展力。

7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。

8.介电常数显著变化是在____处。

9.裂纹有三种扩展方式:____、____、____。

10.电子电导的特征是具有____。

二.名词解释(4×4分=16分)1.电解效应2.热膨胀3.塑性形变4.磁畴三.问答题(3×8分=24分)1.简述晶体的结合类型和主要特征:2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类?3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。

4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。

四,计算题(共20分)1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60到75GPa。

(10分)2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数:=0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,E=6700kg/mm2,v=0.25。

求第一及第二热冲击断裂抵抗因子。

(10分)无机材料物理性能试卷答案一.填空。

(1×20=20分)1,简立方、2,温度、时间、熔体的结构与组成3,应力、晶体的组成、显微结构4,掺杂、组分缺陷5,抗压强度、抗张强度6,应力集中7,电导损耗、松弛损耗、结构损耗、8,居里点9,张开型、滑开型、撕开型10,霍尔效应二.名词解释1.电解效应:离子电导的特征是存在电解效应,离子的前一伴随着一定的质量变化,离子在电极附近发生电子得失,产生新的物质,这就是电解现象。

材料物理性能期末考试复习重点(非常全-可缩印)

材料物理性能期末考试复习重点(非常全-可缩印)

word格式-可编辑-感谢下载支持热容是物体温度升高1K所需要增加的能量。

它反映材料从周围环境中吸收热量的能力。

是分子热运动的能量随温度而变化的一个物理量。

不同环境下,物体的热容不同。

热容是随温度而变化的,在不发生相变的条件下,多数物质的摩尔热容测量表明,定容热容C和温度的关系与定压热容有相似的规律。

(1)在高温区:定压热容Cv的变化平缓;(2)低温区:Cv与「3成正比;(3)温度接近0K时,Cv与T成正比;(4)0K时,Cv=0;热容的来源:受热后点阵离子的振动加剧和体积膨胀对外做功,此外还和电子贡献有关,后者在温度极高(接近熔点)或极低(接近OK)的范围内影响较大,在一般温度下则影响很小。

晶态固体热容的经验定律和经典理论:(1)元素的热容定律—杜隆一珀替定律:热容是与温度T无关的常数。

恒压下元素的原子热容为25J/(k・mol);(2)化合物的热容定律一奈曼—柯普定律:化合物分子热容等于构成该化合物各元素原子热容之和。

德拜模型:考虑了晶体中原子的相互作用。

晶体中点阵结构对热容的主要贡献是弹性波振动,波长较长的声频支在低温下的振动占主导地位,并且声频波的波长远大于晶体的晶格常数,可以把晶体近似为连续介质,声频支的振动近似为连续,具有0〜smax的谱带的振动。

可导出定压热容的公式:Cv,m二12/5兀4R(T/6)3D由上式可以得到如下的结论:(1)当温度较高时,即处于高温区定压热容=3Nk=3R,即杜隆—珀替定律,与实验结果吻合;(2)当温度很低时,小于德拜温度时,定压热容与「3成正比,与实验结果吻合。

(3)当T-0时,C V趋于0,与实验大体相符。

但「3定律,与实验结果的T规律有差距。

德拜模型的不足:(1)由于德拜把晶体近似为连续介质,对于原子振动频率较高的部分不适用,使得对一些化合物的热容的计算与实验不符。

(2)对于金属类晶体,没有考虑自由电子的贡献,使得其在极高温和极低温区与实验不符。

(3)解释不了超导现象。

无机材料物理性能考试要点及答案

无机材料物理性能考试要点及答案

1. 略2. 在工程力学中讨论无机材料的弹性变形的时候,常涉及到一个重要的定律---虎克定律,它表示了应力、应变之间的线性关系。

对一各向同性体来说,假如它只在x 方向受到拉伸应力σ,写出在这个方向上应力σ、应变ε的关系。

答:Ex x σ=ε3. 什么是材料的弹性变形、塑性变形?简单说明晶体材料产生塑性变形的原因(机理)。

答:(1)材料的弹性变形是指材料在受力作用下发生形变,清除应力后又能恢复原状。

塑性变形就是变形后不能恢复到原状态。

(2)塑性变形机理:在剪应力作用下引起位错运动,导致晶体晶格的滑移,产生塑性变形。

4. 解释Griffith 微裂纹理论,并说明其重要意义。

已知晶格常数a 、裂纹长度C 、弹性模量E 、断裂表面能λ,如何求理论结合强度、临界断裂应力?答:实际材料总是存在许多细小的裂纹或缺陷,在外力作用下这些裂纹或缺陷会产生应力集中现象,当应力大到一定程度,裂纹开始扩展而导致材料断裂,即物体内储存的弹性应变能降低大于或等于由于裂开形成两个新表面所需要的表面能,就会造成裂纹的扩展,反之,则裂纹不会扩展。

重要意义:建立工作应力、裂纹长度和材料性能常数之间的关系,并解释了脆性材料强度远低于其理论强度的现象。

5. 材料强度的本质是什么?裂纹扩展的动力和阻力是什么?由此可以看出,影响无机材料强度的主要参数有哪三个?答:材料强度的本质是内部质点间的结合力;裂纹扩展的动力是由裂纹扩展单位面积所降低的弹性应变能。

三个参数是 C :裂纹大小、γ:断裂表面能、E :弹性模量。

6. 什么是材料的断裂韧性KIC ?假设有一材料,为了确保其使用的安全性,从断裂强度理论出发,那么其应力场强度因子KI 与断裂韧性KIC 之间应满足何种关系?答:K IC 是反映材料具有抵抗裂纹扩展的能力;K I <K IC7. 举出两种增强无机材料强度(或韧性)的方法,并简单说明其中的原因。

答:○1弥散增韧:在基体中加入具有一定尺寸的微细粉体,可以吸收弹性应变能的释放量,从而增加断裂表面能,改变韧性。

无机材料力学性能总复习

无机材料力学性能总复习

《无机材料物理性能》讲稿——无机材料的受力
综合以上影响因素与分析,可得如下结论: ①高温结构陶瓷优先选用共价晶体材料如: Si3N4、 SiC、BN ②材料抗蠕变能力是: 单晶比多晶强; 粗晶比细晶强; 细晶比含玻璃相的强; 密度大的比密度小的强。
第二章 无机材料的断裂强度
材料科学与工程学院
第二章 无机材料的断裂强度
断裂。即断裂是材料中裂纹扩展的结果。——(并不是晶体
的两部分同时沿横截面拉开)
材料科学与工程学院
第二章 无机材料的断裂强度
裂纹扩展过程为:
裂纹核 应力集中 裂纹扩展 断裂
局部应力大于临界值
这说明: ① 材料中总是有缺陷的,但并不一定都会断裂;
② 只有当应力集中超过某一程度时才会扩展导致断裂;
Lv
) ;
——例如,冶金炉中使用的耐火材料尽可能不与玻相润湿; 3. 气孔率(PC) PC ——减少了承受应力的有效面积; ——气孔导致应力集中; ——气孔是空位源,PC 大则空位浓度大,则ε `大;
(四) 、化学组成、结构 蠕变是材料长期在一定的温度及应力作用下的缓慢形变,抵抗这种形变的能 力与材料的组成、结构密切相关。 1. 与结合力有关 结合力大的,抗蠕变能力强——纯共价键材料的抗蠕变能力强: 氮化物 、碳化物 > 氧化物 例如: Si3N4 SiC > 氧化物 2. 晶体结构的影响 复杂氧化物比纯氧化物的抗蠕变能力强 ——结构复杂、质点种类多则从位错运动来看,钉扎作用大,阻力大,形变困难。 3. 固溶体比单质的抗蠕变能力强 ——杂质原子的钉扎作用,阻碍位错运动; ——对晶界也有阻碍滑移的效应。
材料科学与工程学院
(一) 、温度(T) 结合三个蠕变理论,分别有 1、 对位错运动速度的影响 ε ` = v.D.b.c - τ v = v0e H( ) / KT T , v , ε ` 2、 对扩散蠕变 ε `=13.3DVΩ σ / KTd2 ε `= 47DbΩ σ / KTd3 T ,D ,ε ` 3、 对晶界蠕变: η =η T ,η ,ε ` 综上所述原因,T 升高,蠕变曲线几个阶段对应的时间变短。

【精】《材料物理性能》期末复习资料

【精】《材料物理性能》期末复习资料
• 频率对ε′、ε′′的影 响
• 当ωτ=1时,ε′′极 大,因而tgδ也极 大
16. 介电强度的定义?
• 介质的特性,如绝缘、介电能力,都是指 在一定的电场强度范围内的材料的特性, 即介质只能在一定的电场强度以内保持这 些性质。当电场强度超过某一临界值时, 介质由介电状态变为导电状态。这种现象 称介电强度的破坏,或叫介质的击穿
• 本征离子电导的导电离子主要由热缺陷提 供
• 其载流子浓度:n=Nexp(−E/2kT)中E的物 理意义是缺陷形成能
7.离子迁移率的公式,试分析影响离子 迁移率的主要因素是什么。
• 离子迁移率的公式是 i 62kv0T qexpU(0/kT) • (在弱电场作用下)影响离子迁移率的主要因素包
括晶体结构(δ、ΔU0、ν0 ) ,而指数项受温度影响 较大
15. 德拜方程以及各参数的物理意义,试分析 频率对ε′、ε′′的影响
• 德拜方程:
r (
)
(0) 1 i
'r
(0) 1 2 2
' 'r
[
(0) 1 2
]
2
• 各参数物理意义:ε(0)为静态相对介电系数,ε∞ 为高频相对介电系数,τ为弛豫时间常数
15. 德拜方程以及各参数的物理意义,试分析频率 对ε′、ε′′的影响
• “雪崩”式电击穿理论:晶格的破坏过程,碰撞 电离后的自由电子的倍增,产生雪崩现象,以碰 撞电离后自由电子数倍增到一定值作为电击穿判 据
1. 铁电体的定义与电滞回线、铁电畴的定义。
• 铁电体:在一定温度范围内含有能自发极 化,且极化方向可随外电场作可逆转动的 晶体
• 电滞回线:在铁电态下晶体的极化与电场 的关系曲线
• 其中N为等效状态密度,Eg为禁带宽度

无机材料物理性能期末复习题

无机材料物理性能期末复习题

⽆机材料物理性能期末复习题期末复习题参考答案⼀、填空1.⼀长30cm的圆杆,直径4mm,承受5000N的轴向拉⼒。

如直径拉成3.8 mm,且体积保持不变,在此拉⼒下名义应⼒值为,名义应变值为。

2.克劳修斯—莫索蒂⽅程建⽴了宏观量介电常数与微观量极化率之间的关系。

3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升⾼⽽增⼤。

4.格波间相互作⽤⼒愈强,也就是声⼦间碰撞⼏率愈⼤,相应的平均⾃由程愈⼩,热导率也就愈低。

5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中⼼的晶体。

6.复介电常数由实部和虚部这两部分组成,实部与通常应⽤的介电常数⼀致,虚部表⽰了电介质中能量损耗的⼤⼩。

7.⽆机⾮⾦属材料中的载流⼦主要是电⼦和离⼦。

8.⼴义虎克定律适⽤于各向异性的⾮均匀材料。

(1-m)2x。

9.设某⼀玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I10.对于中⼼穿透裂纹的⼤⽽薄的板,其⼏何形状因⼦Y= 。

11.设电介质中带电质点的电荷量q,在电场作⽤下极化后,正电荷与负电荷的位移⽮量为l,则此偶极矩为 ql 。

12.裂纹扩展的动⼒是物体内储存的弹性应变能的降低⼤于等于由于开裂形成两个新表⾯所需的表⾯能。

13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界⾯拉断,⽽是裂纹扩展的结果。

14.考虑散热的影响,材料允许承受的最⼤温度差可⽤第⼆热应⼒因⼦表⽰。

15.当温度不太⾼时,固体材料中的热导形式主要是声⼦热导。

16.在应⼒分量的表⽰⽅法中,应⼒分量σ,τ的下标第⼀个字母表⽰⽅向,第⼆个字母表⽰应⼒作⽤的⽅向。

17.电滞回线的存在是判定晶体为铁电体的重要根据。

18.原⼦磁矩的来源是电⼦的轨道磁矩、⾃旋磁矩和原⼦核的磁矩。

⽽物质的磁性主要由电⼦的⾃旋磁矩引起。

19. 按照格⾥菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,⽽是决定于裂纹的⼤⼩,即是由最危险的裂纹尺⼨或临界裂纹尺⼨决定材料的断裂强度。

材料物理性能-复习资料

材料物理性能-复习资料

材料物理性能-复习资料第⼆章材料的热学性能热容:热容是分⼦或原⼦热运动的能量随温度⽽变化的物理量,其定义是物体温度升⾼1K所需要增加的能量。

不同温度下,物体的热容不⼀定相同,所以在温度T时物体的热容为:物理意义:吸收的热量⽤来使点阵振动能量升⾼,改变点阵运动状态,或者还有可能产⽣对外做功;或加剧电⼦运动。

晶态固体热容的经验定律:⼀是元素的热容定律—杜隆-珀替定律:恒压下元素的原⼦热容为25J/(K?mol);⼆是化合物的热容定律—奈曼-柯普定律:化合物分⼦热容等于构成此化合物各元素原⼦热容之和。

不同材料的热容:1.⾦属材料的热容:由点阵振动和⾃由电⼦运动两部分组成,即式中和分别代表点阵振动和⾃由电⼦运动的热容;α和γ分别为点阵振动和⾃由电⼦运动的热容系数。

合⾦的摩尔热容等于组成的各元素原⼦热容与其质量百分⽐的乘积之和,符合奈曼-柯普定律:式中,n i和c i分别为合⾦相中元素i的原⼦数、摩尔热容。

2.⽆机材料的热容:(1)对于绝⼤多数氧化物、碳化物,热容都是从低温时的⼀个低的数值增加到1273K左右的近似于25J/(K·mol)的数值。

温度进⼀步增加,热容基本⽆变化。

(也即它们符合热容定律)(2)对材料的结构不敏感,但单位体积的热容却与⽓孔率有关。

⽓孔率越⾼,热容越⼩。

相变可分为⼀级相变和⼆级相变。

⼀级相变:体积发⽣突变,有相变潜热,例如,铁的a-r转变、珠光体相变、马⽒体转变等;⼆级相变:⽆体积发⽣突变、⽆相变潜热,它在⼀定温度范围逐步完成。

例如,铁磁顺磁转变、有序-⽆序转变等,它们的焓⽆突变,仅在靠近转变点的狭窄温度区间内有明显增⼤,导致热容的急剧增⼤,达转变点时,焓达最⼤值。

3.⾼分⼦材料热容:⾼聚物多为部分结晶或⽆定形结构,热容不⼀定符合理论式。

⼀般,⾼聚物的⽐热容⽐⾦属和⽆机材料⼤,⾼分⼦材料的⽐热容由化学结构决定,它存在链段、链节、侧基等,当温度升⾼时,链段振动加剧,⽽⾼聚物是长链,使之改变运动状态较困难,因⽽,需提供更多的能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 光学性能
# 反射,镜面反射,漫反射 # 双折射 # 透射 # 散射,影响因素? # 如何提高无机材料的透光性?
第4章 电导性能
# 载流子,电子,空穴 # 霍尔效应 # 电解效应 # 本征电导,非本征电导 # 电导率和温度的关系 # 元素掺杂对电导能力的影响机制? # 弗伦克尔缺陷,肖特基缺陷 # 空位扩散,间隙扩散,亚晶格间隙扩散 # 双碱效应,压碱效应 # 空间电荷效应,光生伏特效应 # 超导
拉伸前后圆杆相关参数表 体积V/mm3 拉伸前 拉伸后 1227.2 1227.2 直径d/mm 2.5 2.4 圆面积S/mm2 4.909 4.524
F 4500 真应力 T 995(MPa ) 6 A 4.524 10 A0 l1 2.5 2 真应变 T ln ln ln 0.0816 2 l0 A 2.4 F 4500 名义应力 917( MPa) A0 4.909 10 6 l A0 名义应变 1 0.0851 l0 A
格里菲斯微裂纹理论和经典理论的区别? 本征裂纹和非本征裂纹的产生原因? 无机材料增韧的方法(裂纹偏转,桥接,微裂纹,相变) (★)
影响无机材料断裂强度的因素? 无机材料硬度测试的Fra bibliotek要方法和分类?
一圆杆的直径为2.5 mm、长度为25cm并受到4500N的 轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆 的体积不变,求在此拉力下的真应力、真应变、名义应 力和名义应变,并比较讨论这些计算结果。
根据传统设计观点:σ*安全系数≤屈服强度 甲钢的安全系数:n=σys/σ=1.95/1.30=1.5 乙钢的安全系数:n=σys/σ=1.56/1.30=1.2
可见,选择甲钢比乙钢安全。
根据,构件的脆性断裂是裂纹扩展的结果,所以 应该计算KI是否超过KIC。 据计算,Y=1.5,设最大裂纹尺寸为1mm,则由
固体能带理论:导体,半导体,绝缘体? PN节中空间电荷区的形成过程?
第5章 介电性能
# 电介质,极化 # 位移极化,松弛极化,转向极化 # 离子位移极化与电子位移极化的区别?
# 介质损耗 # 电击穿(雪崩理论),热击穿
# 压电效应
第6章 磁学性能
# 磁性的本质 # 顺磁性,抗磁性,铁磁性 # 磁畴
有一构件,实际使用应力 σ 为 1.30Gpa ,有以 下两种钢待选: 甲钢:σys=1.95GPa,KIC=45 MPa· m1/2 乙钢:σys=1.56GPa,KIC=75 MPa· m1/2 试根据传统设计及断裂力学观点分析哪种钢 更安全,并说明原因。 (已知:Y=1.5,最大裂纹尺寸为1mm)。
可见,甲钢不安全,会导致低应力脆性断裂;乙钢安全可靠 。两种设计方法得出截然相反的结果。
第2章 热学性能
# 格波,光学/声学支格波 # 声子 # 热振动 # 热容 # 热膨胀 # 热稳定性,抗热冲击损坏性能
杜隆珀替定律和德拜定律的区别? 热膨胀的物理本质? 晶格振动过程中声学波和光学波的区别? 固体的传热机理,在金属和无机非金属传热的区别? 热导率的影响因素?(★)(温度,显微结构,化学 组成,气孔) 陶瓷制品表面釉层的热膨胀系数与制品性能的关系? 提高抗热冲击断裂性能的措施?(★)(强度,热导 率,热膨胀系数,表面热传递系数,有效厚度)
一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为: (1)2mm; (2)0.049mm; (3)2μm, 分别求上述三种情况下的 临界应力。 设此材料的断裂韧性为1.62MPa.m2。讨论讲结果。已知此 情况下零件的几何形状因子为1.98。
K I Y c

KI 1.98 c
0.818c 1 / 2
第1章 力学性能和断裂
# 形变,塑性,弹性,弹性模量 # 屈服极限,断裂极限 # 应力,应变,滑移和孪晶
# 脆性断裂 # 蠕变和弛豫,蠕变断裂,穿晶断裂,沿晶断裂,疲劳
# 裂纹扩展方式(三种类型) # 亚临界裂纹扩展 # 断裂韧性测试方法
弹性模量的物理本质是什么? 如何用位错运动的理论来解释材料的塑性形变?(★) 韧性断裂和脆性断裂的区别? 晶格蠕变和晶界蠕变的区别?
相关文档
最新文档