二次根式单元测试
(完整版)二次根式单元测试题
二次根式单元测试题班级:姓名: 成绩:一、选择题〔每题 3 分,共 30 分〕1.假设 3 m 为二次根式,那么 m 的取值为〔 〕A .m ≤ 3B .m <3C .m ≥ 3D .m > 32.假设式子x 2有意义,那么 x 的取值范围是〔 〕x 3A 、x ≥2B 、x ≠3C 、x >2 且 x ≠3D 、 x ≥ 2 且 x ≠3 3.假设8 n 是整数,那么正整数 n 的最大值是〔〕A 、4 B、 6 C、7D 、84.化简二次根式 ( 5) 2 3 得〔〕A . 53B .5 3C . 53D .305.以下二次根式中,最简二次根式是〔 〕A . 3a2B .1 C . 153D . 14336.计算:a ab1 等于〔 〕babA .1abB .1abC . ab 2ab7.化简:x 2 y xy =〔〕x1abD . b abbA 、xyB 、yC 、xD 、 x y8.直角三角形的两直角边长分别是 4 和 6,那么其斜边长是〔〕A 、4B 、6C 、10D 、2 139.以下各式与 3 不是同类二次根式的是〔 〕A 、 12B 、 27C 、 8D 、751二、填空题〔每题 3 分,共 30 分〕11.当 x___________时,34x 在实数范围内有意义.12.计算:①(3)2=;② ( 25)2=13.比较大小: 3 2 ______ 2 3.14.化简:① 11721082=;② (96150)6 =15.在实数范围内分解因式x2 5 =16.当 x时,2x1212x17.要切一块面积为 6400 cm2的正方形大理石地板砖,那么它的边长要切成㎝18.:x2x y 20,那么 x2xy19.若是x225 ,那么 x;若是 x 3 29 ,那么 xv 220.:在公式中g v为速度,那么vr三、解答题〔共60 分〕21.化简〔每题 4 分,共 8 分〕〔 1〕 ( 144) ( 169)〔2〕m2 n18 22.计算:〔每题 4 分,共 16 分〕〔1〕12838414.〔2〕112213.22335〔3〕45458 4 2〔4〕(56)( 56)23.假设最简二次根式222 与n212是同类二次根式,求m、n 的值.〔 7 分〕33m4m 1024.化简求值:x22x x,其中 x 3 2〔7分〕x 1 1 x x125.假设二次根式2x 3 和x 1 都有意义,求x 的取值范围〔 7 分〕26.实数a, b在数轴上的对应点以以下图,化简:(a b) 2a2〔7分〕27. Rt△ABC 中,∠ ACB=90 °, AC= 2 2,BC=10 ,求AB上的高CD的长〔8 分〕CB D A。
二次根式单元测试及解析
一、选择题1.下列二次根式中,是最简二次根式的是( ) ABC.D2.下列计算正确的是( ) ABC .=3D3.有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-24.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )123A .BC .D5.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,a +b |+|a -c|-( )A .2c -bB .2c -2aC .-bD .b6.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知0xy <,化简二次根式 ) ABC.D.8.下列计算正确的是( ) A=B=C4=D3=-9.是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .210.如果实数x ,y=-(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上二、填空题11.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; ③222222111(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z221(20172017)(20182018)f f +=+⋅+z z __________.12.已知13x x+=,且01x <<,则2691x x x =+-______.13.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.14.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____.15.已知m=1+ 2,n=1﹣2,则代数式22m n mn +-的值________. 16.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.17.4102541025-+++=_______. 18.化简(32)(322)+-的结果为_________. 19.已知23x =243x x --的值为_______.20.12a 1-能合并成一项,则a =______.三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.23.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x yx-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y ()()()222=x y x y x x x x x x y x y -⎛⎫---⋅ ⎪+-⎝⎭=y x x y x x y ---⋅+ x yx-=-把x y ==代入得:原式1==-+考点:分式的化简求值.24.观察下列各式:11111122=+-=11111236=+-=111113412=+-=请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】(1)仿照已知等式确定出所求即可; (2)归纳总结得到一般性规律,写出即可; (3)原式变形后,仿照上式得出结果即可. 【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.26.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,b ===22221111()223122222a b a b ab ⎛⎫+=+-=+-⨯⨯=-= ⎪ ⎪⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.27.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.28.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据最简二次根式的特点解答即可. 【详解】A ,故该选项不符合题意;B =C 、=3,故该选项不符合题意;D 不能化简,即为最简二次根式, 故选:D . 【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.2.D解析:D【解析】解:A A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.3.B解析:B【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案.【详解】有意义,得:20x+>,解得:2x>-.故选:B.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.4.B解析:B【解析】【分析】由图形可知,第n(n =案.【详解】由图形可知,第n(n =∴第8=,则第9行从左至右第5=,故选B.【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为5.D解析:D 【解析】 解:∵|a |+a =0,∴|a |=﹣a ,∴﹣a ≥0,∴a ≤0,∵|ab |=ab ,∴ab ≥0,∴b ≤0,∵|c |﹣c =0,∴|c |=c ,∴c ≥0,∴原式=﹣b +(a +b )﹣(a ﹣c )﹣(c ﹣b )=b .故选D .6.A解析:A 【解析】试题分析:根据二次根式的概念,可知a≥0,ab >0,解得a >0,b >0,因此可知A (a ,b )在第一象限. 故选A7.B解析:B 【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可. 【详解】 解:0xy <,0x ∴>,0y <或0x <,0y >,又2yx x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时, 故选B . 【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x 、y 的取值.8.B解析:B 【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案. 【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题11.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=-20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 12..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运解析:12.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.13.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|b|+|a﹣b|﹣|a+b|=b﹣(a﹣b)+(a+b)=b﹣a+b+a+b=3b,故答案为:3b【点睛】=和绝对值的性质是解题的关a键.14.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.15.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====.故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.16.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数: ∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.17.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t =,由算术平方根的非负性可得t ≥0,则244t =+8=+8=+81)=+6=+21)=1t ∴=..【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键. 18.1【分析】根据平方差公式进行计算即可.【详解】原式=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键.解析:1【分析】根据平方差公式进行计算即可.【详解】原式=(223981-=-=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键. 19.-4把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
《二次根式》单元测试题含答案
《二次根式》单元测试题含答案work Information Technology Company.2020YEAR《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、b a x 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |. 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -mab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2m n -mab mn +m nn m )·221b a nm=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222a x x a x x+-++222222a x x x a x x +-+-+221a x +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx +|-|xyy x -|∵ x =41,y =21,∴y x <xy . ∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
二次根式 单元测试题(含答案)
二次根式单元测试题(含答案) 九年级上学期数学测试题(二次根式)一、选择题1.已知 x^3+3x^2=-x(x-3),则 x 的取值范围是()A。
x≤0.B。
x≤-3.C。
x≥-3.D。
-3≤x≤02.化简(√a-√b)/(√a+√b) 得()A。
-√a。
B。
-a。
C。
√a。
D。
a3.当 a<0,b<0 时,-a+2ab-b 可变形为()A。
(a+b)。
B。
-(a-b)。
C。
(-a-b)。
D。
(-a+b)4.在根式√a^2+b^2、√x、√x^2-xy、3√abc 中,最简二次根式是()A。
√a^2+b^2、√x。
B。
√x、√x^2-xy。
C。
√a^2+b^2、√x^2-xy。
D。
√a^2+b^2、3√abc5.下列二次根式中,可以合并的是()A。
√a/a 和√13a^2.B。
2√a 和 3a^2.C。
3√a^2 和 a。
D。
3a^4 和 2a^26.如果 a+a^2-2a+1=1,那么 a 的取值范围是()A。
a=0.B。
a=1.C。
a≤1.D。
a=0 或 a=17.能使 x/(x-2)=1 成立的 x 的取值范围是()A。
x≠2.B。
x≥2.C。
x≥0.D。
x>28.若化简 |1-x|-x^2-8x+16 的结果是 2x-5,则 x 的取值范围是()A。
x 为任意实数。
B。
1≤x≤4.C。
x≥1.D。
x<49.已知三角形三边为 a、b、c,其中 a、b 两边满足 a^2-12a+36+b-8=0,那么这个三角形的最大边c 的取值范围是()A。
c>8.B。
8<c<14.C。
6<c<8.D。
2<c<1410.XXX的作业本上有以下四题:①16a^4=4a^2;②5a×10a=5a^2;③a^(1/2)×a^(1/2)=a;④3a-2a=a。
其中做错误的是()A。
①。
B。
②。
C。
③。
D。
④二、填空题:11.(√1/2)^2 的值是 1/2,36 的算术平方根是 6.12.(7-5√2)^2008×(-7-5√2)^2009=-2.13.x,y 分别为 8-11 的整数部分和小数部分,则 2xy-y^2=-0.19.14.若 x=2/3,则 x^2-2x+3 的值为 5/9.15.已知 xy<0,化简 x^2y^4=|xy^3|。
《二次根式》单元测试卷3套(含答案解析)
(2)(4 分) 5 6 3 5 6 3
22.(1)(6 分) x y y x x y (x≥0,y≥0);
(2)(6 分)(a-b) 1 b a a2 2ab b2 (b>a).
ba
23.(6 分)已知 a=
2
-1,求
2a a 1
1
a
a
a
的值.
24.(8 分)已知
A. 2 3 -1
B.1+ 3
C.2+ 3
D.2 3 -1
7.已知两条线段的长分别为 3 cm、 5 cm,那么能与它们组成直角三角形的第三条线段
的长是 ( )
A. 2 cm
B.2 2 cm
C. 2 cm 或 2 2 cm D. 15 cm
二、填空题(每题 3 分,共 21 分)
8.当 x 满足_______时, 2x 4 4 x 在实数范围内有意义.
3.计算 8 2 的结果是 ( )
A.6
B. 6
C.2
D. 2
4.下列四个数中,与 11 最接近的数是 ( )
A.2
B.3
C.4
5.若 a、b 为实数,且满足 a 2 b2 0 ,则 b-a 的值为
A.2
B.0
C.-2
D.5 ()
D.以上都不对
6.如图,数轴上 A、B 两点对应的实数分别是 1 和 3 ,若点 A 关于点 B 的对称点为点 C, 则点 C 所对应的实数为 ( )
1 x=
2
,求
1 x
1 x x2 2x 1
x 1 x 12 x 12
的值.
25.(8 分)已知实数 x,y,a 满足: x y 8 8 x y 3x y a x 2y a 3 ,
二次根式单元测试题(卷)经典3套
二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。
1/2=3-2。
1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。
19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。
二次根式单元测试及答案
第一个:
第二个:
第三个:
第四个: …
(1)试写出第 个式子(用含 的表达式表示),这个式子一定是二次根式吗?为什么?
(2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.
【答案】(1) ,该式子一定是二次根式,理由见解析;(2) 在15和16之间.理由见解析.
【点睛】
本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.
25.观察下列各式:
请你根据上面三个等式提供的信息,猜想:
(1) _____________
(2)请你按照上面每个等式反映的规律,写出用 ( 为正整数)表示的等式:______________;
(3)利用上述规律计算: (仿照上式写出过程)
本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.
27.计算:
【答案】1
【分析】
先计算乘方,再化简二次根式求解即可.
【详解】
解:
=
=1.
【点睛】
本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.
28.已知x=2- ,y=2+ ,求代数式x²+2xy+y²的值.
【详解】
解:要使y有意义,必须 ,即 ∴x= .当x= 时,y= .
又∵ - = -
=| |-| |
∵x= ,y= ,∴ < .
∴原式= - =2
当x= ,y= 时,原式=2 = .
【点睛】
主要考查了二次根式的意义和性质.概念:式子 (a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
二次根式单元测试题及答案
二次根式单元测试题及答案题目1. 化简下列根式:$\sqrt{12}$答案:$\sqrt{12} = \sqrt{4 \cdot 3}=2\sqrt{3}$题目2. 计算下列各根式的值并化简:$\sqrt{9}+\sqrt{16}$答案:$\sqrt{9}+\sqrt{16} = 3+4=7$题目3. 计算下列各根式的值:$\sqrt{25} - \sqrt{9}$答案:$\sqrt{25} - \sqrt{9} = 5 - 3 = 2$题目4. 计算下列各根式的值:$2\sqrt{8} - 3\sqrt{18}$答案:$2\sqrt{8} - 3\sqrt{18} = 2\sqrt{4 \cdot 2} - 3\sqrt{9 \cdot 2} \\ = 2 \cdot 2\sqrt{2} - 3 \cdot 3\sqrt{2} \\= 4\sqrt{2} - 9\sqrt{2} \\= -5\sqrt{2}$题目5. 求下列各根式的值:$(\sqrt{5}+2)^2$答案:$(\sqrt{5}+2)^2 = (\sqrt{5}+2)(\sqrt{5}+2) \\= 5 + 2\sqrt{5} + 2\sqrt{5} + 4 \\= 9 + 4\sqrt{5}$题目6. 将下列各根式化为最简根式:$\sqrt{72}$答案:$\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{6^2 \cdot 2} \\= 6\sqrt{2}$题目7. 将下列各根式化为最简根式:$2\sqrt{50}$答案:$2\sqrt{50} = 2 \cdot \sqrt{25 \cdot 2} = 2 \cdot 5\sqrt{2} \\ = 10\sqrt{2}$题目8. 将下列各根式化为最简根式:$3\sqrt{27}$答案:$3\sqrt{27} = 3\sqrt{9 \cdot 3} = 3 \cdot 3\sqrt{3} \\= 9\sqrt{3}$题目9. 求解下列方程:$x^2 - 4 = 0$答案:$x^2 - 4 = 0 \\(x - 2)(x + 2) = 0 \\x - 2 = 0 \quad \text{或} \quad x + 2 = 0 \\x = 2 \quad \text{或} \quad x = -2$题目10. 求解下列方程:$2x^2 - 16 = 0$答案:$2x^2 - 16 = 0 \\2(x^2 - 8) = 0 \\x^2 - 8 = 0 \\(x - \sqrt{8})(x + \sqrt{8}) = 0 \\x - \sqrt{8} = 0 \quad \text{或} \quad x + \sqrt{8} = 0 \\x = \sqrt{8} \quad \text{或} \quad x = -\sqrt{8} \\x = 2\sqrt{2} \quad \text{或} \quad x = -2\sqrt{2}$题目11. 求解下列方程:$x^2 + 5x + 6 = 0$答案:$x^2 + 5x + 6 = 0 \\(x + 2)(x + 3) = 0 \\x + 2 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -2 \quad \text{或} \quad x = -3$题目12. 求解下列方程:$2x^2 + 7x + 3 = 0$答案:$2x^2 + 7x + 3 = 0 \\(2x + 1)(x + 3) = 0 \\2x + 1 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -\frac{1}{2} \quad \text{或} \quad x = -3$题目13. 解方程组:$$\begin{cases}x^2 + y^2 = 25 \\x + y = 7\end{cases}$$答案:将第二个方程展开得到 $y = 7-x$,代入第一个方程得到:$$x^2 + (7-x)^2 = 25 \\x^2 + 49 - 14x + x^2 = 25 \\2x^2 - 14x + 24 = 0 \\x^2 - 7x + 12 = 0 \\(x - 3)(x - 4) = 0 \\x - 3 = 0 \quad \text{或} \quad x - 4 = 0 \\x = 3 \quad \text{或} \quad x = 4$$代入第二个方程可得:当 $x = 3$ 时,$y = 7 - 3 = 4$;当 $x = 4$ 时,$y = 7 - 4 = 3$。
二次根式单元测试卷
二次根式单元测试卷一、 选择题(每题3分共30分) 1.下列式子中二次根式的个数有( );⑶1)x >A .2个 B.3个 C.4个 D.5个2.要使二次根式2x-6 有意义,x 应满足的条件是( )A .x ≥3B .x <3C .x >3D .x ≤3 3.下列二次根式中,与24 是同类二次根式的是( )A .18B .30C .48D .54 4.下列根式中是最简二次根式的是( )A .a2+1B .12 C .8 D .275.把m m 1-根号外的因式移到根号内,得( )A .mB .m -C .m --D .m -6.10b -=,那么2007)b a (+的值为( )A.-1B.1C.20073D.20073-7.已知12-n 是正整数,则实数n 的最大值为( )A .12B .11C .8D .3 8.若x ·x-6 = x(x-6) ,则( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数9.若0a >且2a x a -<<-,则化简22x a x a ++的结果为( )A.4aB.6x -2aC.2x +2aD.2a -2x10.若化简|1-x|-1682+-x x 的结果为2x-5则x 的取值范围是( )A.x 为任意实数B.1≤x ≤4C.x ≥1D.x ≤4 二、填空题(每空4分共24分) 11.比较大小:-32___________-2 312.请写出3的两个同类二次根式:____________________13.若3的整数部分是a ,小数部分是b ,则=-b a 3 ______________14.= ___= ___=____ 15.在实数范围内分解因式: 494-x =________二、 计算题(每题5分共20分)16. 4 5 + 45 - 8 17.(12 - 33)×2418.0(3)1--+19.1)a四、(本题共3题,共26分)20.已知:x y==yx11+的值。
数学《二次根式》单元测试含答案
《二次根式》单元测试满分:150分;考试时间:120分钟一.选择题(共10小题,满分40分)1.(4分)下列各式中,一定是二次根式的个数为(),,,,,(a≥0),(a<)A.3个B.4个C.5个D.6个2.(4分)使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠33.(4分)如果一个三角形的三边长分别为、k、,则化简﹣|2k ﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k4.(4分)若实数m满足|m﹣4|=|m﹣3|+1,那么下列四个式子中与(m﹣4)相等的是()A.B.C.D.5.(4分)下列各式正确的是()A.B.若a>b,c<0,则ac>bcC.ab3﹣a3b分解因式的结果为ab(a2﹣b2)D.若分式的值为正数,则x>26.(4分)在、、、、中,最简二次根式有()A.1个B.2个C.3个D.4个7.(4分)等式=(b﹣a)成立的条件是()A.a≥b,x≥0 B.a≥b,x≤0 C.a≤b,x≥0 D.a≤b,x≤0 8.(4分)估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间9.(4分)++…+的整数部分是()A.3 B.5 C.9 D.610.(4分)如果,那么的值是()A.0 B.1 C.2 D.4二.填空题(共5小题,满分25分,每小题5分)11.(5分)若,则a m=.12.(5分)已知a、b满足=a﹣b+1,则ab的值为.13.(5分)把化成最简二次根式的结果为.14.(5分)已知x=,则4x2+4x﹣2017=.15.(5分)观察下列等式:,,,…请你从上述等式中找出规律,并利用这一规律计算:=.三.解答题(共7小题,满分85分)16.(20分)计算:(1)÷×(2)﹣(4﹣)(3)(7+4)(7﹣4)﹣(3﹣1)2(4)|﹣|+|﹣2|+17.(8分)已知x,y为实数,且y=+4,求的值.18.(9分)实数a在数轴上的位置如图,化简|a﹣2|+.19.(10分)最简二次根式与是同类二次根式,且x为整数,求关于m的方程xm2+2m﹣2=0的根.20.(12分)观察思考:()2=,()2=,()2=,()2=…由此得到:(1)()2=.(2)计算()2(说明:式子中的n是正整数,写出解题过程).21.(12分)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.22.(14分)阅读下面计算过程:﹣1;.﹣2请解决下列问题(1)根据上面的规律,请直接写出=.(2)利用上面的解法,请化简:.(3)你能根据上面的知识化简吗?若能,请写出化简过程.参考答案一.选择题1.A.2.D.3.D.4.D.5.D.6.B.7.C.8.B.9.C.10.D.二.填空题11.1.12.±.13.14.﹣2015.15.2006.三.解答题16.解:(1)原式==1;(2)原式=3﹣2+5=6;(3)原式=49﹣48﹣(45﹣6+1)=1﹣46+6=﹣45+6;(4)原式=﹣+2﹣+2=4﹣.17.解:由题意得,x﹣16≥0,16﹣x≥0,解得x=16,y=+4=4,则=4﹣2=2.18.解:由数轴知2<a<4,则a﹣2>0、a﹣4<0,所以原式=a﹣2+|a﹣4|=a﹣2+4﹣a=2.19.解:∵最简二次根式与是同类二次根式,且x为整数,∴2x2﹣x=4x﹣2,即2x2﹣5x+2=0,解得:x=(舍去)或x=2,把x=2代入方程得:2m2+2m﹣2=0,即m2+m﹣1=0,解得:m=.20.解:(1)根据题意知()2=,故答案为:;(2)原式=(3×)2=32×()2=9×=.21.解:该同学的答案是不正确的.当a≥1时,原式=a+a﹣1=2a﹣1,当a<1时,原式=a﹣a+1=1,∵该同学所求得的答案为,∴a≥1,∴2a﹣1=,a=与a≥1不一致,∴该同学的答案是不正确的.22.解:(1)==﹣.(2)=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9;(3)==+.故答案为:﹣.人教版八年级数学下册16章单元测试题(含答案)一.选择题(共5小题)1.下列式子一定是二次根式的是()A.B.C.D.2.下列二次根式中,无论x取什么值都有意义的是()A.B.C.D.3.化简的结果是()A.5 B.﹣5 C.±5 D.254.下列根式中属于最简二次根式的是()A.B.C.D.5.下列运算结果正确的是()A.=﹣9 B.C.D.二.填空题(共5小题)6.若代数式在实数范围内有意义,则x的取值范围是.7.计算:=.8.计算:=.9.计算:﹣×=.10.已知n为整数,则使为最小正有理数的n的值是.三.解答题(共6小题)11.直接写出答案=;=;=.=,(﹣)2=,=.12.化简:(1)×;(2)×.(3).(4).13.计算:(1).(2)÷2×.(3).(4)6﹣.(5)﹣+(6)2×÷.14.计算:(1)2÷×.(2)2.(3)×÷.(4).(5).(6)2﹣6+.15.计算:(1)4x2.(2).(3)(﹣)÷.(4)(+3)(+2)(5)(2﹣)2.(6).16.观察下列的计算:==﹣1;==﹣,根据你的观察发现,可得代数式(+++…+)×(+1)的结果为.人教版八年级数学下册16章单元测试题参考答案一.选择题(共5小题)1.C 2.D.3.A.4.A.5.B.二.填空题(共5小题)6.x≤.7.2017.8.3.9..10.3.三.解答题(共6小题)11.2;5a;.1,3,4.12.解:(1)×=3;(2)×===6.(3)=×=11×6=66.(4).=×=×=.13.解:(1)原式=3×5×=15.(2)原式===8=4.(3)原式==.(4)原式=12﹣4=8.(5)原式=3﹣4+=0.(6)原式=×=.14.解:(1)原式=4÷×3=8×3=24.(2)原式=2××=××=6.(3)原式=÷=.(4)原式===20.(5)原式=3﹣+2=.(6)原式=4﹣6×+4=8﹣2=615.解:(1)原式=4x2÷12×3=x2=xy.(2)原式==x.(3)原式=﹣=2﹣=(4)原式=5+2+3+6=11+5;(5)原式=20﹣4+2=22﹣4.(6)原式=5﹣2+3﹣2+1=7﹣2.16.解:由题意给出的等式可知:原式=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)(+1)=2014﹣1=2013《二次根式》单元检测与简答一.选择题(共10小题)1.下列各式中是二次根式的是( )A .B D2x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <13.下列根式中,最简二次根式是( )A .BC D 4.下列运算正确的是( )A .2a +3b=5abB .﹣2m (m ﹣3)=﹣2m 2﹣6mC .(2a 2)3=6a 6D .=3 5.下列说法中正确的是( )A .9的平方根为3 B化简后的结果是2C .D .﹣27没有立方根6 )A .B .C 7.下列计算正确的是( )A .B =﹣1C =38.如果(2)2=a +(a ,b 为有理数),那么a +b 等于( )A .7B .8C .D .109.已知等腰三角形的两条边长为1,则这个三角形的周长为( )A .2B .1+C .2+1+D .1+10.2,…,,2,4, (1)4),14的位置记为(2,2),则这组数中最大的有理数的位置记为( ) A .(7,2) B .(7,5) C .(6,2) D .(6,3)二.填空题(共8小题)11.代数式3-22x x -有意义,则x 的取值范围是 . 12.计算(23)(23)+-的结果为 .13.若120x y ++-=,则x y +=_________.14.把1a a-的根号外的因式移到根号内等于? 15.若最简二次根式312b a -+与4b a -是同类二次根式,则2017(2)a b - .16.化简:231-的结果是______. 17.比较大小:23__32.(填“>、<、或=”)18.若5的整数部分是a ,小数部分是b ,则5b a -=______________.三.解答题(共6小题)19.已知+=b +8.(1)求a 的值;(2)求a 2﹣b 2的平方根.20.若最简二次根式和是同类二次根式.(1)求x 、y 的值.(2)求的值. 21.已知x=23y=23(1)x 2+2xy +y 2;(2)x 2﹣y 2.22.计算:(1)12+33;(2)+5;(3)(23+6)2;(4)18+1015﹣8+1453.23.已知长方形的长a=1322,宽b=1183.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.24.解决下列问题:已知二次根式(1)当x=3时,求的值.(2)若x是正数,是整数,求x的最小值.(3)若和是两个最简二次根式,且被开方数相同,求x的值.2017—2018学年湘教版八年级数学上册第5章《二次根式》单元检测简答一.选择题(共10小题)1.C.2.A.3.C.4.D.5.B.6.A.7.D.8.D.9.B.10.A.二.填空题(共8小题)11.x.12.-1 13. 1 14.﹣a15.-1 16.3+117.<18.3—25三.解答题(共6小题)19.已知+=b+8.(1)求a的值;(2)求a2﹣b2的平方根.【分析】(1)根据被开方数是非负数,即可求得a的值;(2)根据(1)的结果即可求得b的值,然后利用平方根的定义求解.【解答】解:根据题意得:,解得:a=17;(2)b+8=0,解得:b=﹣8.则a2﹣b2=172﹣(﹣8)2=225,则平方根是:±15.【点评】本题考查的知识点为:二次根式的被开方数是非负数.20.若最简二次根式和是同类二次根式.(1)求x、y的值.(2)求的值.【分析】(1)根据同类二次根式的定义列出方程求解即可;(2)把x、y的值代入代数式进行计算即可得解.【解答】解:(1)由题意得,3x﹣10=2,2x+y﹣5=x﹣3y+11,解得x=4,y=3;(2)当x=4,y=3时,==5.【点评】此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.21.已知x=23y=23(1)x2+2xy+y2;(2)x2﹣y2.【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣3,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【解答】解:(1)∵x=23,y=23,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=23,y=23,∴x+y=4,x﹣y=﹣3,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣3)=﹣3.【点评】本题考查了二次根式的化简求值:先根据二次根式的性质和运算法则进行化简,然后把满足条件的字母的值代入求值.22.计算:(1)12+33;(2)+5;(3)(23+6)2;(4)18+1015﹣8+1453.【分析】(1)先把12化为最简二次根式,然后合并即可;(2)根据二次根式的除法法则运算;(3)利用完全平方公式计算;(4)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=23+33=53;(2)原式=﹣+5=355=3;(3)原式=12+2+6=18+2;(4)原式2+5252+5【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.已知长方形的长1322,宽1183.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.【分析】首先化简a=1322=22,b=1183=2.(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.【解答】解:a=1322=22,b=1183=2.(1)长方形的周长=(22+2)×2=62;(2)正方形的周长=4=8,∵62=72, 8=64,∵72>64∴62>8.【点评】此题考查二次根式的实际运用,掌握二次根式的化简方法以及长方形、正方形的周长与面积计算方法是解决问题的关键.24.解决下列问题:已知二次根式(1)当x=3时,求的值.(2)若x是正数,是整数,求x的最小值.(3)若和是两个最简二次根式,且被开方数相同,求x的值.【分析】(1)根据题意可以求得的值;(2)根据x是正数,是整数,可以求得x的最小值;(3)根据和是两个最简二次根式,且被开方数相同,可以求得x的值.【解答】解:(1)当x=3时,=;(2)∵x 是正数,是整数, ∴的最小值是2, 解得,x=1或x=﹣1(舍去),即x 的最小值是1;(3)∵和是两个最简二次根式,且被开方数相同, ∴2x 2+2=2x 2+x +4,解得,x=﹣2,即x 的值是﹣2.【点评】本题考查同类二次根式,解题的关键是明确题意,找出所求问题需要的条件.二次根式单元检测题姓名: ;成绩: ;一、选择题(4分×12=48分) 51x- ) A、x ≥1 B、x≤1 C、x≠1 D、x<1 2、若代数式32x x +-在实数范围内有意义,则x 的取值范围为( ) A、x<-3 B、x≥-3 C、x>2 D、x≥-3,且x≠23、函数4y x =-y 取值最小值时x 的取值是( )A、0 B、4 C、2 D、不存在 4、如果2693a a a -+=成立,那么实数a 的取值范围是( )A、a≤0 B、a≤3 C、a≥-3 D、a≥35、已知a<03a b - )A、ab -- B 、ab - C 、a ab D 、ab -6、设2,3a b ==a 、b 0.54,则下列表示正确的是( ) A、0.3ab B、3ab C、0.1ab D、0.1a 3b 50232+ ) A、在4和5之间 B、在5和6之间 C、在6和7之间 D、在7和8之间 8、一次函数(3)2y m x n =-+-(m 、n 为常数),则化简22()441n m n n m --+-的结果为( )A、-2n+3 B、-2m+3 C、m-3 D、-19、对于任意不相等的两个正实数a 、b ,定义一种新运算“※”如下:a※1a b ,2316=1,那么2※12的结果是( )A、1 B 、-1 C 、2 D 、-2 10、把33a - ) a -、a C 、3a - D 、3a 11、若20171m =-54322016m m m --的值为( ) A、1 B、0 C、2016 D、2017 2(4)4a a -=-,52a -a 的值的个数是( )A、1 B、2 C、3 D、4二、填空题(4分×6=24分)13、现有一张边长为1m 的正方形彩纸,欲从中剪下一个面积为其一半的正方形,剪下的正方形的边长是 m 。
二次根式单元测试题及答案word
二次根式单元测试题及答案word一、选择题(每题3分,共30分)1. 下列选项中,哪一个是二次根式?A. \(\sqrt{2}\)B. \(2\sqrt{2}\)C. \(\sqrt{2} + 1\)D. \(\sqrt{2} \times 3\)答案:A2. 计算 \(\sqrt{4}\) 的值是多少?A. 1B. 2C. 4D. -2答案:B3. 如果 \(x = \sqrt{9}\),那么 \(x\) 的值是多少?A. 3B. -3C. 3或-3D. 9答案:A4. 将 \(\sqrt{3} \times \sqrt{3}\) 化简,结果是多少?A. \(\sqrt{9}\)B. \(3\sqrt{3}\)C. 3D. \(\sqrt{3}\)答案:C5. 计算 \(\sqrt{16} - \sqrt{4}\) 的值是多少?A. 2B. 4C. 0D. 2\(\sqrt{2}\)答案:A6. 根据二次根式的性质,\(\sqrt{a^2} = |a|\),下列哪个选项是正确的?A. \(\sqrt{(-2)^2} = 2\)B. \(\sqrt{(-2)^2} = -2\)C. \(\sqrt{(-2)^2} = \pm 2\)D. \(\sqrt{(-2)^2} = -\sqrt{2}\)答案:A7. 计算 \(\sqrt{2} + \sqrt{2} = ?\)A. \(2\sqrt{2}\)B. \(\sqrt{4}\)C. 4D. \(\sqrt{8}\)答案:A8. 已知 \(a = \sqrt{7}\),\(b = \sqrt{3}\),那么 \(a^2 - b^2\) 的值是多少?A. 4B. 7C. 10D. 14答案:C9. 下列哪个表达式可以化简为 \(\sqrt{2}\)?A. \(\sqrt{4}\)B. \(\sqrt{8} \div 2\)C. \(\sqrt{2} \times \sqrt{2}\)D. \(\sqrt{2} + \sqrt{2}\)答案:B10. 计算 \(\sqrt{25} \times \sqrt{4}\) 的值是多少?A. 10B. 20C. 50D. 100答案:A二、填空题(每题4分,共20分)1. \(\sqrt{81}\) 的值是 ________。
初中数学二次根式单元测试及解析
一、选择题
1.下列各式中,运算正确的是( )
A. (2)2 2 B. 2 8 4
C. 2 8 10
2.下列计算正确的是( )
A. 2 × 3 = 6 B. 2 + 3 = 5 C. 8 =4 2
3.下列二次根式中,最简二次根式是( )
D. 2 2 2 D. 4 ﹣ 2 = 2
10.下列各式计算正确的是( )
A. 2+ 3= 5
B.3 2 ﹣2 2 =1 D.a x ﹣b x =(a﹣b) x
B. 4 3-3 3=1
C. 2 3 3 3=6 3
D. 12 3=2
11.若a、b、c为有理数,且等式 值是( )
成立,则2a+999b+1001c的
A.1999 B.2000 C.2001 D.不能确定
3
7 2 28
=2 3 3 1 4 3 2 6 3
3
7
= 53 3 1. 21
【点睛】
此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的
关键.
22.先阅读材料,再回答问题:
因为 2 1 2 1 1,所以 1 2 1;因为 3 2 3 2 1,所以 2 1
3 1 3
7 2 28
【答案】 53 3 1 21
【分析】
先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算 加减法. 【详解】
12 2 4 1 2 3 11 2 3
3 1 3
7 2 28
= 2 3 ( 3 1) 4 3 2 (3 2) 8 1 3
12.使式子 1 x 2 成立的 x 的取值范围是( ) x2 4
(word完整版)二次根式单元测试附答案
二次根式单元测试一、填空题(3×10=30)1.数5的平方根是 ,算术平方根是 ;2。
4的平方根是 ,a 2的算数平方根是 ;3。
若二次根式有意义,则的取值范围是___________. 4。
已知,则。
5.比较大小:。
6。
在实数范围内因式分解:。
7。
若,则__________。
82111a a a +-=-成立的条件是 ; 9.16a -是整数,则非负整数a = ,16a -的值为 ;10.在一个半径为2m 的圆形纸片上截出一个面积最大的正方形,则这个正方形的边长是 .二。
选择题(3×8=24)11.2x -,二次根式能表示的最小实数是( )A 。
0 B.2 C 2 D 。
不存在4.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .14B .48C .ba D .44+a 6. 已知25523y x x =---则2xy 的值为( )A .15-B .15C .152-D . 152 7.化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 8.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⨯; ③a aa a a =•=112;④a a a =-23.做错的题是( )A .①B .②C .③D .④9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )A .43-=a B .34=a C .a=1 D .a= -1 10. 计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22 三.解答题(共66分)19。
(16分)计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2) )459(43332-⨯(3)2484554+-+ (4)2332326--20.(5分)化简求值:2a (a+b )-(a+b )2,其中ab;21。
《二次根式》单元测试题含答案
《二次根式》单元测试题含答案《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴ 222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分) 21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ). 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm =21b n m m n ⋅-mab 1n m m n ⋅+22b ma n nm n m ⋅ =21b -ab 1+221b a =2221b a ab a +-.26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba ba ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x=41时,y =21. 又∵xyy x ++2-xyy x +-2=2)(xy y x+-2)(xy y x -=|xy y x +|-|xyy x -|∵ x =41,y =21,∴y x<x y .∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
第1章 二次根式单元测试(解析版)
第1章二次根式单元测试一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•南湖区校级期中)要使二次根式√x −3有意义,x 的值可以是( )A .4B .2C .1D .0【分析】根据二次根式有意义的条件可得x ﹣3≥0,再解即可.【解答】解:要使二次根式√x −3有意义,则x ﹣3≥0,解得:x ≥3,故x 的值可以是4.故选:A .2.(2022秋•南湖区校级期中)下列计算正确的是( )A .√(−2)2=±2B .√(−2)2=−2C .√−83=2D .√12=2√3【分析】直接利用二次根式的性质以及立方根的性质分别化简,进而判断得出答案.【解答】解:A .√(−2)2=2,故此选项不合题意;B .√(−2)2=2,故此选项不合题意;C .√−83=−2,故此选项不合题意;D .√12=2√3,故此选项符合题意;故选:D .3.(2022秋•富阳区期中)下列计算正确的是( )A .√(−5)2=−5B .√1273=√−1273C .√16=±4D .−√0.25=−0.5【分析】根据二次根式的性质,立方根的定义依次判断即可.【解答】解:∵√(−5)2=5,∴A 选项不符合题意;∵√1273=13,√−1273=−13,∴√1273≠√−1273, ∴B 选项不符合题意;∵√16=4,∴C 选项不符合题意;∵−√0.25=−0.5,∴D 选项符合题意,故选:D .4.(2014春•黄陂区期中)若√x ⋅√x −6=√x(x −6),则( )A .x ≥6B .x ≥0C .0≤x ≤6D .x 为一切实数【分析】本题需注意的是二次根式的被开方数为非负数,由此可求出x 的取值范围.【解答】解:若√x ⋅√x −6=√x(x −6)成立,则{x ≥0x −6≥0,解之得x ≥6; 故选:A .5.(2022秋•南湖区校级期中)已知y =√x −2+√2−x +4,y x 的平方根是( )A .16B .8C .±4D .±2【分析】根据二次根式有意义的条件可得{x −2≥02−x ≥0,据此可得x 的值,进而得出y 的值,再代入所求式子计算即可.【解答】解:∵y =√x −2+√2−x +4,∴{x −2≥02−x ≥0, 解得x =2,∴y =4,∴y x =42=16.∴y x 的平方根是±4.故选:C .6.(2022秋•上城区校级期中)实数a ,b ,c 在数轴上的对应点如图所示,化简﹣a +|b ﹣a |+√c 2的结果是( )A .﹣b ﹣cB .c ﹣bC .2a ﹣2b +2cD .2a +b +c【分析】根据数轴,确定a 、b 、c 的正负,确定b ﹣a 的正负,然后再化简.【解答】解:由数轴知:c <0,b <0<a ,∴b ﹣a <0,∴原式=﹣a ﹣(b ﹣a )﹣c=﹣a ﹣b +a ﹣c=﹣b ﹣c .故选:A .7.(2022春•西湖区期中)以下各数是最简二次根式的是( )A .√0.3B .√12C .√13D .√6【分析】根据最简二次根式的定义:被开方数不含能开得尽方的因数或因式,被开方数中不含分母,即可解答.【解答】解:A 、√0.3=√3010,不是最简二次根式,故本选项错误,不符合题意;B 、√12=2√3,不是最简二次根式,故本选项错误,不符合题意;C 、√13=√33,不是最简二次根式,故本选项错误,不符合题意;D 、√6是最简二次根式,故本选项正确,符合题意.故选:D .8.(2021秋•仓山区校级期末)如图,从一个大正方形中裁去面积为16cm 2和24cm 2的两个小正方形,则余下的面积为( )A .16√6cm 2B .40 cm 2C .8√6cm 2D .(2√6+4)cm 2【分析】根据已知部分面积求得相应正方形的边长,从而得到大正方形的边长,易得大正方形的面积,利用分割法求得余下部分的面积.【解答】解:从一个大正方形中裁去面积为16cm 2和24cm 2的两个小正方形,大正方形的边长是√16+√24=4+2√6,留下部分(即阴影部分)的面积是(4+2√6)2﹣16﹣24=16+16√6+24﹣16﹣24=16√6(cm 2).故选:A .9.(2021春•鄞州区校级期末)已知﹣1<a <0,化简√(a +1a )2−4+√(a −1a )2+4的结果为( )A .2aB .2a +2aC .2aD .−2a【分析】直接利用完全平方公式结合a 的取值范围、二次根式的性质分别化简得出答案.【解答】解:∵﹣1<a <0,∴√(a +1a )2−4+√(a −1a )2+4=√a 2+1a 2+2−4+√a 2−2+1a 2+4 =√(a −1a )2+√(a +1a )2=a −1a −(a +1a )=−2a .故选:D .10.(2022春•杭州月考)如果f (x )=x 21+x 2并且f (√1)表示当x =√1时的值,即f (√1)=(√1)21+(√1)2=12,f (√12)表示当x =√12时的值,即f (√12)=(√12)21+(√12)2=13,那么f (√1)+f (√2)+f (√12)+f (√3)+f(√13)+⋯+f(√n)+f(√1n )的值是( )A .n −12B .n −32C .n −52D .n +12 【分析】认真观察题中式子的特点,找出其中的规律,代入计算即可.【解答】解:代入计算可得,f (√2)+f (√12)=1,f (√3)+f (√13)=1,…,f (√n )+f (√1n )=1, 所以,原式=12+(n ﹣1)=n −12.故选:A.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•鹿城区校级期中)当x=3时,二次根式√4−x的值为1.【分析】把x=3代入二次根式√4−x,化简计算即可.【解答】解:当x=3时,√4−x=√4−3=1.故答案为:1.12.(2021春•椒江区校级月考)若最简二次根式3√2m+5与5√4m−3可以合并,则m=4.【分析】根据同类二次根式定义可得2m+5=4m﹣3,再解即可.【解答】解:由题意得:2m+5=4m﹣3,解得:m=4,故答案为:4.13.(2021秋•江北区期末)计算(√2+2√3)(√2−2√3)的结果是﹣11.【分析】根据平方差公式:(a+b)(a﹣b)=a2﹣b2,求出算式(√2+2√3)(√2−2√3)的结果为多少即可.【解答】解:(√2+2√3)(√2−2√3)=(√2)2﹣(2√3)2=2﹣12=﹣10,∴(√2+2√3)(√2−2√3)的结果为﹣10.故答案为:﹣10.14.(2022•普陀区校级开学)当x=1−√3时,x2﹣2x+2022=2024.【分析】先变形求值的代数式为x2﹣2x+2022=(x﹣1)2+2021,然后将x的值代入简便运算.【解答】解:当x=1−√3时,x2﹣2x+2022=(x﹣1)2+2021=(1−√3−1)2+2021=(√3)2+2021=3+2021=2024.故答案为:2024.15.(2022•江北区开学)若a+6√3=(m+n√3)2,当a,m,n均为正整数时,则√a的值为2√7或2√3.【分析】通过完全平方公式去掉括号求出a=m2+3n2,2mn=6,根据a,m,n均为整数,分两种情况求出m,n,进一步求出a,从而求解.【解答】解:∵a+6√3=(m+n√3)2,∴a+6√3=m2+2nm√3+3n2(a,m,n均为整数),∴a=m2+3n2,2mn=6,∴mn=3,①m=1,n=3,a=28,②m =3,n =1,a =12,故√a 的值为2√7或2√3.16.(2021春•永嘉县校级期末)计算1+√2+√2+√3+√3+√4+⋯+√2003+√2004= 2√501−1 . 【分析】根据√n+√n+1=√n +1−√n 将原式化简后可得出答案.【解答】解:原式=√2−1+√3−√2+⋯+√2004−√2003=√2004−1=2√501−1.故填:2√501−1.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.已知二次根式√3−12x .(1)求x 的取值范围;(2)求当x =﹣2时,二次根式√3−12x 的值; (3)若二次根式√3−12x 的值为零,求x 的值. 【分析】(1)根据二次根式的定义得出3−12x ≥0,解之可得答案;(2)将x =﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x 的方程求解可得. 【解答】解:(1)根据题意,得:3−12x ≥0,解得x ≤6;(2)当x =﹣2时,√3−12x =√3−12×(−2)=√3+1=2; (3)∵二次根式√3−12x 的值为零,∴3−12x =0,解得x =6.18.(2021秋•镇海区期末)计算:(1)√8×√12÷√6;(2)(√18−√3)×√12; (3)16√24−32√12+√6−√3. 【分析】(1)根据二次根式的乘除法计算,然后化成最简式子即可;(2)先化简括号内的式子,然后计算括号外的乘法即可;(3)先化简,然后合并同类二次根式即可.【解答】解:(1)√8×√12÷√6=√8×12÷6=√16=4;(2)(√18−√3)×√12=(3√2−√3)×2√3=6√6−6;(3)16√24−32√12+√6−√3 =2√66−6√32+2(√6+√3)3 =2√66−6√32+2√63+√33=√6−8√33. 19.(2021秋•钱塘区期末)(1)已知一个长方形的长是宽的2倍,面积是10,求这个长方形的周长.(2)如图,已知长方形内两个相邻正方形的面积分别为9和3,求图中阴影部分的面积.【分析】(1)根据长方形面积公式为长×宽,代入计算即可;(2)两个小阴影部分可以组成一个长为√3,宽为(3−√3)的长方形,直接计算即可.【解答】解:(1)设长方形的宽为x ,则长方形的长为2x ,则x •2x =10,解得x =√5或−√5(舍去),∴长方形的长为2√5,∴长方形的周长为(√5+2√5)×2=6√5.(2)由题意可知,大正方形的边长为3,小正方形的变成为√3,∴阴影部分的面积为(3−√3)×√3=3√3−3.20.(2022春•拱墅区期中)已知a =√7+√6,b =√7−√6,试求:(1)ab ;(2)a 2+b 2﹣5+2ab .【分析】(1)把a 与b 的值代入计算即可求出值;(2)原式利用完全平方公式化简后,把a 与b 的值代入计算即可求出值.【解答】解:(1)∵a =√7+√6,b =√7−√6,∴ab =(√7+√6)×(√7−√6)=7﹣6=1;(2)∵a =√7+√6,b =√7−√6,∴a +b =√7+√6+√7−√6=2√7,则a 2+b 2﹣5+2ab=(a +b )2﹣5=28﹣5=23.21.(2022春•诸暨市月考)请阅读下列材料:问题:已知x =√5+2,求代数式x 2﹣4x ﹣7的值.小敏的做法是:根据x =√5+2得(x ﹣2)2=5,∴x 2﹣4x +4=5,得:x 2﹣4x =1.把x 2﹣4x 作为整体代入:得x 2﹣4x ﹣7=1﹣7=﹣6.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x =√5−2,求代数式x 2+4x ﹣10的值;(2)已知x =√5−12,求代数式x 3﹣2x +1的值. 【分析】(1)原式配方变形后,将x 的值代入计算即可求出值;(2)求出x 2的值,原式变形后,将各自的值代入计算即可求出值.【解答】解:(1)∵x =√5−2,∴x +2=√5,则原式=(x 2+4x +4)﹣14=(x +2)2﹣14=(√5)2﹣14=5﹣14=﹣9;(2)∵x =√5−12, ∴x 2=(√5−12)2=6−2√54=3−√52, 则原式=x (x 2﹣2)+1=√5−12×(3−√52−2)+1 =√5−12×−√5−12+1 =1−54+1 =﹣1+1=0.22.(2022春•杭州月考)点P (x ,y )是平面直角坐标系中的一点,点A (1,0)为x 轴上的一点.(1)用二次根式表示点P 与点A 的距离;(2)当x=4,y=√11时,连接OP、P A,求P A+PO;(3)若点P位于第二象限,且满足函数表达式y=x+1,求√x2+√y2的值.【分析】(1)利用两点间的距离公式进行解答;(2)利用两点间的距离公式求得OP、P A,然后求P A+PO;(3)把y=x+1代入所求的代数式进行解答.【解答】解:(1)点P与点A的距离:√(x−1)2+y2;(2)∵x=4,y=√11,P(x,y),A(1,0),∴P(4,√11),∴P A=√(4−1)2+(√11)2=2√5,PO=√42+(√11)2=3√3,则P A+PO=2√5+3√3;(3)∵点P位于第二象限,∴x<0,y>0,又∵y=x+1,∴√x2+√y2=|x|+|y|=﹣x+y=﹣x+x+1=1.即√x2+√y2的值是1.23.(2021春•秦安县校级期末)已知实数在数轴上的对应点如图所示,化简√a2−|a+b|+√(c−a)2+|b+c|.【分析】直接利用数轴得出a<0,a+b<0,c﹣a>0,b+c<0,进而化简得出答案.【解答】解:由数轴可得:a<0,a+b<0,c﹣a>0,b+c<0,故原式=﹣a+(a+b)+c﹣a﹣b﹣c=﹣a.。
第16章二次根式(单元测试)(原卷版)
第16章二次根式(单元测试)一、选择题(本大题共6题,每题3分,满分18分)1.(2022秋•黄浦区月考)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(2022秋•虹口区校级月考)已知,则x的取值范围是()A.B.C.D.或3.(2022秋•黄浦区校级月考)二次根式中字母x的取值可以是()A.﹣1B.C.0D.34.(2022秋•浦东新区校级月考)下列四组二次根式,不是同类二次根式的是()A.与B.与C.与D.与5.(2022秋•浦东新区校级月考)二次根式的一个有理化因式是()A.B.+C.﹣D.26.(2022秋•虹口区校级月考)下列各式中,从左到右的变形正确的是()A.5B.a=C.(a+b)=D.(a﹣2)二、填空题(本大题共12题,每题2分,满分24分)7.(2021秋•浦东新区校级月考)如果式子有意义,那么x的取值范围是.8.(2022秋•黄浦区校级月考)化简:+()2=.9.(2022秋•嘉定区校级月考)化简:=.10.(2022秋•嘉定区校级月考)最简二次根式与是同类二次根式,则a+b=.11.(2021秋•普陀区校级月考)若a,b满足b=﹣3,则平面直角坐标系中P(a,b)在第象限.12.(2020秋•浦东新区月考)如图,从一个大正方形中裁去面积为8cm2和18cm2的两个小正方形,则留下的阴影部分面积和为.13.(2022秋•浦东新区校级月考)分母有理化=.14.(2022秋•浦东新区校级月考)不等式>x的解集为.15.(2022秋•浦东新区校级月考)实数a在数轴上对应的点在原点的左边,则=.16.(2021秋•浦东新区校级月考)化简()2+=.17.(2022秋•嘉定区期中)已知是整数,则满足条件的最小正整数n为.18.(2021秋•闵行区校级月考)已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为.三、解答题(19-22题每题6分,23-25题每题8分,26题10分,满分58分)19.(2021秋•宝山区校级月考)计算:﹣+3.20.(2022秋•嘉定区校级月考)(+2)﹣(﹣)21.(1)计算:()()=;()()=;(2+)(2﹣)=.(2)由以上计算结果:可知的倒数是.(3)比较与的大小.22.(2022春•临泉县期末)已知:,,求代数式x2﹣xy+y2值.23.(2021秋•普陀区校级月考)先化简,再求值:已知x=,求+的值.24.(2021秋•浦东新区校级月考)若x,y为实数,且y=++.求﹣的值.25.(2020秋•杨浦区校级月考)设x=,y=,k为正整数,且3x2+34xy+3y2=1000,求k的值.26.(2020秋•浦东新区月考)我们已经学过完全平方公式a2±2ab+b2=(a±b)2,知道所有的非负数都可以看作是一个数的平方,如2=()2,3=()2,7=()2,0=02,那么,我们可以利用这种思想方法和完全平方公式来计算下面的题:例:求3﹣2的算术平方根.解:3﹣2,∴3﹣2﹣1.你看明白了吗?请根据上面的方法化简:(1)(2)(3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式单元测试
一、选择题(每题2分,共20分)
1、 下列格式中一定是二次根式的是()
A B C 、12+x D
2x 应满足的条件是()
A 、5
2x = B 、5
2x < C 、x ≥5
2 D 、x ≤5
2
3、当x=3时,在实数范围内没有意义的是()
A B C D
4得()
A 、-
B 、
C 、18
D 、6
5=
A 、1a ≥-
B 、1a ≤
C 、1<1a -≤
D 、11a -≤≤
6、下列各式计算正确的是()
A 、=
B 、=
C 、
=
D 、
=
7、若A =
A 、23a +
B 、22(3)a +
C 、22(9)a +
D 、29a +
8等于()
A 、1
52 B 、 C 、5
2 D
9=
A 、0x ≥
B 、<1x
C 、0<1x ≤
D 、0x ≥且1x ≠
10、当3a <-
A 、32a +
B 、32a --
C 、4a -
D 、4a -
一、填空题(每题2分,共20分)
1x的取值范围是。
n= 。
2、若<0
3= ,= 。
= ,= ,= 。
4
5、计算= 。
=,则a=。
6、已知126
4
7是同类二次根式,则m= 。
8、2-的倒数是,= 。
=-成立的条件是。
92a
n m= 。
10、若<
三、解答题
1、分别指出x取哪些实数时,式子有意义。
(每小题3分,共6分)
(1(2
2、计算:(每小题3分,共18分)
(1(2((•;
(3)(4(-
(5)( (6>)m n
3、 计算(每小题3分,共9分)
1) 2)
(3)、(4(3-
4、 已知5x y +=,3x y •=(5分)
5、 已知实数,,a b c 2|1|440b c c ++-+=,求1001003a b c ++的值。
(5分)
6、 若1a b -=,ab =,求代数式(1)(1)a b +-的值。
(5分)
7、 已知
A B =
=求1111A B +--的值。
(6分)
8、 已知11a a +
=-+221a a +的值。
(6分)。