大学物理学上册习题解答

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理学习题答案

习题一答案 习题一

1.1 简要回答下列问题:

(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?

(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?

(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?

(5) r ∆v 和r ∆v 有区别吗?v ∆v 和v ∆v

有区别吗?0dv dt =v 和0d v dt

=v 各代表什么运动? (6) 设质点的运动方程为:()x x t =

,()y y t =,在计算质点的速度和加速度时,有人先求出

r =

dr

v dt

= 及 22d r a dt =

而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即

v = 及 a =

你认为两种方法哪一种正确?两者区别何在?

(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性

的?

(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度

也一定为零.”这种说法正确吗?

(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?

(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?

(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?

1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解:

(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=

最初s 2内的平均速度为:

0(/)2

ave x v m s t ∆=

==∆

t 时刻的瞬时速度为:()44dx

v t t dt

=

=- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-

(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22

ave

v v v a m s t ∆---=

===-∆ (3) s 3末的瞬时加速度为:2(44)

4(/)dv d t a m s dt dt

-===-。

1.3 质点作直线运动,初速度为零,初始加速度为0a ,质点出发后,每经过τ时间,加速度均匀增加b 。求经过t 时间后,质点的速度和位移。 解: 由题意知,加速度和时间的关系为 利用dv adt =,并取积分得

000v

t

b dv a t dv τ⎛

⎫=+ ⎪⎝

⎭⎰⎰,202b v a t t τ=+ 再利用dx vdt =,并取积分[设0t

=时00x =]得

x

t

x dx vdt =⎰⎰,23

0126b x a t t τ∆=

+ 1.4 一质点从位矢为(0)4r j =r

r

的位置以初速度(0)4v i =r

r

开始运动,其加速度与时间的关系为

(3)2a t i j =-r r r

.所有的长度以米计,时间以秒计.求:

(1)经过多长时间质点到达x 轴; (2)到达x 轴时的位置。

解: 203()(0)()4(2)2t v t v a t dt t i t j ⎛

⎫=+=+- ⎪⎝

⎭⎰r r r r r

(1) 当2

40t -=,即2t s =时,到达x 轴。

(2)

2t s =时到达x 轴的位矢为 :(2)12r i =r

r

即质点到达x 轴时的位置为12,0x m y ==。

1.5 一质点沿x 轴运动,其加速度与坐标的关系为2

a x ω=-,式中ω为常数,设0=t

时刻的质点坐标为

0x 、速度为0v ,求质点的速度与坐标的关系。

解:按题意 22

2d x x dt

ω=-

由此有 dx dv

v dt dx dx dv dt dv dt

x d x ====-2

22

ω, 即 xdx vdv 2

ω-=, 两边取积分 ⎰⎰

-=x

x v

v xdx vdv 0

2ω,

20221

2221202122

1

x x v v ωω+-=-

由此给出

v =±,202

02x v A +⎪⎭

⎫ ⎝⎛=ω

1.6 一质点的运动方程为

k t j t i t r ϖϖϖϖ++=2

4)(,式中r ,t 分别以m 、s 为单位。试求: (1) 质点的速度与加速度;(2) 质点的轨迹方程。

解:(1) 速度和加速度分别为: (8)dr

v t j k dt ==+v v v v , j dt

v d a ϖϖ8==

(2) 令k z j y i x t r ϖϖϖϖ++=)(,与所给条件比较可知 1=x ,2

4t y =,t z =

所以轨迹方程为:21,4x y z ==。

1.7 已知质点作直线运动,其速度为2

1

3()v t t ms -=-,求质点在0~4s 时间内的路程。

解: 在求解本题中要注意:在0~4s 时间内,速度有时大于零,有时小于零,因而运动出现往返。如果计

算积分

4

0vdt ⎰,则求出的是位移而不是路程。求路程应当计算积分4

v dt ⎰

。令2

30v t t =-=,解得3t s =。由此可知:3t ,v v =; 3t =s 时,0v =;而3t >s 时,0v <,v v =-。因而质点

在0~4s 时间内的路程为

34

2323033

13116()2

3233t t t t m ⎡⎤⎡⎤=---=⎢⎥⎢⎥⎣⎦⎣⎦。

1.8 在离船的高度为h 的岸边,一人以恒定的速率0v 收绳,求当船头与岸的水平距离为x 时,船的速度和加速度。

解: 建立坐标系如题1.8图所示,船沿X 轴方向作直线运动,欲求速度,应先建立运动方程,由图题1.8,可得出

习题1.8图

两边求微分,则有 船速为

按题意0dr

v dt

=-(负号表示绳随时间t 缩短),所以船速为 负号表明船速与x 轴正向反向,船速与x 有关,说明船作变速运动。将上式对时间求导,可得船的加速度

负号表明船的加速度与x 轴正方向相反,与船速方向相同,加速度与x 有关,说明船作变加速运动。