运筹学第五版胡运权答案

合集下载

清华大学《运筹学教程》胡运权主编课后习题答案

清华大学《运筹学教程》胡运权主编课后习题答案

st2x1x1 22x2x23xx33
4x4 2x4
7 3
xj 0,( j 1, 4)
maxZ 3x1 x2 2x3
12x1 3x2 6x3 3x4 9
(1)
st
8x1 3x1
x2 x6
4x3 0
2x5
10
xj 0( , j 1, ,6)
x1
x2
x3
(x1,x2,x3)
x1 0, x2 0, x3无约束
解 : 令W Z , x11 x1 , x31 x32 x3 同 时 引 入 松 弛 变 量x4, 则 标 准 形 式 为 :
maxW 2x112x2 3x313x32
st2x1x111x2x2 x3x131x3x232
4 x4
6
x11, x2, x31, x32, x4 0
第一章习题解答
1.1 用图解法求解下列线性规划问题。 并指出问题具有惟一最优解、无穷多最优解、 无界解还是无可行解。
min Z 2 x1 3 x2
(1)
st
.
4 3
x1 x1
6 x2 2 x2
6 4
x1 , x2 0
max Z 3x1 2x2
(2)
st
.32xx11
x2 2 4x2 12
0
0
0 -M -M
i
x2
x3
x4
x5
x6
0 1/5 0 3/5 -1/5
1 -3/5 0 -4/5 -3/5
0 [1] 1
0
0
0
1 -1
-1 -1
该模型最优解为X=(3/5,6/5,0,1,0,0)T, 其基变量不含人工变量,说明原问题的一个基可行解为 X=( 3/5,6/5,0,1 )T,转入第二阶段。

运筹学胡运权第五版第三章

运筹学胡运权第五版第三章

精选ppt课件
➢ 课后题答案
33.4 答案: (a) 最优方案不变,最优值z'=z+kar (b) 最优方案不变,最优值z'=z+kbp,同理与(a) (c) 最优方案不变,最优值z'=kz
精选ppt课件
➢ 课后题答案
3.5 答案:
(a)Δc22∈[-4,3] 即:c22∈[3,10]
(b)c24=17,举例调整x24,使0≤x≤10即可
精选ppt课件
40
80 120 0
2
500 540 580 0
2
570 610 650 0
3
M 600 640 0
4
M 670 710 0
2
M
M 550 0
1
M
M 620 0
3
3
3
4
7 17
➢ 课后题答案
最优方案为:
销 供
期初贮存 第1年正常生产数 第1年加班生产数 第2年正常生产数 第2年加班生产数 第3年正常生产数 第3年加班生产数
产量
15 25 5
销量
精选ppt课件
5 15 16 10
45
➢ 课后题答案
3.1 表3-36 最终表如下:
销地 产地
A1 A2 A3
B1
B2 B3 B4 B5
5 3 7 13 9 5 13 4 3 1 10 1 15 1
销量
10 10 20 15 3
产量
7 25 26
注:黑色数字表最优解,红色表示对应非基变量的 检验数。 即:最优值Z*=193. 用Vogel法确定的近似运输方案解同上。
销地
产地
A1 A2 A3

胡运权《运筹学教程》(第5版)配套题库-考研真题精选及课后习题(第一~三章)【圣才出品】

胡运权《运筹学教程》(第5版)配套题库-考研真题精选及课后习题(第一~三章)【圣才出品】

2.μ是关于可行流 f 的一条增广链,则在μ上有:对一切(i,j)∈μ-,有 fij>0。( ) [暨南大学 2019 研]
【答案】√ 【解析】由增广链定义可知,当边(i,j)属于μ的反向边集时,该条边的流量大于 0。
3.事件 j 的最早时间 TE(j)是指以事件 j 为开工事件的工序最迟必须开工时间。( ) [暨南大学 2019 研]
零元素的最少直线数目的集合。结果如下:
4 / 113
圣才电子书 十万种考研考证电子书、题库视频学习平台

(4)在未被覆盖的元素中找最小元素,未被覆盖的行分别减去该最小元素,在出现负
数的列上整列加上最小元素,得到新矩阵 C′:
0 2 6 1 0 0 4
表 1-1-1
解:(1)先对各行减去本行的最小元素,再对各列减去本列最小元素,得到矩阵 C 如
下:
0 2 6 9
C 1 4 4 0 1 0 0 3 2 3 6 0
(2)确定独立零元素,对 C 加圈,得到
◎ 2 6 9
C
1
1
4 ◎
4
◎ 3
2
3
6
(3)由于只有 3 个独立零元素,少于系数矩阵阶数 n=4,故需要确定能够覆盖所有
A.没有无穷多最优解 B.没有最优解 C.有无界解 D.有最优解 【答案】B 【解析】有最优解的前提是有可行解,该题无可行解,则也无最优解。
2.如果某种资源的影子价格大于其市场价格,则说明( )。[暨南大学 2019 研] A.该资源稀缺 B.该资源过剩 C.企业应尽快处理该资源 D.企业应充分利用该资源,开辟新的生产途径 【答案】A 【解析】当资源的影子价格不为 0 时,表明该种资源在生产中已耗费完毕;且若影子 价格大于其市场价格,说明企业应买进该种资源,该种资源稀缺。

运筹学(胡运权)第五版课后答案-运筹作业

运筹学(胡运权)第五版课后答案-运筹作业

运筹学(胡运权)第五版课后答案-运筹作业47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1 2 3 454321-1-6 -5 -4 -3 -2X2X12x1--2x1+3x1 2 3 44321X12x1+x2=23x1+4x2=X1.2(b)约束方程的系数矩阵A= 1 2 3 42 1 1 2P1 P2 P3 P4基基解是否可行解目标函数值X1 X2 X3 X4P1 P2 -4 11/2 0 0 否P1 P3 2/5 0 11/5 0 是43/5 P1 P4 -1/3 0 0 11/6 否P2 P3 0 1/2 2 0 是 5 P2 P4 0 -1/2 0 2 否P3 P4 0 0 1 1 是 5最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x1 3 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:( )用LINDO求解:LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION V ALUE1) 118400.0V ARIABLE V ALUE REDUCED COSTZ 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.0000001500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。

胡运权运筹学第五版答案

胡运权运筹学第五版答案

胡运权运筹学第五版答案【篇一:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)412该问题有无穷多最优解,即满足4x1z?3。

6x26且0?x2?的所有?x1,x2?,此时目标函数值(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

1.2(a) 约束方程组的系数矩阵12a833106?403000200??0?1t最优解x??0,10,0,7,0,0?。

(b) 约束方程组的系数矩阵1a222314??2??最优解1.3(a)(1) 图解法11??2x??,0,,0?5?5?t。

最优解即为?3x14x295x12x28的解x31,2,最大值z352(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?10x1?5x2?0x3?0x4?3x1?4x2?x3?9s.t. ?5x12x2x48则p3,p4组成一个基。

令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表12。

??min?898,53?520,??min?2183,??142?2?新的单纯形表为1,20,表明已找到问题最优解x1?1, x2?32,x3?0 , x4?0。

最大值z*352(b) (1) 图解法6x1?2x2x1?x2?最优解即为?6x12x224x1?x2?5的解x73,22?,最大值z172(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?2x1?x2?0x3?0x4?0x55x2?x3?15??s.t. ?6x1?2x2?x4?24xxx5125则p3,p4,p5组成一个基。

令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表12。

??min??,245?,??461?155,24,20,??min?3?32?2新的单纯形表为【篇二:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。

胡运权《运筹学教程》习题答案(第一章)[1]

胡运权《运筹学教程》习题答案(第一章)[1]

第一章习题解答1.1 用图解法求解下列线性规划问题。

并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。

+=32min 21x x Z +=23max 21x x Z ⎪⎩⎪⎨⎧≥≥+≥+0,422664.)1(212121x x x x x x st ⎪⎩⎪⎨⎧≥≥+≤+0,124322.)2(212121x x x x x x st ⎪⎩⎪⎨⎧≤≤≤≤≤++=85105120106.max )3(212121x x x x st x x Z ⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答无穷多最优解,,422664.32min )1(21212121⎪⎩⎪⎨⎧≥≥+≥++=x x x x x x st x x Z 是一个最优解3,31,121===Z x x 该问题无解⎪⎩⎪⎨⎧≥≥+≤++=0,124322.23max )2(21212121x x x x x x st x x Z 第一章习题解答85105120106.max )3(212121⎪⎩⎪⎨⎧≤≤≤≤≤++=x x x x st x x Z 唯最优解16,6,1021===Z x x 唯一最优解,该问题有无界解⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答1.2 将下述线性规划问题化成标准形式。

1422245243min )1(432143214321⎪⎪⎧≤+−+−=−+−+−+−=x x x x x x x x x x x x Z .,0,,23243214321⎪⎪⎩⎨≥≥−++−无约束x x x x x x x x st ⎪⎩⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min )2(x x x x x x x x x st x x x Z 第一章习题解答.2321422245243min )1(4321432143214321⎪⎪⎪⎨⎧≥−++−≤+−+−=−+−+−+−=x x x x x x x x x x x x st x x x x Z ,0,,4321⎪⎩≥无约束x x x x ⎪⎪⎩⎪⎪⎨⎧≥=−+−++−=+−+−+=−+−+−+−+−=0,,,,,232142222455243max 64241321642413215424132142413214241321x x x x x x x x x x x x x x x x x x x x x x x st x x x x x Z 第一章习题解答⎪⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min)2(x x x x x x x x x st x x x Z ⎩⎪⎩⎪⎨⎧≥=++−+=−++−+−+=0,,,,6243322max 43231214323121323121323121x x x x x x x x x x x x x x st x x x x Z第一章习题解答634334max )3(3212121⎪⎪⎧=−+=++=x x x x x st x x Z 517,0,1,59,524,,1,0424321421=====⎪⎪⎩⎨=≥=++Z x x x x j x x x x j 该题是唯一最优解:)("第一章习题解答⎪⎧≤++−≤++++=151565935121510max 321321x x x x x x x x x Z 该题无可行解。

清华大学《运筹学教程》胡运权主编课后习题答案

清华大学《运筹学教程》胡运权主编课后习题答案

-4 x1 1
-M x 6 2
0
x4
3
cj zj
-4
-1 0
x1
x2
x3
[3]
1
0
4
3 -1
1
20
7M-4 4M-1 -M
1
1/3 0
0 [5/3] -1
0
5/3 0
0 5M/3+1/3 -M
0 -M -M
i
x4
x5
x6
0
10
1
0
0 1 3/2
1
00
4
0
00
0 1/3 0 3
0 -4/3 1 6/5 1 -1/3 0 9/5 0 -7M/3+4/3 0
0
16/3
-7/6
(x2,x4,x6)
0
10
0
(x2,x5,x6)
0
3
0
(x3,x4,x6)
0
0
-5/2
(x3,x5,x6)
0
0
3/2
(x4,x5,x6)
0
0
0
x4
x5
x6
是否基
Z
可行解
0
0
0

-7
0
0

0
7/2
0

3
0
0
21/4

8
0
0

0
8
0

3
0
0
3

3
5
0

0
-2
0
15/4

0
2
9/4

(完整word版)运筹学(胡运权)第五版课后答案,运筹作业

(完整word版)运筹学(胡运权)第五版课后答案,运筹作业

47页1.1b羅蕿用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解薅47页1。

1d蒂无界解(b)衿1.2蕿约束方程的系数矩阵A=1234莇2112蚄P1P2P3P4,运筹作业肀最优解A=(01/220)T和(0011)T页13题肆49膃设Xij为第i月租j个月的面积羄minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x 14螁s.t.聿x11+x12+x13+x14≥15膃x12+x13+x14+x21+x22+x23≥10膀x13+x14+x22+x23+x31+x32≥20艿x14+x23+x32+x41≥12袇Xij≥0芃用excel求解为:薁用LINDO求解:羁LPOPTIMUMFOUNDATSTEP3薆OBJECTIVEFUNCTIONVALUE 蚇1)118400.0羂VARIABLEVALUEREDUCEDCOST 荿Z0.0000001。

000000虿X113.0000000。

000000螇X210。

0000002800。

000000莃X318。

0000000.000000肁X410.0000001100。

000000莈X120.0000001700.000000袆X220.0000001700。

000000螄X320.0000000。

000000蕿X130.000000400.000000膇X230。

0000001500。

000000袆X1412.0000000.000000袁ROWSLACKORSURPLUSDUALPRICES芁2)0。

000000—2800。

000000羆3)2.0000000.000000羆4)0。

000000—2800.000000节5)0。

000000-1700.000000蝿NO。

ITERATIONS=3罿答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,页14题肆50蚃设a1,a2,a3,a4,a5分别为在A1,A2,B1,B2,B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1,A2,B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。

《运筹学教程》胡云权 第五版 第四章 动态规划

《运筹学教程》胡云权 第五版 第四章 动态规划

* u1 ( A) B1
按计算顺序反推得最优决策序列
* u1 ( A) B1
u* (B1 ) C2 2
* u3 (C2 ) D2
u* ( D2 ) E2 4
最优路线: A B1 C2 D2 E2 F
动态规划的基本思想
可见,求解各阶段都利用了以下关系
f k ( sk ) min dk ( sk , uk ) f k 1 ( sk 1 )
• 动态规划应用
多阶段决策过程的最优化
1、最短路线问题
【例1】从A点铺设一条管道到E点,图中两点间连线上数字表示两 点间距离。现需选一条由A到E的铺管线路,使总距离最短。
2 4 B1 4 8 A 5 3 B3 阶段1 9 B2 7 3 阶段2 2 5 C3 阶段3 阶段4 C2 2 4 1 6 D2 C1 6 5 D1 3
B3
3
阶段2
阶段4
• 状态和状态变量 状态:各阶段开始时的客观条件 状态无后效性: 给定了某阶段状态,则在这阶段以后过程的发展 不受这阶段以前各阶段状态的影响。
动态规划的基本概念和原理
4 A 5 3
B1 4
2
C1 6 1
5 D1 3 4 D2 E
8
B2 7
9
2 5
C2 2 C3
6 4
阶段3
基本概念 • 状态和状态变量 sk: 第k个阶段的状态变量 Sk :第k个阶段状态变量的集合,称状态集合
* pk . n P k ,n
当k=1时,f1(s1)就是从初始状态s1到全过程结束的整体最优函数。
动态规划的基本思想
【例】选择一条运输线路,使得A到F的运费最小。
2 4

胡运权运筹学第五版第一章习题讲解

胡运权运筹学第五版第一章习题讲解

1.3 答案:
●单纯形法:
Cj CB 0 0 基 x3 x4 Cj-Zj 0 x3
10
x1
Cj-Zj
8/5
1
0
2/5
1 1
0
0 5/14
1/5
-2 -3/14
5
x2
3/2
0
10
x1
Cj-Zj
1
1
0
0
0
-1/7
-5/14
2/7
-25/14
Return

课后题答案
z' -3x1 x 2 'x 2 ' '-2x 3 '0x 4 0x 5 - Mx6 - Mx7
台时 限制 6000 1000 0 4000 7000 4000
单位台 时费用 0.05 0.03 0.06 0.11 0.05
6 4 7 0.25 0.36 0.25 0.44 0.25 0.35
6 4 7 0.21 0.36 0.21 0.44 0.21 0.77
8
8 11
0.5 0.48
0.27 0.48

课后题答案
1.1(a)答案: 该问题有无穷多最优解。 取特殊值:(1.5,0) 计算目标函数最优值 得:min z=3。
1.1(a)
1.1(b)答案: 由图可知:该Lp问题没 有可行域,即可得出: 该问题无可行解
1.1(b)
Return

课后题答案
1.2(b)答案:
基解 基
x1 P2 P3 P4 P3 -4 2/5 -113 ) 10 x211 6000 7( x x x ) 9 x 12 x 121 122 123 221 322 10000 6( x111 x121 ) 8( x211 x221 ) 4000 s.t. 4( x112 x122 ) 11x322 7000 7( x113 x123 ) 4000 x111 , x112 , x113 , x121 , x122 , x123 , x211 , x221 , x322 0

清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

2)c=0
3)c>0
d<0 d=0 d>0
0
c 3 d 4
A1点 A1点 A3点
A2A3线段
3 c 5 4 d 2
c 5 d 2 c 5 d 2
c 3 d 4
A2点
A1A2线段 A1点
l.6 考虑下述线性规划问题:
max Z c1 x1 c2 x2 a11 x1 a12 x2 b1 st .a21 x1 a22 x2 b2 x1 , x2 0
-1
x2
0
x3
0
x4
-M
x5
-M
x6
CB
xB
x5
x6
x4
i
-M -M 0
3 6 4
[3] 4 1
1 3 2
0 -1 0
0 0 1
1 0 0
0 1 0 0
1 3/2 4 3 6/5 9/5
cj zj
7M-4
1 2 3 1 0 0 0
4M-1
1/3 [5/3] 5/3
5M/3+1/3
-M
0 -1 0 -M
0
0 0 1 0
0
1/3 -4/3 -1/3
-7M/3+4/3
-4 -M 0
x1
0
1 0 0
x6
x4
cj zj
cj
x6
是否基 可行解
Z
(x1,x2,x3)
(x1,x2,x4) (x1,x2,x5) (x1,x2,x6)
0
0 0 7/4
61/3
10 3 -4
-7/6
0 0 0

清华大学《运筹学教程》胡运权主编课后习题答案

清华大学《运筹学教程》胡运权主编课后习题答案

0
0
0 -1/5 2/5 0
1
0 3/5 -1/5 0
0
x3
1
0
0
1
1
1 -1
cj zj
0
0
0 -1/5 -M+7/5 -M
由于上表中所有检验数都小于等于零(且非基变量检验数都 小于0),因此已经得到唯一最优解,最优解为:
X * 25 ,9 /5 ,1 ,0 ,0 ,0 T
方法二:两阶段法
第一阶段:
4x1 x2 2x3 x4 2
(1)
stx12x1x23xx23
2x4 14 x3 x4
. 2
x1, x2, x3 0, x4无约束
minZ 2x1 2x2 3x3
(2)
st
x1 x2 x3 4 2x1 x2 x3 6
x1 0, x2 0, x3无约束
minZ 3x1 4x2 2x3 5x4
7
4 -1
1
1/3 0
0 [5/3] -1
0
5/3 0
0
5/3
-1
0 -1 -1
i
x4
x5
x6
0
10
1
0
0 1 3/2
1
00
4
0
00
0 1/3 0 3
0 -4/3 1 6/5 1 -1/3 0 9/5 0 -7/3 0
cj
0
CB
xB
b
x1
0
x1 3/5
1
0
x 2 6/5
0
0
x4
1
0
cj zj
0
4x1 x2 2x3 x41 x42 2

最新清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

最新清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

目标函数最优值的上界为:21
18
解:下界对应的模型如下( c,b取小,a取大)
m axZ x1 4 x 2 3 x1 5 x 2 8 st .5 x1 6 x 2 10 x ,x 0 1 2
目标函数最优值(下界)为:6.4
19
l.7 分别用单纯形法中的大M法和两阶 段法求解下列线性规划问题,并指出属哪—类 解。
0
0 0 1 0
0
1/3 -4/3 -1/3
-7M/3+4/3
-4 -M 0
x1
0
1 0 0
x6
x4
cj zj
cj
m axW 2 x11 2 x2 3 x31 3 x32 x11 x2 x31 x32 4 st 2 x11 x2 x31 x32 x4 6 x11 , x2 , x31 , x32 , x4 0
6
1.3 对下述线性规划问题找出所有基解, 指出哪些是基可行解,并确定最优解。
解:令 w Z , x4 x41 x42, 其 中 x41,x42 0, 同时引入松弛变量 x5, 剩 余 变 量 x6, 则 标 准 形 式 为 : m axw 3 x1 4 x 2 2 x 3 5 x41 5 x42 4 x1 x 2 2 x 3 x41 x42 x x x 2x 2x x 1 2 3 41 42 5 st 2 x1 3 x 2 x 3 x41 x42 x6 x1 , x 2 , x 3 , x41 , x42 , x6 2 14 2 0
0
-1/7
2/7
A2点
cj zj

《运筹学(胡运权)》第五版课后习题答案

《运筹学(胡运权)》第五版课后习题答案
1) 118400.0
VARIABLE VALUE REDUCED COST
Z 0.000000 1.000000
X11 3.000000 0.000000
X21 0.000000 2800.000000
X31 8.000000 0.000000
X41 0.000000 1100.000000
X12 0.000000 1700.000000
程序法
6.4a
破圈法
避圈法
最小部分树16
6.4b
最小部分树32
172页6.11
红色曲线为使用一年卖出
蓝色曲线为使用两年卖出
绿色曲线为使用三年卖出
紫色曲线为使用四年卖出
最短路程为3.7万元,路径为v0-v1-v4或v0-v2-v4或v0-v1-v2-v4
三种方案分别为:第一年年初买新车,年末卖掉再买新车,一直用到第四年年末卖掉;
X2 1.000000 2.000000 INFINITY
X3 4.000000 1.000000 1.500000
X1,X2,X3 0.000000 0.000000 INFINITY
RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
d)
maxz=3x1+x2+4x3-0.4y
s.t.
6x1+3x2+5x3≤45
3x1+4x2+5x3-y≤30
x1,x2,x3,y≥0
用lomdo求解为
LP OPTIMUM FOUND AT STEP 0
OBJECTIVE FUNCTION VALUE

胡运权《运筹学教程》习题答案(第一章)

胡运权《运筹学教程》习题答案(第一章)

第一章习题解答
max Z = 10x1 + 15x2 + 12x3 ⎧5x1 + 3x2 + x3 ≤ 9 ⎪− 5x + 6 x + 15x ≤ 15 (4) ⎪ 1 2 3 st ⎨ ⎪2 x1 + x2 + x3 ≥ 5 ⎪ x j ≥ 0, j = 1, ,3) ( ⎩ 该题无可行解。
第一章习题解答
(1) min Z = 2 x1 + 3 x 2 ⎧ 4 x1 + 6 x 2 ≥ 6 ⎪ st .⎨ 2 x1 + 2 x 2 ≥ 4 ⎪ x ,x ≥ 0 1 2 ⎩
(1)
( 2)
max Z = 3 x1 + 2 x 2 ⎧ 2 x1 + x 2 ≤ 2 ⎪ st .⎨3 x1 + 4 x 2 ≥ 12 ⎪x , x ≥ 0 ⎩ 1 2
(1 ) (1 )
(2)
也是可行解,且
(2) (2) (2)
C T X = C T aX = C aX
T
+ C T (1 − a ) X − aC X
T
b=2, c=4, d=-2, g=1, h=0, f=3, i=5, e=2, l=0, a=3, j=5, k= -1.5
+ CT X
=C X
T
(2)
, 所以 X 也是最优解。
第一章习题解答
1.10 线性规划问题max Z=CX,AX=b,X≥0,设 X0为问题的最优解。若目标函数中用C*代替C后,问题 的最优解变为X*,求证 * * 0 (C -C)(X -X )≥0
X 0是 max Z = CX 的最优解 故 的最优解,故 CX 0 − CX * ≥ 0; X *是 max Z = C * X 的最优解,故 C * X * − C * X 0 ≥ 0; (C * − C )( X * − X 0 ) = C(X 0 − X *) + C*(X * − X 0) ≥ 0

最新清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

最新清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

-1
x2
0
x3
0
x4
-M
x5
-M
x6
CB
xB
x5
x6
x4
i
-M -M 0
3 6 4
[3] 4 1
1 3 2
0 -1 0
0 0 1
1 0 0
0 1 0 0
1 3/2 4 3 6/5 9/5
cj zj
7M-4
1 2 3 1 0 0 0
4M-1
1/3 [5/3] 5/3
5M/3+1/3
-M
0 -1 0 -M
5
x20x30x4CBxB
x3
0 0 0 10 5
9 8 21/5 8/5 3/2
3 [5] 10 0 1 0 0
4 2 5 [14/5] 2/5 1 1
1 0 0 1 0 0
0 1 0 -3/5 1/5 -2
0点
x4
cj zj
x3
x1
cj zj
x2
A1点
5/14 -3/14
10
x1
1
1
0
0
max Z 3x1 x2 2 x3 12x1 3x2 6 x3 3x4 9 8 x x 4 x 2 x 10 1 2 3 5 st 3x1 x6 0 ( , j 1, ,6) x j 0
(1)
(2)
min Z 5 x1 2 x2 3x3 2 x4 x1 2 x2 3x3 4 x4 7 st 2 x1 2 x2 x3 2 x4 3 x 0, ( j 1, 4) j
目标函数最优值的上界为:21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学第五版胡运权答案
【篇一:运筹学基础及应用第四版胡运权主编课后练习
答案】
xt>习题一 p46 1.1 (a)
4
12
该问题有无穷多最优解,即满足4x1
z?3。

6x26且0?x2?
的所有?x1,x2?,此时目标函数值
(b)
用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

1.2
(a) 约束方程组的系数矩阵
12a8
3
310
6?40
300
020
0??0?
1
t。

(b) 约束方程组的系数矩阵
1a2
22
3
1
4??2??
最优解1.3
(a)
(1) 图解法
11??2
x??,0,,0?
t。

最优解即为?
3x14x295x12x28
的解x
31,2
,最大值z
352
(2)单纯形法
首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?10x1?5x2?0x3?0x4?3x1?4x2?x3?9s.t. ?
5x12x2x48
则p3,p4组成一个基。

令x1?x2?0
得基可行解x??0,0,9,8?,由此列出初始单纯形表
12。

??min?
898
,53?5
20,??min?
2183
,??142?2?
新的单纯形表为
1,20,表明已找到问题最优解x1?1, x2?
32
,x3?0 , x4?0。

最大值
z
*
352
(b) (1) 图解法
6x1?2x2x1?x2?
最优解即为?
6x12x224
x1?x2?5
的解x
,22?
,最大值z
172
(2) 单纯形法
首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?2x1?x2?0x3?0x4?0x55x2?x3?15??
s.t. ?6x1?2x2?x4?24
xxx5125
则p3,p4,p5组成一个基。

令x1?x2?0
得基可行解x??0,0,15,24,5?,由此列出初始单纯形表
12。

??min??,
245?
,??4
61?
155
,24,
20,??min?
3?3
2?2
新的单纯形表为
【篇二:运筹学基础及应用第四版胡运权主编课后练习
答案】
xt>习题一 p46 1.1 (a)
4
1
的所有?x1,x2?,此时目标函数值2
该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。

(b)
用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

1.2
(a) 约束方程组的系数矩阵
1236300a814020
300001
最优解x??0,10,0,7,0,0?t。

(b) 约束方程组的系数矩阵
4?a2212??
211
最优解x??,0,,0?。

5??5
t
1.3
(a)
(1) 图解法
最优解即为?
3x14x29353
的解x??1,?,最大值z?
5x?2x?822??2?1
(2)单纯形法
首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?10x1?5x2?0x3?0x4?3x?4x2?x3?9s.t. ?1
5x12x2x48
则p3,p4组成一个基。

令x1?x2?0
得基可行解x??0,0,9,8?,由此列出初始单纯形
表 ?1??2。

??min?,89??53?
8 5
20,??min??218?3,??
142?2?
335
1,20,表明已找到问题最优解x1?1, x2?,x3?0 , x4?0。

最大值z*?
22
(b)
(1) 图解法
6x1?2x2x1?x2?
最优解即为?
6x12x2241773
的解x
,?,最大值z?
2?22??x1?x2?5
(2) 单纯形法
首先在各约束条件上添加松弛变量,将问题转化为标准形式
max z?2x1?x2?0x3?0x4?0x5?5x2?x3?15?
s.t. ?6x1?2x2?x4?24
xxx5125
则p3,p4,p5组成一个基。

令x1?x2?0
得基可行解x??0,0,15,24,5?,由此列出初始单纯形表
12。

??min??,??
245?,??4
61?
3?3?15
,24,??
2?2?5
20,??min?新的单纯形表为
【篇三:运筹学第三版胡运权郭耀煌黄色封皮第九
and十章排队论习题答案】
9-38(a),(b),试画出网络图。

9.2 试画出下列各题的网络图(见表9-8,表9-9,表9-10),并为事
项编号。

9.3 设有如图9-39,图9-40网络图,用图上计算法计算时间参数,并求出关键路线。

9.4 绘制表9-11,表9-12所示的网络图,并用表上计算法计算工
作的各项时间参数、确定关键路线。

9.5 某工程资料如表9-13所示。

要求:
(1)画出网络图。

(2)求出每件工作工时的期望值和方差。

(3)求出工程完工期的期望值和方差。

(4)计算工程期望完工期提前3天的概率和推迟5天的概率。

解:每件工作的期望工时和方差见表9-13的左部。

工程完工期的期望值为32个月,方差为5(1+1+1+1+1)。

工程期望完工期提前3天的概率为0.09,推迟5天的概率为0.987。

9.6 对图9-41所示网络,各项工作旁边的3个数分别为工作的最
乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完工
时间的概率。

根据关键线路,再考虑到其他线路上的时差很多,可知最早完工时
间应该等于关键线路上各个工作最早完工时间之和:
4+2+6+2+3=2=19 。

概率为0.005 。

9.7 某项工程各道工序时间及每天需要的人力资源如图9-42所示。

图中,箭线上的英文字母表示工序代号,括号内数值是该工序总时差,箭线下左边数为工序工时,括号内为该工序每天需要的人力数。

若人力资源限制每天只有15人,求此条件下工期最短的施工方案。

解:最短工期还是15天。

各个工作的开始时间如下图所示:。

相关文档
最新文档