基于单片机的数字电压表设计方案

合集下载

基于51单片机的直流数字电压表设计

基于51单片机的直流数字电压表设计

基于51单片机的直流数字电压表设计概述:直流数字电压表是一种用于测量直流电压的仪器,它通过将电压信号转换为数字形式,并显示在数码管上,实现对电压的准确测量。

本文将介绍基于51单片机的直流数字电压表的设计原理和实现方法。

一、设计原理:1.1 电压信号采集:直流数字电压表的第一步是采集待测电压信号。

常用的采集方法是使用一个分压电路将待测电压降低到合适的范围,再通过运算放大器将其放大到合适的电平。

51单片机的模拟输入引脚可以接受0-5V的模拟电压信号,因此可以直接将放大后的信号接入单片机进行采集。

1.2 模数转换:采集到的模拟电压信号需要经过模数转换(A/D转换)才能被单片机读取和处理。

51单片机内部集成了一个10位的A/D转换器,可以将输入的模拟电压转换为相应的数字量。

通过设置不同的参考电压和采样精度,可以实现对不同电压范围的准确测量。

1.3 数码管显示:经过模数转换后,得到的数字量需要通过数码管进行显示。

51单片机的IO口可以通过控制段选和位选的方式,将数字量转换为相应的数码管显示。

可以根据需要选择常用的七段数码管或者液晶显示屏进行显示。

二、设计实现:2.1 硬件设计:硬件设计包括电路原理图设计和PCB布局设计两个部分。

电路原理图设计主要包括电压采集电路、运算放大器、A/D转换器和数码管驱动电路等部分。

PCB布局设计需要考虑信号的走线和电源的分布,以保证电压信号的准确采集和显示。

在设计过程中,需要注意地线和信号线的分离,以减少干扰。

2.2 软件设计:软件设计主要包括单片机的程序编写和调试。

首先需要编写采集模拟电压信号和进行A/D转换的程序,将转换后的数字量存储在单片机的内部存储器中。

然后编写数码管驱动程序,将存储的数字量转换为相应的数码管显示。

最后,通过按键或者旋转编码器等方式,可以实现对量程和精度的选择。

三、设计优化:3.1 精度优化:为了提高直流数字电压表的测量精度,可以采用更高精度的A/D转换器,增加参考电压的精度,或者通过校准电路对测量误差进行校正。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计一、引言在电子测量领域中,电压表是一种常用的测量仪器,用于测量电路中的电压值。

传统的模拟电压表由于精度低、读数不便等缺点,逐渐被数字电压表所取代。

数字电压表具有精度高、读数直观、抗干扰能力强等优点,广泛应用于工业自动化、电子设备检测、实验室测量等领域。

本文将介绍一种基于单片机的数字电压表设计方案,详细阐述其硬件电路设计、软件编程实现以及系统性能测试。

二、系统总体设计方案(一)设计要求设计一款基于单片机的数字电压表,能够测量 0 5V 的直流电压,测量精度为 001V,具有实时显示测量结果的功能。

(二)系统组成本数字电压表系统主要由以下几个部分组成:1、传感器模块:用于将输入的电压信号转换为适合单片机处理的电信号。

2、单片机模块:作为系统的核心,负责对传感器采集到的数据进行处理和计算,并控制显示模块显示测量结果。

3、显示模块:用于实时显示测量的电压值。

三、硬件电路设计(一)传感器模块选用 ADC0809 作为模数转换芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位数字量输出。

(二)单片机模块选择 AT89C51 单片机作为控制核心,它具有 4K 字节的 Flash 程序存储器和 128 字节的随机存取数据存储器。

(三)显示模块采用液晶显示屏(LCD1602)作为显示器件,它能够清晰地显示数字和字符信息。

四、软件编程实现(一)编程语言选择使用 C 语言进行编程,C 语言具有语法简洁、可移植性强等优点。

(二)主程序流程主程序首先进行系统初始化,包括单片机端口初始化、LCD1602 初始化、ADC0809 初始化等。

然后启动 ADC0809 进行模数转换,读取转换结果并进行数据处理,计算出实际的电压值。

最后将电压值发送到 LCD1602 进行显示。

(三)模数转换子程序ADC0809 的转换过程通过控制其启动转换引脚(START)和读取转换结束引脚(EOC)来实现。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计一、背景介绍随着科技的发展,越来越多的人开始关注电压表。

电压表是一种测量电压的仪器,它可以根据检测到的电压值显示出相应的数字。

传统的电压表使用指针或指示灯来显示电压值,但这种方式会有很多限制,例如不能显示小于1V的电压值,对于高精度的测量也不能满足要求。

为了解决上述问题,本文提出了一种基于单片机的数字电压表设计方案。

二、基于单片机的数字电压表设计原理基于单片机的数字电压表设计采用单片机ADC(模数转换)模块来检测电压值,将检测到的电压值转换成数字值,然后通过LCD(液晶显示器)来显示。

该设计中需要使用一个模拟信号处理电路,它包括一个放大器、一个滤波器和一个参考电压电路。

放大器可以增加信号的幅值,以便更好地检测信号的电压值;滤波器可以削弱外部电磁干扰,以便更好地检测电压值;参考电压电路可以把外部电压转换为0-5V之间的电压,以便更好地检测电压值。

三、设计方案1.单片机:AT89S522.ADC模块:AD79053.放大器:LM3584.滤波器:LPF(低通滤波器)5.参考电压电路:LM3176.LCD显示器:12864四、设计步骤1. 利用LM358放大器和LPF滤波器对测量的电压值进行放大和滤波处理,以获得更精准的数据。

2. 利用LM317参考电压电路将放大后的电压值转换为0-5V的电压,以便更好地检测电压值。

3. 将转换后的电压值送入AD7905 ADC模块,将检测到的电压值转换成数字值。

4. 将转换后的数字值送入AT89S52单片机,并通过12864 LCD显示器将检测到的电压值显示出来。

五、总结本文提出了一种基于单片机的数字电压表设计方案,主要采用单片机ADC模块来检测电压值,并将检测到的电压值转换为数字值,然后通过LCD显示器显示出来。

该设计方案可以满足各种电压测量要求,具有良好的精度和可靠性。

基于单片机的数字电压表的课程设计

基于单片机的数字电压表的课程设计

基于单片机的数字电压表的课程设计一、引言在电子测量领域,电压表是一种常见且重要的测量工具。

传统的模拟电压表存在精度低、读数不直观等缺点,而数字电压表则凭借其高精度、高稳定性和直观的数字显示等优势,在电子测量中得到了广泛的应用。

本课程设计旨在基于单片机设计一款数字电压表,以实现对直流电压的准确测量和数字显示。

二、设计要求1、测量范围:0 5V 直流电压。

2、测量精度:优于 01V 。

3、显示方式:四位数码管显示。

4、具备超量程报警功能。

三、系统总体设计本数字电压表系统主要由单片机最小系统、A/D 转换模块、数码管显示模块和报警模块组成。

单片机最小系统作为控制核心,负责整个系统的运行和数据处理。

A/D 转换模块将输入的模拟电压转换为数字量,供单片机读取。

数码管显示模块用于显示测量的电压值。

报警模块在测量电压超过设定范围时发出报警信号。

四、硬件设计1、单片机最小系统选用 STC89C52 单片机,其具有性能稳定、价格低廉等优点。

最小系统包括单片机芯片、晶振电路和复位电路。

2、 A/D 转换模块采用 ADC0809 芯片进行 A/D 转换。

ADC0809 是 8 位逐次逼近型A/D 转换器,具有 8 个模拟输入通道,能够满足本设计的需求。

3、数码管显示模块使用四位共阳极数码管进行电压显示。

通过单片机的 I/O 口控制数码管的段选和位选,实现数字的显示。

4、报警模块采用蜂鸣器作为报警元件,当测量电压超过 5V 时,单片机输出高电平驱动蜂鸣器发声报警。

五、软件设计软件部分主要包括主程序、A/D 转换子程序、数据处理子程序和显示子程序等。

1、主程序负责系统的初始化,包括单片机端口设置、A/D 转换器初始化等。

然后循环调用 A/D 转换子程序、数据处理子程序和显示子程序,实现电压的测量和显示。

2、 A/D 转换子程序控制 ADC0809 进行 A/D 转换,并读取转换结果。

3、数据处理子程序将 A/D 转换得到的数字量转换为实际的电压值,并进行精度处理。

基于单片机的简易数字电压表设计(任务书+论文)

基于单片机的简易数字电压表设计(任务书+论文)

任务书摘要本文介绍了基于89c51单片机的一种8路输入电压测量电路,该电路采用ADC0809作为A/D转换元件,测量范围0至5伏,小数点后显示一位。

要求能够依次显示每路通道电压,而且能够通过拨码开关选择输入通道。

使用3位LED 模块显示,前面一位显示通道号,后面两位显示测量电压值。

本系统主要包括四大模块:数据采集模块、控制模块、显示模块、A/D转换模块。

绘制电路原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路。

在软件编程上,采用了汇编语言进行编程,开发环境使用WAVE集成开发环境。

开发了显示模块程序、通道切换程序、A/D转换程序。

关键词:ADC0809;A/D转换;LED显示目录1 方法论证 (5)1.1 系统的设计任务 (5)1.2 设计方案 (5)1.3 软硬件开发环境 (6)2 数字电压表硬件设计 (7)2.1 单片机主电路设计 (7)2.1.1 复位电路 (7)2.1.2 晶振电路 (7)2.2 测量、转换电路设计 (8)2.3 按键电路设计 (9)2.4 显示电路设计 (10)2.4.1 LED数码管构成 (10)2.4.2 显示方式 (11)3 软件设计 (14)3.1 主程序设计 (14)3.1.1 工作流程 (14)3.1.2 存储空间定义安排 (15)3.2 模块程序设计 (15)3.2.1 A/D转换测量程序 (15)3.2.2 显示程序 (16)4 系统调试与分析 (18)4.1 调试内容及问题解决 (18)4.2 系统进一步改进方案 (18)附录1:硬件原理图 (20)附录2:程序清单 (21)参考文献 (24)1 方法论证1.1 系统的设计任务设计单片机主电路、数据采集接口电路、LED显示电路、拨码控制电路,能够实现对8路电压值进行测量,能够显示当前测量通道号及电压值,电压精度小数点后1位,可以通过键盘选择循环显示8路的检测电压值和指定通道的检测电压值。

1.2 设计方案将数据采集接口电路输入电压传入ADC0809数模转换元件,经转换后通过D0至D7与单片机P0口连接,把转换完的模拟信号以数字信号的信号的形式传给单片机,信号经过单片机处理从LED数码显示管显示。

基于单片机的简易数字电压表设计

基于单片机的简易数字电压表设计

基于单片机的简易数字电压表设计随着电子技术的迅猛发展,数字电压表在实验室、工业和日常生活中的应用越来越广泛。

本文将详细介绍基于单片机的简易数字电压表的设计过程,包括系统设计思路、硬件选型、软件实现以及调试过程。

设计一个简易数字电压表的目标是实现对直流电压的实时测量,并将其以数字形式显示。

该系统的核心是单片机,它负责数据采集、处理及结果显示。

选用单片机的原因在于其体积小、成本低、易于编程等优点。

在硬件设计方面,系统主要由输入电路、单片机、显示模块和电源模块组成。

输入电路的作用是将待测电压信号转化为单片机可处理的电信号。

一般采用分压电路,通过电阻分压的方法,将高电压降低至单片机的可接受范围。

还需考虑输入电压的范围,以确保测量精度和系统安全。

选用的单片机需具备一定的模拟输入功能,以便对电压进行采样。

常用的单片机型号有51系列、AVR系列及STM32系列等,其中STM32系列因其较高的性能和丰富的外设而受到广泛关注。

在设计中,应根据具体需求选择合适的单片机,并进行必要的引脚配置。

显示模块的选择是系统设计的重要环节,常用的有液晶显示屏(LCD)和七段数码管。

液晶显示屏具有显示内容丰富、可视角度广等优势,但其功耗相对较高。

而七段数码管则以其简洁明了的特性广泛应用于数字电压表中。

在本设计中,建议使用LCD显示模块,以便于显示多位数值及相关信息。

电源模块的设计需确保系统的稳定运行。

一般采用稳压电源,为单片机及其他外设提供稳定的电压供应。

需考虑电源的功耗及散热问题,确保系统在长期工作中不会出现故障。

数据处理模块是整个系统的核心,其主要任务是将采集到的模拟电压信号转换为相应的数字值。

可采用模数转换(ADC)技术,将模拟信号转换为数字信号,并进行必要的线性化处理。

处理过程中,应考虑量化误差及噪声对测量结果的影响。

数据显示模块负责将处理后的电压值通过LCD显示出来。

在这一过程中,需要对显示内容进行格式化,以确保信息的清晰易读。

单片机课程设计---基于单片机的数字电压表设计

单片机课程设计---基于单片机的数字电压表设计

单片机课程设计---基于单片机的数字电压表设计《单片机原理及应用》课程设计报告学院:源与动力工程学院__ 班级:_____建电1001______ 学号:_____101605121______ 姓名:______刘兹平________ 时间:2012-12-17 ~ 2012-12-21目录任务书 (1)第一章方案设计 (2)第二章硬件系统设计 (3)第三章软件设计 (7)第四章系统调试 (10)小结 (11)附录1:原理图 (13)附录2:源程序 (14)任务书1、题目:基于单片机的数字电压表设计2、设计要求:(1)利用单片机及ADC0809构成一个电压采集系统,实现8通道循环采样,循环显示。

(2)显示采用ZLG7290,显示精度到小数点后一位。

第1页共31页第一章方案设计1、总体设计方案本设计使用ADC0809对模拟信号进行转换,然后经过AT89C51转换后的结果来进行运算和处理,然后由数码管直接显示数字电压信号,其中分辨率为0.02v。

用电位器控制输入电压,经ADC0809模数转换,然后数据被单片机采集,并经过单片机利用相应的算法进行调整,最后利用串口将处理好的数据输出至数码管。

其中ADC0809通过IN0~IN7采集模拟电压信号送给单片机,单片机将采集来的信号通过一定的处理然后通过串口输出至共阳极的LED数码管显示采集到的电压值。

2、总体设计框图第2页共31页第二章硬件系统设计1、硬件系统设计思路8路数字电压表应用系统硬件电路由单片机、A/D转换器、数码管显示电路等组成。

ADC0809具有8路模拟量输入通道IN0---IN7,通过3位地址输入端C、B、A(引脚23--25)进行选择。

引脚22为地址锁存控制端ALE,当输入为高电平时,C、B、A引脚输入的地址锁存于ADC0809内部是锁存器中,经内部译码电路译码选中相应的模拟通道。

引脚6为启动转换控制端START,当输入一个2μs宽的高电平脉冲时,就启动ADC0809开始对输入通道的模拟量进行转换。

基于单片机数字电压表的方案设计书

基于单片机数字电压表的方案设计书

***********学 生 毕 业 设 计(论 文) 课题名称基于单片机数字电压表的设计 姓 名** 学 号0712301-12 院 系******************** 专 业电子信息工程技术 指导教师*************2010年3月25日 ※※※※※※※※※※※ ※※ ※※ ※※※※※※※※※ 2010届学生毕业设计(论文)材料(四)**********本科毕业设计(论文)诚信声明本人郑重声明:所呈交的本科毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

本科毕业设计(论文)作者签名:(亲笔签名)二○一零年月日(打印)目录摘要 (4)关键词 (4)Abstract (4)Key words (5)前言 (5)1、总体结构 (5)2、系统硬件电路的设计 (6)2.1、10 倍放大器电路 (6)2.2、A / D 转换电路 (7)2.3、电桥输入电路 (8)2.4、测试电路 (8)3、系统程序的设计 (11)3.1、初始化程序 (11)3.2、主程序 (11)3.3、显示子程序 (11)3.4、A / D 转换测量子程序 (11)4、调试与性能分析 (12)4.1、调试与测试 (12)4.2、性能分析 (13)5、结语 (14)6、单片机汇编程序清 (14)参考文献 (21)致谢 (22)附录 (22)基于单片机数字电压表的设计**(*****************2010届电子信息工程技术专业,*********)摘要: 数字电压表的诞生打破了传统电子测量仪器的模式和格局。

它显示清晰直观、读数准确,采用了先进的数显技术,大大地减少了因人为因素所造成的测量误差事件。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计数字电压表在电子技术中使用非常广泛,可以用来测量电路中的直流电压、交流电压以及各种信号的幅度等等。

基于单片机的数字电压表实现了数字电压的读取和显示,具有精确、稳定、易操作等特点,下面将介绍基于单片机的数字电压表的设计原理及实现方法。

一、系统结构基于单片机的数字电压表主要是由程序控制模块、模数转换模块和数字显示模块组成。

程序控制模块主要用来完成开机、校准、测试、功能选择等功能;模数转换模块主要将电压信号转换成数字量,供数字显示模块使用;数字显示模块主要将转换后的数字量显示在LCD液晶屏上。

二、硬件设计1.电源电路电源电路主要用来为电路提供稳定的电压和电流,本电路采用稳压电源芯片LM7805实现,稳压芯片输入端连接外部DC12V/1A电源,输出端连接电路板上的整个电路。

2.输入电路输入电路主要用来将被测电源的电压传递给单片机,常规情况下采用分压电路实现。

在本电路中,电阻R1和电容C1为RC滤波电路,起到滤波作用,防止干扰信号的影响;电阻R2是分压电路中的电阻,它根据电压值的不同设置不同的值,以保证被测电压在单片机内部转换过程中不会对单片机产生影响。

3.单片机模块单片机模块是系统的核心部分,本电路中选用STM32F103C8T6单片机实现模数转换和数码管控制,使用C 语言编写程序,通过模拟输入端口读取电压并进行模数转换,将得到的数字使用查表法将其转换为数码管控制脉冲,控制数码管的亮灭实现数字显示。

4.数字显示模块数字显示模块主要由七段数码管、LCD液晶屏幕、导线和电容等器组成,七段数码管用于展示测量到的电压大小,LCD 液晶屏用于展示功能选项、单位等信息。

导线是电路板内部连接线路,电容等器用来平滑电压波动。

三、软件设计1.引脚定义在程序中首先定义STM32F103C8T6单片机内存地址、输入输出引脚和电平状态,其中A0口用来读取被测电压;B0-B7口用来控制七段数码管的亮灭;C0口用来输出PWM,控制风扇的旋转速度;D0口用来控制蜂鸣器的开启和关闭。

基于单片机的简易数字电压表设计-精品

基于单片机的简易数字电压表设计-精品

第1章课程设计的目的和意义1.1 课程设计的目的1.运用单片机的基础知识,依据课程设计内容,能够完成从硬件电路图设计,到PCB制版,再到软件编程以及系统调试实现系统功能,完成课程设计,加深对单片机基础知识的理解,并灵活运用,将各门知识综合应用。

2.能够上网查询器件资料,培养对新知识,新技术的独立的学习能力和应用能力。

3.能够独立完成一个小的系统设计,从硬件设计到软件设计,增强分析问题、解决问题的能力,为今后的毕业设计及科研工作奠定良好的基础。

1.2课程设计的意义单片机是随着超大规模集成电路技术的发展而诞生的,由于它具有体积小、功能强、性价比高等特点,所以广泛应用于电子仪表、家用电器、节能装置、军事装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。

本课题主要实现利用单片机对电压表进行控制。

第2章系统方案设计及确定2.1 系统方案的提出根据简易数字电压表设计的需要,为单片机和A/D转换器提供以下设计方案。

2.1.1 单片机方案方案一:AT89S51AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元。

AT89S51具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,128 bytes 的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

方案二:AT89C51AT89C51是一个低功耗,高性能CMOS 8位单片机,片内含4k字节Flash可擦写存储器(PEROM)。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计一、数字电压表设计1、目的及意义数字电压表是诸多数字化仪表的核心与基础。

可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计,湿度计,酸度计,重量,厚度仪等),几乎覆盖了电子电工测量,工业测量,自动化仪表等各个领域。

除此之外,数字电压还有着传统指针电压表无可比拟的优点:读数直观、准确,显示范围宽、分辨力高,转入阻抗高,功耗小、抗干扰强等。

因此对数字电压表作全面深入的了解是很有必要的。

但是传统的数字电压表设计通常以大规模ASIC(专用集成电路)为核心器件,并辅以少量中规模集成电路及显示器件构成,可是这种设计方法灵活性差,系统功能固定,难以更新扩展,不能满足日益发展的电子工业要求。

而应用单片机为核心单元的数字电压表,其灵活性高、系统功能扩展简单,性能稳定可靠。

本课题目的就是以单片机为基础设计出一种结构简单、工作可靠、灵活性好的直流数字电压表。

要求测量范围为0~5V。

2、总体设计方案数字电压表主要包括两部分:硬件电路及软件程序。

而硬件电路采用ATMEL公司的AT89C51作为主处理器,系统主要由信号采集、A/D转换、数据处理输出、驱动显示等几个功能模块组成。

系统框图1如下:图1硬件原理框图被测直流电压由A/D转换单元采集后被量化,再由单片机对A/D转换的结果进行标度变换,得到被测电压的数值,通过单片机对数次转换结果求平均值、并通过SOI串行数据接口把所求平均值输出给显示驱动单元,由该单元完成译码,并驱动数码管显示。

电压表的数字化是将连续模拟的电压量经A/D转化后变为不连续的离散的数字量并加以显示。

在设计过程中采用分模块设计,按照图1把电路分A/D转换、数据处理输出、驱动、显示四个单元。

数值显示是采用八段数码管,由单片机以动态扫描方式驱动,在此方式下能保证足够的亮度和较长的使用寿命。

单片机是将计算机的基本部件微型化,使之集成在一块芯片上的微机。

在自动化装置、智能化仪器仪表、过程控制和家用电器等领域得到日益广泛的应用。

基于单片机的数字电压表.

基于单片机的数字电压表.

1 前言 (1)2 总体方案设计 (2)2.1 方案论证 (2)2.2 方案比较及选择 (3)3 硬件电路设计 (4)3.1 AD转换电路 (4)3.2 复位电路 (4)3.3 时钟电路 (5)3.4 显示电路 (6)3.5 特殊器件介绍 (6)3.5.1 主控芯片AT89S51 (6)3.5.2 ADC0808 (7)3.5.3 LED (9)4 软件部分设计 (11)4.1 A/D转换子程序 (11)4.2 显示子程序 (12)5 电路仿真 (13)5.1 软件调试 (13)5.2 显示结果及误差分析 (13)6 系统功能 (17)小结 (18)参考文献 (19)附录1 基于单片机的数字电压表原理图 (20)附录2 基于单片机的数字电压表程序清单 (21)1 前言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。

由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用。

传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。

采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。

数字电压表是诸多数字化仪表的核心与基础。

以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。

目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。

最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型。

基于单片机的数字电压表的设计_毕业论文设计

基于单片机的数字电压表的设计_毕业论文设计

毕业论文基于单片机的数字电压表的设计摘要本设计主要研究的是以AT89C51单片机为核心的电压测量系统,该系统能够在单片机的控制下完成对电压信号采集,能够根据采样值进行量程自动转换,并且测量结果可通过四个数码管显示出来。

整个系统的设计完成了硬件电路的设计及软件程序的编写,通过最终硬件电路的调试及软件程序的仿真,使该系统能够在要求的条件下达到正常的测量及显示功能。

在整个系统的设计过程中,主要采用了模块化的设计方法。

关键词:AT89C51单片机;数字电压表;模块化Design of the digital voltmeter based on the MCUAbstractThis paper introduces an achievement of a voltage measure system based on the AT89C51 MCU. This system can accomplish the signal sampling of voltage, and change range automatically according to the signal sampled. The result can be displayed through numeral rube of four places.In this design, the hardware circuit and software programming are both realized at the judge of hardware circuit and imitation of software program. This system can fulfill the function of measure and displaying under the demanded conditions.Over the designing of the whole system, the method of modularity is used. Key words: AT89C51 MCU; Digital Voltmeter; Modularity目录绪论 (1)第一篇硬件部分的设计 (1)1.数据采集部分的设计 (2)1.1 交流信号和直流信号的采样 (2)2.量程自动转换电路的设计 (4)3.模数转换单元的设计 (5)4.控制电路的设计 (7)4.1总体概况 (7)一.主要功能 (7)二.内部结构框图 (8)三.外部引脚说明 (9)4.2 单片机在系统中的应用 (11)5.显示部分的设计 (12)5.1键盘显示8279芯片 (12)5.2 8279的组成和基本工作原理 (13)5.3 8279引脚及功能 (15)5.4 8279的工作方式及命令字格式 (17)第二篇软件系统的设计 (23)1.MCS-51单片机汇编语言 (23)2.主程序的设计 (23)3.子程序的设计 (25)3.1采样程序的设计 (25)3.2 量程处理程序的设计 (26)3.21 采样及其处理程序 (26)3.22 计算部分的设计 (28)3.23 显示部分的软件设计 (29)3.3 超量程处理 (29)4.系统程序清单 (29)设计总结 (41)参考文献 (41)绪论在电气测量中,电压是一个很重要的参数。

基于单片机的简易数字电压表设计

基于单片机的简易数字电压表设计

基于单片机的简易数字电压表设计江苏农林职业技术学院毕业设计(论文)SNL/QR7.5.4-3基于单片机的简易数字电压表设计专业 10电气自动化学生姓名钱霞冬班级电气自动化2班学号 201005100220指导教师许燕萍完成日期 2013年5月25日成绩评议毕业设计(论文)任务书指导教师意见评阅教师意见附4:答辩小组评议意见基于单片机的简易数字电压表设计摘要:本文介绍了一种基于单片机的简易数字电压表的设计。

该设计主要由三个模块组成:A/D 转换模块,数据处理模块及显示模块。

A/D转换主要由芯片ADC0808来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。

数据处理则由芯片AT89C51来完成,其负责把ADC0808传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;此外,它还控制着ADC0808芯片工作。

该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。

此数字电压表可以测量0-5V的1路模拟直流输入电压值,并通过一个四位一体的7段数码管显示出来。

关键词单片机;数字电压表;A/D转换;AT89C51;ADC0808The Design of Simple Digital Voltmeter Based on Single-chip MicrocontrollerAbstract: This paper which introduces a kind of simple digital voltmeter is based on single-chip microcontroller design. The circuit of the voltage meter is mainly consisted of three mould pieces: A/D converting mould piece, A/D converting is mainly completed by the ADC0808, it converts the collected analog data into the digital data and transmits the outcome to the manifestation controlling mould piece. Data processing is mainly completed by the AT89C51 chip, it processes the data produced by the ADC0808 chip and generates the right manifestation codes, also transmits the codes to the manifestation controlling mould piece. Also, the AT89C51 chip controls the ADC0808 chip to work.The voltmeter features in simple electrical circuit, lower use of elements, low cost, moreover, its measuring precision and reliability. The voltmeter is capable of measuring voltage inputs from 1 route ranging from 0 to 5 volt, and displaying the measurements though a digital code tube of 7 pieces of LED.Keywords: Single-chip microcontroller; Digital voltmeter; A/D converter; AT89C51; ADC0808钱霞冬:基于单片机的简易数字电压表设计目录1引言 (1)2 设计总体方案 (1)2.1设计要求 (1)2.2 设计思路 (1)2.3 设计方案 (1)3 硬件电路设计 (2)3.1 单片机系统 (2)3.1.1 AT89C51性能 (2)3.1.2 AT89C51各引脚功能 (2)3.2 A/D转换模块 (4)3.2.1 逐次逼近型A/D转换器原理 (4)3.2.2 ADC0808 主要特性 (4)3.2.3 ADC0808的外部引脚特征 (5)3.2.4 ADC0808的内部结构及工作流程 (6)3.3 复位电路和时钟电路 (7)3.3.1 复位电路设计 (7)3.3.2 时钟电路设计 (8)3.4 LED显示电路设计 (8)3.4.1 LED基本结构 (8)3.4.2 LED显示器的选择 (9)3.4.3 LED译码方式 (9)3.4.4 LED显示器与单片机接口设计 (10)3.5 总体电路设计 (11)4 系统软件设计 (12)4.1 程序设计总方案 (12)4.2 系统子程序设计 (12)4.2.1 初始化程序 (12)4.2.2 A/D转换子程序 (13)4.2.3 显示子程序 (14)5 仿真与调试 (15)5.1 软件调试 (15)5.2显示结果及误差分析 (15)5.2.1 显示结果 (15)5.2.2 误差分析 (17)结论 (18)参考文献 (20)致谢 (21)31引言随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。

基于单片机的电压表设计

基于单片机的电压表设计

基于单片机的电压表设计目录1 引言 (2)2设计原理及要求 (1)2.1数字电压表的实现原理 (1)2.2数字电压表的设计指标............... 错误!未定义书签。

3软件仿真电路设计. (2)3.1设计思路 (2)3.2硬件电路设计图 (2)3.3 AT89C51的功能介绍 (3)3.3.1简单概述 (3)3.3.2主要功能特性 (3)3.3.3 AT89C51的引脚介绍 (4)3.4 ADC0804的引脚及功能介绍 (6)3.4.1芯片概述 (6)3.4.2 引脚简介 (7)3.4.3 ADC0804的转换原理 (8)3.5 74HC373芯片的引脚及功能 (8)3.5.1芯片概述 (8)3.5.2引脚介绍 (10)3.6 LED数码管的控制显示 (10)4系统软件程序的设计 (11)5测试及性能分析 ......................... 错误!未定义书签。

5.1 测试............................. 错误!未定义书签。

55.2 性能分析.......................... 错误!未定义书签。

6 设计总结 (17)参考文献 (17)附录原理电路............................ 错误!未定义书签。

1 引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。

数字电压表(DigitalVoltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

本设计重点介绍单片机、A/D 转换器以及由它们构成的数字电压表的工作原理。

基于单片机的数字电压表的设计

基于单片机的数字电压表的设计

基于单片机的数字电压表的设计数字电压表是一种在电子领域中广泛应用的测试设备,用于测量电路中的电压值。

基于单片机的数字电压表拥有计算精度高、体积小、成本低等特点,成为了当今市场上最为流行的一种数字电压表测量方法。

设计基于单片机的数字电压表需要确定一些关键元件和电路,如ADC(模数转换器)、指示器、单片机等,以下是具体步骤和流程:1. 定义参数和需求:在设计数字电压表时,首先要明确测试电压的量程、测试精度、满量程等,只有清晰地定义这些参数,才能确定适合的元器件和电路。

2. 选取ADC:ADC是数字电压表的核心元件之一,它将模拟电压转换为数字信号。

对于基于单片机的数字电压表,通常采用内置于单片机的ADC或外置的一些通用的ADC 芯片。

选取ADC时需要考虑其分辨率、转换速度等性能指标,以满足设计的要求。

3. 选取指示器:指示器是用来显示测试结果的设备,一般有数字显示器和模拟表两种。

数字电压表通常使用数字显示器作为指示器,具有体积小、显示清晰、功耗低等特点。

4. 选取单片机:单片机是数字电压表中非常重要的元器件,它可以实现ADC的引脚控制和数据处理。

在选取单片机时,需要考虑其存储器大小、处理能力、功耗等方面,以保证测试结果精确。

5. 实现电路:将选定的元器件按照电路原理图进行连线,设计好合适的滤波电路、参考电压等,保证测试结果的精度和稳定性。

6. 软件编写:通过单片机自带的编程软件或其他编程软件编写单片机的程序,实现ADC数据采集、数据处理、数字显示等功能,同时实现测试参数的设定和调整。

7. 测试和优化:在电路和程序编写完成后,需要进行测试和评估,根据测试结果进行优化和调整,提高数字电压表的测量精度和可靠性。

基于单片机的数字电压表具有较高的灵活性和可扩展性,可以通过增加外部接口实现更多的测量功能。

同时,单片机的应用还可以实现自动校准、自动调零等功能,为测试工作提供更多的便利。

因此,基于单片机的数字电压表在电子测试领域中得到广泛应用,成为了数字电压表的一种重要类型。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计在当今的电子世界中,电压表是一种必不可少的测量工具。

随着技术的进步,数字电压表因其精度高、易于读取、稳定性好等优点逐渐取代了传统的模拟电压表。

本文将探讨如何基于单片机设计数字电压表。

一、硬件设计1、1传感器模块传感器模块是数字电压表的重要组成部分,负责将输入的模拟电压转化为可被单片机处理的数字信号。

通常,我们使用ADC(模数转换器)来实现这一功能。

ADC的精度直接决定了电压表的测量精度。

1、2单片机模块单片机是数字电压表的“大脑”,负责控制整个系统的运行。

我们选择具有较高性能和可靠性的单片机,如Arduino、STM32等。

这些单片机都具有丰富的外设接口,便于实现复杂的控制逻辑。

1、3显示模块显示模块负责将单片机的处理结果呈现给用户。

常用的显示模块包括LED数码管、LCD液晶屏等。

选择适合的显示模块,可以大大提升电压表的易用性。

二、软件设计2、1数据采集与处理软件首先通过ADC从传感器模块读取模拟电压,然后对其进行处理,得到实际的电压值。

这一步的关键在于选择合适的ADC算法和设置合适的参考电压。

2、2数据输出与存储处理后的电压值需要被输出并存储起来。

通常,我们使用LCD液晶屏将电压值实时显示出来,同时也可以通过串口将数据传输到计算机或云端进行存储和分析。

三、精度与稳定性优化3、1硬件校准为了提高电压表的测量精度,我们可以在生产过程中对每一块电压表进行硬件校准。

通过调整ADC的参考电压或者在软件中进行校准算法的优化,可以有效提高电压表的测量精度。

3、2软件滤波在实际应用中,由于各种噪声和干扰的存在,电压表的读数可能会出现波动。

我们可以通过软件滤波算法,如平均滤波、卡尔曼滤波等,来减小这些干扰对测量结果的影响。

四、应用与扩展基于单片机的数字电压表不仅可以在实验室或工业现场使用,还可以扩展出更多的应用场景。

例如,通过加入无线通信模块,我们可以实现远程监控;通过加入更多的传感器,我们可以实现多通道的电压测量;通过与计算机或云端进行数据交互,我们可以实现大数据分析和预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的数字电压表设计方案摘要:本文介绍一种基于89S52单片机的一种电压测量电路,该电路采用ICL7135高精度、双积分A/D转换电路,测量范围直流0-±2000伏,使用LCD液晶模块显示,可以与PC机进行串行通信。

正文着重给出了软硬件系统的各部分电路,介绍了双积分电路的原理,89S52的特点,ICL7135的功能和应用,LCD1601的功能和应用。

该电路设计新颖、功能强大、可扩展性强。

关键词:电压测量,ICL7135,双积分A/D转换器,1601液晶模块1前言数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。

与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

2 系统原理及基本框图如图2.1所示,模拟电压经过档位切换到不同的分压电路衰减后,经隔离Array干扰送到A/D转换器进行A/D转换,然后送到单片机中进行数据处理。

处理后的数据送到LCD中显示,同时通过串行通讯与上位机通信。

图2.1系统基本方框图3硬件设计3.1 输入电路图3.1.1量程切换开关图3.1.2衰减输入电路输入电路的作用是把不同量程的被测的电压规范到A/D转换器所要求的电压值。

智能化数字电压表所采用的单片双积分型ADC芯片ICL7135,它要求输入电压0-±2V。

本仪表设计是0-1000V电压,灵敏度高所以可以不加前置放大器,只需衰减器,如图3.1.2所示9M、900K、90K、和10K电阻构成1/10、1/100、1/1000的衰减器。

衰减输入电路可由开关来选择不同的衰减率,从而切换档位。

为了能让CPU自动识别档位,还要有图3.1.1的硬件连接。

3.2 A/D 转换电路A/D 转换器的转换精度对测量电路极其重要,它的参数关系到测量电路性能。

本设计采用双积A/D 转换器,它的性能比较稳定,转换精度高,具有很高的抗干扰能力,电路结构简单,其缺点是工作速度较低。

在对转换精度要求较高,而对转换速度要求不高的场合如电压测量有广泛的应用。

3.2.1双积A/D 转换器的工作原理图3.2.1.1双积A/D 转换器如图所示:对输入模拟电压和基准电压进行两次积分,先对输入模拟电压进行积分,将其变换成与输入模拟电压成正比的时间间隔 T1,再利用计数器测出此时间间隔,则计数器所计的数字量就正比于输入的模拟电压;接着对基准电压进行同样的处理。

在常用的A/D转换芯片(如ADC -0809、ICL7135、ICL7109等)中,ICL7135与其余几种有所不同,它是一种四位半的双积分图3.2.1.2双积A/D 转换器的波形图A/D转换器,具有精度高(精度相当于14位二进制数)、价格低廉、抗干扰能力强等优点。

本文介绍用单片机并行方式采集ICL7135的数据以实现单片机电压表和小型智能仪表的设计方案。

3.2.1 7135的应用7135是采用CMOS工艺制作的单片4位半A/D转换器,其所转换的数字值以多工扫描的方式输出,只要附加译码器,数码显示器,驱动器及电阻电容等元件,就可组成一个满量程为2V的数字电压表。

㈠7135主要特点如下:①双积型A/D转换器,转换速度慢。

②在每次A/D转换前,内部电路都自动进行调零操作,可保证零点在常温下的长期稳定。

在20000字(2V3.2.1.1 ICL7135引脚图满量程)范围内,保证转换精度1字相当于14bitA/D转换器。

③具有自动极性转换功能。

能在但极性参考电压下对双极性模拟输入电压进行A/D转换,模拟电压的范围为0~±1.9999V。

④模拟出入可以是差动信号,输入电阻极高,输入电流典型值1PA。

⑤所有输出端和TTL电路相容。

⑥有过量程(OR)和欠量程(UR)标志信号输出,可用作自动量程转换的控制信号。

⑦输出为动态扫描BCD码。

⑧对外提供六个输入,输出控制信号(R/H,BUSH,ST,POL,OR,UR),因此除用于数字电压表外,还能与异步接收 /发送器,微处理器或其它控制电路连接使用。

⑨采用28外引线双列直插式封装,外引线功能端排列如图所示。

㈡7135数字部分数字部分主要由计数器、锁存器、多路开关及控制逻辑电路等组成。

7135一次A/D转换周期分为四个阶段:1、自动调零(AZ);2、被测电压积分(INT);3、基准电压反积分(DE);4、积分回零(ZI)。

具体内部转换过程这里不做祥细介绍,主要介绍引脚的使用。

①R/H(25脚)当R/H=“1”(该端悬空时为“1”)时,7135处于连续转换状态,每40002个时钟周期完成一次A/D转换。

若R/H由“1”变“0”,则7135在完成本次A/D转换后进入保持状态,此时输出为最后一次转换结果,不受输入电压变化的影响。

因此利用R/H端的功能可以使数据有保持功能。

若把R/H端用作启动功能时,只要在该端输入一个正脉冲(宽度≥300ns),转换器就从AZ阶段开始进行A/D转换。

注意:第一次转换周期中的AZ阶段时间为9001-10001个时钟脉冲,这是由于启动脉冲和内部计数器状态不同步造成的。

②/ST(26脚)每次A/D转换周期结束后,ST端都输出5个负脉冲,其输出时间对应在每个周期开始时的5个位选信号正脉冲的中间,ST负脉冲宽度等于1/2时钟周期。

第一个ST负脉冲在上次转换周期结束后101个时钟周期产生。

因为每个选信号(D5--D1)的正脉冲宽度为200个时钟周期(只有AZ和DE阶段开始时的第一个D5的脉冲宽度为201个CLK 周期),所以ST负脉冲之间相隔也是200个时钟周期。

需要注意的是,若上一周期为保持状态(R/H=“0”)则ST无脉冲信号输出。

ST信号主要用来控制将转换结果向外部锁存器、UARTs或微处理器进行传送。

③BUSY(21脚)在双积分阶段(INT+DE),BUSY为高电平,其余时为低电平。

因此利用BUSY功能,可以实现A/D转换结果的远距离双线传送,其还原方法是将BUSY和图3.2.1.2 ICL7135的波形图CLK“与”后来计数器,再减去10001就可得到原来的转换结果。

④OR(27脚)当输入电压超出量程范围(20000),OR将会变高。

该信号在BUSY信号结束时变高。

在DE阶段开始时变低。

⑤UR(28脚)当输入电压等于或低于满量程的9%(读数为1800),则一当BUST信号结束,UR将会变高。

该信号在INT阶段开始时变低。

⑥POL(23脚)该信号用来指示输入电压的极性。

当输入电压为正,则POL 等于“1”,反之则等于“0”。

该信号DE阶段开始时变化,并维持一个A/D转换调期。

⑦位驱动信号D5、D4、D3、D2、D1(12、17、18、19、20脚)每一位驱动信号分别输出一个正脉冲信号,脉冲宽度为200个时钟周期,其中D5对应万位选通,以下依次为千、百、十、个位。

在正常输入情况下,D5--D1输出连续脉冲。

当输入电压过量程时,D5--D1在AZ阶段开始时只分别输出一个脉冲,然后都处于低电平,直至DE阶段开始时才输出连续脉冲。

利用这个特性,可使得显示器件在过程时产生一亮一暗的直观现象。

⑧B8、B4、B2、B1(16、15、14、13脚)该四端为转换结果BCD码输出,采用动态扫描输出方式,即当位选信号D5=“1”时,该四端的信号为万位数的内容,D4=“1”时为千位数内容,其余依次类推。

在个、十、百、千四位数的内容输出时,BCD码范围为0000--1001,对于万位数只有0和1两种状态,所以其输出的BCD码为“0000”和“0001”。

当输入电压过量程时,各位数输出全部为零,这一点在使用时应注意。

最后还要说明一点,由于数字部分以DGNG端作为接地端,所以所有输出端输出电平以DGNG作为相对参考点。

基准电压,基准电压的输入必须对于模拟公共端COM是正电压。

㈢与单片机系统的串行连接在ICL7135与单片机系统进行连接时,使用并行采集方式,要连接BCD码数据输出线,可以将ICL7135的/STB信号接至AT89C52的P3.2(INT0)。

ICL7135需要外部的时钟信号,本设计采用CD4060来对4M信号进行32分频得到125KHz的时钟信号。

CD4060计数为14级2进制计数器,在数字集成电路中可实现的分频次数最高,而且CD4060还包含振荡电路所需的非门,使用更为方便。

图3.2.1.3 ICL7135与系统的连接图图3.2.1.4 CD4060时钟发生电路3.3单片机部分单片机选用的是ATMEL公司新推出的AT89S52,如图 3.2.1.1所示。

该芯片具有低功耗、高性能的特点,是采用CMOS工艺的8位单片机,与AT89C51完全兼容。

AT89S52还有以下主要特点:①采用了ATMEL公司的高密度、非易失性存储器(NV-SRAM)技术;②其片内具有256字节RAM,8KB的可在线编程(ISP)FLASH存储器;③有2种低功耗节电工作方式:空闲模式和掉电模式④片内含有一个看门狗定时器(WDT),WDT包含一个14位计数器和看门狗定时器复位寄存器(WDTRST),只要对WDTRST按顺序先写入01EH,后写入0E1H,WDT便启动,当CPU由于扰动而使程序陷入死循环或“跑飞”状态时,WDT即可有效地使系统复位,提高了系统的抗干扰性能。

3.4液晶显示部分显示接口用来显示系统的状态,命令或采集的电压数据。

本系统显示部分用的是LCD液晶模块,采用一个16×1的字符型液晶显示模块,图 3.2.1.1 89S52引脚图点阵图形式液晶由 M 行×N 列个显示单元组成,假设 LCD 显示屏有64行,每行有 128列,每 8列对应 1 个字节的 8 个位,即每行由 16 字节,共 16×8=128个点组成,屏上 64×16 个显示单元和显示 RAM 区 1024 个字节相对应,每一字节的内容和屏上相应位置的亮暗对应。

一个字符由 6×8 或 8×8点阵组成,即要找到和屏上某几个位置对应的显示 RAM区的 8 个字节,并且要使每个字节的不同的位为‘1’,其它的为‘0’,为‘1’的点亮,为‘0’的点暗,这样一来就组成某个字符。

相关文档
最新文档