弯矩图汇总
弯矩计算大全
复习弯矩图作为一名又土又木的工程师,离不开弯矩图,现在把它汇总起来,用以怀念当年的苦逼生活……各种结构弯矩图的绘制及图例:一、方法步骤1、确定支反力的大小和方向(一般情况心算即可计算出支反力)•悬臂式刚架不必先求支反力;•简支式刚架取整体为分离体求反力;•求三铰式刚架的水平反力以中间铰C的某一边为分离体;•对于主从结构的复杂式刚架,注意“先从后主” 的计算顺序;•对于复杂的组合结构,注意寻找求出支反力的突破口。
2、对于悬臂式刚架,从自由端开始,按照分段叠加法,逐段求作M图(M图画在受拉一侧);对于其它形式的刚架,从支座端开始,按照分段叠加法,逐段求作M 图(M图画在受拉一侧)。
二、观察检验M图的正确性1、观察各个关键点和梁段的M图特点是否相符•铰心的弯矩一定为零;•集中力偶作用点的弯矩有突变,突变值与集中力偶相等;•集中力作用点的弯矩有折角;•均布荷载作用段的M图是抛物线,其凹凸方向与荷载方向要符合“弓箭法则”;2、结构中的链杆(二力杆)没有弯矩;3、结构中所有结点的杆端弯矩必须符合平衡特点。
各种结构弯矩图例如下:F作用F的M图土qbq作用F的塞q作用■的IVI图卡q伫用卜的Ml乩円旳作用F的MRh4 §股直线5也线tilt力Pbq代川卜I勺随沐Pg作川卜旳Ml轧12P PPL弓--- 1-~~从C M A'.f M国:丨丨I 1J1_:―~4 -----------#"卜利用刈称性作Ml紈利用反对称1・1图』从右向充竹Ml^hPLA.+ ------(9)先计算芸反力,再作WHH抄扌庙抨302PL|PQ ___ i_PL F2P14kN-m0.2 kN/m L__I JUIlIlUHvUbH 辱L t --------------XA1L4 Hyg 匸(W)先计算丸反力,再作刨轧比汁钉文反丿八I I f Ml ⑴即川法作M 图”仁先考虎力保作用 2再叠加R 的作用16…匸IPL"■ "" "■ ». -―_丄~^*****-PL4rc一 / A— -IVr -!_ In33 严16t 厂三口0.6fcV*4(13) 作M 图|只需计算C 截面弯矩作M 图■计算C 截而疔矩 1 1钟1 —r 护 L4tV-Ft曲线在B 心与水半线相切不用il 球文反力, 町快速作M 图30从附属部分开始,曲好M国丁(23)从附属部分丿I:始,护局部悬啊梁法"直接作M樹:4aA/=60LN* m 尸】。
各类梁的弯矩剪力计算汇总表-剪力计算系数
表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5.s.. .. . ...s.. .. . ...s.. .. . ...s.. .. . ...s.. .. . ...s.. .. . ...s.. .. . ..注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
.. .. .. 2.单跨梁的力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
2)三跨等跨梁的力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
绘制左端固定悬臂梁的剪力弯矩图汇总
H a r b i n I n s t i t u t e o f T e c h n o l o g y材料力学I 上机实验报告姓名:XX学号:XXXXX班级:XXXXX院系:XXXXX时间:2015/06/20哈尔滨工业大学1.问题描述题目4 绘制左端固定悬臂梁的剪力弯矩图输入:1.梁的总长度l2.各载荷大小、作用位置及方向(qi、ai、bi;pj、cj、mk、dk)输出:1.剪力、弯矩(图示)2.输出剪力、弯矩的最大值及截面位置。
输入时,默认均布载荷和集中力方向向下为正,集中力偶以逆时针为正。
2.程序流程⑴输入梁的总长度L,确定;输入集中力F,F位置X1,确定;输入集中力偶M,力偶位置X2,确定;输入均布载荷集度q,起始位置X3,终止位置X4,确定;⑵绘制剪力图,绘制弯矩图,即可。
3.具体某个问题和涉及到的计算公式以及相关理论左固定端悬臂梁:设梁的长度为l,集中力大小为p,作用位置为c,均布载荷大小为q,作用起始位置a,终止位置为b,集中力偶大小为m,作用位置d。
计算过程:在任意位置x处,取x以右部分为研究对象①若c<x,a<b<x,d>x,则Fs y=0,M(x)=m;②若c>x,a<b<x,d<x,则Fs y=-P,M(x)=Px-Pc;③若c<x,a<x<b,d<x,则Fs y=-q(b-x),M(x)=-2q(b-x)²;④若c<x, x<a<b,d>x,则Fs y=-q(b-a),M(x)=-q(b-a)(2ba+-x);⑤若c>x,a<b<x,d>x,则Fs y=-P,M(x)= Px-Pc+m;(第①、②两种情况合成)⑥若c<x,a<x<b,d>x,则Fs y=-q(b-x),M(x)=m-2q(b-x)²;(第①、③两种情况合成)⑦若c<x,x<a<b,d>x,则Fs y=-q(b-a),M(x)=m-q(b-a)(2ba+-x);(第①、④两种情况合成)⑧若c>x,a<x<b,d<x,则Fs y=-P-q(b-x),M(x)=Px-Pc-2q(b-x)²;(第②、③两种情况合成)⑨若c>x,x<a<b,d<x,则Fs y=-P-q(b-a),M(x)=Px-Pc-q(b-a)*(2ba+-x);(第②、④两种情况合成)⑩若c>x,x<a<b,d>x,则Fs y=-P-q(b-a), M(x)=m+Px-Pc-q(b-a)*(2ba+-x);(第①、②、④两种情况合成)⑪c>x,a<x<b,d>x, 则Fs y=-P-q(b-x), M(x)m+Px-Pc-q(b-a)*(2ba+-x); (第①、②、③两种情况合成)将上述公式编入程序即可计算出在固定端悬臂梁情况下任意位置处的剪力和弯矩,采用散点法作出梁的剪力弯矩图。
各类梁的弯矩剪力计算汇总表
各类梁的弯矩剪力计算汇总表表1 简单载荷下基本梁的剪力图与弯矩图lF l a -l eMsF lM e +M+laeMsF lM e +Me M lal -e M la +-lqsF +-2ql 2qlM82ql +2l lqasF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+l a l qa 2)(2-la l a 2)2(-sF 30l q 2l q注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件约束类型位移边界条件力边界条件(约束端无集中载荷)固定端=w,0=θ—简支端=w0=M自由端—=M,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰∙=AdA y I 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y I W = 3.i 称截面回转半径(mm ),其基本计算公式如下:A Ii =4.上列各式中,A为截面面积(mm2),y为截面边缘到主轴(形心轴)的距离(mm),I为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。
弯矩图绘制方法汇总
2020/3/20
第13页
例6 试作图示多跨静定梁的弯矩图。
4kN
4kN.m
1kN/m
4 8
2 4
铰处的M为零,且梁上无集中荷载作用,
M图为一无斜率变化的斜直线。
ql 2
4
2
22
2
ql 2 2
8
2
2
2020/3/20
例7 试作图示刚架弯矩图的形状。
ql 2
m
2m
mm
m Q= 0,M为一直线
P
第14页
2020/3/20
21
静定结构总论
(Statically determinate structures general introduction)
基本性质 派生性质
零载法
2020/3/20
第22页
静定结构基本性质
满足全部平衡条件的解答是静定结构的唯 一解答
证明的思路:
静定结构是无多余联系的几何不变体系,用刚体虚位移原 理求反力或内力解除约束以“力”代替后,体系成为单自 由度系统,一定能发生与需求“力”对应的虚位移,因此 体系平衡时由主动力的总虚功等于零一定可以求得“力” 的唯一解答。
P
Pl
M=0
2Pl
P
2Pl
Q= P,M为一斜线
Q= 0,M为一直线 P
2020/3/20
第8页
例2 试作图示刚架的弯矩图。各杆杆长均为l = 4m。
20kN/m
80
80
40kN
40 80
40
2020/3/20
40
第9页
20
20
75
30
45 5kN
2020/3/20
各类梁的弯矩剪力计算汇总表-剪力计算系数
表1 简单载荷下基本梁的剪力图与弯矩图之邯郸勺丸创作注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的鸿沟条件注:力鸿沟条件即剪力图、弯矩图在该约束处的特征.经常使用截面几何与力学特征表表2-5 创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4).基本计算公式如下:⎰•=AdAy I 22.W 称为截面抵当矩(mm 3), 它暗示截面抵当弯曲变形能力的年夜小, 基本计算公式如下:max y I W =3.i 称截面回转半径(mm ), 其基本计算公式如下:A I i =4.上列各式中, A为截面面积(mm2), y为截面边缘到主轴(形心轴)的距离(mm), I为对主轴(形心轴)的惯性矩.5.上列各项几何及力学特征, 主要用于验算构件截面的承载力和刚度.创作时间:二零二一年六月三十日2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=. 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI w 100Fl 表中系数3⨯=. 2)三跨等跨梁的内力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=.2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI w 100Fl 表中系数3⨯=. 3)四跨等跨连续梁内力和挠度系数 表2-13注:同三跨等跨连续梁.4)五跨等跨连续梁内力和挠度系数 表2-14注:同三跨等跨连续梁.创作时间:二零二一年六月三十日(2)不等跨连续梁的内力系数(表2-15、表2-16)1)二不等跨梁的内力系数表2-15创作时间:二零二一年六月三十日注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)暗示它为相应跨内的最年夜内力.2)三不等跨梁内力系数表2-16创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)为荷载在最晦气安插时的最年夜内力.创作时间:二零二一年六月三十日4.双向板在均布荷载作用下的内力及变形系数表(表2-17~表2-22) 符号说明如下:刚度 )1(1223υ-=Eh K 式中 E ——弹性模量;h ——板厚; ν——泊松比;ω、ωmax ——分别为板中心点的挠度和最年夜挠度;M x ——为平行于l x 方向板中心点的弯矩; M y ——为平行于l y 方向板中心点的弯矩; M x 0——固定边中点沿l x 方向的弯矩; M y 0——固定边中点沿l y 方向的弯矩. 正负号的规定:弯矩——使板的受荷面受压者为正; 挠度——变位方向与荷载方向相同者为正.四边简支 表2-17三边简支, 一边固定 表2-18两边简支, 两边固定表2-19 一边简支, 三边固定表2-20四边固定表2-21两边简支, 两边固定表2-225.拱的内力计算表(表2-23)各种荷载作用下双铰抛物线拱计算公式表2-23注:表中的K为轴向力变形影响的修正系数.(1)无拉杆双铰拱1)在竖向荷载作用下的轴向力变形修正系数式中 I c——拱顶截面惯性矩;A c——拱顶截面面积;A——拱上任意点截面面积.当为矩形等宽度实腹式变截面拱时, 公式I=I c/cosθ所代表的截面惯性矩变动规律相当于下列的截面面积变动公式:此时, 上式中的n可表告竣如下形式:下表中列出了矩形等宽度实腹式变截面拱的n值.f/ln2)在水平荷载作用下的轴向力变形修正系数, 近似取K=1(2)带拉杆双铰拱1)在竖向荷载作用下的轴向力变形修正系数式中 E——拱圈资料的弹性模量;E1——拉杆资料的弹性模量;A1——拉杆的截面积.2)在水平荷载作用下的轴向力变形修正系数(略去拱圈轴向力变形影响)式中 f——为矢高;l——为拱的跨度.6.刚架内力计算表内力的正负号规定如下:V——向上者为正;H——向内者为正;M——刚架中虚线的一面受拉为正.(1)“┌┐”形刚架内力计算(表2-24、表2-25)“┌┐”形刚架内力计算表(一)表2-34“┌┐”形刚架内力计算表(二)表2-35(2)“”形刚架的内力计算(表2-26)”形刚架的内力计算表表2-26。
弯矩图绘制方法汇总
D
M图
A
E FPa
FPa
a F
B
D
FPa
FPa
a
C
a
a
a
a
FPa MA =FPa A
a
FP B
C
D
FRAy =FP
M图
M图
精选课件
第17页
3-5 静定结构的特性
.4 荷载等效特性
当静定结构的内部几何 不变局部上的荷载作静 力等效变换时,只有该 部分的内力发生变化, 而其余部分的内力保持 不变。
A
C
P
P
4. 受集中力偶 m 作用时,在m作用点处M有跳跃(突变),跳 跃量为m,且左右直线均平行。
m
平行
m
精选课件
第3页
二. 铰处 M = 0
三. 刚结点力矩平衡
40
20
20
M0
M=0
M =?0
10
30
M0
20
20
精选课件
第4页
四. 集中力 P 与某些杆轴线重合时,M为零
P
M=0
P M=0
剪力Q为零时, M图为直线。
精选课件
FP
第23页
静定结构
M
FP 解除约束,单
自由度体系
Mα
FP 体系发生虚 Δ 位移
刚体虚位移原理的虚功方程
FP Δ - M α=0 可唯一地求得 M= FP Δ/α
精选课件
第24页
静定结构派生性质
支座微小位移、温度改变不产生反力和内力
若取出的结构部分(不管其可变性)能够平衡外荷载,则 其他部分将不受力
A
B
C t2
A
各类梁的弯矩剪力计算汇总表
表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
2)三跨等跨梁的内力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
各类梁的弯矩剪力计算汇总表-剪力计算系数
表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
2)三跨等跨梁的力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
各类梁弯矩剪力计算汇总表
表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支座的最大弯矩和剪力。
[解] M B 支=(-××52)+(-××5)=(-)+()=-·m V B 左=(-××5)+(-×)=(-)+(-)=-[例2] 已知三跨等跨梁l =6m ,均布荷载q =m ,求边跨最大跨中弯矩。
弯矩图汇总知识讲解
弯矩图汇总
仅供学习与交流,如有侵权请联系网站删除
谢谢2
弯矩图复习
作为一名又土又木的工程师,离不开弯矩图,现在把它汇总起来,用以怀念当年的苦逼生活……
仅供学习与交流,如有侵权请联系网站删除谢谢3
仅供学习与交流,如有侵权请联系网站删除谢谢4
仅供学习与交流,如有侵权请联系网站删除谢谢5
仅供学习与交流,如有侵权请联系网站删除谢谢6
仅供学习与交流,如有侵权请联系网站删除
谢谢7
仅供学习与交流,如有侵权请联系网站删除谢谢8
仅供学习与交流,如有侵权请联系网站删除谢谢9
仅供学习与交流,如有侵权请联系网站删除
谢谢10。
各类梁的弯矩剪力计算汇总表
表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支座的最大弯矩和剪力。
[解] M B 支=(-××52)+(-××5)=(-)+()=-·m V B 左=(-××5)+(-×)=(-)+(-)=-[例2] 已知三跨等跨梁l =6m ,均布荷载q =m ,求边跨最大跨中弯矩。
各类梁的弯矩剪力计算汇总表
表1 简单载荷下基本梁的剪力图与弯矩图梁的简图剪力Fs 图弯矩M 图1laFsF F la F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lq asF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -表2 各种载荷下剪力图与弯矩图的特征某一段梁上的外力情况 剪力图的特征弯矩图的特征无载荷水平直线斜直线或集中力 F突变 F 转折或或集中力偶eM 无变化 突变e M均布载荷q斜直线抛物线 或零点极值表3 各种约束类型对应的边界条件约束类型 位移边界条件力边界条件(约束端无集中载荷)固定端0=w ,0=θ —简支端0=w0=M自由端 —0=M ,0=S F常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA y I 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y IW =3.i 称截面回转半径(mm ),其基本计算公式如下:AI i = 4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。
各类梁的弯矩剪力计算汇总表
表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
各类梁的弯矩剪力计算汇总表-剪力计算公式一览表
表 1 简单载荷下基本梁的剪力图与弯矩图注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁2.单跨梁的内力及变形表(表2-6~表2-10)1)简支梁的反力、剪力、弯矩、挠度表2-62)悬臂梁的反力、剪力、弯矩和挠度表2-73)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-84)两端固定梁的反力、剪力、弯矩和挠度表2-95 )外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14 )1)二跨等跨梁的内力和挠度系数表2-11均布荷载 q =11.76kN/m ,每跨各有一集中荷载 F =29.4kN ,求中间支座的最大弯矩和剪力。
M B 支=(-0.125×11.76×52)+(- 0.188×29.4×5)=(- 36.75)+( -27.64)=- 64.39kN ·mV B 左=(-0.625×11.76×5)+(- 0.688×29.4)=(- 36.75)+(- 20.23)=- 56.98kN[例 2] 已知三跨等跨梁 l = 6m ,均布荷载 q =11.76kN/m ,求边跨最大跨中弯矩 [解 ] M1 = 0.080×11.76×62=33.87kN ·m 。
2)三跨等跨梁的内力和挠度系数 表 2-12注: 1.在均布荷载作用下: M =表中系数×4ql 2;V =表中系数× ql ; w 表中系数ql。
100EI Fl 3Fl ;V =表中系数× F ; w 表中系数 Fl。
100EI2.在集中荷载作用下: M =表中系数×[例 1] 已知二跨等跨梁 l =5m ,[解]f ⅜ 跨内帰大 支座弯矩 弯矩荷載图VCXAflM 2-0.5500 -O I OSo-O (O 5Q0.4500.550(Jf≡¾-0,050 -0.500 D.0751-0.050 -0.050 -0,0500,5000.050UHiD跨度中点挠度-0.45(J 0,990 -0.625 0.990L A 4-L073L054-0÷117-0.033 0.383D-0.C67 0.0170.433f t J÷175 -0.150一(L 1500.350-0,075 -0.0750.425ΓJ⅛3.175 -0.075-0.075-0,07S0.050-0.3131 0,677 -0.313λ1620.1370 + 175-o r osα 0,325-0.617-0.4170*033 0.5β3 0.033-0.5670.0830.5730.365 -0.208-O.on-0,017 0.885 -0.313 0.104-0.650 0.500"-W0.650-0,5750 0.575-0.425E146 1.6150.208 1.146- 0,075- 0,50C 0.5000.0750.075-0Λ69-0.9371U46L 615-0.469-0,675-0.375 0,6250.0500.0500.9900.677 L 0.3124 注:1.在均布荷载作用下:M =表中系数× ql2;V=表中系数× ql;w表中系数ql 100EI2.在集中荷载作用下:M =表中系数× Fl;V=表中系数× F;w 表中系数Fl。