对数幅相图Nichols图

合集下载

控制工程基础第4章控制系统的频率特性

控制工程基础第4章控制系统的频率特性

插值计算可大致确定闭环截止频率为 b
=1.3rad/s。
非单位反馈系统的闭环频率特性
对于非单位反馈系统,其闭环频率特性可
写为
X X
o i
j j
1
G j G j H
j
H
1
j
1
G j H j G j H j
在求取闭环频率特性时,在尼柯尔斯图上画
出 G j H j 的轨迹,由轨迹与M轨线和N轨
频域法是一种工程上广为采用的分析 和综合系统间接方法。另外,除了电路 与频率特性有着密切关系外,在机械工 程中机械振动与频率特性也有着密切的 关系。机械受到一定频率作用力时产生 强迫振动,由于内反馈还会引起自激振 动。机械振动学中的共振频率、频谱密 度、动刚度、抗振稳定性等概念都可归 结为机械系统在频率域中表现的特性。 频域法能简便而清晰地建立这些概念。
如果M=1,由式(4.26)可求得X=-1/2,即为
通过点(-1/2,0)且平行虚轴的直线。
如果M≠1,式(4.26)可化成
X
M M2
2
2
1
Y
2
M2 M 2 1 2
(4.27)
该式就是一个圆的方程,其圆心为
M2
,半径为 M 。如下图。
[
M
2
, 1
j0]
M 2 1
在复平面上,等M轨迹是一族圆,对于给定 的M值,可计算出它的圆心坐标和半径。下 图表示的一族等M圆。由图上可以看出,当 M>1时,随着M的增大M圆的半径减小,最后 收敛于点(-1,j0)。当M<1时,随着M的 减小M圆的半径亦减小,最后收敛于点 ( 0 , j0)。M=1 时 , 其 轨 迹 是 过 点 ( 1/2,j0)且平行于虚轴的直线。

控制工程 第5章 系统的频率特性

控制工程 第5章 系统的频率特性
解:系统的频响函数(频响特性)、幅频特性和相频 特性分别为
频响函数 幅频特性 相频特性
1 G ( j ) 1 j 0.005 1 | G ( j ) | 1 (0.005 )2 0 0.005 ( ) arctan arctan 1 1 arctan(0.005 )
可见:输入信号频率越高,稳态输出幅值衰减越大,相移越大(这正是惯性环节 的频响特性)。
18:10:18
5-1 频率特性
本例题也可以采用第 4 章介绍的求时间响应的方法获 得稳态响应,即利用传递函数求出零状态响应,然后分 解出其中的稳态响应。 而利用频响函数可直接求出稳态 响应。
21
y( t ) L [Y ( s )] 0.555e 200 t
m k f (t)/x (t) f(t)—力
A
f(t) = Asin(ωt)
A B
x(t)—位移 B
0 -A
ωt
υ
单自由度有阻尼振动 x(t) = Bsin(ωt+υ)+瞬态响应 系统力学模型 教材101页图5-2中的标注“υ”不对,应改成“υ/ω”,
18:10:18
或将横坐标标尺改成“ωt”。
5-1 频率特性
相频特性 = 正弦信号稳态响应相角 - 正弦输入信号相角
幅频特性和相频特性合起来描述了系统的频响特 性或频率特性。
18:10:18
13
5-1 频率特性
系统频率特性的获得 解析法 令输入x(t)=x0sin(t),求解微分方程的特解(稳 态解)。可以利用拉氏变换求解;
利用频率响应函数;
实验法
输入正弦信号,测量稳态输出。
18:10:18
5-1 频率特性
利用频率响应函数求频率特性 频率响应函数的定义:对连续线性定常系统,输出 的付立叶变换 C(j) 与输入的付立叶变换 R(j) 之比 ,叫频率响应函数,简称频响函数,也称为正弦传 递函数,记作G(j) 。即

精品文档-自动控制原理(第二版)(千博)-第5章

精品文档-自动控制原理(第二版)(千博)-第5章
24
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图

对数幅相图(Nichols图)

对数幅相图(Nichols图)

对数幅相图(Nichols图)
对数幅相特性图(Nichols图)是描述系统频率特性的第三种图示方法。

该图纵坐标表示频率特性的对数幅值,以分贝为单位;横坐标表示频率特性的相位角。

对数幅相特性图以频率ω作为参变量,用一条曲线完整地表示了系统的频率特性。

区别于极坐标图的乃氏图,Nichols图的幅值和相角组成直角坐标。

一些基本环节的对数幅相特性特性图如图4-41所示。

图4-41 一些基本环节的对数幅相图
对数幅相特性图很容易将伯德图上的幅频曲线和相频曲线合合成而得到。

对数幅相特性图有以下特点:
①由于系统增益的改变不影响相频特性,故系统增益改变时,对数幅相特性图只是简单地向上平移(增益增大)或向下平移(增益减小),而曲线形状保持不变;
②G(ω)和1/G(jω)的对数幅相特性图相对原点中心对称,即幅值和相位均相差一个符号;
③利用对数相幅特性图,很容易由开环频率特性求闭环频率特性,可方便地用于确定闭环系统的稳定性及解决系统的综合校正问题。

自动控制原理_第5章_3

自动控制原理_第5章_3
5.3 控制系统的频率特性
在绘制各个典型环节频率特性的基础上, 可以绘制控制系统的频率特性。
5.3.1 控制系统开环频率特性的Nyquist图
一个控制系统的开环传递函数可以写成典型
环节的连乘积形式。
1
举例 一个开环传递函数为
K ( s 1) G( s) 2 2 s(T1s 1)(T2 s 2 T2 s 1)
27
2
对于非单位反馈系统, 在其开环频率特性幅值
G( j)H ( j) 很大的频段内, 闭环频率特性
1 ( j ) H ( j )
即近似等于反馈环节频率特性的倒数。
对于开环放大倍数 K 很大的闭环系统,在低频段
具有这个特点。
28
3
对于非单位反馈系统, 一般来说, 其开环
频率特性的高频段幅值很小。在这一频段内, 闭环
1
当 0 时,放大环节、惯性环节、振荡环节、
一阶微分环节、二阶微分环节的幅角均为 00 。
。 只有积分环节, 0 时,相角为 900 当
如果开环传递函数中含有 v 个积分环节,开环频率 特性的Nyquist图在 0 的起始处幅角为 v 900 。


6
2
当 0 时, 放大环节的幅值为 K ,
21
[例5-5] 控制系统的开环传递函数为
10( s 1) G( s) s(2.5s 1)(0.04s 2 0.24s 1)
绘制系统的渐近开环对数幅频特性和相频特性。
22
100 Magnitude (dB)
Asymptotic Bode Diagram
-20dB/dec
50
20
频率特性近似等于系统前向通道的频率特性。 一般来说,闭环系统在高频段内显示这一性质。 在工程实践中, 当开环幅频特性

第五章 频率特性分析法

第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、

(完整版)自动控制原理简答题

(完整版)自动控制原理简答题

47、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。

48、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。

49、主导极点:如果系统闭环极点中有一个极点或者一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。

51、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。

52、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。

53、动态结构图:把系统中所有环节或者元件的传递函数填在系统原理方块图的方块中,并把相应的输入输出信号分别以拉氏变换来表示从而得到的传递函数方块图就称为动态结构图。

54、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。

55、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的变换()R z 之比,即()()()C z G z R z=。

56、Nyquist 判据(或者奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣57、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统。

58、稳态误差:对单位负反馈系统,当时间t 趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

自动控制原理5第六节闭环系统频率特性的绘制

自动控制原理5第六节闭环系统频率特性的绘制

10
五、尼柯尔斯图 尼柯尔斯(Nichols)图,也称对数幅相频率特性图。
它是以相频特性为横坐标(单位一般为°),以对数幅 频特性为纵坐标(单位一般为dB),以w为参变量的一 种图示法。
11
36
L(w(dB)
32
0dB
0.1dB
28
-0.1dB
0.25dB
24
0° 2°
0.5dB
20

-0.25dB
2dB 3dB 4dB 5dB 6dB 9dB 12dB
-0.5dB
-1dB
-2dB -3dB
-4dB -5dB -6dB
-2° -5°
-10°
-8
-12 -16
-270° -240°
-210° -180°
-150°
-120°
-90°
-8dB
-10dB -12dB
-20°
-60°
-30°
-18dB
-20
-
对于非单位反馈系统,闭环系统的频率特性F(jw)
F( jw )
G( jw )
1 G( jw )H ( jw ) 1 GK ( jw )
1 G( jw )H ( jw ) H ( jw ) 1 G( jw )H ( jw ) H ( jw ) 1 GK ( jw )
2
F(
jw1 )
G( jw1) 1 G( jw1)
4 3.5
峰值MP为谐振峰值,相应的
3
频率wP称为峰值频率或谐振
2.5 2
频率。
1.5
1
3、 当M(w)曲线下降到0.707M(0)时,0.5
对应的频率wb称为闭环系统的通

自动控制原理:第六章频域分析法——伯特图及稳定性分析

自动控制原理:第六章频域分析法——伯特图及稳定性分析

• 当阻尼系数接近1时,振荡环节具有低通滤波的作用; • 而随着减小,=n=1/T处的幅值迅速增大,表明其对输
入信号中该频率附近分量的放大作用逐渐加强,此时,振
荡环节具有选频作用。
6.4 系统开环频率特性-典型环节的伯德图
40
Bode Diagram
二阶微分环节:
30
20
转折频率 渐近线
L() /(dB)
10 /T
1) 将乘除运算转化为加减运算,因而可通过简单的图像叠加 快速绘制高阶系统的伯德图 ;如 G( j) A1()e j1() A2 ()e , j2 () 则20lgA1()A2()=20lgA1()+20lgA2()
2) 伯德图还可通过实验方法绘制,经分段直线近似整理后, 很容易得到实验对象的频率特性表达式或传递函数.
i 1
i m1 1
v n1
v n1 nv n1 2
( jTl 1)
(1 Tl2 2 2 j lTl )
l v 1
l v n1 1
(6 - 17)
其 中 ,K ,0 i 1,0 l 1, i 0,Tl 0都 为 常 数 。
除此外,也存在某个Tl<0,开环不稳定,但闭环可能仍然 稳定的情况。
1
A(ω)
1 ωT 2 2 2ζωT 2
L() /(dB)
10
0
-10 -20
(1 T 22
j2T)1
0.05 0.1 0.3
-30
0.7
1 -40
180
转折频率 渐近线
135
(ω)
arctan
1
2ζωT
ωT
2
90 45
0
() /()

频率分析法的基本概念

频率分析法的基本概念

?
?
RmG(? 2j
j? )
kc2
? Y (s)(s ?
j? ) |s? j?
?
G(s) Rm? (s ? j? ) (s ? j? )(s ? j? )
s? j?
?
RmG( j? )
2j
而 G( j? ) ? G(s) |s? j? ?| G( j? ) | e j? G( j? ) ? A(? )e j? (? )
e? p1t ? 0,e ? p2t ? 0,? ,e ? pnt ? 0
y s (t ) ? k c1e ? j? t ? k c 2 e j? t
,即稳态时:
式中,kc1, kc2 分别为:
kc1 ? Y (s)(s ?
j?
) |s? ? j?
? G(s) Rm? (s ? j? ) (s ? j? )(s ? j? ) s?? j?
若: r(t) ?
Rm sin ? t,则R(s) ?
Rm? s2 ? ?
2
?
(s ?
Rm? j? )(s ?
j?
)
则:Y (s) ?
N (s)R(s)
?
N (s)
?
Rm?
(s ? p1)(s ? p2 )...(s ? pn ) (s ? p1)(s ? p2 )...(s ? pn ) (s ? j? )(s ? j? )
频率响应法的优点
频率响应法的优点之一在于它可以通过实验量测来获得, 而不必推导系统的传递函数。
事实上,当传递函数的解析式难以用推导方法求得时,常 用的方法是利用对该系统频率特性测试曲线的拟合来得出传递 函数模型。
此外,在验证推导出的传递函数的正确性时,也往往用它 所对应的频率特性同测试结果相比较来判断。

(完整版)幅相频率特性

(完整版)幅相频率特性

⑹ 振荡环节
G(s)
wn2 s2 2wns wn2
(
s
1
)2 2
s
wn2
1 (s 1)(s 2 )
G(
jw)
1
w2 wn2
G
1
j2 w 1 wn
(1
w2 wn2
)
wn j2 w
wn
(1
w2 wn2
)2
(2
w wn
)2
wn
G( j0) 10 G( j) 0 180
[1
w2 wn2
(ms 1) (Tn s 1)
,
(
n
m)
(1)起点(低频段):
G(
j0
)H
(
j0
)
lim
w0
(
K jw)v
可得低频段乃氏图:
w 0
( 1 )
(2)终点(高频段):此时 w ,这时频率特性与分子分 母多项式阶次之差n m有关。分析可得如下结论:
终点处幅值: lim G ( jω) 0 ω
终点处相角:lim ω
例 系统的幅相曲线如图所试,求传递函数。
K
由曲线形状有
G(s)
s2
wn2
2
s
wn
1
由起点: G( j0) K0 K 2
K
G
[1
w2 w n2
]2
[2
w wn
]2
2 w
G arctan
wn w2
1 - wn2
由(w0): G( jw0 ) 90 w0 wn 10
由|G(w0)|:
G(w0 )
1 G
1 w2T2 G arctanwT

5.4.1nyquist图稳定判据及其相对稳定性

5.4.1nyquist图稳定判据及其相对稳定性

第五章线性系统的频域分析法5.4 线性系统稳定性分析对数幅相图——Nichols图纵坐标为20lg|G(jω)| ,单位为dB,线性分度。

横坐标为∠G(jω),单位为度, 线性分度。

Nichols图的绘制过程:先绘制出Bode图,再由其绘制Nichols图。

多用于控制系统校正。

)1)(10(100)(++=s s s s G )1)(11.0(100)(++=s s s s G 例:已知系统开环传递函数为解:(1) 首先将系统开环传递函数写成典型环节串联的形式,即试绘制该系统的开环对数频率特性曲线。

5.4 Nyquist稳定判据和相对稳定性稳定判据:代数判据—Routh判据判断工程实用的图解法判据—Nyquist稳定性判据和Bode图稳定性判据判别系统的稳定性,实际上就是判别系统在S平面右半平面有否闭环极点。

幅角定理设F(S)是复变量S的单值连续解析函数(除S平面上的有限个奇点外)。

S平面上的某一封闭曲线D的内部包含了F(S)的P个极点和Z个零点(包含重根点),且曲线D不通过F(S)任何一个零点和极点。

当S按顺时针方向沿封闭曲线D连续的变化一周时,曲线F(S)在复平面上也按顺时针方向包围原点N=Z-P圈此处定义N为顺时针圈数,即顺时针圈数为正数,逆时针圈数为负数,总圈数为顺时针圈数与逆时针圈数的代数和。

由于系统闭环稳定性与S 平面右半平面中的闭环特征根的数量有关。

故如果选取a)s 平面封闭曲线D 为顺时针包含整个S 平面右半平面的曲线b)F(S)选为F(S)=1+G(s)H(s)()()11()B s F s G(s)H(s)A s =+=+F (s )的极点为开环系统的极点,F (s )的零点为闭环极点则有:有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)假设S平面右半平面包含了F(S)的P个极点和Z个零点,即封闭曲线D包围了F(S)在S右半平面的P个极点和Z个零点根据幅角定理,系统稳定⇒F(S)在S右半平面的零点数Z=0⇒F(S)顺时针包围原点的次数满足N=Z-P=-P。

3-3 对数幅相特性

3-3 对数幅相特性


12
4. 闭环系统的特征参数 a. 零频值M(0) b. 复现精度和复现频率 c. 相对谐振峰值 M r 和谐振频率 d. 系统截止频率 b 和带宽 二阶系统 b 1 2 2 2 4 2 4 4
Mr
r
M0 0.707 M 0
m
r
b

13
( j )
此时
M 0dB
G( j ) 1 1 G( j )
0
b. 高频段闭环对数幅频特性基本上与开环对数幅 频特性重合 因为 G( j ) 1 时
( j )
此时
G( j ) G( j ) 1 G( j )
M (dB) G( j ) (dB)
四、对数幅相特性
上海交通大学自动化系 田作华
Zhtian@
1
四、对数幅相特性
频率特性图示: 1、极坐标图 ——Nyquist图(又叫幅相频率特性、 或奈奎斯特图,简称奈氏图) 2、对数坐标图——Bode图(又叫伯德图,简 称伯氏图) 将伯德图中的对数幅频曲线和相频曲线合并,画 在以对数幅值为纵坐标,以相角为横坐标的图上。这 种图形就称为对数幅-相图——Nichocls图(又叫尼柯 尔斯 图,简称尼氏图); 一般用 于闭环系统频率特性分析的。
1
1
1
cos φ sin φ (1 ) j A A

-1
得到
α (ω ) tg
sin φ cos φ A
20 lg A 20lg
sin [φ (ω ) α (ω )] sin α (ω )
) 上式令α(ω)为常数,20lg|A|与 (为单值方 程,与求取等M曲线相似的方法在L(ω)~ ( ) 平面上得到一条等α曲线。 等M线和等α线组成了尼柯尔斯图线——复合坐 标系(P108)

系统频率特性

系统频率特性

第三章 系统频率特性系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。

系统频域分析是工程广为应用的系统分析和综合的间接方法。

频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。

本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。

3.1 频率响应和频率特性3.1.1 一般概念频率响应是指系统对正弦输入的稳态响应。

考虑传递函数为G(s)的线性系统,若输入正弦信号t X t x i i ωsin )(= (3.1-1)根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。

输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。

输出的相位与i X 无关,只与输入信号产生一个相位差ϕ,且也是输入信号频率ω的函数。

即线性系统的稳态输出为)](sin[)()(00ωϕωω+=t X t x (3.1-2)由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。

输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ωϕ。

幅频特性:)()()(0ωωωi X X A = (3.1-3)相频特性:)()()(0ωϕωϕωϕi -= (3.1-4)频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为:)()()(0ωωωj X j X j G i = (3.1-5)频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。

任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。

)(ωj G 有三种表示方法:)()()(ωϕωωj e A j G = (3.1-6))()()(ωωωjV U j G += (3.1-7))(sin )()cos()()(ωϕωωωωjA A j G +=(3.1-8) 式中,实频特性:)(cos )()(ωϕωωA U =虚频特性:)()(arctan )()()()()(sin )()(22ωωωϕωωωωϕωωU V V U A A V =+==一般在分析系统的结构及参数变化对系统性能的影响时,频域分析比时域分析要容易些。

自动控制原理 第五章 控制系统的频域分析法

自动控制原理 第五章 控制系统的频域分析法


uos (t) = A ⋅ A(ω)sin[ω t + ϕ(ω)]
(5.2)
结论:
(1) 稳态解与输入信号为同一频率的正弦量;
(2) 当ω 从 0 向∞变化时,其幅值之比 A(ω) 和相位差ϕ(ω) 也将随之变化,其变化规
律由系统的固有参数 RC 决定; (3) 系统稳态解的幅值之比 A(ω) 是ω 的函数,其比值为
三角函数形式: G( jω) = A(ω)[cosϕ(ω) + jsinϕ(ω)] 。
式中 A(ω) = G( jω) 是幅值比,为ω 的函数,称为幅频特性;
ϕ(ω) = ∠G( jω) 是相位差,为ω 的函数,称为相频特性; U (ω) 是 G( jω) 的实部,为ω 的函数,称为实频特性; V (ω) 是 G( jω) 的虚部,为ω 的函数,称为虚频特性。
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
C( jω) = G( jω)R( jω)
因而,得
G( jω) = C( jω) R( jω)
(5.11)
事实上,当ω 从 0 向∞变化时, G( jω) 将对不同的ω 作出反映,这种反映是由系统自

频域分析法

频域分析法

1
1
U0 (s) Ts 1Ui (s) Ts 1
Ui s2 2
对上式取拉氏反变换,得输出时域解为
u0
(t
)
1
UiT T 2
2
t
eT
Ui sin(t arctanT) 1 T 22
2021年4月15日3时14分
当t→∞时,第一项趋于0,这时电路的稳态输出为
u0 (t)
Ui
1 T 22
sin(t
arctan
T2
T1 2 1 T2 2 1
A
K
T1 2 1 T2 2 12arctan T1
arctan T2
2021年4月15日3时14分
4.2 频率特性的几种图示方法
序号 1
名称 幅相频率特性曲线
图形常用名 奈奎斯特图
坐标系 极坐标
2 对数幅值频率特性曲线 对数相角频率特性曲线
伯德图
4.1 频率特性 1、频率特性的定义
对于稳定的线性定常系统,其传递函数为G(s),若输 入量为一正弦信号,则其输出响应的稳态分量也是同 频率的正弦信号,但幅值、相位与输入信号的不同。 保持输入信号的幅值不变,逐次改变输入信号的频率, 则可测得一系列稳态输出的幅值和相位。 (输出信 号稳态时的幅值与相位按照系统传递函数的不同随着 输入正弦信号频率的变化而有规律的变化)。
j p
例:试求
Gs
K
s T1s 1 T2s 1
的幅频特性和相频特性。
G
j
K
j T1 j 1T2 j 1
G j K 1 1 1
j T1 j 1 T2 j 1
K
1
ej
2
1
e jarctanT1

信号幅频相频特性的画法(频率响应法)

信号幅频相频特性的画法(频率响应法)

1、频率响应法•基本思想是把系统中的信号分解为多种不同频率的正弦信号,这些信号经过控制系统时,会以一定的规律产生幅值和相位的变化,通过分析这些变化规律就能得出关于系统运动的性能指标。

•由于幅值和相位的变化称频率特性函数可以绘制在图形上,因此该方法非常直观。

另外,可以用实验法建立系统的模型,也可以据开环频率特性分析闭环系统的特性。

该方法具有很高的工程价值,深受工程技术人员欢迎。

6 频率响应分析法22、频率特性的图示方法•为了直观地分析系统的特性,通常把幅频和相频特性以图形的形式表示出来:1.幅相频率特性(奈氏图)2.对数频率特性(Bode图)3.对数幅相特性(尼氏图)6 频率响应分析法52.1 幅相频率特性图•极坐标图:奈奎斯特(Nyquist)图,幅相特性图,当频率连续变化时,频率特性函数在复平面的运动轨迹。

G(jω)=x(ω)+ j y(ω)ω:0→+∞6 频率响应分析法62.2 对数频率特性(Bode图)•对数坐标图:伯德(Bode)图,由两辐图组成。

对数幅频特性图+对数相频特性图,横坐标为频率的(以10为底数)对数,单位是10倍频程(dec)。

–对数幅频图的纵坐标为幅频的对数,单位为分贝(dB)–对数相频图的纵坐标为相频值,单位为弧度6 频率响应分析法86 频率响应分析法10伯德(Bode)图的优点•对数坐标图有如下优点:–把乘、除的运算变成加、减运算。

串联环节的Bode 图为单个环节的Bode图迭加。

–K 的变化对应于对数幅频曲线上下移动,而相频曲线不变。

–一张图上可以同时画出低、中、高频的特性。

•因此在工程上得到了广泛的应用6 频率响应分析法112.3 对数幅相特性(尼氏图)对数幅相图•尼科尔斯(Nichols)图,以对数幅频特性为纵坐标(分贝),相频特性为横坐标,频率ω为参变量。

6 频率响应分析法126 频率响应分析法146 频率响应分析法203.7 用Matlab绘制频域特性图•sys = tf(num,den);•伯德图–bode(sys); [mag,phase,w] = bode(sys);•奈奎斯特图–nyquist(sys); [re,im,w] = nyquist(sys);•尼科斯图–nichols(sys); [mag,phase,w] = nichols(sys);6 频率响应分析法23对数频域特性图与频域性能指标分贝对应的频率:截止频率-3分贝对应的频率:带宽6 频率响应分析法5. 开环传递函数的频率特性5.1 开环对数频率特性的绘制①以典型环节的频率特性为依据进行迭加;②首先考虑积分环节和比例环节;③充分利用环节的特征点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数幅相图(Nichols图)
对数幅相特性图(Nichols图)是描述系统频率特性的第三种图示方法。

该图纵坐标表示频率特性的对数幅值,以分贝为单位;横坐标表示频率特性的相位角。

对数幅相特性图以频率ω作为参变量,用一条曲线完整地表示了系统的频率特性。

区别于极坐标图的乃氏图,Nichols图的幅值和相角组成直角坐标。

一些基本环节的对数幅相特性特性图如图4-41所示。

图4-41 一些基本环节的对数幅相图
对数幅相特性图很容易将伯德图上的幅频曲线和相频曲线合合成而得到。

对数幅相特性图有以下特点:
①由于系统增益的改变不影响相频特性,故系统增益改变时,对数幅相特性图只是简单地向上平移(增益增大)或向下平移(增益减小),而曲线形状保持不变;
②G(ω)和1/G(jω)的对数幅相特性图相对原点中心对称,即幅值和相位均相差一个符号;
③利用对数相幅特性图,很容易由开环频率特性求闭环频率特性,可方便地用于确定闭环系统的稳定性及解决系统的综合校正问题。

相关文档
最新文档