(完整版)导数与极值、最值练习题

合集下载

(2021年整理)高中数学导数的应用——极值与最值专项训练题(全)

(2021年整理)高中数学导数的应用——极值与最值专项训练题(全)

(完整版)高中数学导数的应用——极值与最值专项训练题(全)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高中数学导数的应用——极值与最值专项训练题(全))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高中数学导数的应用——极值与最值专项训练题(全)的全部内容。

(完整版)高中数学导数的应用-—极值与最值专项训练题(全) 编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)高中数学导数的应用——极值与最值专项训练题(全)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)高中数学导数的应用—-极值与最值专项训练题(全)> 这篇文档的全部内容。

高中数学专题训练导数的应用——极值与最值一、选择题1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和错误!,则() A.a-2b=0 B.2a-b=0C.2a+b=0 D.a+2b=0答案D解析y′=3ax2+2bx,据题意,0、错误!是方程3ax2+2bx=0的两根∴-错误!=错误!,∴a+2b=0。

2.当函数y=x·2x取极小值时,x=()A。

错误! B.-错误!C.-ln2 D.ln2答案B解析由y=x·2x得y′=2x+x·2x·ln2令y′=0得2x(1+x·ln2)=0∵2x>0,∴x=-错误!3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( )A.0<b<1 B.b<1C.b>0 D.b<错误!答案A解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0,∴b>0,f′(1)=3-3b>0,∴b<1综上,b的范围为0<b<14.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)〉0,则下列结论中正确的是()A.x=-1一定是函数f(x)的极大值点B.x=-1一定是函数f(x)的极小值点C.x=-1不是函数f(x)的极值点D.x=-1不一定是函数f(x)的极值点答案B解析x>-1时,f′(x)>0x<-1时,f′(x)<0∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.5.函数y=错误!+x2-3x-4在[0,2]上的最小值是()A.-错误!B.-错误!C.-4 D.-错误!答案A解析 y ′=x 2+2x -3。

高中数学导数的应用极值与最值专项训练题(全)

高中数学导数的应用极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题1.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( ) A .a -2b =0 B .2a -b =0 C .2a +b =0 D .a +2b =0 答案 D解析 y ′=3ax 2+2bx ,据题意,0、13是方程3ax 2+2bx =0的两根∴-2b 3a =13, ∴a +2b =0. 2.当函数y =x ·2x 取极小值时,x =( ) A.1ln2 B .-1ln2 C .-ln2 D .ln2 答案 B解析 由y =x ·2x 得y ′=2x +x ·2x ·ln2令y ′=0得2x (1+x ·ln2)=0∵2x >0,∴x =-1ln23.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1C .b >0D .b <12 答案 A解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0,∴b >0,f ′(1)=3-3b >0,∴b <1综上,b 的范围为0<b <14.连续函数f (x )的导函数为f ′(x ),若(x +1)·f ′(x )>0,则下列结论中正确的是( )A .x =-1一定是函数f (x )的极大值点B .x =-1一定是函数f (x )的极小值点C .x =-1不是函数f (x )的极值点D .x =-1不一定是函数f (x )的极值点 答案 B解析 x >-1时,f ′(x )>0 x <-1时,f ′(x )<0∴连续函数f (x )在(-∞,-1)单减,在(-1,+∞)单增,∴x =-1为极小值点.5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( )A .-173B .-103C .-4D .-643 答案 A解析 y ′=x 2+2x -3.令y ′=x 2+2x -3=0,x =-3或x =1为极值点.当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值.∴当x =1时,y min =-173.6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( )A .x =1是最小值点B .x =0是极小值点C .x =2是极小值点D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C.7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)<f (-1) C .f (-a 2)≥f (-1)D .f (-a 2)与f (-1)的大小关系不确定 答案 A解析 由题意可得f ′(x )=32x 2-2x -72.由f ′(x )=12(3x -7)(x +1)=0,得x =-1或x =73.当x <-1时,f (x )为增函数;当-1<x <73时,f (x )为减函数.所以f (-1)是函数f (x )在(-∞,0]上的最大值,又因为-a 2≤0,故f (-a 2)≤f (-1).8.函数f (x )=e -x ·x ,则( )A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确 答案 B 解析f ′(x )=-e -x ·x +12x·e -x =e -x (-x +12x)=e -x ·1-2x2x. 令f ′(x )=0,得x =12. 当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e ·12=12e.二、填空题9.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________.答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎨⎧a +2b +1=0a 2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23b =-1610.已知函数f (x )=13x 3-bx 2+c (b ,c 为常数).当x =2时,函数f (x )取得极值,若函数f (x )只有三个零点,则实数c 的取值范围为________答案 0<c <43解析 ∵f (x )=13x 3-bx 2+c ,∴f ′(x )=x 2-2bx ,∵x =2时,f (x )取得极值,∴22-2b ×2=0,解得b =1.∴当x ∈(0,2)时,f (x )单调递减,当x ∈(-∞,0) 或x ∈(2,+∞)时,f (x )单调递增.若f (x )=0有3个实根,则⎩⎨⎧f (0)=c >0f (2)=13×23-22+c <0,,解得0<c <4311.设m ∈R ,若函数y =e x +2mx (x ∈R )有大于零的极值点,则m 的取值范围是________.答案 m <-12解析 因为函数y =e x +2mx (x ∈R )有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图象可得-2m >1,即m <-12.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴相切于(1,0),则极小值为________.答案 0解析 f ′(x )=3x 2-2px -q , 由题知f ′(1)=3-2p -q =0. 又f (1)=1-p -q =0,联立方程组,解得p =2,q =-1. ∴f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1. 由f ′(x )=3x 2-4x +1=0,解得x =1或x =13,经检验知x =1是函数的极小值点,∴f (x )极小值=f (1)=0. 三、解答题 13.设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值. 解析 由f (x )=sin x -cos x +x +1,0<x <2π,知f ′(x )=cos x +sin x +1,于是f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,由上表知f (x )的单调递增区间是(0,π)与(3π2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.14.设函数f (x )=6x 3+3(a +2)x 2+2ax .(1)若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,求实数a 的值;(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a 的值;若不存在,说明理由.解析f′(x)=18x2+6(a+2)x+2a.(1)由已知有f′(x1)=f′(x2)=0,从而x1x2=2a18=1,所以a=9;(2)由于Δ=36(a+2)2-4×18×2a=36(a2+4)>0,所以不存在实数a,使得f(x)是(-∞,+∞)上的单调函数.15.已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.(1)若x=1是函数f(x)的一个极值点,求a的值;(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围.解析(1)f(x)=ax3-3x2,f′(x)=3ax2-6x=3x(ax-2).∵x=1是f(x)的一个极值点,∴f′(1)=0,∴a=2.(2)解法一①当a=0时,f(x)=-3x2在区间(-1,0)上是增函数,∴a=0符合题意;②当a≠0时,f′(x)=3ax(x-2a),令f′(x)=0得:x1=0,x2=2a.当a>0时,对任意x∈(-1,0),f′(x)>0,∴a>0符合题意;当a<0时,当x∈(2a,0)时,f′(x)>0,∴2a≤-1,∴-2≤a<0符合题意;综上所述,a≥-2.解法二f′(x)=3ax2-6x≥0在区间(-1,0)上恒成立,∴3ax-6≤0,∴a≥2 x在区间(-1,0)上恒成立,又2x<2-1=-2,∴a≥-2.16.已知函数f(x)=-x2+ax+1-ln x.(1)若f(x)在(0,12)上是减函数,求a的取值范围;(2)函数f(x)是否既有极大值又有极小值?若存在,求出a的取值范围;若不存在,请说明理由.解析(1)f′(x)=-2x+a-1x,∵f(x)在(0,12)上为减函数,∴x∈(0,12)时-2x+a-1x<0恒成立,即a<2x+1x恒成立.设g(x)=2x+1x,则g′(x)=2-1x2.∵x∈(0,12)时1x2>4,∴g′(x)<0,∴g(x)在(0,12)上单调递减,g(x)>g(12)=3,∴a≤3.(2)若f(x)既有极大值又有极小值,则f′(x)=0必须有两个不等的正实数根x1,x2,即2x2-ax+1=0有两个不等的正实数根.故a 应满足⎩⎪⎨⎪⎧Δ>0a 2>0⇒⎩⎨⎧a 2-8>0a >0⇒a >22,∴当a >22时,f ′(x )=0有两个不等的实数根,不妨设x 1<x 2, 由f ′(x )=-1x (2x 2-ax +1)=-2x (x -x 1)(x -x 2)知,0<x <x 1时f ′(x )<0,x 1<x <x 2时f ′(x )>0,x >x 2时f ′(x )<0,∴当a >22时f (x )既有极大值f (x 2)又有极小值f (x 1).1. 已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为 1,则a 的值等于________.答案 1解析 ∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1,当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.令f ′(x )>0,则x <1a ,∴f (x )在(0,1a )上递增;令f ′(x )<0,则x >1a ,∴f (x )在(1a ,2)上递减,∴f (x )max =f (1a )=ln 1a -a ·1a =-1,∴ln1a =0,得a =1.2.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2时取得极值, 则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f ′(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0; 当x ∈(2,3)时,f ′(x )>0.所以,当x =1时,f (x )取得极大值f (1)=5+8c . 又f (0)=8c ,f (3)=9+8c ,则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c .因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9.因此c 的取值范围为(-∞,-1)∪(9,+∞). 3.已知函数f (x )=x 3-3ax 2+3x +1. (1)设a =2,求f (x )的单调区间;(2)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围.解析 (1)当a =2时,f (x )=x 3-6x 2+3x +1,f ′(x )=3(x -2+3)(x -2-3). 当x ∈(-∞,2-3)时f ′(x )>0,f (x )在(-∞,2-3)上单调增加; 当x ∈(2-3,2+3)时f ′(x )<0,f (x )在(2-3,2+3)上单调减少; 当x ∈(2+3,+∞)时f ′(x )>0,f (x )在(2+3,+∞)上单调增加. 综上,f (x )的单调增区间是(-∞,2-3)和(2+3,+∞),f (x )的单调减区间是(2-3,2+3).(2)f ′(x )=3[(x -a )2+1-a 2].当1-a 2≥0时,f ′(x )≥0,f (x )为增函数,故f (x )无极值点; 当1-a 2<0时,f ′(x )=0有两个根, x 1=a -a 2-1,x 2=a +a 2-1.由题意知,2<a -a 2-1<3,①或2<a +a 2-1<3.②①式无解.②式的解为54<a <53.因此a 的取值范围是(54,53).1.“我们称使f (x )=0的x 为函数y =f (x )的零点.若函数y =f (x )在区间[a ,b ]上是连续的,单调的函数,且满足f (a )·f (b )<0,则函数y =f (x )在区间[a ,b ]上有唯一的零点”.对于函数f (x )=6ln(x +1)-x 2+2x -1,(1)讨论函数f (x )在其定义域内的单调性,并求出函数极值. (2)证明连续函数f (x )在[2,+∞)内只有一个零点.解析 (1)解:f (x )=6ln(x +1)-x 2+2x -1定义域为(-1,+∞), 且f ′(x )=6x +1-2x +2=8-2x 2x +1,f ′(x )=0⇒x =2(-2舍去).由表可知,f (x )值在区间(-1,2]上单调递增,在[2,+∞)上单调递减. ∴当x =2时,f (x )的极大值为f (2)=6ln3-1.(2)证明:由(1)知f(2)=6ln3-1>0,f(x)在[2,7]上单调递减,又f(7)=6ln8-36=18(ln2-2)<0,∴f(2)·f(7)<0.∴f(x)在[2,7]上有唯一零点.当x∈[7,+∞)时,f(x)≤f(7)<0,故x∈[7,+∞)时,f(x)不为零.∴y=f(x)在[7,+∞)上无零点.∴函数f(x)=6ln(x+1)-x2+2x-1在定义域内只有一个零点.2.(2010·江西高考)设函数f(x)=ln x+ln (2-x)+ax(a>0).(1)当a=1时,求f(x)的单调区间;(2)若f(x)在(0,1]上的最大值为12,求a的值.解析函数f(x)的定义域为(0,2),f′(x)=1x-12-x+a.(1)当a=1时,f′(x)=-x2+2x(2-x),所以f(x)的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x∈(0,1]时,f′(x)=2-2xx(2-x)+a>0,即f(x)在(0,1]上单调递增,故f(x)在(0,1]上的最大值为f(1)=a,因此a=1 2.3.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.分析本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.解(1)f′(x)=-3x2+6x+9.令f′(x)<0,解得x<-1,或x>3,∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,∴f(2)>f(-2).∵在(-1,3)上f′(x)>0,∴f(x)在(-1,2]上单调递增.又由于f(x)在[-2,-1)上单调递减,∴f(-1)是f(x)的极小值,且f(-1)=a-5.∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a =20,解得a=-2.∴f(x)=-x3+3x2+9x-2.∴f(-1)=a-5=-7,即函数f(x)在区间[-2,2]上的最小值为-7.4.已知函数f(x)=xe-x(x∈R).(1)求函数f(x)的单调区间和极值;(2)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称.证明当x>1时,f(x)>g(x);(3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.解析(1)f′(x)=(1-x)e-x.令f′(x)=0,解得x=1.当x变化时,f′(x),f(x)的变化情况如下表:所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1),且f(1)=1 e.(2)由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2.令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2,于是F′(x)=(x-1)(e2x-2-1)e-x.当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0.所以F′(x)>0.从而函数F(x)在[1,+∞)上是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(3)①若(x1-1)(x2-1)=0,由(1)及f(x1)=f(x2),得x1=x2=1,与x1≠x2矛盾.②若(x1-1)(x2-1)>0,由(1)及f(x1)=f(x2),得x1=x2,与x1≠x2矛盾.根据①②得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(2)可知,f(x2)>g(x2),g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2),因为x2>1,所以2-x2<1,又由(1)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.5.已知函数f(x)=ax3-32ax2,函数g(x)=3(x-1)2.(1)当a>0时,求f(x)和g(x)的公共单调区间;(2)当a>2时,求函数h(x)=f(x)-g(x)的极小值;(3)讨论方程f(x)=g(x)的解的个数.解(1)f′(x)=3ax2-3ax=3ax(x-1),又a>0,由f′(x)>0得x<0或x>1,由f′(x)<0得0<x<1,即函数f(x)的单调递增区间是(-∞,0)与(1,+∞),单调递减区间是(0,1),而函数g(x)的单调递减区间是(-∞,1),单调递增区间是(1,+∞),故两个函数的公共单调递减区间是(0,1),公共单调递增区间是(1,+∞).(2)h(x)=ax3-32ax2-3(x-1)2,h′(x)=3ax2-3(a+2)x+6=3a(x-2a)(x-1),令h′(x)=0,得x=2a或x=1,由于2a<1,易知x=1为函数h(x)的极小值点,∴h(x)的极小值为h(1)=-a 2.(3)令φ(x)=f(x)-g(x)=ax3-32(a+2)x2+6x-3,φ′(x)=3ax2-3(a+2)x+6=3a(x-2a)(x-1),①若a=0,则φ(x)=-3(x-1)2,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解;②若a<0,则φ(x)的极大值为φ(1)=-a2>0,φ(x)的极小值为φ(2a)=-4a2+6a-3<0,∴φ(x)的图象与x轴有三个交点,即方程f(x)=g(x)有三个解;③若0<a<2,则φ(x)的极大值为φ(1)=-a2<0,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解;④若a=2,则φ′(x)=6(x-1)2≥0,φ(x)单调递增,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解;⑤若a>2,由(2)知φ(x)的极大值为φ(2a)=-4(1a-34)2-34<0,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解.综上知,若a≥0,方程f(x)=g(x)只有一个解;若a<0,方程f(x)=g(x)有三个解.。

(完整版)导数与极值、最值练习题

(完整版)导数与极值、最值练习题

三、知识新授(一)函数极值的概念(二)函数极值的求法:(1)考虑函数的定义域并求f'(x);(2)解方程f'(x)=0,得方程的根x(可能不止一个)(3)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x)是极大值;反之,那么f(x)是极大值题型一图像问题1、函数()f x的导函数图象如下图所示,则函数()f x在图示区间上()(第二题图) A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2、函数()f x的定义域为开区间()a b,,导函数()f x'在()a b,内的图象如图所示,则函数()f x在开区间()a b,内有极小值点()A.1个 B.2个 C.3个 D.4个3、若函数2()f x x bx c=++的图象的顶点在第四象限,则函数()f x'的图象可能为()D.C.B.A.4、设()f x'是函数()f x的导函数,()y f x'=的图象如下图所示,则()y f x=的图象可能是()C.A.5、已知函数()f x 的导函数()f x '的图象如右图所示,那么函数()f x的图象最有可能的是( )-11 f '(x )yxO6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( )2xO222D.C.B.A.OxOx x Ox y7、如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能是( )yyyxx xyxDCBA xyy=f(x)8、如图所示是函数()y f x =的导函数()y f x '=图象,则下列哪一个判断可能是正确的( )A .在区间(20)-,内()y f x =为增函数B .在区间(03),内()y f x =为减函数C .在区间(4)+∞,内()y f x =为增函数D .当2x =时()y f x =有极小值9、如果函数()y f x =的导函数的图象如图所示,给出下列判断:①函数()y f x =在区间13,2⎛⎫-- ⎪⎝⎭内单调递增;②函数()y f x =在区间1,32⎛⎫- ⎪⎝⎭内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当2x =时,函数()y f x =有极小值; ⑤当12x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________. 10、函数321()2f x x x =-+的图象大致是 ( )DCBA11、己知函数()32f x ax bx c=++,其导数()f x '的图象如图所示,则函数()f x 的极小值是( )A .a b c ++B .84a b c ++C .32a b +D .c题型二 极值求法 1 求下列函数的极值(1)f(x)=x 3-3x 2-9x+5; (2)f(x)=ln x x (3)f(x)=1cos ()2x x x ππ+-<<2、设a 为实数,函数y=e x -2x+2a,求y 的单调区间与极值3、设函数f(x)=313x -+x 2+(m 2-1)x,其中m>0。

(完整版)导数--函数的极值练习题

(完整版)导数--函数的极值练习题

导数--函数的极值练习题一、选择题1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ( )①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y =216x x+的极大值为( ) A.3 B.4 C.2 D.54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0 B.1 C.2 D.45.y =ln 2x +2ln x +2的极小值为( ) A.e -1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于( )A.6B.0C.5D.17.对可导函数,在一点两侧的导数异号是这点为极值点的A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件 8.下列函数中, 0=x 是极值点的函数是( )A.3x y -= B.x y 2cos = C.x x y -=tan D.x y 1=9.下列说法正确的是( )A. 函数在闭区间上的极大值一定比极小值大;B. 函数在闭区间上的最大值一定是极大值;C. 对于12)(23+++=x px x x f ,若6||<p ,则)(x f 无极值;D.函数)(x f 在区间),(b a 上一定存在最值.10.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为( ) A.)3,3(- B.)11,4(- C. )3,3(-或)11,4(- D.不存在 11.函数|6|)(2--=x x x f 的极值点的个数是( )A. 0个B. 1个C. 2个D.3个 12.函数xxx f ln )(=( ) A.没有极值 B.有极小值 C. 有极大值 D.有极大值和极小值二.填空题:13.函数x x x f ln )(2=的极小值是 14.定义在]2,0[π上的函数4cos 2)(2-+=x ex f x的极值情况是15.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是16.下列函数①32x y =,②x y tan =,③|1|3++=x x y ,④xxe y =,其中在其定义区间上存在极值点的函数序号是17.函数f (x )=x 3-3x 2+7的极大值为___________. 18.曲线y =3x 5-5x 3共有___________个极值.19.函数y =-x 3+48x -3的极大值为___________;极小值为___________. 20.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.三.解答题21.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值.22.函数f (x )=x +xa+b 有极小值2,求a 、b 应满足的条件.23.已知函数f(x)=x 3+ax 2+bx+c 在x =2处有极值,其图象在x =1处的切线垂直于直线y =31x -2 (1)设f(x)的极大值为p ,极小值为q ,求p-q 的值;(2)若c 为正常数,且不等式f(x)>mx 2在区间(0,2)内恒成立,求实数m 的取值范围。

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。

高二数学利用导数求最值和极值试题

高二数学利用导数求最值和极值试题

高二数学利用导数求最值和极值试题1.函数在(0,1)内有最小值,则的取值范围为()A.B.C.D.【答案】B.【解析】首先对函数进行求导,即,然后根据函数在(0,1)内有最小值,讨论参数与0的大小关系,进而找到符合条件的的取值范围,即(1)若,此时,这表明在(0,1)上单调递增的,所以在处取得最小值,显然不可能;(2)若,令,解得,当时,为增函数,为减函数,所以在处取得最小值,也是最小值,故极小值点在(0,1)内,符合条件要求.综上所述,的取值范围为(0,1).故答案应选B.【考点】利用导数求闭区间上函数的最值.2.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数.(1)求曲线在点(1,0)处的切线方程;(2)设函数,其中,求函数在上的最小值.(其中为自然对数的底数)【答案】(1)(2)当时,的最小值为0;当时,的最小值为;当时,的最小值为.【解析】利用导数的几何意义求曲线在点处的切线方程,注意这个点的切点.(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)分类讨论是学生在学习过程中的难点,要找好临界条件进行讨论.试题解析:(1)由,得切线的斜率为.又切线过点,所以直线的方程为 4分(2),则令,得;令,得,所以在上单调递减,在上单调递增①当,即时,在上单调递增,所以在上的最小值为②当,即时,在上单调递减,在上单调递增.在上的最小值为③当,即时,在上单调递减,所以在上的最小值为.综上:当时,的最小值为0;当时,的最小值为;当时,的最小值为. 12分【考点】(1)利用导数求切线方程;(2)利用导数求函数的最值.5.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.6.函数在[0,3]上的最大值和最小值分别是( ).A.5,-15B.5,-14C.5,-16D.5,15【答案】A【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.7.函数在[0,3]上的最大值和最小值分别是A.5,15B.5,-14C.5,-15D.5,-16【答案】C【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.8.函数.(1)求函数的极值;(2)设函数,对,都有,求实数m的取值范围.【答案】(1);(2).【解析】解题思路:(1)求导,令得,列表即可极值;(2)因为,都有,所以只需即可,即求的最值.规律总结:(1)利用导数求函数的极值的步骤:①求导;②解,得分界点;③列表求极值点及极值;(2)恒成立问题要转化为求函数的最值问题.注意点:因为,都有,所以只需即可.试题解析:(1)因为,所以,令,解得,或,则+-+故当时,有极大值,极大值为;当时,有极小值,极小值为.(2)因为,都有,所以只需即可.由(1)知:函数在区间上的最小值,又,则函数在区间上的最大值,由,即,解得,故实数m的取值范围是.【考点】1.函数的极值;2.不等式恒成立问题.9.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】求导得=,当-1<<0时,,当时,<0,所以该函数在(-1,0)上是增函数,在(0,1)是减函数,故当=0时,=,所以=3,所以当=-1时,y=,当=1时,=,所以该函数在[-1,1]上的最小值为.【考点】利用导数求函数在某个闭区间上的最值10.设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知当时,在上是“凸函数”.则在上 ( )A.既有极大值,也有极小值B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值【答案】C【解析】由题设可知:在(-1,2)上恒成立,由于从而,所以有在(-1,2)上恒成立,故知,又因为,所以;从而,得;且当时,当时,所以在上在处取得极大值,没有极小值.【考点】新定义,函数的极值.11.若函数在(0,1)内有极小值,则 ( )A.<1B.0<<1C.b>0D.b<【答案】B【解析】由得:,若函数在(0,1)内有极小值,则必在区间内有解,即关于的方程区间内有解,所以有,故选B.【考点】导数与函数的极值.12.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】由函数得,令0得x=0或x=1,<0得,>0得x>1或x<0,所以函数在(0,1)上是减函数,在上是增函数,故最大值为f(0)=a=3,f(1)=,f(-1)=,故最小值为,【考点】导数与函数的极值.13.已知函数既有极大值又有极小值,则实数的取值范围是。

2024高考数学习题 导数与函数的单调性、极值和最值

2024高考数学习题 导数与函数的单调性、极值和最值

4.2导数与函数的单调性、极值和最值五年高考考点1导数与函数的单调性1.(2014课标Ⅱ文,11,5分,易)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是() A.(-∞,-2] B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案D2.(2023新课标Ⅱ,6,5分,中)已知函数f(x)=a e x-ln x在区间(1,2)单调递增,则a的最小值为() A.e2 B.e C.e-1 D.e-2答案C3.(2023新课标Ⅰ,19,12分,中)已知函数f(x)=a(e x+a)-x.(1)讨论f(x)的单调性;(2)证明:当a>0时,f(x)>2ln a+32.解析(1)由已知得函数f(x)的定义域为R,f'(x)=a e x-1.①当a≤0时,f'(x)<0,f(x)在R上单调递减;②当a>0时,令f'(x)=0,则x=ln1,当x<ln1时,f'(x)<0,f(x)单调递减;当x>ln1时,f'(x)>0,f(x)单调递增.综上所述,当a≤0时,f(x)在R上单调递减;当a>0时,f(x)在−∞,,在ln1,+∞上单调递增.(2)证明:由(1)知,当a>0时,f(x)在−∞,,在ln1,+∞上单调递增,则f(x)min=f=+−ln1=1+a2+ln a.要证明f(x)>2ln a+32,只需证明1+a2+ln a>2ln a+32,即证a2-ln a-12>0.令g(x)=x2-ln x-12(x>0),则g'(x)=2x-1=22−1.当0<x,g'(x)<0,g(x)单调递减;当x>22时,g'(x)>0,g(x)单调递增,∴g(x)min==12−12=−=ln2>0,∴g(x)>0在(0,+∞)上恒成立,即a2-ln a-12>0,∴f(x)>2ln a+32.4.(2023全国甲文,20,12分,中)已知函数f(x)=ax-sin cos2,x∈0,(1)当a=1时,讨论f(x)的单调性;(2)若f(x)+sin x<0,求a的取值范围.解析(1)当a=1时,f(x)=x-sin cos2,x∈0,f'(x)=1-cos3r2sin2voscos3cos4=cos3Kcos2K2sin2=cos3rcos2K2cos3<0,所以函数f(x)在.(2)令g(x)=sin cos2−sin=sinKsinvos2cos2=sinKsino1−sin2pcos2=sin3cos2,则g'(x)=3cos3Lin2r2sin4voscos3,cos4=3cos2Lin2r2sin4因为x∈0,所以3cos2x sin2x+2sin4x>0,cos3x>0,则g'(x)>0,所以函数g(x)在,g(0)=0,当x→π2时,g(x)→+∞,因为f(x)+sin x<0恒成立,所以sin cos2−sin>B在0,,即直线y=ax在0<x<π2时恒在g(x)的图象下方,如图所示,由图及g'(0)=0可得a≤0,即a的取值范围为(-∞,0].5.(2015课标Ⅱ文,21,12分,中)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解析(1)f(x)的定义域为(0,+∞),f'(x)=1-a.若a≤0,则f'(x)>0,所以f(x)在(0,+∞)上单调递增.若a>0,则当x∈,f'(x)>0;当x+∞时,f'(x)<0.所以f(x)在,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=1处取得最大值,最大值为f ln1+1−a+a-1.因此f a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,a>0,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).考点2导数与函数的极(最)值1.(多选)(2023新课标Ⅱ,11,5分,中)若函数f(x)=a ln x++2(a≠0)既有极大值也有极小值,则() A.bc>0 B.ab>0C.b2+8ac>0D.ac<0答案BCD2.(多选)(2022新高考Ⅰ,10,5分,中)已知函数f(x)=x3-x+1,则()A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2x是曲线y=f(x)的切线答案AC3.(2021新高考Ⅰ,15,5分,中)函数f(x)=|2x-1|-2ln x的最小值为.答案14.(2022全国乙理,16,5分,难)已知x=x1和x=x2分别是函数f(x)=2a x-e x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是.答案15.(2021北京,19,15分,中)已知函数f(x)=3−22+.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)在x=-1处取得极值,求f(x)的单调区间,并求其最大值与最小值.解析(1)当a=0时,f(x)=3−22,∴f(1)=1,f'(x)=2K63,故f'(1)=-4,故曲线y=f(x)在点(1,f(1))处的切线方程为y=-4(x-1)+1,即4x+y-5=0.(2)由题意得f'(x)=22−6K2(2+p2,且f'(-1)=0,故8-2a=0,解得a=4,故f(x)=3−22+4,x∈R,则f'(x)=22−6K8(2+4)2=2(r1)(K4)(2+4)2,令f'(x)>0,得x>4或x<-1;令f'(x)<0,得-1<x<4,故函数f(x)的单调增区间为(-∞,-1)和(4,+∞),单调减区间为(-1,4).所以f(x)的极大值为f(-1)=1,f(x)的极小值为f(4)=-14.又当x∈(-∞,-1)时,3-2x>0,故f(x)>0;当x∈(4,+∞)时,3-2x<0,故f(x)<0,∴f(x)max=f(-1)=1,f(x)min=f(4)=-14.6.(2019课标Ⅲ文,20,12分,中)已知函数f(x)=2x3-ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M-m的取值范围.解析(1)第一步:求函数的定义域和导函数,并因式分解求出导函数的零点.由题意知x∈R,f'(x)=6x2-2ax=2x(3x-a).令f'(x)=0,得x=0或x=3.第二步:讨论a的取值,比较根的大小关系,写出单调区间.①若a>0,则当x∈(-∞,0)+∞时,f'(x)>0;当x∈,f'(x)<0.故f(x)在(-∞,0+∞单调递增,在;②若a=0,f(x)在(-∞,+∞)单调递增;③若a<0,则当x∈−∞,(0,+∞)时,f'(x)>0;当x,0'(x)<0.故f(x)在−∞,0,+∞)单调递增,0.(2)当0<a<3时,由(1)知,f(x)在0,,1单调递增,所以f(x)在[0,1]的最小值为f=−327+2,最大值为f(0)=2或f(1)=4-a.当0<a<2时,f(1)>f(0),最大值为f(1)=4-a.所以M-m=2-a+327,0<a<2,对于函数y=327-a+2,y'=2-1,当0<a<2时,y'<0,从而y=327-a+2单调递减,此时827<327-a+2<2,即M-m2.(构造函数,利用函数单调性求值域)当2≤a<3时,f(1)<f(0),最大值为f(0)=2,所以M-m=327,而函数y=327单调递增,所以M-m的取1.综上,M-m2.易错警示解题时,易犯以下两个错误:①对参数a未讨论或对a分类讨论不全面,尤其易忽略a=0的情形而导致失分;②当a>0时,f(x)在(-∞,0+∞单调递增,将这两个区间合并表示为f(x)在(-∞,0)+∞单调递增导致错误,从而失分.7.(2023新课标Ⅱ,22,12分,难)(1)证明:当0<x<1时,x-x2<sin x<x;(2)已知函数f(x)=cos ax-ln(1-x2),若x=0是f(x)的极大值点,求a的取值范围.解析(1)证明:令g(x)=x-x2-sin x,0<x<1,则g'(x)=1-2x-cos x,令G(x)=g'(x),得G'(x)=-2+sin x<0在区间(0,1)上恒成立,所以g'(x)在区间(0,1)上单调递减,因为g'(0)=0,所以g'(x)<0在区间(0,1)上恒成立,所以g(x)在区间(0,1)上单调递减,所以g(x)<g(0)=0,即当0<x<1时,x-x2<sin x.令h(x)=sin x-x,0<x<1,则h'(x)=cos x-1<0在区间(0,1)上恒成立,所以h(x)在区间(0,1)上单调递减,所以h(x)<h(0)=0,即当0<x<1时,sin x<x.综上,当0<x<1时,x-x2<sin x<x.(2)函数f(x)的定义域为(-1,1).当a=0时,f(x)=1-ln(1-x2),f(x)在(-1,0)上单调递减,在(0,1)上单调递增,x=0不是f(x)的极大值点,所以a≠0.当a>0时,f'(x)=-a sin ax+21−2,x∈(-1,1).(i)当0<a≤2时,取m,1,x∈(0,m),则ax∈(0,1),由(1)可得f'(x)=-a sin ax+21−2>−y+21−2=o22+2−2)1−2,因为a2x2>0,2-a2≥0,1-x2>0,所以f'(x)>0,所以f(x)在(0,m)上单调递增,不合题意.(ii)当a>2时,取x∈0,⊆(0,1),则ax∈(0,1),由(1)可得f'(x)=-a sin ax+21−2<-a(ax-a2x2)+21−2=1−2(-a3x3+a2x2+a3x+2-a2),设h(x)=-a3x3+a2x2+a3x+2-a2,x∈则h'(x)=-3a3x2+2a2x+a3,因为h'(0)=a3>0,a3-a>0,且h'(x)的图象是开口向下的抛物线,所以∀x∈0,均有h'(x)>0,所以h(x)在0,.因为h(0)=2-a2<0,,所以h(x)在0,n.当x∈(0,n)时,h(x)<0,又因为x>0,1-x2>0.则f'(x)<1−2(-a3x3+a2x2+a3x+2-a2)<0.即当x∈(0,n)⊆(0,1)时,f'(x)<0,则f(x)在(0,n)上单调递减.又因为f(x)是偶函数,所以f(x)在(-n,0)上单调递增,所以x=0是f(x)的极大值点.综合(i)(ii)知a>2.当a<0时,由于将f(x)中的a换为-a所得解析式不变,所以a<-2符合要求.故a的取值范围为(-∞,-2)∪(2,+∞).三年模拟综合基础练1.(2023山东烟台开学考,3)函数f(x)=-2ln x-x-3的单调递增区间是()A.(0,+∞)B.(-3,1)C.(1,+∞)D.(0,1)答案D2.(2023吉林长春六中月考,9)函数f(x)=cos x+(x+1)sin x+1在区间[0,2π]上的最小值、最大值分别为() A.-π2,π2 B.−3π2,π2C.-π2,π2+2D.−3π2,π2+2答案D3.(2024届江苏无锡期中,5)当x=2时,函数f(x)=x3+bx2-12x取得极值,则f(x)在区间[-4,4]上的最大值为() A.8 B.12 C.16 D.32答案C4.(2024届湖南师大附中第4次月考,6)已知x=0是函数f(x)=x2e x-2x e x+2e x-3x3的一个极值点,则a的取值集合为() A.{a|a≥-1} B.{0}C.{1}D.R答案C5.(2024届河北石家庄二中月考,5)已知函数f(x)=x3-3mx2+9mx+1在(1,+∞)上为单调递增函数,则实数m的取值范围为() A.(-∞,-1) B.[-1,1]C.[1,3]D.[-1,3]答案D6.(2024届重庆长寿中学期中,7)已知函数f(x)=2x-2-a ln x,则“a>5”是“函数f(x)在(1,2)上单调递减”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A7.(多选)(2024届福建福州联考,10)设函数f (x )=x 3-12x +b ,则下列结论错误的是()A.函数f (x )在(-∞,-1)上单调递增B.函数f (x )在(-∞,-1)上单调递减C.若b =-6,则函数f (x )的图象在点(-2,f (-2))处的切线方程为y =10D.若b =0,则函数f (x )的图象与直线y =10只有一个公共点答案ABD8.(2024届江苏苏州中学模拟,14)已知函数g (x )=2x +ln x -在区间[1,2]上不单调,则实数a 的取值范围是.答案(-10,-3)9.(2024届河南省实验中学月考,15)若函数f (x )=x 3-12x 在区间(a ,a +4)上存在最大值,则实数a 的取值范围是.答案(-6,-2)10.(2024届湖北武汉二中测试,15)已知函数f (x )=ax 4-4ax 3+b ,x ∈[1,4],f (x )的最大值为3,最小值为-6,则a +b 的值是.答案103或−19311.(2023重庆八中入学考,18)已知函数f (x )=ax +b +cos x (a ,b ∈R ),若曲线f (x )在点(0,f (0))处的切线方程为y =12x +2.(1)求f (x )的解析式;(2)求函数f (x )在[0,2π]上的值域.解析(1)因为f (x )=ax +b +cos x (a ,b ∈R ),所以f '(x )=a -sin x ,由题意得o0)=+cos0=2,'(0)=−sin0=12,即+1=2,=12,所以=12,b =1,则f (x )=12x +1+cos x.(2)由(1)得f (x )=12x +1+cos x ,f '(x )=12-sin x ,由f '(x )≥0且x ∈[0,2π]可得0≤x ≤π6或5π6≤x ≤2π,函数f (x )在区间和2π上单调递增,由f'(x)<0且x∈[0,2π]可得π6<5π6,函数f(x).因此当x=π6时,函数取得极大值f=12×π6+1π6=1+π12当x=5π6时,函数取得极小值f=12×5π6+1+cos5π6=1+5π12又f(0)=2,f(2π)=12×2π+1+cos2π=1+π+1=2+π,1+5π12<2<1+π12+,所以函数f(x)在[0,2π]上的最大值为2+π,最小值为1+5π12所以f(x)在[0,2π]上的值域为1+5π12−2+π.综合拔高练11.(2024届湖南长沙长郡中学月考,4)若0<x1<x2<1,则()A.e2−e1>l y−ln xB.e2−e1<ln x2-ln x1C.x2e1>xe2D.ye1<xe2答案C2.(多选)(2024届广东东莞月考,11)已知函数f(x)=ax2-2x+ln x存在极值点,则实数a的值可以是() A.0 B.-e C.12 D.1e答案ABD3.(2024届山东泰安月考,15)设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则a的取值范围是.答案(-∞,-1)4.(2024届辽宁辽东教学共同体期中,19)已知函数f(x)=e x,g(x)=e.(1)直接写出曲线y=f(x)与曲线y=g(x)的公共点坐标,并求曲线y=f(x)在公共点处的切线方程;(2)已知直线y=a分别交曲线y=f(x)和y=g(x)于点A,B,当a∈(0,e)时,设△OAB的面积为S(a),其中O是坐标原点,求S(a)的最大值.解析(1)易得曲线y=f(x)与曲线y=g(x)的公共点坐标为(1,e).因为f'(x)=e x,所以f'(1)=e,所以曲线y=f(x)在公共点处的切线方程为y-e=e(x-1),即y=e x.(2)因为直线y=a分别交曲线y=f(x)和y=g(x)于点A,B,所以A(ln a,a),.S(a)=12b|A|=12ln,a∈(0,e).因为a∈(0,e)时,e>1,ln a<1,所以e>ln a,所以S(a)=e2−12a ln a,a∈(0,e),求导得S'(a)=-12(1+ln a),令S'(a)=0,得a=1e,所以S'(a),S(a)的变化情况如表:因此,S(a)5.(2024届湖南长沙南雅中学开学考,21)已知函数f(x)=ax-1-(a+1)ln x(a≠0).(1)讨论函数f(x)的单调性;(2)若f(x)既有极大值又有极小值,且极大值和极小值的和为g(a),解不等式g(a)<2a-2.解析(1)函数f(x)的定义域为(0,+∞),对f(x)求导得f'(x)=a+12−r1=B2−(r1)r12=(B−1)(K1)2,令f'(x)=0,则x1=1,x2=1.当a<0时,ax-1<0,令f'(x)>0,解得0<x<1,令f'(x)<0,解得x>1,所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当a>0时,①当1=1,即a=1时,f'(x)≥0恒成立,所以f(x)在(0,+∞)上单调递增;②当1>1,即0<a<1时,令f'(x)>0,解得0<x<1或x>1,令f'(x)<0,解得1<x<1,所以f(x)在(0,1)上单调递增,在1,,+∞上单调递增;③当1<1,即a>1时,令f'(x)>0,解得0<x<1或x>1,令f'(x)<0,解得1<x<1,所以f(x)在,1上单调递减,在(1,+∞)上单调递增.综上所述:当a<0时,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<1时,f(x)在(0,1)上单调递增,在1,,+∞上单调递增;当a=1时,f(x)在(0,+∞)上单调递增;当a>1时,f(x)在0,,1上单调递减,在(1,+∞)上单调递增.(2)由(1)知:a>0且a≠1,且g(a)=f f(1)=1-a+(a+1)ln a+a-1=(a+1)ln a.g(a)<2a-2等价于(a+1)ln a<2a-2(a>0且a≠1),等价于解不等式ln a-2(K1)r1<0,令m(a)=ln a-2(K1)r1(a>0),(构造函数m(a),结合函数的单调性以及特殊值m(1)=0,从而解得不等式的解集)m'(a)=1−4(r1)2=(K1)2or1)2>0,所以m(a)在(0,+∞)上单调递增,且m(1)=0,所以m(a)<0=m(1),即不等式的解集为{a|0<a<1}.6.(2024届北京一零一中学测试,18)已知函数f(x)=ax3+bx+2在x=2处取得极值-14.(1)求a,b的值;(2)求曲线y=f(x)在点(1,f(1))处的切线方程;(3)求函数f(x)在[-3,3]上的最值.解析(1)因为f(x)=ax3+bx+2,所以f'(x)=3ax2+b,又函数f(x)在x=2处取得极值-14,所以'(2)=12+=0,4+=−8,解得=1,=−12,o2)=8+2+2=−14,即12+=0,经检验,a=1,b=-12符合题意,故a=1,b=-12.(2)由(1)知:f(x)=x3-12x+2,f'(x)=3x2-12,故f(1)=-9,f'(1)=-9.所以曲线y=f(x)在点(1,f(1))处的切线方程为y-(-9)=-9(x-1),即9x+y=0.(3)由(1)知:f(x)=x3-12x+2,f'(x)=3x2-12,令f'(x)=0,解得x1=-2,x2=2,x∈[-3,3]时,随x的变化f'(x),f(x)的变化情况如表:x-3(-3,-2)-2(-2,2)2(2,3)3f'(x)+0-0+f(x)11↗18↘-14↗-7由表可知:当x=-2时,函数f(x)有极大值f(-2)=18;当x=2时,函数f(x)有极小值f(2)=-14;因为f(-2)=18>f(3)=-7,f(2)=-14<f(-3)=11,故函数f(x)在[-3,3]上的最小值为f(2)=-14,最大值为f(-2)=18.综合拔高练21.(多选)(2024届湖北宜昌中学阶段练,12)已知函数f(x)=ax+e+En1在∈2上有三个单调区间,则实数a的取值可以是() A.-e B.-2e C.−e22 D.−72答案BD2.(多选)(2024届安徽池州一中阶段练,10)已知函数f(x)=x3-2x2+ax,则下列说法正确的是()A.函数f(x)的极值点个数可能为0,1,2B.若函数f(x)有两个极值点,则a<43C.若a=1,则函数f(x)2上的最小值为18D.若a=1,则函数f(x)2上的最大值为2答案BD3.(2024届湖北黄冈中学月考,14)定义在R上的函数f(x)=13x3-x+3.①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数.②y='(p在(0,+∞)上存在极小值.③f(x)的图象在x=0处的切线与直线y=2x+2垂直.④设g(x)=4ln x-m,若存在x∈[1,e],使得g(x)<f'(x),则m>5-e2.以上描述中正确的是.(填序号)答案①④4.(2024届北京海淀北大附中校考,20)已知函数f(x)=e ax(x-1)2.(1)若a=1,求曲线f(x)在(0,f(0))处的切线方程;(2)求f(x)的极大值与极小值.解析(1)当a=1时,f(x)=e x(x-1)2,f'(x)=e x(x2-1),所以f'(0)=e0(02-1)=-1,又f(0)=e0(0-1)2=1,所以切线方程为y-1=-(x-0),即x+y-1=0.(2)f'(x)=a e ax(x-1)2+2e ax(x-1)=e ax(x-1)(ax-a+2),当a=0时,令f'(x)=2(x-1)=0,解得x=1,故x<1时,f'(x)<0,f(x)单调递减;x>1时,f'(x)>0,f(x)单调递增,故x=1时,f(x)的极小值为f(1)=0,无极大值.当a>0时,令f'(x)=0,解得x1=1,x2=1-2,故当x<1-2或x>1时,f'(x)>0,f(x)单调递增,当1-2<x<1时,f'(x)<0,f(x)单调递减,故f(x)的极大值为f1−=4e K22,极小值为f(1)=0.当a<0时,令f'(x)=0,解得x1=1,x2=1-2,故当x<1或x>1-2时,f'(x)<0,f(x)单调递减,当1<x<1-2时,f'(x)>0,f(x)单调递增,故f(x)的极大值为f1−=4e K22,极小值为f(1)=0.综上,当a=0时,f(x)的极小值为f(1)=0,无极大值;当a≠0时,f(x)的极大值为f1=4e K22,极小值为f(1)=0.5.(2024届江苏镇江一中校考,19)已知函数f(x)=e x-x2-1.(1)判断f(x)在定义域上是否存在极值,若存在,求出其极值;若不存在,说明理由.(2)若f(x)≥ax在x∈[0,+∞)上恒成立,求a的取值范围.解析(1)∵f(x)=e x-x2-1,∴f'(x)=e x-2x,记h(x)=e x-2x,∴h'(x)=e x-2,当x>ln2时,h'(x)>0;当x<ln2时,h'(x)<0,则f'(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增,∴f'(x)min=f'(ln2)=2-2ln2>0,∴f(x)在R上单调递增,即在定义域R上不存在极值.(2)因为f(x)=e x-x2-1≥ax在x∈[0,+∞)上恒成立,所以e x-x2-ax-1≥0在x∈[0,+∞)上恒成立.显然当x=0时不等式成立,当x>0时,a≤e−2−1恒成立,令g(x)=e−2−1,x>0,则g'(x)=(K1)(e−K1)2,记F(x)=e x-x-1,x>0,∴F'(x)=e x-1,当x>0时,F'(x)>0,F(x)单调递增,故F(x)>F(0)=0,故当x>0时,e x-x-1>0,当0<x<1时,g'(x)<0;当x>1时,g'(x)>0,所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以当x=1时,g(x)min=e-2,所以a≤e-2.故实数a的取值范围是(-∞,e-2].。

课时导数与函数的极值、最值检测题与详解答案

课时导数与函数的极值、最值检测题与详解答案

导数与函数的极值、最值测试题与详解答案A 级——保大分专练1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选 A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:3.5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f =-1+2b +c =0,f=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t , 设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y=2x -1x2在x =-1处取得极值,因此a =2.答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=x 2+-2x x +x 2+2=-x +x -x 2+2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件.解析:y ′=-3x 2+27=-3(x +3)(x -3), 当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧f =3×22+6a ×2+3b =0,f=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值;(2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a-ln xx 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln x x ,f ′(x )=1-ln xx2. 令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x. 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞), f ′(x )=1x -a =1-axx(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a.当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级——创高分自选1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________.解析:因为f (x )的单调递减区间为(-1,1),所以a >0. 由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t>0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝ ⎛⎭⎪⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1a,+∞;由f ′(x )<0,解得0<x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1a .所以当x =1a时,函数f (x )有极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a+a =a -a ln a ,无极大值.(2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎪⎫0,1a 时,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1. ②若1<1a <e ,即1e <a <1时,函数f (x )在⎣⎢⎡⎭⎪⎫1,1a 上为减函数,在⎝ ⎛⎦⎥⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝ ⎛⎭⎪⎫1a=a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1.③若1a ≥e,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e=0,即a =-1e ,故不满足条件0<a ≤1e.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值课时作业一、选择题1.如图2是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:图2①-2是函数y=f(x)的极值点;②1是函数y=f(x)的极值点;③y=f(x)的图象在x=0处切线的斜率小于零;④函数y=f(x)在区间(-2,2)上单调递增.则正确命题的序号是()A.①③B.②④C.②③D.①④解析:根据导函数图象可知,-2是导函数的零点且-2的左右两侧导函数符号异号,故-2是极值点;1不是极值点,因为1的左右两侧导函数符号一致;0处的导函数值即为此点的切线斜率,显然为正值,导函数在(-2,2)上恒大于或等于零,故为函数的增区间,所以选D.答案:D2.设f(x)=12x2-x+cos(1-x),则函数f(x)()A.仅有一个极小值B.仅有一个极大值C.有无数个极值D.没有极值解析:由f(x)=12x2-x+cos(1-x),得f′(x)=x-1+sin(1-x).设g(x)=x-1+sin(1-x),则g′(x)=1-cos(1-x)≥0.所以g(x)为增函数,且g(1)=0.所以当x∈(-∞,1)时,g(x)<0,f′(x)<0,则f(x)单调递减;当x∈(1,+∞)时,g(x)>0,f′(x)>0,则f(x)单调递增.又f′(1)=0,所以函数f(x)仅有一个极小值f(1).故选A.答案:A3.已知函数f(x)=x3+ax2+bx+a2在x=1处取极值10,则a=()A .4或-3B .4或-11C .4D .-3 解析:∵f (x )=x 3+ax 2+bx +a 2, ∴f ′(x )=3x 2+2ax +b .由题意得⎩⎨⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 即⎩⎨⎧2a +b =-3,a +b +a 2=9,解得⎩⎨⎧a =-3,b =3或⎩⎨⎧a =4,b =-11.当⎩⎨⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故函数f (x )单调递增,无极值.不符合题意.∴a =4.故选C. 答案:C 4.函数f (x )=2+ln x x +1在[1e ,e]上的最小值为 ( ) A .1 B.e 1+e C.21+e D.31+e解析:∵f ′(x )=x +1x -(2+ln x )(x +1)2=1x-1-ln x (x +1)2,∴当e ≥x >1时,f ′(x )<0;当1e ≤x <1时,f ′(x )>0. 所以f (x )的最小值为min ⎩⎨⎧⎭⎬⎫f (1e ),f (e )=min{e 1+e ,31+e }=e 1+e ,选B.答案:B5.若函数f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点,则实数a 的取值范围是 ( )A .(0,62)B .(1,62)C .(-62,62)D .(63,1)∪(1,62) 解析:∵f (x )=(a +1)e 2x -2e x +(a -1)x , ∴f ′(x )=2(a +1)e 2x -2e x +a -1,∵f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点, ∴f ′(x )=0有两个不等实根,设t =e x >0,则关于t 的方程2(a +1)t 2-2t +a -1=0有两个不等正根,可得⎩⎪⎨⎪⎧a -12(a +1)>0,22(a +1)>0,4-8(a -1)(a +1)>0⇒1<a <62,∴实数a 的取值范围是(1,62),故选B. 答案:B 6.图1如图1,可导函数y =f (x )在点P (x 0,f (x 0))处的切线为l :y =g (x ),设h (x )=f (x )-g (x ),则下列说法正确的是( )A .h ′(x 0)=0,x =x 0是h (x )的极大值点B .h ′(x 0)=0,x =x 0是h (x )的极小值点C .h ′(x 0)≠0,x =x 0不是h (x )的极值点D .h ′(x 0)≠0,x =x 0是h (x )的极值点解析:由题意可得函数f (x )在点(x 0,f (x 0))处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), ∴h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), ∴h ′(x )=f ′(x )-f ′(x 0), ∴h ′(x 0)=f ′(x 0)-f ′(x 0)=0. 又当x <x 0时,f ′(x )<f ′(x 0), 故h ′(x )<0,h (x )单调递减; 当x >x 0时,f ′(x )>f ′(x 0), 故h ′(x )>0,h (x )单调递增.∴x =x 0是h (x )的极小值点.故选B. 答案:B7.若函数g (x )=mx +sin xe x 在区间(0,2π)内有一个极大值和一个极小值,则实数m 的取值范围是 ( )A .[-e -2π,e -π2)B .(-e -π,e -2π)C .(-e π,e -5π2) D .(-e -3π,e π) 解析:函数g (x )=mx +sin xe x , 求导得g ′(x )=m +cos x -sin xe x. 令f (x )=m +cos x -sin x e x,则f ′(x )=-2cos xe x .易知,当x ∈(0,π2)时,f ′(x )<0,f (x )单调递减; 当x ∈(π2,3π2)时,f ′(x )>0,f (x )单调递增; 当x ∈(3π2,2π)时,f ′(x )<0,f (x )单调递减. 且f (0)=m +1,f (π2)=m -e -π2,f (3π2)=m +e -3π2, f (2π)=m +e -2π,有f (π2)<f (2π),f (0)>f (3π2).根据题意可得⎩⎪⎨⎪⎧f (π2)=m -e -π2<0,f (2π)=m +e -2π≥0,解得-e-2π≤m <e -π2.故选A.答案:A8.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是 ( )A .-4,-15B .5,-15C .5,-4D .5,-16 解析:由题意知y ′=6x 2-6x -12, 令y ′>0,解得x >2或x <-1,故函数y=2x3-3x2-12x+5在[0,2]上递减,在[2,3]上递增,当x=0时,y=5;当x=3时,y=-4;当x=2时,y=-15.由此得函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是5,-15.故选B.答案:B9.若函数f(x)=13x3-⎝⎛⎭⎪⎫1+b2x2+2bx在区间[-3,1]上不是单调函数,则f(x)在R上的极小值为()A.2b-43 B.32b-23C.0 D.b2-16b3解析:由题意得f′(x)=(x-b)(x-2).因为f(x)在区间[-3,1]上不是单调函数,所以-3<b<1.由f′(x)>0,解得x>2或x<b;由f′(x)<0,解得b<x<2.所以f(x)的极小值为f(2)=2b-43.故选A.答案:A10.已知函数f(x)=ln x+a,g(x)=ax+b+1,若∀x>0,f(x)≤g(x),则ba的最小值是()A.1+e B.1-e C.e-1D.2e-1解析:由题意,∀x>0,f(x)≤g(x),即ln x+a≤ax+b+1,即ln x-ax+a≤b+1,设h(x)=ln x-ax+a,则h′(x)=1x-a,当a≤0时,h′(x)=1x-a>0,函数h(x)单调递增,无最大值,不合题意;当a>0时,令h′(x)=1x-a=0,解得x=1a,当x∈(0,1a)时,h′(x)>0,函数h(x)单调递增;当x∈(1a,+∞)时,h′(x)<0,函数h(x)单调递减,所以h(x)max=h(1a)=-ln a+a-1,故-ln a+a-1≤b+1,即-ln a+a-b-2≤0,令ba=k,则b=ak,所以-ln a+(1-k)a-2≤0,设φ(a)=-ln a+(1-k)a-2,则φ′(a)=-1a+(1-k),若1-k≤0,则φ′(a)<0,此时φ(a)单调递减,无最小值,所以k<1,由φ′(a)=0,得a=11-k,此时φ(a)min=ln(1-k)-1≤0,解得k≥1-e,所以k的小值为1-e,故选B.答案:B11.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是()A.-13 B.-15 C.10 D.15解析:∵f′(x)=-3x2+2ax,函数f(x)=-x3+ax2-4在x=2处取得极值,∴-12+4a=0,解得a=3,∴f′(x)=-3x2+6x,f(x)=-3x3+3x2-4,∴n∈[-1,1]时,f′(n)=-3n2+6n,当n=-1时,f′(n)最小,最小为-9,当m∈[-1,1]时,f(m)=-m3+3m2-4,f′(m)=-3m2+6m,令f′(m)=0,得m=0或m=2,所以当m=0时,f(m)最小,最小为-4,故f(m)+f′(n)的最小值为-9+(-4)=-13.故选A.答案:A12.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=16x3-12mx2+x在(-1,2)上是“凸函数”,则f(x)在(-1,2)上() A.既有极大值,也有极小值B.没有极大值,有极小值C.有极大值,没有极小值D.没有极大值,也没有极小值解析:由题设可知,f″(x)<0在(-1,2)上恒成立,由于f ′(x )=12x 2-mx +1,从而f ″(x )=x -m ,所以有x -m <0在(-1,2)上恒成立,故知m ≥2,又因为m ≤2,所以m =2,从而f (x )=16x 3-x 2+x ,f ′(x )=12x 2-2x +1=0,得x 1=2-2∈(-1,2),x 2=2+2∉(-1,2),且当x ∈(-1,2-2)时,f ′(x )>0,当x ∈(2-2,2)时,f ′(x )<0,所以f (x )在x =2-2处取得极大值,没有极小值.答案:C 二、填空题13.已知函数f (x )=1-x x +ln x ,则f (x )在[12,2]上的最大值等于________.解析:∵函数f (x )=1-xx +ln x , ∴f ′(x )=-1x 2+1x =x -1x 2.故f (x )在[12,1]上单调递减,在[1,2]上单调递增, 又∵f (12)=1-ln2,f (2)=ln2-12,f (1)=0, f (12)-f (2)=32-2ln2>0,∴f (x )max =1-ln2,故答案为1-ln2. 答案:1-ln214.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:求导得f ′(x )=3x 2+6ax +3b ,因为函数f (x )在x =2处取得极值,所以f ′(2)=3·22+6a ·2+3b =0,即4a +b +4=0 ①,又因为图象在x =1处的切线与直线6x +2y +5=0平行, 所以f ′(1)=3+6a +3b =-3,即2a +b +2=0 ②, 联立①②可得a =-1,b =0, 所以f ′(x )=3x 2-6x =3x (x -2), 当f ′(x )>0时,x <0或x >2; 当f ′(x )<0时,0<x <2,∴函数的单调增区间是(-∞,0)和(2,+∞),函数的单调减区间是(0,2), 因此求出函数的极大值为f (0)=c , 极小值为f (2)=c -4,故函数的极大值与极小值的差为c -(c -4)=4, 故答案为4. 答案:415.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:由f ′(x )=6x 2-2ax =0,得x =0或x =a3,因为函数f (x )在(0,+∞)上有且仅有一个零点且f (0)=1,所以a 3>0,f (a 3)=0,因此2(a 3)3-a (a3)2+1=0,a =3.从而函数f (x )在[-1,0]上单调递增,在[0,1]上单调递减,所以f (x )max =f (0),f (x )min =min{f (-1),f (1)}=f (-1),f (x )max +f (x )min =f (0)+f (-1)=1-4=-3.答案:-316.已知函数f (x )=x 3+ax 2+(a +6)x +1,(1)若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a =________;(2)若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是________.解析:∵f (x )=x 3+ax 2+(a +6)x +1, ∴f ′(x )=3x 2+2ax +(a +6), ∴f ′(1)=3a +9=6,∴a =-1.函数在(-1,3)内既有极大值又有极小值,则f ′(x )=3x 2+2ax +(a +6)=0在(-1,3)内有不同的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)=-a +9>0,f ′(3)=7a +33>0,-1<-2a 6<3,∴-337<a <-3.答案:-1 (-337,-3) 三、解答题17.已知函数f (x )=x +ax ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )=x +ax ln x 存在极大值,且极大值点为1,证明:f (x )≤e -x +x 2. 解:(1)由题意x >0,f ′(x )=1+a +a ln x ,①当a =0时,f (x )=x ,函数f (x )在(0,+∞)上单调递增; ②当a >0时,函数f ′(x )=1+a +a ln x 单调递增,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )<0,当x ∈(e -1-1a ,+∞)时,f ′(x )>0,所以函数f (x )在(0,e -1-1a )上单调递减,函数f (x )在(e -1-1a ,+∞)上单调递增;③当a <0,函数f ′(x )=1+a +a ln x 单调递减,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫e -1-1a ,+∞时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,e -1-1a 上单调递增,函数f (x )在⎝ ⎛⎭⎪⎫e -1-1a ,+∞上单调递减. (2)由f ′(1)=0,得a =-1,令h (x )=e -x +x 2-x +x ln x ,则h ′(x )=-e -x +2x +ln x ,h ″(x )=e -x +2+1x >0,∴h ′(x )在(0,+∞)上单调递增,∵h ′⎝ ⎛⎭⎪⎫1e =-e -1e +2e -1<0,h ′(1)=-e -1+2>0, ∴∃x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得h ′(x 0)=0,即-e -x 0+2x 0+ln x 0=0. ∴当x ∈(0,x 0)时,h ′(x )<0; 当x ∈(x 0,+∞)时,h ′(x )>0,∴h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, ∴h (x )≥h (x 0).由-e -x 0+2x 0+ln x 0=0,得e -x 0=2x 0+ln x 0, ∴h (x 0)=e -x 0+x 20-x 0+x 0ln x 0 =(x 0+1)(x 0+ln x 0).当x 0+ln x 0<0时,ln x 0<-x 0⇒x 0<e -x 0 ⇒-e -x 0+x 0<0,所以-e -x 0+x 0+x 0+ln x 0<0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0>0时,ln x 0>-x 0⇒x 0>e -x 0⇒-e -x 0+x 0>0, 所以-e -x 0+x 0+x 0+ln x 0>0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0=0时,ln x 0=-x 0⇒x 0=e -x 0⇒-e -x 0+x 0=0, 得-e -x 0+2x 0+ln x 0=0,故x 0+ln x 0=0成立, 得h (x 0)=(x 0+1)(x 0+ln x 0)=0,所以h (x )≥0, 即f (x )≤e -x +x 2.18.已知函数f (x )=x ln x .(1)求函数y =f (x )的单调区间和最小值;(2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值; (3)若k ∈Z ,且f (x )+x -k (x -1)>0对任意x >1恒成立,求k 的最大值. 解:(1)f (x )的单调增区间为[1e ,+∞),单调减区间为⎝ ⎛⎦⎥⎤0,1e , f (x )min =f (1e )=-1e .(2)F (x )=ln x -ax ,F ′(x )=x +a x 2,(ⅰ)当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉[0,+∞),舍去.(ⅱ)当a <0时,F (x )在(0,-a )在上单调递减, 在(-a ,+∞)上单调递增,①若a ∈(-1,0),F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去;②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减,在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,解得a =-e ∈[-e ,-1];③若a ∈(-∞,-e), F (x )在[1,e]上单调递减, F (x )min =F (e)=1-a e =32,所以a =-e 2∉(-∞,-e),舍去.综上所述, a =- e.(3)由题意得,k (x -1)<x +x ln x 对任意x >1恒成立,即k <x ln x +x x -1对任意x >1恒成立. 令h (x )=x ln x +x x -1,则h ′(x )=x -ln x -2(x -1)2, 令φ(x )=x -ln x -2(x >1),则φ′(x )=1-1x =x -1x >0,所以函数φ(x )在(1,+∞)上单调递增,因为方程φ(x )=0在(1,+∞)上存在唯一的实根x 0,且x 0∈(3,4),当1<x <x 0时,φ(x )<0,即h ′(x )<0,当x >x 0时,φ(x )>0,即h ′(x )>0.所以函数h (x )在(1,x 0)上递减,在(x 0,+∞)上单调递增.所以h (x )min =h (x 0)=x 0(1+ln x 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0∈(3,4),所以k <g (x )min =x 0, 又因为x 0∈(3,4),故整数k 的最大值为3.19.高三模拟考试)已知函数f (x )=-4x 3+ax ,x ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在[-1,1]上的最大值为1,求实数a 的取值集合.解:(1)f ′(x )=-12x 2+a .当a =0时,f (x )=-4x 3在R 上单调递减;当a <0时,f ′(x )=-12x 2+a <0,即f (x )=-4x 3+ax 在R 上单调递减;当a >0时,f ′(x )=-12x 2+a =0,解得x 1=36a ,x 2=-3a 6,∴当x ∈⎝⎛⎭⎪⎫-∞,-3a 6时,f ′(x )<0, f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减;当x ∈⎝⎛⎭⎪⎫-3a 6,3a 6时,f ′(x )>0, f (x )在⎝⎛⎭⎪⎫-3a 6,3a 6上递增; 当x ∈⎝ ⎛⎭⎪⎫3a 6,+∞时,f ′(x )<0, f (x )在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. 综上,当a ≤0时,f (x )在R 上单调递减;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减; 在⎝ ⎛⎭⎪⎫-3a 6,3a 6上递增;在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. (2)∵函数f (x )在[-1,1]上的最大值为1,∴对任意x ∈[-1,1],f (x )≤1恒成立,即-4x 3+ax ≤1对任意x ∈[-1,1]恒成立,变形可得ax ≤1+4x 3.当x =0时,a ·0≤1+4·03,即0≤1,可得a ∈R ;当x ∈(0,1]时,a ≤1x +4x 2,则a ≤⎝ ⎛⎭⎪⎫1x +4x 2min, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2.当x ∈⎝ ⎛⎭⎪⎫0,12时,g ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤12,1时, g ′(x )>0. 因此,g (x )min =g ⎝ ⎛⎭⎪⎫12=3, ∴a ≤3.当x ∈[-1,0)时,a ≥1x +4x 2,则a ≥⎝ ⎛⎭⎪⎫1x +4x 2max, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2,当x ∈[-1,0)时,g ′(x )<0,因此,g (x )max =g (-1)=3,∴a ≥3.综上,a=3.∴a的取值集合为{3}。

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案一、选择题1.已知函数fx在点x0处连续,下列命题中,正确的是A.导数为零的点一定是极值点B.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极小值C.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值D.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值[答案] C[解析] 导数为0的点不一定是极值点,例如fx=x3,fx=3x2,f0=0,但x=0不是fx的极值点,故A错;由极值的定义可知C正确,故应选C.2.函数y=1+3x-x3有A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值3[答案] D[解析] y=3-3x2=31-x1+x令y=0,解得x1=-1,x2=1当x-1时,y0,函数y=1+3x-x3是减函数,当-11时,y0,函数y=1+3x-x3是增函数,当x1时,y0,函数y=1+3x-x3是减函数,当x=-1时,函数有极小值,y极小=-1.当x=1时,函数有极大值,y极大=3.3.设x0为fx的极值点,则下列说法正确的是A.必有fx0=0B.fx0不存在C.fx0=0或fx0不存在D.fx0存在但可能不为0[答案] C[解析] 如:y=|x|,在x=0时取得极小值,但f0不存在.4.对于可导函数,有一点两侧的导数值异号是这一点为极值的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.5.对于函数fx=x3-3x2,给出命题:①fx是增函数,无极值;②fx是减函数,无极值;③fx的’递增区间为-,0,2,+,递减区间为0,2;④f0=0是极大值,f2=-4是极小值.其中正确的命题有A.1个 B.2个C.3个 D.4个[答案] B[解析] fx=3x2-6x=3xx-2,令fx0,得x2或x0,令fx0,得02,①②错误. 6.函数fx=x+1x的极值情况是A.当x=1时,极小值为2,但无极大值B.当x=-1时,极大值为-2,但无极小值C.当x=-1时,极小值为-2;当x=1时,极大值为2D.当x=-1时,极大值为-2;当x=1时,极小值为2[答案] D[解析] fx=1-1x2,令fx=0,得x=1,函数fx在区间-,-1和1,+上单调递增,在-1,0和0,1上单调递减,当x=-1时,取极大值-2,当x=1时,取极小值2.7.函数fx的定义域为开区间a,b,导函数fx在a,b内的图象如图所示,则函数fx在开区间a,b内有极小值点A.1个 B.2个C.3个 D.4个[答案] A[解析] 由fx的图象可知,函数fx在区间a,b内,先增,再减,再增,最后再减,故函数fx在区间a,b内只有一个极小值点.8.已知函数y=x-ln1+x2,则函数y的极值情况是A.有极小值B.有极大值C.既有极大值又有极小值D.无极值[答案] D[解析] ∵y=1-11+x2x2+1=1-2xx2+1=x-12x2+1令y=0得x=1,当x1时,y0,当x1时,y0,函数无极值,故应选D.9.已知函数fx=x3-px2-qx的图象与x轴切于1,0点,则函数fx的极值是 A.极大值为427,极小值为0B.极大值为0,极小值为427C.极大值为0,极小值为-427D.极大值为-427,极小值为0[答案] A[解析] 由题意得,f1=0,p+q=1①f1=0,2p+q=3②由①②得p=2,q=-1.fx=x3-2x2+x,fx=3x2-4x+1=3x-1x-1,令fx=0,得x=13或x=1,极大值f13=427,极小值f1=0.10.下列函数中,x=0是极值点的是A.y=-x3 B.y=cos2xC.y=tanx-x D.y=1x[答案] B[解析] y=cos2x=1+cos2x2,y=-sin2x,x=0是y=0的根且在x=0附近,y左正右负,x=0是函数的极大值点.二、填空题11.函数y=2xx2+1的极大值为______,极小值为______.[答案] 1-1[解析] y=21+x1-xx2+12,令y0得-11,令y0得x1或x-1,当x=-1时,取极小值-1,当x=1时,取极大值1.12.函数y=x3-6x+a的极大值为____________,极小值为____________.[答案] a+42 a-42[解析] y=3x2-6=3x+2x-2,令y0,得x2或x-2,令y0,得-22,当x=-2时取极大值a+42,当x=2时取极小值a-42.13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a =______,b=________.[答案] -3-9[解析] y=3x2+2ax+b,方程y=0有根-1及3,由韦达定理应有14.已知函数fx=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.[答案] -2,2[解析] 令fx=3x2-3=0得x=1,可得极大值为f-1=2,极小值为f1=-2,y=fx的大致图象如图观察图象得-22时恰有三个不同的公共点.三、解答题15.已知函数fx=x3-3x2-9x+11.1写出函数fx的递减区间;2讨论函数fx的极大值或极小值,如有试写出极值.[解析] fx=3x2-6x-9=3x+1x-3,令fx=0,得x1=-1,x2=3.x变化时,fx的符号变化情况及fx的增减性如下表所示:x -,-1 -1 -1,3 3 3,+fx + 0 - 0 +fx 增极大值f-1 减极小值f3 增1由表可得函数的递减区间为-1,3;2由表可得,当x=-1时,函数有极大值为f-1=16;当x=3时,函数有极小值为f3=-16.16.设函数fx=ax3+bx2+cx,在x=1和x=-1处有极值,且f1=-1,求a、b、c的值,并求出相应的极值.[解析] fx=3ax2+2bx+c.∵x=1是函数的极值点,-1、1是方程fx=0的根,即有又f1=-1,则有a+b+c=-1,此时函数的表达式为fx=12x3-32x.fx=32x2-32.令fx=0,得x=1.当x变化时,fx,fx变化情况如下表:x -,-1 -1 -1,1 1 1,+fx + 0 - 0 +fx ? 极大值1 ? 极小值-1 ?由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.17.已知函数fx=ax3+bx2-3x在x=1处取得极值.1讨论f1和f-1是函数fx的极大值还是极小值;2过点A0,16作曲线y=fx的切线,求此切线方程.[解析] 1fx=3ax2+2bx-3,依题意,f1=f-1=0,即解得a=1,b=0.fx=x3-3x,fx=3x2-3=3x-1x+1.令fx=0,得x1=-1,x2=1.若x-,-11,+,则fx>0,故fx在-,-1上是增函数,fx在1,+上是增函数.若x-1,1,则fx<0,故fx在-1,1上是减函数.f-1=2是极大值;f1=-2是极小值.2曲线方程为y=x3-3x.点A0,16不在曲线上.设切点为Mx0,y0,则点M的坐标满足y0=x30-3x0.∵fx0=3x20-1,故切线的方程为y-y0=3x20-1x-x0.注意到点A0,16在切线上,有16-x30-3x0=3x20-10-x0.化简得x30=-8,解得x0=-2.切点为M-2,-2,切线方程为9x-y+16=0.18.2021北京文,18设函数fx=a3x3+bx2+cx+da0,且方程fx-9x=0的两个根分别为1,4.1当a=3且曲线y=fx过原点时,求fx的解析式;2若fx在-,+内无极值点,求a的取值范围.[解析] 本题考查了函数与导函数的综合应用.由fx=a3x3+bx2+cx+d得fx=ax2+2bx+c∵fx-9x=ax2+2bx+c-9x=0的两根为1,4.1当a=3时,由*式得,解得b=-3,c=12.又∵曲线y=fx过原点,d=0.故fx=x3-3x2+12x.2由于a0,所以“fx=a3x3+bx2+cx+d在-,+内无极值点”等价于“fx=ax2+2bx+c0在-,+内恒成立”由*式得2b=9-5a,c=4a.又∵=2b2-4ac=9a-1a-9解得a[1,9],即a的取值范围[1,9].感谢您的阅读,祝您生活愉快。

高三数学利用导数求最值和极值试题

高三数学利用导数求最值和极值试题

高三数学利用导数求最值和极值试题1. 函数f(x)=x 3-x 2-3x -1的图象与x 轴的交点个数是________.【答案】3【解析】f′(x)=x 2-2x -3=(x +1)(x -3),函数在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f(x)极小值=f(3)=-10<0,f(x)极大值=f(-1)=>0知函数f(x)的图象与x 轴的交点个数为3.2. 已知函数f (x )=x 3+ax 2+x +2(a >0)的极大值点和极小值点都在区间(-1,1)内,则实数a 的取值范围是( ). A .(0,2] B .(0,2) C .[,2) D .(,2)【答案】D【解析】由题意可知f ′(x )=0的两个不同解都在区间(-1,1)内.因为f ′(x )=3x 2+2ax +1,所以根据导函数图象可得又a >0,解得<a <2,故选D.3. 已知且关于的函数在上有极值,则与的夹角范围是( ) A .B .C .D .【答案】B 【解析】 ,因为在上有极值,所以【考点】有解,,即,,所以],故选B.【考点】1.函数的导数;2.向量的数量积以及向量的夹角.4. 不等式的解集为,且,则实数的取值范围是( )A .B .C .D .【答案】A【解析】①当时,不等式对任意实数恒成立;②当时,不等式可变形为,由不等式的解集为,且设,令,解得. 当时,,函数单调递减;当时,,函数单调递增.由此可知,当时,函数取得极小值,也即最小值,且..故选A.【考点】利用导数研究函数的极值5.记函数的最大值为M,最小值为m,则的值为( ) A.B.C.D.【答案】A【解析】由已知得,,解得,所以函数的定义域是. 已知函数求导得,,时,当时,,当时,,所以在区间上先增后减,最大值是,因为,,所以,所以.【考点】1.利用导数研究函数的最值;2.函数的单调性与导数的关系6.设.(Ⅰ)若对一切恒成立,求的取值范围;(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;(Ⅲ)求证:.【答案】(Ⅰ);(Ⅱ);(Ⅲ)详见解析【解析】(Ⅰ)∴对一切恒成立等价于恒成立.这只要求出函数的最小值即可.(Ⅱ)直线的斜率为:由题设有,不妨设则这样问题转化为函数,在上单调递增所以恒成立,即对任意,恒成立这样只需求出的最小值即可.(Ⅲ)不等式可变为由(Ⅰ) 知(时取等号),在此不等式中取得:变形得:取得:变形得:取得:变形得:取得:变形得:将以上不等式相加即可得证.试题解析:(Ⅰ)令,则由得.所以在上单调递增, 在单调递减.所以由此得:又时,即为此时取任意值都成立综上得:(II)由题设得,直线AB的斜率满足:,不妨设,则即:令函数,则由以上不等式知:在上单调递增,所以恒成立所以,对任意,恒成立又=故(Ⅲ)由(Ⅰ) 知时取等号),取,得即累加得所以【考点】1、函数的导数及其应用;2、不等关系及重要不等式;3、不等式的证明.7.已知函数只有一个零点,则实数m的取值范围是()A.B.∪C.D.∪【答案】B【解析】求导得:,所以的极大值为,极小值为.因为该函数只有一个零点,所以或,所以,选B.【考点】1、导数的应用;2、函数的零点;3、解不等式.8.已知且,现给出如下结论:①;②;③;④.其中正确结论的序号为:()A.①③B.①④C.②④D.②③【答案】D【解析】,函数在处取得极大值,在处取得极小值,由知函数有3个零点,则有,即解得,即,,所以,.【考点】1.函数的极值;2.函数的零点.9.设函数有三个零点,且则下列结论正确的是()A.B.C.D.【答案】C【解析】先求导数,令,解得故+0—0+又因为,,,,综合以上信息可得示意图如右,由图可知,.【考点】考查函数的零点.10.已知函数,且函数在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则的取值范围为( )A.B.C.D.【答案】B【解析】试题分析:因为函数在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,所以即画出可行域如图所示,为可行域内的点到的距离的平方,由图可知,距离的最小值为距离的最大值为,所以的取值范围为【考点】本小题主要考查导数与极值的关系以及线性规划的应用.点评:对于此类问题,必须牢固掌握导数的运算,利用导数求单调性以及极值和最值.本题导数与线性规划结合,学生必须熟练应用多个知识点,准确分析问题考查的实质,正确答题.11.已知函数既存在极大值又存在极小值,则实数的取值范围是_______________【答案】或;【解析】本试题主要是考查了一元三次函数的极值问题的运用。

完整版)导数与极值、最值练习题

完整版)导数与极值、最值练习题

完整版)导数与极值、最值练习题三、知识新授一)函数极值的概念函数极值指的是函数在某个点上的最大值或最小值,包括极大值和极小值。

二)函数极值的求法:1)确定函数的定义域,并求出函数的导数f'(x);2)解方程f'(x)=0,得到方程的根x(可能不止一个);3)如果在x附近的左侧f'(x)>0,右侧f'(x)<0,则f(x)是极大值;反之,则f(x)是极小值。

题型一图像问题1、函数f(x)的导函数图像如下图所示,则函数f(x)在图示区间上()第二题图)A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2、函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图像如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个3、若函数f(x)=x+bx+c的图像的顶点在第四象限,则函数f'(x)的图像可能为()图略)4、设f'(x)是函数f(x)的导函数,y=f'(x)的图像如下图所示,则y=f(x)的图像可能是()图略)A。

B。

C。

D。

5、已知函数f(x)的导函数f'(x)的图像如右图所示,那么函数f(x)的图像最有可能的是()图略)6、f'(x)是f(x)的导函数,f'(x)的图像如图所示,则f(x)的图像只可能是()图略)A。

B。

C。

D。

7、如果函数y=f(x)的图像如图,那么导函数y=f'(x)的图像可能是()图略)ABCD8、如图所示是函数y=f(x)的导函数y=f'(x)图像,则下列哪一个判断可能是正确的()图略)A.在区间(-2,0)内y=f(x)为增函数B.在区间(0,3)内y=f(x)为减函数C.在区间(4,+∞)内y=f(x)为增函数D.当x=2时y=f(x)有极小值9、如果函数y=f(x)的导函数的图像如图所示,给出下列判断:①函数y=f(x)在区间(-3,-1/2)内单调递增;②函数y=f(x)在区间(-1/2,2)内单调递减。

高中数学导数的应用——极值与最值专项训练题(全)

高中数学导数的应用——极值与最值专项训练题(全)

高中数学导数的应用——极值)全(与最值专项训练题.高中数学专题训练导数的应用——极值与最值一、选择题123)和,.函数y=ax则+bx(取得极大值和极小值时的x的值分别为0130 b=2a-2b=0B.A.a-0 =+2b D.a2C.a+b=0 D答案 2bx,据题意,+2ax=3y解析′1 的两根bx=0是方程3ax+22、031b20.=+2=∴,∴a3a3x) x=(2.当函数y=x·2取极小值时,11 B.- A ln2ln2ln2 D..-ln2 C B答案2·=2+x得y′xxx ln22·解析由y=x·2得y′=0令x0=+x·ln2)(11=-,∴x∵2>0x ln23) (0,1)内有极小值,则(3bx+3bx3.函数f(x)=在-1<B.b0<b<1 .A1C.b>0 D.b 2答案 A-3b在(0,1)上先负后正,∴f′(0)2x=3′则f(x)(解析fx)在(0,1)内有极小值,=-3b<0,∴b>0,f′(1)=3-3b>0,∴b<1综上,b的范围为0<b<14.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是()A.x=-1一定是函数f(x)的极大值点B.x=-1一定是函数f(x)的极小值点C.x=-1不是函数f(x)的极值点D.x=-1不一定是函数f(x)的极值点答案B解析x>-1时,f′(x)>0)<0x(′f时,1-<x为极小值=-1单减,在(-1,+∞)单增,∴x∞∴连续函数f(x)在(-,-1) 点.3x2)-3x-4在[0,2]上的最小值是5.函数y=+x(31017 .-B.-A336 4 D.-C.-3A答案3.2x-+2x=解析y′=1为极值点.,x=-3或x=令y′=x+2x-302时,函数取得极=1时,y′>0,所以当x时,当x∈[0,1]y′<0.当x∈[1,2] 小值,也为最小值.17=-y∴当x=1时. min3)(x)的图象,如右图所示,则(.函数6f(x)的导函数f′是最小值点.x =1A 是极小值点.x=0B x.=2是极小值点C )在(1,2)上单增D.函数f(x C 答案2为极大值点,x=xx=2为两极值点,=0x解析由导数图象可知,=0,C. 为极小值点,选71322)与f(-1)的大小关系为(x-,则f(-a).已知函数7f(x=x-x)222)≤f(--A.f(a1)2)<f(-f(-a1) B.2)≥f(-(C.f-a1)2的大小关系不确定1)-(f与)a-(f.D.A答案73-x-22.x=由题意可得f′(x)解析2271=由f′x)(.=1=-或xx+1)=0,得x(3x-7)(327是函1)f(-时,f(x)为减函数.所以(当x<-1时,fx)为增函数;当-1<x<3a0]上的最大值,又因为-在x)(-∞,数f(22.)≤f(-≤0,故f(-a1) )-x·xe8.函数f(x)=,则(A.仅有极小值e2 .仅有极大值Be21 ,极大值C.有极小值0e2 .以上皆不正确D B 答案x21-11e=xxxx----.·x=+·eex)=-e(-x·(解析f′x2x22x1=,得xx)=0令f′(.21 x)<0f′(;当x时,21)>0.′(时,fx当x21111=时取极大值,xf(.)·222ee2 二、填空题2=b=1和x=2处有极值,则a=________bx9.若y =alnx+,+x在x________.1 答案-63a1.bx++2=′解析y2??01=+2b+a=-a?3??,解得由已知 a10+4b+1=???=-b26123取得极)时,函数2f(x,c(bc为常数).当x=x10.已知函数f()=x-bx+3________的取值范围为)只有三个零点,则实数cf值,若函数(x4 <0<c答案31-bx +c,∴f′(x)=x-2bx,∵x=2时,f(x)取得极值,∴223x(∵解析f)x=3.1.0,解得b=-2b×2=22单)(x∞∈(-,0) 或x∈(2,+∞)时,f∴当x∈(0,2)时,f(x)单调递减,当x 调递增.个实根,有3若f(x)=0?>0c0f??=4?<c,解得则0 13,<0-2+c232×f?2?=?3x的取值范有大于零的极值点,则y=em+2mx(x∈R)11.设m∈R,若函数围是________. m<-答案2=+2mx∈R)有大于零的极值点,所以y′=e2+mx(xx e=因为函数y解析,则两曲线的交点必在第一象限.由图2m,y=-x e有大于0的实根.令y=0211-,即m<象可得-2m>1.223,则极小值为x轴相切于-px(1,0)-qx的图象与xf12.已知函数(x)=________.0答案,-2px-q2x=3解析f′(x)0. =(1)=3-2p-q由题知f′ 01-p-q =,又f(1)=1. 联立方程组,解得p=2,q=-1. x+x-43x-2x+x,f′(x)==∴f(x)232,1=0xf′(x)=3-4x+由21,或x=1解得x=3 是函数的极小值点,x=1经检验知0. =f(1)x∴f()=极小值三、解答题的单调区间与极)fx<2π,求函数(x+=13.设函数f(x)sinx-cosx+x1,0<值. x<2π,<xf(x)=sin-cosx+x+1,0解析由,+1+f知′(x)=cosxsinxπ+2sin(1于是f′(x)=x).4ππ23=x=xπ,或sin()f令′(x=0,从而x+,得.=-)422 的变化情况如下表:)x(f,)x(′f变化时,x当.π3π33π (0x,π) π () π (,2π,)222 -++ 0 0f′(x)3 单调递增 f)(x 单调递减+2 单调递增ππ2π3,π,单调递减区间是(,因此,由上表知f(x)的单调递增区间是(0,π)与(2π)2π3π3π32. +)=π,极大值为f(π=)f),极小值为22223.214.设函数f(x)=6x++3(a2)xax+的值;,(1)若f(x)的两个极值点为xx,且xx=1,求实数a2211上的单调函数?若存在,求出是否存在实数(2)a,使得f(x)是(-∞,+∞) a的值;若不存在,说明理由..2a+6(a+2)x+2x18)′(x=解析fa2 =1,所以a=9;=(1)由已知有f′(x)=f′(x)xx=0,从而221118 4)>0,36(a+a-4×18×2=222)+36(a(2)由于Δ=上的单调函数.,+∞)是所以不存在实数a,使得f(x)(-∞2为常数.3),其中15.已知定义在R上的函数xf()=xa(ax-的值;)的一个极值点,求=(1)若x1是函数af(x 上是增函数,求a的取值范围.x(2)若函数f()在区间(-1,0) -2).-3x,f′(x)=3ax-6x=3x(ax223ax)(1)f(x=解析2.=a∵x=1是f(x)的一个极值点,∴f′(1)=0,∴符0在区间(-1,0)上是增函数,∴a=2x3)=-时,f(x=(2)解法一①当a0 合题意;22-(x②当aax ≠0时,f′(x)=3. ==),令f′(x)=0得:x0,x21aa -(1,0),f′(x)>0,∴a>0符合题意;当a>0时,对任意x∈22,∴时,f′(∈,0)x)>0a当<0时,当x -1,∴-≤≤a<0符合题意;aa2.≥综上所述,a-2≥a,6≤0∴上恒成立,6-x≥0在区间(-1,0)∴3ax-2ax)=3(解法二f′xx222.a≥-,∴(在区间-1,0)上恒成立,=-<x1-2.x(x)=-x+ax+1-ln.已知函数16f1 )在a上是减函数,求的取值范围;(0)((1)若fx2若不a是否既有极大值又有极小值?若存在,求出的取值范围;x(2)函数f() 存在,请说明理由.111,(0在xf,∵()时-x′(1)解析f()),∈-ax2=-+x 上为减函数,∴(0)x22.11 恒成立.+xa<2<02x +a -恒成立,即xx1111-=2′(x)设g(x)=2x +,则g 在)g(x ′.∵x ∈(0,)时>4,∴g(x)<0,∴22xx2x113.,∴()=3a ≤(0,)上单调递减,g(x)>g22必须有两个不等的正实数根′(x)=0(2)若f(x)既有极大值又有极小值,则f有两个不等的正实数根.1=0+-ax 2x2x ,x ,即21 >0Δ? 8>0-??2a 应满足故a ?? 2?>2?a 时,>22,∴当a>0??>0a2? x)=0有两个不等的实数根,f ′( x<x ,不妨设2121=-1)=--ax +由f ′(x)2,)<0(x<x -x)(x -x)知,0<(2xxx 时f ′(112xx ,x ′(x)>0,x>x 时f ′()<0时x<x<xf 212 .(x)既有极大值fx)又有极小值f(x)∴当2>2时f(12 12,0)-∈(a),当xln∈y1. 已知=f(x)是奇函数,当x(0,2)时,f(x)=x-ax(2 .a1,则的值等于________f时,(x)的最小值为1答案上的最大值为-1,f解析∵f(x)是奇函数,∴(x)在(0,2)11110<>,∴得(x)=0x,又a,令=′∈当x(0,2)时,f(x)-af′<2.axa211,(0f(x)在<x令f′()>0,则x,∴ )上递增;aa11 上递减,()(,∴>,则x′令f()<0xfx在2),aa11111.=0,得a∴f(x)=f(-a·=-1,∴ln=ln=)max aaaa23==2x2+3ax时取得极值.+3bx+8c在x=1及x(2.设函数fx) 、b的值;(1)求a2 c(2)若对任意的x∈[0,3],都有f(x)<c的取值范围.成立,求,ax+6+3b2x =6解(1)f′(x)时取得极值,因为函数f(x)在x =1及x =2 0则有f ′(1)=0,f ′(2)=, ?,0b =6a +36+?4. =,b 解得a =-3即??0.b =3+12a +24? ,x +8c -9x +1223x2(2)由(1)可知,f(x)= x -2).x +12=6(x -1)(-182xx6)=f ′( ;x)<0∈;当x(1,2)时,f ′(当x ∈(0,1)时,f ′(x )>0)>0.(x ′当x ∈(2,3)时,f. c =)取得极大值f(1)5+8所以,当x =1时,f(x ,f(3)=9+8c 又f(0)=8c ,. (3)=9+8cf 则当x ∈[0,3]时,f(x)的最大值为 f(xc 恒成立,)<因为对于任意的x ∈[0,3],有2>9.c -<1或所以9+8c<c ,解得c 2 ∞,+).因此c 的取值范围为(-∞,-1)∪(9231. x3.已知函数f(x)=x +-3ax +3 )的单调区间;(1)设a =2,求f(x 的取值范围.(2)设f(x)在区间(2,3)中至少有一个极值点,求a -2x2--3)(,f′(x)=3(x+-6x3x+123xa=)=x2时,f((1)解析当 3). 3)∞,2上单调增加;f(x)在(--当x∈(∞,2f3)时′(x)>0 (x)在(2上单调减少;3,23)x当∈(2)3,23)时f′(x<0,f 上单调增加.x)在(2,+3∞)(′当x∈(23,+∞)时f(x)>0,f的单调减区x)3,+∞),fx综上,f()的单调增区间是(-∞,23)和(2( +(3)3,2.间是a1-+22])((2)f′x)=3[(x-a.a-当12x)无极值点;(0≥,f(x)为增函数,故f(0≥时,f′x) 有两个根,x′()=0时,a当1-<0f21.-+a,-1=xa22a=xa-21,①3aa2由题意知,<-<1-2.②1<或2<a3.+a-255<①式无解.②式的解为<a.3455,的取值范围是(因此a ).34,axf()在区间[为函数y=f(x)的零点.若函数y==1.“我们称使f(x)0的x上]在区间[a,b(b)<0,则函数y=f(x)b]上是连续的,单调的函数,且满足f(a)·f2,2x-=6ln(x+1)-x1+f有唯一的零点”.对于函数(x) 在其定义域内的单调性,并求出函数极值.f(x)(1)讨论函数[2,+∞)内只有一个零点.)(2)证明连续函数f(x在∞),,+x-1定义域为(-1+22x-+1)6ln((1)解:f(x)=x解析2x-286).舍去x0?=2(--2x+2,f′(x)==且f′(x)11xx+),+(1,2x取得极大值 f(x)由表可知,f(x)值在区间(-1,2]上单调递增,在[2,+∞)上单调递减.∴当x=2时,f(x)的极大值为f(2)=6ln3-1.(2)证明:由(1)知f(2)=6ln3-1>0,f(x)在[2,7]上单调递减,又f(7)=6ln8-36=18(ln2-2)<0,∴f(2)·f(7)<0.∴f(x)在[2,7]上有唯一零点.当x∈[7,+∞)时,f(x)≤f(7)<0,故x∈[7,+∞)时,f(x)不为零.∴y=f(x)在[7,+∞)上无零点.∴函数f(x)=6ln(x+1)-x 在定义域内只有一个零点.1-x2+2..>0)+ax(a江西高考)设函数f(x)=ln x+ln (2-x)2.(2010·的单调区间;f(x)(1)当a=1时,求1 a的值.在(0,1]上的最大值为,求(2)若f(x)2 (0,2),x)的定义域为解析函数f(11.-+a=x)f′(xx2-2+-x2,单调x)的单调递增区间为(2,所以f(=x)=1时,f′((1)当a?xx?2-,2)递减区间为2x22-,+a>0=)′(x当x∈(0,1]时,f(2)?x?2-x1即f(x)在(0,1]上单调递增,故f(x)在(0,1]上的最大值为f(1)=a,因此a=.232+9x+3xa(3.已知函数fx)=-x. +(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.分析本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.+6x+9. 2x3(1)f′(x)=-解令f′(x)<0,解得x<-1,或x>3,∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,∴f(2)>f(-2).∵在(-1,3)上f′(x)>0,∴f(x)在(-1,2]上单调递增.又由于f(x)在[-2,-1)上单调递减,∴f(-1)是f(x)的极小值,且f(-1)=a-5.∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.∴f(x)=-x+3x+9x-2. 23∴f(-1)=a-5=-7,即函数f(x)在区间[-2,2]上的最小值为-7..)R∈x(xe=)x(f.已知函数4.-x的单调区间和极值;(1)求函数f(x)对称.证明x)的图象关于直线x=1已知函数(2)y=g(x)的图象与函数y=f( >g(x);当x>1时,f(x)2.),证明x+x>≠x,且f(x)=f(x(3)如果x212211x-. x)e(1)解析f′(x)=(1-1.=0,解得x=令f′(x)的变化情况如下表x当变化时)1(,+x-∞x极大值f(x)内是减函数.内是增函数,在(1,+∞)f(x)在(-∞,1)所以1=(1)处取得极大值f(1),且f函数f(x)在x=1. e2x-. )e(),得gx)=(2-x(2)由题意可知g(x)=f(2-x ,x-2)e,即F(x)=xe+(令F(x)=f(x)-g(x)x-2x-e--1)(e1)F′(x)=(x于是x-22x-.从而x)>0.,又e>0.所以F′(x>1时,2x-2>0,从而e-1>0当x-22x -,+∞)上是增函数.函数F(x)在[1 x).f(x)>g(x>1时,有F(x)>F(1)=0,即=又F(1)=e-e0,所以11--矛≠x,与x=x=1x,由(1)及f(x)=f(x),得x(3)①若(-1)(x-1)=021221211盾. x矛盾.=x,与x≠x及f(x)=f(),得x-②若(x-1)(x1)>0,由(1)212111221.><,不妨设x1,x根据①②得(x-1)(x-1)<02211)(xx),从而f,所以f(x)>f(2-xf(x>)g(x),g(x)=f(2-)(2)由可知,12222221),在区间(-∞1,又由(1)可知函数f(x)>>f(2-x),因为x1,所以2-x<2222. >,即x+x内是增函数,所以x>2-x22113223.x-1)g(x)=5.已知函数f(x)=ax-ax3(,函数2 x)的公共单调区间;(x)和g((1)当a>0时,求f )的极小值;(x)-gx当a>2时,求函数h(x)=f((2) )的解的个数.)=g(x(3)讨论方程f(x,x>1x<0或x>0,由f′()>0得1)3-ax=3ax(x-,又a2ax(′x)=(1)解f3f′(x)<0得0<x<1,即函数f(x)的单调递增区间是(-∞,0)与(1,+∞)由,单调递减区间是(0,1),而函数g(x)的单调递减区间是(-∞,1),单调递增区间是(1,+∞),故两个函数的公共单调递减区间是(0,1),公共单调递增区间是(1,+∞).32--3(x-1),h′(x)=3ax-3(a+2)x+6=3a(x-2322)((2)ax=x(h)xax-a2.22由于,x=1或的极小值点,(x)易知(1),令h′x)=0,得x=x=1为函数h<1,aaa=-(1))的极小值为h∴h(x.23 ,-3+-6x23xφ((a+x)=ax2)gx)=f(x)-((3)令22-xa(x+6=3-3(a+2)2ax=3φ′(x) ,-1))(xa轴只有一个交点,即方xxφ()的图象与=①若a0,则φ(x)=-3(x-1),∴2只有一个解;g(x)程f(x)=6a42-x)的极大值为φ(1)=-+②若a<0,则φ(=-)的极小值为φ(>0,φ(x)2aaa2 3<0,g(x)有三个解;的图象与φ(x)x轴有三个交点,即方程f(x)=∴a=-x)的极大值为φ(1)③若0<a<2,则φ(轴只有一个x)的图象与x∴<0,φ(2 只有一个解;x)(交点,即方程f(x)=g1)x-6(,则φ′(x)=2④若a=2轴只x))单调递增,∴φ(x的图象与φ≥0,(x 只有一个解;=g(x))有一个交点,即方程f(x3231⑤若a>2,由(2)知φ(x)的极大值为φ--<0,∴φ(4)=-))的图象与aa44x轴只有一个交点,即方程f(x)=g(x)只有一个解.afxgxafxgx)=只有一个解;若,方程综上知,若≥0()=()<0,方程()( 有三个解.。

导数与函数的极值、最值

导数与函数的极值、最值

导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由.[解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增. 因此函数f (x )有两个极值点.③当a <0时,Δ>0,由g (-1)=1>0, 可得x 1<-1<x 2.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 所以函数f (x )有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.考法(二) 已知函数的极值点的个数求参数[例3] 已知函数g (x )=ln x -mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.[解] 因为g (x )=ln x -mx +mx,所以g ′(x )=1x -m -mx 2=-mx 2-x +m x 2(x >0),令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m>0,h ⎝⎛⎭⎫12m <0,解得0<m <12.所以m 的取值范围为⎝⎛⎭⎫0,12. 考法(三) 已知函数的极值求参数[例4] (2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 考点二 利用导数研究函数的最值[典例精析]已知函数f (x )=ln x x -1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m,2m ]上的最大值.[解] (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2, 由⎩⎪⎨⎪⎧f ′(x )>0,x >0,得 0<x <e ;由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e.所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e 2时,函数f (x )在区间[m,2m ]上单调递增,所以f (x )max =f (2m )=ln (2m )2m-1;②当m <e <2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e,2m )上单调递减,所以f (x )max =f (e)=ln e e -1=1e-1; ③当m ≥e 时,函数f (x )在区间[m,2m ]上单调递减, 所以f (x )max =f (m )=ln mm-1.综上所述,当0<m ≤e 2时,f (x )max =ln (2m )2m -1;当e 2<m <e 时,f (x )max =1e -1; 当m ≥e 时,f (x )max =ln mm-1. [题组训练]1.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-3322.已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值. (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.解:(1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0,又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x ,令f ′(x )=0,得x 1=12,x 2=1.当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:所以f (x )的单调递增区间为⎝⎭⎫0,12,(1,+∞),单调递减区间为⎝⎛⎭12,1. (2)由(1)知f ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x(x >0),令f ′(x )=0,得x 1=1,x 2=12a, 因为f (x )在x =1处取得极值,所以x 2=12a≠x 1=1.①当a <0,即12a <0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减,所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2. ②当a >0,即x 2=12a>0时,若12a <1,f (x )在⎝⎛⎭⎫0,12a ,[1,e]上单调递增,在⎣⎡⎭⎫12a ,1上单调递减,所以最大值可能在x =12a 或x =e 处取得,而f ⎝⎛⎭⎫12a =ln 12a +a ⎝⎛⎭⎫12a 2-(2a +1)·12a =ln 12a -14a-1<0, 令f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2. 若1<12a <e ,f (x )在区间(0,1),⎣⎡⎦⎤12a ,e 上单调递增,在⎣⎡⎭⎫1,12a 上单调递减, 所以最大值可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 令f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<x 2=12a <e 矛盾.若x 2=12a ≥e ,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x=1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾.综上所述,a =1e -2或a =-2.考点三 利用导数求解函数极值和最值的综合问题[典例精析](2019·贵阳模拟)已知函数f (x )=ln x +12x 2-ax +a (a ∈R).(1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.[解] (1)∵f ′(x )=1x+x -a (x >0),又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0, 即1x +x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min , 而x +1x≥2x ·1x=2,当且仅当x =1时取“=”,∴a ≤2. 即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2]. (2)∵f (x )在x =x 1和x =x 2处取得极值, 且f ′(x )=1x +x -a =x 2-ax +1x (x >0),∴x 1,x 2是方程x 2-ax +1=0的两个实根, 由根与系数的关系得x 1+x 2=a ,x 1x 2=1,∴f (x 2)-f (x 1)=ln x 2x 1+12(x 22-x 21)-a (x 2-x 1)=ln x 2x 1-12(x 22-x 21)=ln x 2x 1-12(x 22-x 21)1x 1x 2=ln x 2x 1-12⎝⎛⎭⎫x 2x 1-x 1x 2, 设t =x 2x 1(t ≥ e),令h (t )=ln t -12⎝⎛⎭⎫t -1t (t ≥ e), 则h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0,∴h (t )在[e ,+∞)上是减函数, ∴h (t )≤h (e)=12⎝⎛⎭⎫1- e +ee ,故f (x 2)-f (x 1) 的最大值为12⎝⎛⎭⎫1- e +ee .[题组训练]已知函数f (x )=ax 2+bx +ce x (a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f (-3)=9a -3b +ce -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e-5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.[课时跟踪检测]A 级1.函数f (x )=x e -x ,x ∈[0,4]的最小值为( )A .0 B.1e C.4e4 D.2e2 解析:选A f ′(x )=1-xex ,当x ∈[0,1)时,f ′(x )>0,f (x )单调递增, 当x ∈(1,4]时,f ′(x )<0,f (x )单调递减,因为f (0)=0,f (4)=4e 4>0,所以当x =0时,f (x )有最小值,且最小值为0.2.若函数f (x )=a e x -sin x 在x =0处有极值,则a 的值为( ) A .-1 B .0 C .1D .e解析:选C f ′(x )=a e x -cos x ,若函数f (x )=a e x -sin x 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意,故选C.3.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( ) A .15 B .16 C .17D .18解析:选D 因为x =2是函数f (x )=x 3-3ax +2的极小值点,所以f ′(2)=12-3a =0,解得a =4,所以函数f (x )的解析式为f (x )=x 3-12x +2,f ′(x )=3x 2-12,由f ′(x )=0,得x =±2,故函数f (x )在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时,函数f (x )取得极大值f (-2)=18.4.(2019·合肥模拟)已知函数f (x )=x 3+bx 2+cx 的大致图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163解析:选C 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,则x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两个不同的实数根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 5.(2019·泉州质检)已知直线y =a 分别与函数y =e x+1和y = x -1交于A ,B 两点,则A ,B 之间的最短距离是( )A.3-ln 22B.5-ln 22C.3+ln 22D.5+ln 22解析:选D 由y =e x+1得x =ln y -1,由y =x -1得x =y 2+1,所以设h (y )=|AB |=y 2+1-(ln y -1)=y 2-ln y +2,h ′(y )=2y -1y =2⎝⎛⎭⎫y -22⎝⎛⎭⎫y +22y (y >0),当0<y <22时,h ′(y )<0;当y >22时,h ′(y )>0,即函数h (y )在区间⎝⎛⎭⎫0,22上单调递减,在区间⎝⎛⎭⎫22,+∞上单调递增,所以h (y )min =h ⎝⎛⎭⎫22=⎝⎛⎭⎫222-ln 22+2=5+ln 22.6.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ), 由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数f (x )单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数f (x )单调递增,∴f (x )的极大值为f (-a ),极小值为f (a ).∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是⎝⎛⎭⎫22,+∞. 答案:⎝⎛⎭⎫22,+∞7.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a ,当0<x <1a 时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝⎛⎭⎫1a =-ln a -1=-1,解得a =1. 答案:18.(2018·内江一模)已知函数f (x )=a sin x +b cos x (a ,b ∈R),曲线y =f (x )在点⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π3处的切线方程为y =x -π3.(1)求a ,b 的值;(2)求函数g (x )=f ⎝⎛⎭⎫x +π3x 在⎝⎛⎦⎤0,π2上的最小值.解:(1)由切线方程知,当x =π3时,y =0,∴f ⎝⎛⎭⎫π3=32a +12b =0. ∵f ′(x )=a cos x -b sin x ,∴由切线方程知,f ′⎝⎛⎭⎫π3=12a -32b =1, ∴a =12,b =-32.(2) 由(1)知,f (x )=12sin x -32cos x =sin ⎝⎛⎭⎫x -π3,∴函数g (x )=sin x x ⎝⎛⎭⎫0<x ≤π2,g ′(x )=x cos x -sin x x 2.设u (x )=x cos x -sin x ⎝⎛⎭⎫0≤x ≤π2,则u ′(x )=-x sin x <0,故u (x )在⎣⎡⎦⎤0,π2上单调递减.∴u (x )<u (0)=0,∴g (x )在⎝⎛⎦⎤0,π2上单调递减.∴函数g (x )在 ⎝⎛⎦⎤0,π2上的最小值为g ⎝⎛⎭⎫π2=2π. 9.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2=ax -1x 2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a ,所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a ,无极大值. (2)不存在,理由如下:由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增. ①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎣⎡⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a =0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件. ③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e =0,即a =-1e ,而0<a <1e,故不满足条件.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.B 级1.(2019·郑州质检)若函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( )A .a =3,b =-3或a =-4,b =11B .a =-4,b =-3或a =-4,b =11C .a =-4,b =11D .以上都不对解析:选C 由题意,f ′(x )=3x 2-2ax -b ,则f ′(1)=0,即2a +b =3.①f (1)=1-a -b +a 2=10,即a 2-a -b =9.②联立①②,解得⎩⎪⎨⎪⎧ a =-4,b =11或⎩⎪⎨⎪⎧a =3,b =-3. 经检验⎩⎪⎨⎪⎧a =3,b =-3不符合题意,舍去.故选C. 2.(2019·唐山联考)若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(a -1,a +1)内存在极值,则实数a 的取值范围是________.解析:由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x,令f ′(x )=0,得x =12⎝⎛⎭⎫x =-12舍去, 则由已知得⎩⎪⎨⎪⎧ a -1≥0,a -1<12,a +1>12,解得1≤a <32. 答案:⎣⎡⎭⎫1,32 3.(2019·德州质检)已知函数f (x )=-13x 3+x 在(a,10-a 2)上有最大值,则实数a 的取值范围是________.解析:由f ′(x )=-x 2+1,知f (x )在(-∞,-1)上单调递减,在[-1,1]上单调递增,在(1,+∞)上单调递减,故函数f (x )在(a,10-a 2)上存在最大值的条件为⎩⎪⎨⎪⎧ a <1,10-a 2>1,f (1)≥f (a ),其中f (1)≥f (a ),即为-13+1≥-13a 3+a ,整理得a 3-3a +2≥0,即a 3-1-3a +3≥0,即(a -1)(a 2+a +1)-3(a -1)≥0,即(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0,即⎩⎪⎨⎪⎧a <1,10-a 2>1,(a -1)2(a +2)≥0,解得-2≤a <1.答案:[-2,1)4.已知函数f (x )是R 上的可导函数,f (x )的导函数f ′(x )的图象如图,则下列结论正确的是( )A .a ,c 分别是极大值点和极小值点B .b ,c 分别是极大值点和极小值点C .f (x )在区间(a ,c )上是增函数D .f (x )在区间(b ,c )上是减函数解析:选C 由极值点的定义可知,a 是极小值点,无极大值点;由导函数的图象可知,函数f (x )在区间(a ,+∞)上是增函数,故选C.5.如图,在半径为103的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其中A ,B 在直径上,C ,D 在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁与拼接损耗),记圆柱形罐子的体积为V ,设AD =x ,则V max =________.解析:设圆柱形罐子的底面半径为r ,由题意得AB =2(103)2-x 2=2πr ,所以r =300-x 2π, 所以V =πr 2x =π⎝ ⎛⎭⎪⎫300-x 2π2x =1π(-x 3+300x )(0<x <103),故V ′=-3π(x 2-100)=-3π(x +10)(x -10)(0<x <103). 令V ′=0,得x =10(负值舍去),则V ′,V 随x 的变化情况如下表:所以当x =10所以V max =2 000π. 答案:2 000π6.已知函数f (x )=ln(x +1)-ax 2+x (x +1)2,其中a 为常数. (1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝⎛⎭⎫1+1x +1xln(1+x )的最大值. 解:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3, ①当-1<2a -3<0,即1<a <32时, 当-1<x <2a -3或x >0时,f ′(x )>0,则f (x )在(-1,2a -3),(0,+∞)上单调递增, 当2a -3<x <0时,f ′(x )<0,则f (x )在(2a -3,0)上单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增. ③当2a -3>0,即a >32时, 当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增,当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减. (2)∵g (x )=⎝⎛⎭⎫x +1x ln(1+x )-x ln x =g ⎝⎛⎭⎫1x , ∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值.令h (x )=g ′(x )=⎝⎛⎭⎫1-1x 2ln(1+x )+⎝⎛⎭⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎫1-1x 2ln(1+x )-ln x +1x-21+x, 则h ′(x )=2x 3⎣⎢⎡⎦⎥⎤ln (1+x )-2x 2+x (x +1)2. 由(1)可知当a =2时,f (x )在(0,1]上单调递减,∴f(x)<f(0)=0,∴h′(x)<0,从而h(x)在(0,1]上单调递减,∴h(x)≥h(1)=0,∴g(x)在(0,1]上单调递增,∴g(x)≤g(1)=2ln 2,∴g(x)的最大值为2ln 2.。

专题15 导数与函数的极值、最值(原卷版)

专题15  导数与函数的极值、最值(原卷版)
基本方法:
1.已知极值求参数。若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反。
2、对于求解析式中含有参数的函数极值问题,一般要对方程f′(x)=0的根的情况进行讨论,分两个层次讨论.第一层次,讨论在定义域内是否有根;第二层次,在有根的条件下,再讨论根的大小.
2023高考一轮复习讲与练
专题15导数与函数的极值、最值
练高考 明方向
1.(2022·全国甲(文T8)(理T6)).当 时,函数 取得最大值 ,则 ()
A. B. C. D. 1
2.(2022·新高考Ⅰ卷T10)已知函数 ,则()
A. 有两个极值点B. 有三个零点
C.点 是曲线 的对称中心D.直线 是曲线 的切线
8.(2019·北京高考理科·T19同2019·北京高考文科·T20)已知函数f(x)= x3-x2+x.
(1)求曲线y=f(x)的斜率为1的切线方程.
(2)当x∈[-2,4]时,求证:x-6≤f(x)≤x.
(3)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a),当M(a)最小时,求a的值.
(2)对于求解析式中含有参数的函数极值问题,一般要对方程f′(x)=0的根的情况进行讨论,分两个层次讨论.第一层次,讨论在定义域内是否有根;第二层次,在有根的条件下,再讨论根的大小.
类型三、含参的极值问题
基本题型:
1.(求参数的值)设函数f(x)=lnx+ax2- x,若x=1是函数f(x)的极大值点,则函数f(x)的极小值为()
基本方法:
求函数f(x)在[a,b]上的最值的方法
(1)若函数在区间[a,b]上单调递增或递减,则f(a)与f(b)一个为最大值,一个为最小值;

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.若函数在(0,1)内有极小值,则()A.0<<1B.<1C.>0D.<【答案】A【解析】,由于存在极值,因此令,得,为函数的极小值,则,解得.【考点】函数的导数与极值.2.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】函数为增函数, 函数为减函数, 当且左侧,右侧时为极小值点,从而只有一个满足,答案选A..【考点】函数的导数与极值3.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.4.已知函数,其中。

(1)若,求函数的极值点和极值;(2)求函数在区间上的最小值。

【答案】(1)极小值点为,极小值为;极大值点为,极大值为;(2)【解析】(1)把代入原函数,求出的导函数,令导函数等于求出根即可得极值点,把极值点代入原函数得极值。

(2)因为,所以把分两种情况来讨论,当时,函数在区间为单调递增函数,最小值为,当时,求出函数的导函数,并令得增区间,令得减区间,最后得出的最小值。

试题解析:解:(1)当时,。

2分令,得或。

所以,在区间上,,函数是增函数;在区间上,,函数是减函数;在区间上,,函数是增函数。

4分[所以,函数的极小值点为,极小值为;极大值点为,极大值为。

8分(2)当时,是R上的增函数,在区间上的最小值为。

(完整版)导数与函数的极值、最值问题(解析版)

(完整版)导数与函数的极值、最值问题(解析版)

导数与函数的极值和最值问题 类型一 利用导数研究函数的极值解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 求方程'()0f x =的根;第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值.例1 已知函数x xx f ln 1)(+=,求函数()f x 的极值. 【答案】极小值为1,无极大值.【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( )A .11或18B .11C .18D .17或18 【答案】C 【解析】试题分析:b ax x x f ++='23)(2,⎩⎨⎧=+++=++∴1010232a b a b a ⎩⎨⎧-==⇒⎩⎨⎧=----=⇒114012232b a a a a b 或⎩⎨⎧=-=33b a .当⎩⎨⎧=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.当⎩⎨⎧-==114b a 时,)1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,311(<'-∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意.所以⎩⎨⎧-==114b a .181622168)2(=+-+=∴f .故选C .【变式演练2】设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为( )A .()1,0-B .()1,-+∞C .()0,+∞D .()(),10,-∞-+∞【答案】B 【解析】【变式演练3】函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】试题分析:因为x m x m x x f )1(2)1(2131)(23-++-=, 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,而()20,4∈,所以只有12m -=,3m =时,()f x 在R 上单调,才合题意,故答案为3.【变式演练4】设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤恒成立,则实数a 的取值范围是 .【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.【变式演练5】已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内, 则实数a 的取值范围是 . 【答案】32a << 【解析】类型二 求函数在闭区间上的最值解题模板:第一步 求出函数()f x 在开区间(,)a b 内所有极值点;第二步 计算函数()f x 在极值点和端点的函数值;第三步 比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.例2 若函数()2x f x e x mx =+-,在点()()1,1f 处的斜率为1e +. (1)求实数m 的值;(2)求函数()f x 在区间[]1,1-上的最大值. 【答案】(1)1m =;(2)()max f x e =. 【解析】试题分析:(1)由(1)1f e '=-解之即可;(2)()21x f x e x '=+-为递增函数且()()1110,130f e f e -''=+>-=-<,所以在区间(1,1)-上存在0x 使0()0f x '=,所以函数在区间0[1,]x -上单调递减,在区间0[,1]x 上单调递增,所以()()(){}max max 1,1f x f f =-,求之即可.试题解析: (1)()2x f x e x m '=+-,∴()12f e m '=+-,即21e m e +-=+,解得1m =; 实数m 的值为1;(2)()21x f x e x '=+-为递增函数,∴()()1110,130f e f e -''=+>-=-<, 存在[]01,1x ∈-,使得()00f x '=,所以()()(){}max max 1,1f x f f =-,()()112,1f e f e --=+=,∴()()max 1f x f e ==【变式演练6】已知函数()ln f x x x =,2()2g x x ax =-+-. 求函数()f x 在[,2](0)t t t +>上的最小值;【答案】(Ⅰ)min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,;. 【解析】试题分析:(Ⅰ)由'()ln 10f x x =+=,得极值点为1x e =,分情况讨论10t e <<及1t e≥时,函数)(x f 的最小值;(Ⅱ)当函数()()y f x g x =+有两个不同的极值点,即'ln 210y x x a =-++=有两个不同的实根1212,()x x x x <,问题等价于直线y a =与函数()ln 21G x x x =-+-的图象有两个不同的交点,由)(x G 单调性结合函数图象可知当min 1()()ln 22a G x G >==时,12,x x 存在,且21x x -的值随着a 的增大而增大,而当21ln 2x x -=时,由题意1122ln 210ln 210x x a x x a -++=⎧⎨-++=⎩,214x x ∴=代入上述方程可得2144ln 23x x ==,此时实数a 的取值范围为2ln 2ln 2ln()133a >--.试题解析:(Ⅰ)由'()ln 10f x x =+=,可得1x e=,∴①10t e <<时,函数()f x 在1(,)t e 上单调递减,在1(,2)t e+上单调递增,∴函数()f x 在[,2](0)t t t +>上的最小值为11()f e e=-,②当1t e≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ∴==,min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,; 练习1. 若322()7f x x ax bx a a =++--在1x =处取得极大值10,则ba的值为( ) A .32-或12- B .32-或12 C .32- D .12-【答案】C 【解析】试题分析:∵322()7f x x ax bx a a =++--,∴()bax x x f ++='232,又322()7f x x ax bx a a =++--在1=x 处取得极大值10,∴()023=++='b a x f ,()107112=--++=a a b a f ,∴01282=++a a ,∴2-=a ,1=b 或6-=a ,9=b .当2-=a ,1=b 时,()()()1131432--=+-='x x x x x f ,当131<<x 时,()0<'x f ,当1>x 时,()0>'x f ,∴()x f 在1=x 处取得极小值,与题意不符;当6-=a ,9=b 时,()()()31391232--=+-='x x x x x f ,当1<x 时,()0>'x f ,当31<<x 时,()0<'x f ,∴()x f 在1=x 处取得极大值,符合题意;23-=a b ,故选C . 考点:利用导数研究函数的极值. 2. 已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12,x x ,都有1212()()2f x f x x x ->-恒成立,则实数a 的取值范围是( )A .(0,1]B .(1,)+∞C .(0,1)D .[1,)+∞ 【答案】D 【解析】考点:函数导数与不等式,恒成立问题. 3.等差数列}{n a 中的40251a a ,是函数16431)(23-+-=x x x x f 的极值点,则20132log a 等于( ) A .2 B .3 C .4 D .5 【答案】A 【解析】试题分析:2'()86f x x x =-+,14025,a a 是方程2860x x -+=的两根,由韦达定理有140258a a +=,所以2013201328,4a a ==,故220132log log 42a ==,选A. 考点:1.函数的极点;2.等差数列的性质;3.导数的计算.4. 【2017届河南濮阳第一高级中学高三上学期检测二数学试卷,文12】已知函数321()3f x x x ax =++.若1()x g x e =,对任意11[,2]2x ∈,存在21[,2]2x ∈,使12'()()f x g x ≤成立,则实数a 的取值范围是( ) A .(,8]e e -∞- B .[8,)e e -+∞ C .[2,)e D .3(,]32e - 【答案】A 【解析】考点:1、利用导数研究函数的单调性;2、利用导数求函数的最值及全称量词与存在量词的应用.5. 已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则n a =_________. 【答案】1231n -⋅- 【解析】试题分析:因为3212()3432n n a f x x x a x -=-+-+,所以()21'23n n f x x a x a -=-+-,()1'1230n n f a a -∴=-+-=,()1132,131n n n n a a a a --=++=+,{}1n a +是以112a +=为首项, 以3为公比的等比数列11123,231n n n n a a --+=⨯=⨯-,故答案为1231n --. 考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.6.若正数t 满足()2ln 1a e t t -=(e 为自然对数的底数),则实数a 的取值范围为___________.【答案】1a e≥.【解析】试题分析:设()(2)ln f t e t t =-,2'()ln e t f t t t -=-+2ln 1et t=--,显然'()0f e =,又221"()e f t t t=--,当0t >时,"()0f t <,故'()f t 是减函数,所以当0t e <<时,'()0f t >,()f t 递增,当t e >时,'()0f t <,()f t 递减,所以x e =时,()f t 取极大值也是最大值()(2)ln f e e e e e =-=,当t →+∞(或0t →)时,()f t →-∞,因此()f t e ≤,所以10a<或10e a <≤,所以0a <中1a e≥. 考点: 导数与函数的单调性、极值、最值.7. 【2017届河北正定中学高三上学期第一次月考数学试卷,文22】已知函数()()2x f x x ax e =+的两个极值点为12,x x ,且1212,2x x x x <+=--. (1)求12,x x 的值;(2)若()f x 在()1,c c -(其中1c <-)上是单调函数,求c 的取值范围;(3)当m e ≤-时,求证:()()32214x xx f x e x e m e ⎡⎤⎡⎤+--+>⎣⎦⎣⎦.【答案】(1)125515,22x x ---==;(2)5535,,122⎛⎤⎡⎫-----∞- ⎪⎥⎢ ⎪⎝⎦⎣⎭;(3)证明见解析. 【解析】试题解析:(1)∵()()22xf x x a x a e '⎡⎤=+++⎣⎦,∴由()0f x '=得()220x a x a +++=,∴12225x x a +=--=--,∴5a = ∴由()22550x x +++=得2532x --±=, ∵12x x <,∴125515,22x x ---==, (2)由(1)知,()f x 在()12,x x 上递减,在()1,x -∞上递增,其中1255151,122x x ---=<-=>-,当()f x 在()1,c c -上递减时, 121c x c x -≥⎧⎨≤⎩,又1c <-,∴3512c --≤<-,当()f x 在()1,c c -上递增时, 1c x ≤,综上,c 的取值范围为5535,,122⎛⎤⎡⎫-----∞- ⎪⎥⎢ ⎪⎝⎦⎣⎭考点:1.导数在函数研究中的应用;2.单调性;3.极值.8. 【2017届河北武邑中学高三周考8.28数学试卷,理22】已知函数()()21ln 0f x ax x a x=-+>.(1)若()f x 是定义域上不单调的函数,求a 的取值范围;(2)若()f x 在定义域上有两个极值点12x x 、,证明:()()1232ln 2f x f x +>-. 【答案】(1)108a <<;(2)详见解析 【解析】试题分析:(1)()()2221ln ,ax x f x x ax x f x x -+'=--+=-,令18a ∆=-,当18a ≥时,()()0,0,f x f x '∆≤≤在()0,+∞单调递减,当108a <<时,0∆>,方程2210ax x -+=有两个不相等的正根12,x x ,不妨设12x x <,则当()()120,x x x ∈+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>,这时()f x 不是单调函数.综上,a 的取值范围是108a <<.(2)由(1)知,当且仅当10,8a ⎛⎫∈ ⎪⎝⎭时,()f x 有极小值点1x 和极大值2x ,且121211,22x x x x a a +==, ()()2212111222ln ln f x f x x ax x x ax x +=--+--+()()()121211ln 1ln 2124x x x x a a=-+++=++令()()11ln 21,0,48g a a a a ⎛⎤=++∈ ⎥⎝⎦,则当10,8a ⎛⎫∈ ⎪⎝⎭时,()221141044a g x a a a -'=-=<,()g a 在10,8⎛⎫⎪⎝⎭单调递减,所以()132ln 28g a g ⎛⎫>=- ⎪⎝⎭,即()()1232ln 2f x f x +>-.(2)由(1)知,当且仅当10,8a ⎛⎫∈ ⎪⎝⎭时,()f x 有极小值点1x 和极大值2x ,且121211,22x x x x a a+==, ()()2212111222ln ln f x f x x ax x x ax x +=--+--+,()()()()12121211ln ln 1122x x x x x x =-+----++ ()()()121211ln 1ln 2124x x x x a a =-+++=++.令()()11ln 21,0,48g a a a a ⎛⎤=++∈ ⎥⎝⎦, 则当10,8a ⎛⎫∈ ⎪⎝⎭时,()221141044a g x a a a -'=-=<,()g a 在10,8⎛⎫⎪⎝⎭单调递减, 所以()132ln 28g a g ⎛⎫>=- ⎪⎝⎭,即()()1232ln 2f x f x +>-.考点:1.导数在函数单调性中的应用;2.函数的极值.9. 【2017届黑龙江虎林一中高三上月考一数学试卷,理22】已知函数2()(1)ln f x a x x =--. (1)若()y f x =在2x =处取得极小值,求a 的值; (2)若()0f x ≥在[1,)+∞上恒成立,求a 的取值范围;(3)求证:当2n ≥时,2211132ln 2ln 3ln 22n n n n n--+++>+…. 【答案】(1)81;(2)21≥a ;(3)证明见解析.【解析】②当0a >时,221'()ax f x x -=,令'()0f x >,得12x a >'()0f x <,得102x a<< (i )112a >,即102a <<时,12x a ∈时,'()0f x <,即()f x 递减,∴()(1)0f x f <=矛盾.(ii 112a ≤,即12a ≥时,[1,)x ∈+∞时,'()0f x >,即()f x 递增,∴()(1)0f x f ≥=满足题意.综上: 12a ≥. (3)证明:由(2)知令12a =,当[1,)x ∈+∞时,21(1)ln 02x x --≥(当且仅当1x =时取“=”) ∴当1x =时,212ln 1x x >-. 即当2,3,4,,x n =…,有2221111112()ln 2ln 3ln 21311n n +++>+++---…… 11112()132435(1)(1)n n =++++⨯⨯⨯-+… 1111111(1)()()()3243511n n =-+-+-++--+…223222n n n n --=+. 考点:1.导数的综合应用;2.不等式恒成立问题;3.不等式的证明及裂项求和的方法.10. 【2017届云南曲靖一中高三上月考二数学试卷,理22】已知函数13)(3-+=ax x x f 的导函数为)(x f ',3)()(--'=ax x f x g .(1)当2-=a 时,求函数)(x f 的单调区间;(2)若对满足11≤≤-a 的一切a 的值,都有0)(<x g ,求实数x 的取值范围;(3)若0ln )(>+'x x g x 对一切2≥x 恒成立,求实数a 的取值范围.【答案】(1)函数)(x f 的单调递增区间为),2[],2,(+∞--∞,单调递减区间为)2,2(-;(2)310<<x ;(3)ln 2122a <+. 【解析】试题解析:(1)当2-=a 时,63)(2-='x x f ,令0)(='x f 得2±=x ,故当2-<x 或2>x 时,0)(>'x f ,)(x f 单调递增, 当22<<-x 时,0)(<'x f ,)(x f 单调递减,所以函数)(x f 的单调递增区间为),2[],2,(+∞--∞,单调递减区间为)2,2(-.(2)因为a x x f 33)(2+=',故333)(2-+-=a ax x x g ,令33)3()()(2-+-==x x a a h x g ,要使0)(<a h 对满足11≤≤-a 的一切a 成立,则⎩⎨⎧<-=<-+=-,03)1(,03)1(22x x h a x x h 解得310<<x . (3)因为a x x g -='6)(,所以0ln )6(>+-x a x x ,即)(ln 6x h xx x a =+<对一切2≥x 恒成立, 222ln 16ln 16)(xx x x x x h -+=-+=',令)(ln 162x x x ϕ=-+,则x x x 112)(-='ϕ,因为2≥x ,所以0)(>'x ϕ,故)(x ϕ在),2[+∞单调递增, 有02ln 25)2()(>-=≥ϕϕx ,因此0)(>'x h ,从而22ln 12)2()(+=≥h x h , 所以min ()a h x <ln 2(2)122h ==+. 考点:1、利用导数研究函数的单调性进而求最值;2、不等式恒成立问题.11. 【2016届河北南宫一中学高三仿真模拟数学试卷,理22】若函数()f x 的反函数记为()1f x -,已知函数()x f x e =.(1)设函数()()()1F x f x f x -=-,试判断函数()F x 的极值点个数;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin f x x kx ≥,求实数k 的取值范围. 【答案】(1)1个;(2)(],1-∞.【解析】试题解析:(1)()1x F x e x '=-,当()0,x ∈+∞时,1x 是减函数,x e -也是减函数, ∴()1x F x e x '=-在()0,+∞上是减函数,当1x =时,()10F x e '=-<, 当12x =时,()20F x e '=>,∴()F x '在()0,+∞上有且只有一个变号零点, ∴()F x 在定义域()0,+∞上有且只有一个极值点..(2)令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需0,2x π⎡⎤∈⎢⎥⎣⎦时,()min 0g x ≥,对()g x 求导得()()sinx cosx x g x e k '=+-,令()()sin cos x h x e x x =+,则()2cos 0x h x e x '=>,0,2x π⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭ ∴()h x 在0,2π⎡⎤⎢⎥⎣⎦上为增函数,∴()21,h x e π⎡⎤∈⎢⎥⎣⎦.考点:1.函数的极值点;2.含参讨论函数的单调性与最值.12. 【2017届安徽蚌埠二中等四校高三10月联考数学试卷,理22】设函数()ln(1)1x f x a x x=-++,()ln(1)g x x bx =+-. (1)若函数()f x 在0x =处有极值,求函数()f x 的最大值;(2)①是否存在实数b ,使得关于x 的不等式()0g x <在(0,)+∞上恒成立?若存在,求出b 的取值范围;若不存在,说明理由;②证明:不等式2111ln (1,2,)12nk k n n k =-<-≤=+∑. 【答案】(1)(0)0f =;(2)①1≥b ;②证明见解析.【解析】试题分析:(1)由0)(='x f 的解,即可得出极值点,得出a 值后,再利用导函数求单调区间;(2)①本题为恒成立问题,利用函数的增减性和端点值来求解,而函数的单调性由导函数的正负来决定;②运用不等式的放缩与基本不等式的性质,证明右边项时采用了数列的增减性的基本定义来证明,通过说明数列时单调递减来证明不等式,在证明右侧时,采用将n ln 裂项的方法,将详见得到的每一项放缩,最后利用裂项相消111)1(1+-=+n n n n 来证得不等式成立. (2)①由已知得:'1()1g x b x=-+ (ⅰ)若1b ≥,则[0,)x ∈+∞时,'1()01g x b x =-≤+ ∴()ln(1)g x x bx =+-在[0,)+∞上为减函数,∴()ln(1)(0)0g x x bx g =+-<=在(0,)+∞上恒成立;(ⅱ)若0b ≤,则[0,)x ∈+∞时,'1()01g x b x=->+ ∴()ln(1)g x x bx =+-在[0,)+∞上为增函数,∴()ln(1)(0)0g x x bx g =+->=,不能使()0g x <在(0,)+∞上恒成立;(ⅲ)若01b <<,则'1()01g x b x =-=+时,11x b=-, 当1[0,1)x b ∈-时,'()0g x ≥,∴()ln(1)g x x bx =+-在1[0,1)b -上为增函数, 此时()ln(1)(0)0g x x bx g =+->=,∴不能使()0g x <在(0,)+∞上恒成立;综上所述,b 的取值范围是[1,)x ∈+∞.故11222 11111ln(1)[ln(1)]111 n n nnk k kk k n xk k k k n--====-+=-+++++∑∑∑111221111111 ()11 1(1)(1)n n nk k kkk k k k k k n---===>-=-≥=-+>-+++∑∑∑.考点:1.函数的极值;2.恒成立问题;3.导数证明不等式.。

高中数学导数地应用——极值与最值专项训练题(全)

高中数学导数地应用——极值与最值专项训练题(全)

高中数学专题训练导数的应用——极值与最值一、选择题1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和13,则( )A.a-2b=0 B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D解析y′=3ax2+2bx,据题意,0、13是方程3ax2+2bx=0的两根∴-2b3a=13,∴a+2b=0.2.当函数y=x·2x取极小值时,x=( )A.1ln2B.-1ln2C.-ln2 D.ln2答案 B解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0∵2x>0,∴x=-1 ln23.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( ) A.0<b<1 B.b<1C.b>0 D.b<1 2答案 A解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0,∴b>0,f′(1)=3-3b>0,∴b<1综上,b的范围为0<b<14.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是( )A.x=-1一定是函数f(x)的极大值点B.x=-1一定是函数f(x)的极小值点C.x=-1不是函数f(x)的极值点D.x=-1不一定是函数f(x)的极值点答案 B解析x>-1时,f′(x)>0x<-1时,f′(x)<0∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( )A .-173B .-103C .-4D .-643答案 A解析 y ′=x 2+2x -3.令y ′=x 2+2x -3=0,x =-3或x =1为极值点.当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值.∴当x =1时,y min =-173.6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( )A .x =1是最小值点B .x =0是极小值点C .x =2是极小值点D .函数f (x )在(1,2)上单增 答案 C解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C.7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( )A .f (-a 2)≤f (-1)B .f (-a 2)<f (-1)C .f (-a 2)≥f (-1)D .f (-a 2)与f (-1)的大小关系不确定 答案 A解析 由题意可得f ′(x )=32x 2-2x -72.由f ′(x )=12(3x -7)(x +1)=0,得x =-1或x =73.当x <-1时,f (x )为增函数;当-1<x <73时,f (x )为减函数.所以f (-1)是函数f (x )在(-∞,0]上的最大值,又因为-a 2≤0,故f (-a 2)≤f (-1).8.函数f (x )=e -x ·x ,则( )A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确 答案 B解析 f ′(x )=-e -x ·x +12x ·e -x =e -x (-x +12x )=e -x ·1-2x2x .令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e·12=12e. 二、填空题9.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________.答案 -23 -16解析 y ′=a x+2bx +1.由已知⎩⎨⎧a +2b +1=0a2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23b =-1610.已知函数f (x )=13x 3-bx 2+c (b ,c 为常数).当x =2时,函数f (x )取得极值,若函数f (x )只有三个零点,则实数c 的取值范围为________答案 0<c <43解析 ∵f (x )=13x 3-bx 2+c ,∴f ′(x )=x 2-2bx ,∵x =2时,f (x )取得极值,∴22-2b ×2=0,解得b =1.∴当x ∈(0,2)时,f (x )单调递减,当x ∈(-∞,0) 或x ∈(2,+∞)时,f (x )单调递增.若f (x )=0有3个实根,则⎩⎨⎧f 0=c >0f2=13×23-22+c <0,,解得0<c <4311.设m ∈R ,若函数y =e x +2mx (x ∈R )有大于零的极值点,则m 的取值范围是________.答案 m <-12解析 因为函数y =e x +2mx (x ∈R )有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图象可得-2m >1,即m <-12.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴相切于(1,0),则极小值为________.答案 0解析 f ′(x )=3x 2-2px -q , 由题知f ′(1)=3-2p -q =0. 又f (1)=1-p -q =0,联立方程组,解得p =2,q =-1.∴f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1. 由f ′(x )=3x 2-4x +1=0,解得x =1或x =13,经检验知x =1是函数的极小值点, ∴f (x )极小值=f (1)=0. 三、解答题13.设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.解析 由f (x )=sin x -cos x +x +1,0<x <2π, 知f ′(x )=cos x +sin x +1,于是f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π2.因此,由上表知f (x )的单调递增区间是(0,π)与(2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.14.设函数f (x )=6x 3+3(a +2)x 2+2ax .(1)若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,求实数a 的值;(2)是否存在实数a ,使得f (x )是(-∞,+∞)上的单调函数?若存在,求出a 的值;若不存在,说明理由.解析 f ′(x )=18x 2+6(a +2)x +2a .(1)由已知有f ′(x 1)=f ′(x 2)=0,从而x 1x 2=2a18=1,所以a =9; (2)由于Δ=36(a +2)2-4×18×2a =36(a 2+4)>0,所以不存在实数a ,使得f (x )是(-∞,+∞)上的单调函数. 15.已知定义在R 上的函数f (x )=x 2(ax -3),其中a 为常数. (1)若x =1是函数f (x )的一个极值点,求a 的值;(2)若函数f (x )在区间(-1,0)上是增函数,求a 的取值范围. 解析 (1)f (x )=ax 3-3x 2,f ′(x )=3ax 2-6x =3x (ax -2). ∵x =1是f (x )的一个极值点,∴f ′(1)=0,∴a =2.(2)解法一 ①当a =0时,f (x )=-3x 2在区间(-1,0)上是增函数,∴a =0符合题意;②当a ≠0时,f ′(x )=3ax (x -2a),令f ′(x )=0得:x 1=0,x 2=2a.当a >0时,对任意x ∈(-1,0),f ′(x )>0,∴a >0符合题意;当a <0时,当x ∈(2a ,0)时,f ′(x )>0,∴2a≤-1,∴-2≤a <0符合题意;综上所述,a ≥-2.解法二 f ′(x )=3ax 2-6x ≥0在区间(-1,0)上恒成立,∴3ax -6≤0,∴a ≥2x 在区间(-1,0)上恒成立,又2x <2-1=-2,∴a ≥-2. 16.已知函数f (x )=-x 2+ax +1-ln x .(1)若f (x )在(0,12)上是减函数,求a 的取值范围;(2)函数f (x )是否既有极大值又有极小值?若存在,求出a 的取值范围;若不存在,请说明理由.解析 (1)f ′(x )=-2x +a -1x ,∵f (x )在(0,12)上为减函数,∴x ∈(0,12)时-2x +a -1x <0恒成立,即a <2x +1x恒成立.设g (x )=2x +1x ,则g ′(x )=2-1x 2.∵x ∈(0,12)时1x2>4,∴g ′(x )<0,∴g (x )在(0,12)上单调递减,g (x )>g (12)=3,∴a ≤3.(2)若f (x )既有极大值又有极小值,则f ′(x )=0必须有两个不等的正实数根x 1,x 2,即2x 2-ax +1=0有两个不等的正实数根.故a 应满足⎩⎨⎧Δ>0a2>0⇒⎩⎨⎧a 2-8>0a >0⇒a >22,∴当a >22时,f ′(x )=0有两个不等的实数根, 不妨设x 1<x 2,由f ′(x )=-1x (2x 2-ax +1)=-2x(x -x 1)(x -x 2)知,0<x <x 1时f ′(x )<0,x 1<x <x 2时f ′(x )>0,x >x 2时f ′(x )<0,∴当a >22时f (x )既有极大值f (x 2)又有极小值f (x 1).1. 已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为 1,则a 的值等于________.答案 1解析 ∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1,当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.令f ′(x )>0,则x <1a ,∴f (x )在(0,1a)上递增;令f ′(x )<0,则x >1a,∴f (x )在(1a,2)上递减,∴f (x )max =f (1a )=ln 1a -a ·1a =-1,∴ln 1a=0,得a =1.2.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2时取得极值, 则有f ′(1)=0,f ′(2)=0, 即⎩⎨⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f ′(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0; 当x ∈(2,3)时,f ′(x )>0.所以,当x =1时,f (x )取得极大值f (1)=5+8c . 又f (0)=8c ,f (3)=9+8c ,则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9.因此c 的取值范围为(-∞,-1)∪(9,+∞). 3.已知函数f (x )=x 3-3ax 2+3x +1. (1)设a =2,求f (x )的单调区间;(2)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围.解析 (1)当a =2时,f (x )=x 3-6x 2+3x +1,f ′(x )=3(x -2+3)(x -2-3).当x ∈(-∞,2-3)时f ′(x )>0,f (x )在(-∞,2-3)上单调增加; 当x ∈(2-3,2+3)时f ′(x )<0,f (x )在(2-3,2+3)上单调减少; 当x ∈(2+3,+∞)时f ′(x )>0,f (x )在(2+3,+∞)上单调增加.综上,f(x)的单调增区间是(-∞,2-3)和(2+3,+∞),f(x)的单调减区间是(2-3,2+3).(2)f′(x)=3[(x-a)2+1-a2].当1-a2≥0时,f′(x)≥0,f(x)为增函数,故f(x)无极值点;当1-a2<0时,f′(x)=0有两个根,x1=a-a2-1,x2=a+a2-1.由题意知,2<a-a2-1<3,①或2<a+a2-1<3.②①式无解.②式的解为54<a<53.因此a的取值范围是(54,53).1.“我们称使f(x)=0的x为函数y=f(x)的零点.若函数y=f(x)在区间[a,b]上是连续的,单调的函数,且满足f(a)·f(b)<0,则函数y=f(x)在区间[a,b]上有唯一的零点”.对于函数f(x)=6ln(x+1)-x2+2x-1,(1)讨论函数f(x)在其定义域内的单调性,并求出函数极值.(2)证明连续函数f(x)在[2,+∞)内只有一个零点.解析(1)解:f(x)=6ln(x+1)-x2+2x-1定义域为(-1,+∞),且f′(x)=6x+1-2x+2=8-2x2x+1,f′(x)=0⇒x=2(-2舍去). x (-1,2)2(2,+∞)f′(x)+0-f(x)取得极大值∴当x=2时,f(x)的极大值为f(2)=6ln3-1.(2)证明:由(1)知f(2)=6ln3-1>0,f(x)在[2,7]上单调递减,又f(7)=6ln8-36=18(ln2-2)<0,∴f(2)·f(7)<0.∴f(x)在[2,7]上有唯一零点.当x∈[7,+∞)时,f(x)≤f(7)<0,故x∈[7,+∞)时,f(x)不为零.∴y=f(x)在[7,+∞)上无零点.∴函数f(x)=6ln(x+1)-x2+2x-1在定义域内只有一个零点.2.(2010·江西高考)设函数f(x)=ln x+ln (2-x)+ax(a>0).(1)当a=1时,求f(x)的单调区间;(2)若f(x)在(0,1]上的最大值为12,求a的值.解析函数f(x)的定义域为(0,2),f′(x)=1x-12-x+a.(1)当a =1时,f ′(x )=-x 2+2x 2-x ,所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx 2-x+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12. 3.已知函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 分析 本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f (2)和f (-2)的大小,然后判定哪个是最大值从而求出a .解 (1)f ′(x )=-3x 2+6x +9. 令f ′(x )<0,解得x <-1,或x >3,∴函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (2)∵f (-2)=8+12-18+a =2+a , f (2)=-8+12+18+a =22+a , ∴f (2)>f (-2).∵在(-1,3)上f ′(x )>0, ∴f (x )在(-1,2]上单调递增.又由于f (x )在[-2,-1)上单调递减,∴f (-1)是f (x )的极小值,且f (-1)=a -5.∴f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值,于是有22+a =20,解得a =-2.∴f (x )=-x 3+3x 2+9x -2. ∴f (-1)=a -5=-7,即函数f (x )在区间[-2,2]上的最小值为-7. 4.已知函数f (x )=xe -x (x ∈R ). (1)求函数f (x )的单调区间和极值;(2)已知函数y =g (x )的图象与函数y =f (x )的图象关于直线x =1对称.证明当x >1时,f (x )>g (x );(3)如果x 1≠x 2,且f (x 1)=f (x 2),证明x 1+x 2>2. 解析 (1)f ′(x )=(1-x )e -x . 令f ′(x )=0,解得x =1.当x所以f (x函数f (x )在x =1处取得极大值f (1),且f (1)=1e.(2)由题意可知g (x )=f (2-x ),得g (x )=(2-x )e x -2.令F (x )=f (x )-g (x ),即F (x )=xe -x +(x -2)e x -2, 于是F ′(x )=(x -1)(e 2x -2-1)e -x .当x >1时,2x -2>0,从而e 2x -2-1>0,又e -x >0.所以F ′(x )>0.从而函数F (x )在[1,+∞)上是增函数.又F (1)=e -1-e -1=0,所以x >1时,有F (x )>F (1)=0,即f (x )>g (x ). (3)①若(x 1-1)(x 2-1)=0,由(1)及f (x 1)=f (x 2),得x 1=x 2=1,与x 1≠x 2矛盾.②若(x 1-1)(x 2-1)>0,由(1)及f (x 1)=f (x 2),得x 1=x 2,与x 1≠x 2矛盾. 根据①②得(x 1-1)(x 2-1)<0,不妨设x 1<1,x 2>1.由(2)可知,f (x 2)>g (x 2),g (x 2)=f (2-x 2),所以f (x 2)>f (2-x 2),从而f (x 1)>f (2-x 2),因为x 2>1,所以2-x 2<1,又由(1)可知函数f (x )在区间(-∞,1)内是增函数,所以x 1>2-x 2,即x 1+x 2>2.5.已知函数f (x )=ax 3-32ax 2,函数g (x )=3(x -1)2.(1)当a >0时,求f (x )和g (x )的公共单调区间; (2)当a >2时,求函数h (x )=f (x )-g (x )的极小值; (3)讨论方程f (x )=g (x )的解的个数. 解 (1)f ′(x )=3ax 2-3ax =3ax (x -1),又a >0,由f ′(x )>0得x <0或x >1,由f ′(x )<0得0<x <1,即函数f (x )的单调递增区间是(-∞,0)与(1,+∞),单调递减区间是(0,1),而函数g (x )的单调递减区间是(-∞,1),单调递增区间是(1,+∞),故两个函数的公共单调递减区间是(0,1),公共单调递增区间是(1,+∞).(2)h (x )=ax 3-32ax 2-3(x -1)2,h ′(x )=3ax 2-3(a +2)x +6=3a (x -2a)(x-1),令h ′(x )=0,得x =2a 或x =1,由于2a<1,易知x =1为函数h (x )的极小值点,∴h (x )的极小值为h (1)=-a2.(3)令φ(x )=f (x )-g (x )=ax 3-32(a +2)x 2+6x -3,φ′(x )=3ax 2-3(a +2)x +6=3a (x -2a)(x -1),①若a =0,则φ(x )=-3(x -1)2,∴φ(x )的图象与x 轴只有一个交点,即方程f (x )=g (x )只有一个解;②若a <0,则φ(x )的极大值为φ(1)=-a 2>0,φ(x )的极小值为φ(2a )=-4a 2+6a-3<0,∴φ(x )的图象与x 轴有三个交点,即方程f (x )=g (x )有三个解; ③若0<a <2,则φ(x )的极大值为φ(1)=-a2<0,∴φ(x )的图象与x 轴只有一个交点,即方程f (x )=g (x )只有一个解;④若a =2,则φ′(x )=6(x -1)2≥0,φ(x )单调递增,∴φ(x )的图象与x 轴只有一个交点,即方程f (x )=g (x )只有一个解;⑤若a>2,由(2)知φ(x)的极大值为φ(2a)=-4(1a-34)2-34<0,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解.综上知,若a≥0,方程f(x)=g(x)只有一个解;若a<0,方程f(x)=g(x)有三个解.。

《导数与极值、最值关系》能力练习题

《导数与极值、最值关系》能力练习题

《导数与极值、最值关系》能力练习题一、单选题1.若1x =是函数()xf x e ax =-的极值点,则方程()f x a =在()2,+∞的不同实根个数为( )A .1B .2C .3D .02.函数32()422f x x ax bx =--+在1x =处有极大值3-,则+a b 的值等于( )A .9B .6C .3D .23.已知函数()ln f x x ax =-的图象在1x =处的切线方程为0x y b ++=,则()f x 的极大值为( )A .ln21--B .ln21-+C .1-D .14.已知1x =是函数32()3f x ax x =-的极小值点,则函数()f x 的极小值为( )A .0B .1-C .2D .45.已知函数()2()xf x x a e =-,则“1a ≥-”是“()f x 有极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.函数f (x )=x 3+3ax 2+3[(a +2)x +1]既有极大值又有极小值,则a 的取值范围是( )A .(-1,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-∞,-1)∪(2,+∞)7.已知32()f x x px qx =++的图像与x 轴相切于非原点的一点,且f (x )极小值=-4,那么p ,q 值分别为( )A .8,6B .9,6C .4,2D .6,98.若函数321()13f x x x =+-在区间(,3)m m +上存在最小值,则实数m 的取值范围是( ) A .[5,0)-B .(5,0)-C .[3,0)-D .(3,0)-9.已知函数2(1)1ax y x x =>-有最大值4-,则a 的值为( )A .1B .1-C .4D .4-10.若函数322312y x x x m =--+在[0,3]上的最大值为5,则m =( )A .3B .4C .5D .811.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m 等于( ) A .0 B .1 C .2 D .5212.已知函数2()(0)x f x a x a =>+在[1,)+∞上的最大值为3,则a 的值为( )A .31-B .34C .43D .31+13.已知函数()2()xf x x a e =+有最小值,则函数()y f x '=的零点个数为( )A .0B .1C .2D .不确定14.已知定义在[,]m n 上的函数()f x ,其导函数()'f x 的大致图象如图所示,则下列叙述正确的个数为( )①函数()f x 的值域为[(),()]f d f n ;②函数()f x 在[,]a b 上递增,在[,]b d 上递减; ③()f x 的极大值点为x c =,极小值点为x e =;④()f x 有两个零点. A .0B .1C .2D .315.已知函数()()211x f x x ax e-=+-在(),2x ∈-∞-单调递增,在()2,1x ∈-单调递减,则函数()f x 在[]2,2x ∈-的值域是( ) A .[]1,e - B .31,5e -⎡⎤-⎣⎦C .11,e ---⎡⎤⎣⎦D .35,e e -⎡⎤⎣⎦二、填空题 16.若函数321()53f x x ax x =-+-无极值点,则实数a 的取值范围是_________. 17.若函数2()2(0)x f x m e x x m =⋅-+<在(0,1)上有极值点,则m 的取值范围为___________. 18.已知函数在()3223(,)f x x mx nx m m n R =+++∈,1x =-时取得极小值0,则m n +=__________. 19.已知函数()()321233f x x ax a x =++++在(),-∞+∞上存在极值点,则实数a 的取值范围是_____________.20.已知()3222f x x cx c x =-+在2x =处有极小值,则常数c 的值为___________.21.已知32()263f x x x =-+,对任意的2][2x ∈-,都有()f x a ≤,则a 的取值范围为_______.22.已知函数()1ln x f x x =+在区间1,2a a ⎛⎫+ ⎪⎝⎭(其中0a >)上存在最大值,则实数a 的取值范围是_______.23.若函数()33f x x x =-在区间()25,a a -上有最大值,则实数a 的取值范围是______.24.若函数()3213f x x x =-在区间(),4a a +内存在最大值,则实数a 的取值范围是________. 三、解答题 25.已知.函数.e 为自然对数的底.(1)当时取得最小值,求的值;(2)令,求函数在点P 处的切线方程.26.已知函数32()3()f x x ax x a =-+∈R 在1x =处有极值.(1)求a 的值;(2)求函数()f x 的单调区间.27.已知函数e 1()ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭,其中k 为常数, 2.71828e =…为自然对数的底数. (1)若2e k =,求函数()f x 的极值;(2)若函数()f x 在区间(1,2)上单调,求k 的取值范围.28.已知32()1f x x ax bx =+++在1x =与1=3x -时取得极值. (1)求,a b 的值;(2)求()f x 的极大值和极小值;(3)求()f x 在[]1,2-上的最大值与最小值.29.已知函数()2ln f x a x bx =-,a 、b R ∈,若()f x 在1x =处与直线12y相切. (1)求a ,b 的值;(2)求()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的极值.30.设函数3()65,f x x x x R =-+∈.(1)求(2)f '的值;(2)求()f x 的单调区间和极值;(3)若关于x 的方程()f x a =有3个不同实根,求实数a 的取值范围.《导数与极值、最值关系》能力练习题参考答案1.A 【解析】由()'x f x e a =-,得()10'=-=f e a ,则a e =,()xf x e ex =-,函数()f x 在()2,+∞,()()'0,f x f x >单调递增,()222f e e e =-<,函数()y f x =与y a =的交点个数为1个.故选A .2.B 【解析】由题意得2()1222f x x ax b '=--,因为()f x 在1x =处有极大值3-,所以(1)12220(1)4223f a b f a b =--=⎧⎨=--+=-'⎩,解得3,3a b ==,所以6a b +=,故选:B 3.A 【解析】因为()ln f x x ax =-,所以1()f x a x'=-,又因为函数()f x 在图象在1x =处的切线方程为0x y b ++=,所以(1)1f a b =-=--,(1)11f a ='-=-,解得2a =,1b =.由112()2x f x x x-'=-=,102x <<,()0f x '>,12x >,()0f x '<,知()f x 在12x =处取得极大值,11ln 1ln 2122f ⎛⎫=-=--⎪⎝⎭.故选:A. 4.B 【解析】由题意,函数32()3f x ax x =-,可得2()363(2)f x ax x x ax '=-=-,因为1x =是函数32()3f x ax x =-的极小值点,则()01f '=,即31(2)0a ⨯⨯-=,解得2a =,可得()6(1)f x x x '=-,当0x <或1x >时,()0f x '>,()f x 单调递增;当01x <<时,()0f x '<,()f x 单调递减,所以当1x =是函数32()3f x ax x =-的极小值点,所以函数的极小值为32(1)21311f =⨯-=-⨯.故选:B.5.B 【解析】()2()20xf x x x a e '=-=+,220x x a +-=,44a .若440a ∆=+≤,1a ≤-则()2()20x f x x x a e '=+-≥恒成立,()f x 为增函数,无极值;若440a ∆=+>,即1a >-,则()f x 有两个极值.所以“1a ≥-”是“()f x 有极值”的必要不充分条件.故选:B6.D 【解析】因为32()33[(2)1]f x x ax a x =++++,所以2()363(2)f x x ax a '=+++,函数()f x 有极大值又有极小值,()0f x ∴'=有两个不相等是实数根,∴23636(2)0a a ∆=-+>,化为220a a -->,解得2a >或1a <-.则a 的取值范围是(-∞,1)(2-,)+∞.故选:D .7.D 【解析】设切点为()(),00a a ≠,()2()f x x x px q =++,由题意得:20x px q ++=有两个相等实根,所以()2223()2f x x x a x ax a x =--+=,()()2233()4f x x ax a x a x a '-+-=-=,令()0f x '=,得3ax =或x a =,因为f (x )极小值=-4,而()04f a =≠-,所以()43a f =-,即2433a a a ⎛⎫-- ⎪⎝⎭,解得3a =-,所以32()69f x x x x =++,所以6,9p q ==.故选:D 8.D 【解析】函数321()13f x x x =+-的导函数为2()2f x x x =+',令()0f x '=,得2x =-或0x =,故()f x 在(,2),(0,)-∞-+∞上单调递增,在(2,0)-上单调递减,则0x =为极小值点,2x =-为极大值点.由()f x 在区间(,3)m m +上存在最小值,可得03m m <<+,解得30m -<<,此时32211()1(3)11(0)33f m m m m m f =+-=+->-=,因此实数m 的取值范围是(3,0)-,故选:D.9.B 【解析】因为函数2(1)1ax y x x =>-,所以2222222(1)2111(1)(1)(1)ax ax x ax ax ax y a x x x x '⎛⎫⎡⎤---====- ⎪⎢⎥----⎣'⎦⎝⎭,令0y '=,解得2x =或0x =(舍去).若函数在区间(1,)+∞上有最大值4-,则最大值必然在2x =处取得,所以441a=-,解得1a =-,此时2(2)(1)x x y x '--=-,当12x <<时,0y '>,当2x >时,0y '<,所以当2x =时y 取得最大值4-,故选:B.10.C 【解析】()()26612612y x x x x '=--=+-,当[]0,2x ∈时,0y '<,函数单调递减,当[]2,3x ∈时,0y '>,函数单调递增,当0x =时,y m =,当3x =时,9y m =-,则函数在[]0,3上的最大值为m ,则5m =.故选:C.11.C 【解析】'2333(1)y x x x x =+=+,易知,当10x -<<时,'0y <,当21x -<<-或01x <<时,'0y >,所以函数y =x 3+32x 2+m 在(2,1)--,(0,1)上单调递增,在(1,0)-上单调递减,又当1x =-时,12y m =+,当1x =时,52y m =+,所以最大值为5922m +=,解得2m =.故选:C 12.A 【解析】由2()x f x x a =+,得()222()a x f x x a '-=+,当1a >时,若x >()0,()f x f x '<单调递减,若1x <<()0,()f x f x '>单调递增,故当x =()f x 有最大值=,解得314a =<,不符合题意.当1a =时,函数()f x 在[1,)+∞上单调递减,最大值为1(1)2f =,不符合题意.当01a <<时,函数()f x 在[1,)+∞上单调递减.此时最大值为1(1)1f a ==+,解得31a ,符合题意.故a 1.故选:A .13.C 【解析】由题意,()2()2xf x x a e x +'=+,因为函数()f x 有最小值,且0x e >,所以函数存在单调递减区间,即()0f x '<有解,所以220x x a ++=有两个不等实根,所以函数()y f x '=的零点个数为2.故选:C.14.B 【解析】根据导函数()'f x 的图象可知,当[,)x m c ∈时,()0f x '>,所以函数()f x 在[,]m c 上单调递增,当(,)x c e ∈时,()0f x '<,所以函数()f x 在[,]c e 上单调递减,当(,]x e n ∈时,()0f x '>,所以函数()f x 在(,]e n 上单调递增,故②错误,③正确,根据单调性可知,函数的最小值为()f m 或()f e ,最大值为()f c 或()f n ,故①错误,当()0>f m 且()0f e >时,函数无零点,故④错误.故选:B.15.A 【解析】由()()2121x x a x a ef x -⎡⎤=+++-⎣⎦',由已知可得()201f a '-=⇒=-,则()()211x f x x x e -=--,()()212x f x x x e -'=+-,当[]2,1x ∈-,()()0f x f x '<⇒单调递减,当(]1,2x ∈,()()0f x f x '>⇒单调递增,则()()min 11f x f ==-,()325f e --=,()2f e =,()()max 2f x f e ==,综上:()[]1,f x e ∈-.故选:A16.[]1,1-【解析】因为321()53f x x ax x =-+-,所以2()21f x x ax '=-+,因为函数321()53f x x ax x =-+-无极值点,所以2240a,解得11a -≤≤,实数a 的取值范围是[]1,1-,17.(2,0)-【解析】因为2()2(0)x f x m e x x m =⋅-+<,所以()22(0)x f x m e x m '=⋅-+<,因为函数2()2(0)x f x m e x x m =⋅-+<在(0,1)上有极值点,所以()22(0)xf x m e x m '=⋅-+<在(0,1)上有零点,因为(0),22x y m e m x y =⋅-=<+在(0,1)上都递减,所以()'f x 在(0,1)上为减函数,所以(0)20(1)0f m f me =+>⎧⎨=<''⎩,解得20m -<<.18.11【解析】322()3f x x mx nx m =+++,2()36f x x mx n ∴'=++,依题意可得(1)0(1)0f f -=⎧⎨'-=⎩即2130360m n m m n ⎧-+-+=⎨-+=⎩,解得29m n =⎧⎨=⎩或13m n =⎧⎨=⎩,当1m =,3n =时函数32()331f x x x x =+++,22()3633(1)0f x x x x '=++=+,函数在R 上单调递增,函数无极值,故舍去;所以29m n =⎧⎨=⎩,所以11+=m n .19.{|1a a <-或}2a >【解析】由题可知:()222f x x ax a '=+++,因为函数()f x 在(),-∞+∞上存在极值点,所以()0f x '=有解,所以()244120a a ∆=-⨯⨯+≥,则1a ≤-或2a ≥,当1a =-或2a =时,函数()y f x ='与x 轴只有一个交点,即()0f x '≥,所以函数()f x 在(),-∞+∞单调递增,没有极值点,故舍去,所以1a <-或2a >,即{|1a a <-或}2a >20.2【解析】由()3222f x x cx c x =-+知,()2234f x x cx c '=-+,因为()f x 在2x =处取极小值,所以()221280f c c '=-+=,解得2c =或6c =,当2c =时,2()384(32)(2)f x x x x x ==-'-+-,()f x 在2x =处取极小值,符合题意,当6c =时,2()324363(2)(6)f x x x x x '=-+=--,()f x 在2x =处取极大值,不符合题意,综上知,2c =.21.[3)+∞,【解析】由2()6120f x x x '=-=得0x =或2x =,在区间[-2,0)上()'0f x >,()f x 单调递增;在(0,2)内时()()'0,f x f x <单调递减.又(2)37f -=-,(0)3f =,(2)5f =-,∴max ()3f x =,又()f x a ≤对于任意的x ∈[-2,2]恒成立,∴3a ≥,即a 的取值范围是[)3,+∞ 22.112a <<【解析】因为()1ln x f x x +=,0x >,所以()2ln x f x x '=-.当01x <<时,()0f x '>;当1x >时,()0f x '<.所以()f x 在区间()0,1上单调递增,在区间()1,+∞上单调递减,所以函数()f x 在1x =处取得极大值.因为函数()f x 在区间1,2a a ⎛⎫+ ⎪⎝⎭(其中0a >)上存在最大值,所以1112a a <⎧⎪⎨+>⎪⎩,解得112a <<. 23.()1,2-【解析】由题意得:233fxx ,令()0f x '<解得11x -<<;令()0f x '>解得1x <-或1x >,所以函数在(),1-∞-上是增函数,在()1,1-上是减函数,在()1,+∞上是增函数,故函数在1x =-处取到极大值2,所以极大值必是区间()25,a a -上的最大值,∴251a a -<-<,解得-1a 2<<.检验满足题意24.(]4,1--【解析】由题可知:()22f x x x '=-.令()00'>⇒<f x x 或2x >,令()002'<⇒<<f x x ,所以函数()f x 在()0,2单调递减,在()(),0,2,-∞+∞单调递增,故函数的极大值为()00f =,所以在开区间(),4a a +内的最大值一定是()00f =,又()()300f f ==,所以0443a a a <<+⎧⎨+≤⎩,得实数a 的取值范围是(]4,1--.25.【解析】(1),由得,由得,(2),26.【解析】(1)∵2()361f x x ax '=-+,函数32()3f x x ax x =-+在1x =处有极值,∴()10f '=,解得23a =(经检验,符合题意). (2)由(1)知32()2=-+f x x x x ,则2()341(1)(31)f x x x x x '=-+=--,令()0f x '=,得11x =,213x =. 当x 变化时,()f x ',()f x 的变化情况如下表:1,3⎛⎫-∞ ⎪⎝⎭131,13⎛⎫ ⎪⎝⎭1(1,)+∞()'f x+-+()f x极大值极小值∴函数()f x 的单调增区间为1,3⎛⎫-∞ ⎪⎝⎭,(1,)+∞,单调减区间为1,13⎛⎫ ⎪⎝⎭.27.【解析】(1)2222(1)e 11(1)e 1()x x x x x f x k k x x x x x ---⎛⎫'=--+=- ⎪⎝⎭,即()2(1)()x x e k f x x--'= 当2e k =时()22(1)()x x e e f x x--'=,0x >。

专题2.12 导数-极值、最值问题(原卷版)

专题2.12 导数-极值、最值问题(原卷版)

专题2.12 导数-极值、最值问题1.可导函数y =f (x )在点x 0处取得极值的充要条件是0()0f x '=,且在x 0左侧与右侧()f x '的符号不同.若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.2.利用导数求解函数最值的思路(1)若所给的闭区间[],a b 不含参数,则只需对()f x 求导,并求()0f x '=在区间[],a b 内的根,再计算使导数等于零的根的函数值,把该函数值与()(),f a f b 比较,其中最大的一个是最大值,最小的一个是最小值;(2)若所给的区间[],a b 含有参数,则需对()f x 求导,通过对参数分类讨论,判断函数的单调性,从而得到函数()f x 的最值.3.用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域;(2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.4.对于极值点偏移问题,处理类似于12x x a +>(12,x x 为()0f x =的两根)的问题的基本步骤如下:(1)求导确定()f x 的单调性,得到12,x x 的范围;(2)构造函数()()()F x f x f a x =--,求导后可得()F x 恒正或恒负; (3)得到()1f x 与()1f a x -的大小关系后,将()1f x 置换为()2f x ;(4)根据2x 与1a x -所处的范围,结合()f x 的单调性,可得到2x 与1a x -的大小关系,由此证得结论.1.已知函数()ln 2f x x x ax =-+(a 为实数).(1)若2a =,求()f x 的最小值;(2)若()0f x ≥恒成立,求a 的取值范围.2.已知函数21()23ln ()2f x x x a x a =-++∈R . (1)当34a =时,求()f x 的极值; (2)讨论()f x 的单调性.3.已知函数2()(21),()21x f x e x a x g x x =+++=+.(1)求证:当2a =-时,函数()f x 存在唯一的极小值点;(2)若函数(),()f x g x 的图象相切,求实数a 的值.4.已知函数()1x f x e x =--(e 是自然对数的底数).(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)判断函数()f x 是否存在极值,若存在,求出极值;若不存在,说明理由.5.已知函数()()()2ln 121f x a x x a x a =-++-+-,a ∈R . (1)若函数()f x 在()()22f ,处的切线恰好与直线410x y +-=垂直,求实数a 的值; (2)讨论()f x 的单调性;(3)若函数()f x 存在极值,()0f x ≥在()1,+∞上恒成立时,求实数a 的取值范围.6.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.7.已知函数()2ln f x x ax x x =--,a ∈R ,()f x '是()f x 的导函数. (1)若0a =,求函数()f x '的最小值;(2)若函数()f x 在()0,∞+上单调递增,求a 的取值范围.8.已知函数1ln ()e x x f x x +=-,()()1e 1x g x a =+-. (1)证明:()1x e f x -≤; (2)若0x >时,()()g x f x ≤恒成立,求实数a 的取值范围;(3)求()f x 的最小值.9.已知函数2()1x f x x e =-,()x g x e ax =-,a ∈R .(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()g x 的单调区间;(3)设函数()()()F x f x g x =-,当1a 时,求()F x 在区间[0,+)∞上的最小值.10.已知函数()(21x f x ax x e -=-(其中02a <<,e 为自然对数的底数). (1)求函数()f x 的单调区间;(2)设函数()f x 的极小值点为m ,极大值点为n ,证明:当(,)x m n ∈时,()1ln a f x x x e--<.11.已知函数()ln f x x x a =+,0a <.(1)证明:()f x 有且仅有一个零点;(2)当()22,0a e ∈-时,试判断函数()2211ln 24g x x x x ax =-+是否有最小值?若有,设最小值为()h a ,求()h a 的值域;若没有,请说明理由.12.已知函数()()29ln f x a x ax ax =+-+有两个极值点. (1)求a 的取值范围;(2)求()f x 极小值的取值范围.13.已知函数21()22ln ()2f x x x a x a =-++∈R . (1)讨论()f x 的极值点个数;(2)设34a ≥,若函数()f x 有两个不同的极值点1x ,2x ,求()1212f x x x x +⎡⎤⎣⎦的取值范围.14.已知函数2()2ln (1)f x x m x =+-,0m >.(1)求函数()f x 的单调区间;(2)若()(1)2sin g x f x x =+-,0x =是()g x 的极大值点,求m 的取值范围.15.已知函数()sin x f x x e -=+.(1)求函数()f x 在3,22ππ⎡⎤⎢⎥⎣⎦的最大值; (2)证明:函数1()2()2x g x x e f x -=+-在(0,2)π有两个极值点12,x x ,并判断12x x +与2π的大小关系.16.已知函数()()()()21ln 121f x x x ax a x =++--+,a ∈R . (1)若()f x 在定义域内是减函数,求a 的最小值;(2)若()f x 有两个极值点分别是1x ,2x ,证明:1212x x a +>-.17.已知函数()sin cos x x f x x -=,且方程()0f x a -=在23,34ππ⎡⎤⎢⎥⎣⎦上有解. (1)求实数a 的取值范围;(2)设函数()()1sin cos ,2g x a x x x x ππ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值为()G a ,求函数()G a 的最小值;18.已知函数2()()2x xax f x e e a R -=+-∈. (1)当2a =时,求函数()f x 的单调区间(2)若()f x 在(0,)+∞上有且仅有一个极小值点,求a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、知识新授
(一)函数极值的概念
(二)函数极值的求法:(1)考虑函数的定义域并求f'(x);
(2)解方程f'(x)=0,得方程的根x
(可能不止一个)
(3)如果在x
0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x
)是
极大值;反之,那么f(x
)是极大值
题型一图像问题
1、函数()
f x的导函数图象如下图所示,则函数()
f x在图示区间上()
(第二题图) A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点
C.有两个极大值点,两个极小值点
D.有四个极大值点,无极小值点
2、函数()
f x的定义域为开区间()
a b
,,导函数()
f x
'在()
a b
,内的图象如图所示,则函数()
f x在
开区间()
a b
,内有极小值点()
A.1个 B.2个 C.3个 D.4个
3、若函数2
()
f x x bx c
=++的图象的顶点在第四象限,则函数()
f x
'的图象可能为()
D.
C.
B.
A.
4、设()
f x
'是函数()
f x的导函数,()
y f x
'
=的图象如下图所示,则()
y f x
=的图象可能是()
C.
A.
5、已知函数
()
f x 的导函数
()
f x '的图象如右图所示,那么函数()f x
的图象最有可能的是( )
-1
1 f '(x )
y
x
O
6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( )
2x
O
222
D.
C.
B.
A.
O
x
O
x x O
x y
7、如果函数
()
y f x =的图象如图,那么导函数()y f x '=的图象可能是( )
y
y
y
x
x x
y
x
D
C
B
A x
y
y=f(x)
8、如图所示是函数()y f x =的导函数()y f x '=图象,则下列哪一个判断可能是正确的( )
A .在区间(20)-,内()y f x =为增函数
B .在区间(03),内()y f x =为减函数
C .在区间(4)+∞,内()y f x =为增函数
D .当2x =时()y f x =有极小值
9、如果函数()y f x =的导函数的图象如图所示,给出下列判断:
①函数()y f x =在区间13,2⎛⎫-- ⎪⎝
⎭内单调递增;
②函数()y f x =在区间1
,32
⎛⎫- ⎪⎝⎭
内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当2x =时,函数()y f x =有极小值; ⑤当12
x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________. 10、函数321
()2
f x x x =-+的图象大致是 ( )
D
C
B
A
11、己知函数
()32f x ax bx c
=++,其导数()f x '的图象如图所示,则函数
()
f x 的极小值是( )
A .a b c ++
B .84a b c ++
C .32a b +
D .c
题型二 极值求法 1 求下列函数的极值
(1)f(x)=x 3-3x 2-9x+5; (2)f(x)=ln x x (3)f(x)=1
cos ()2
x x x ππ+-<<
2、设a 为实数,函数y=e x -2x+2a,求y 的单调区间与极值
3、设函数f(x)=31
3
x -+x 2+(m 2-1)x,其中m>0。

(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率 (2)求函数f(x)的单调区间与极值
4、若函数f(x)=
2
1
x a
x
+
+
,(1)若f(x)在点(1,f(1))处的切线的斜率为
1
2
,求实数a的值(2)若
f(x)在x=1处取得极值,求函数的单调区间
5、函数f(x)=x3+ax2+3x-9已知f(x)在x=-3时取得极值,求a
6、若函数y=-x3+6x2+m的极大值为13,求m的值
7、已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10. (1)求a,b的值;(2)f(x)的单调区间
8、已知函数f(x)=ax 2+blnx 在x=1处有极值1
2
(1)求a,b 的值;(2)判定函数的单调性,并求出
单调区间
9、设函数f(x)=
3
23
a x bx cx d +++(a>0),
且方程f'(x)-9x=0的两根分别为1,4,若f(x)在(,-∞+∞)内无极值点,求a 的取值范围
(三)函数的最值与导数
注:求函数f(x)在闭区间[a,b]内的最值步骤如下 (1)求函数y=f(x)在(a,b)内的极值
(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个就是 最大值,最小的一个就是最小值 题型一 求闭区间上的最值
1、设在区间[a,b]上函数f(x)的图像是一条连续不断的曲线,且在区间(a,b)上可导, 下列命题正确的是
(1)若函数在[a,b]上有最大值,则这个最大值必是[a,b]上的极大值 (2)若函数在[a,b]上有最小值,则这个最小值必是[a,b]上的极小值 (3)若函数在[a,b]上有最值,则这个最值必在x=a 或x=b 处取得 2、求函数f(x)=x 2-4x+6在区间[1,5]上的最值
3、求函数f(x)=x 3-3x 2+6x-10在区间[-1,1]上的最值
4、已知f(x)=x3+2x2-4x+5,求函数在[-3,1]上的最值
题型二 有函数的最值确定参数的值
1、已知函数f(x)=ax 3-6ax 2+b,x ∈[-3,1]的最大值为3,最小值为-29,求a,b 的值
2、设213a <<,函数f(x)=x 3-32ax 2
+b(-11x ≤≤)的最大值为1,最小值为,求a,b
(四)导数综合应用
1、已知函数f(x)=x2+ax+blnx(x>0,a,b为实数).(1)若a=1,b=-1,求函数f(x)的极值.(2)若
a+b=-2,讨论f(x)的单调性.
2、设函数f(x)=ax-b
x
+lnx。

(1)当f(1)=0时,若函数f(x)是单调函数,求实数a的取值范
围.(2)当f(x)在x=2,x=4出取得极值时,若方程f(x)=c在区间[1,8]内有三个不同的实数根,求实数c的取值范围(ln2 0.639)..
3、已知函数f(x)=mx 3+ax 2-x 是奇函数,且其图像上以N(1,f(1))为切点的切线的倾斜角为
4
π. (1)求函数f(x)的解析式.(2)试确定最小正整数k ,使得不等式f(x)≤k-2010对于x ∈ [-1,3]恒成立;(3)求证:|f(sinx)+f(cosx)|≤2f(t+1
2t
),(t>0)
4、设函数f(x)=1
3
x 3-ax 2-3a 2x+1(a>0).(1)若a=1,求曲线f(x)在(a,f(a))处的切线方程。

(2)求函数f(x)的单调区间、极大值、和极小值.(3)若x ∈[a+1,a+2]时,恒有f'(x)>-3a, 求实数a 的取值范围.
5、已知函数f(x)=lnx ,g(x)=a
x
(a>0),设F(x)=f(x)+g(x).(1)设函数F(x)的单调区间;(2)
若以函数y=F(x)(x ∈(0,3])图像上任意一点P(x0,y0)为切点的切线的斜率k ≤1
2
横成立,求
实数a 的最小值,(3)是否存在实数m 使得y=g(221
a
x +)+m-1的图像与函数y=f(1+x 2)的图像恰
好有4个不同的交点?若存在,求出m 的范围;若不存在,请说明理由.
6、
7、
8、
9、
11。

相关文档
最新文档