平行四边形单元专题复习
【三套打包】莆田市中山人教版八年级数学下册第十八章平行四边形单元试题含答案
人教版八年级下册数学第十八章平行四边形单元同步练习卷教版八年级数学下册第十八章平行四边形单元复习测试题一、填空题1.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.2.如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为_________.3.如图,已知Y ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为__________.4.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为____________.二、选择题5.在Y ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则Y ABCD的面A.6 B.9 C.12 D.18 6.菱形的对角线长分别为3和4,则该菱形的面积是A.6 B.8 C.12 D.247.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的3 16,那么BC的长是A.6 B.8 C.10 D.16 8.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.3 9.已知Y ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤8 10.在一个直角三角形中,已知两直角边分别为6 cm,8 cm,则下列结论不正确的是A.斜边长为10 cm B.周长为25 cmC.面积为24 cm2 D.斜边上的中线长为5 cm 11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF的长为13.如图在Y ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则Y ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm14.如图,在菱形ABCD 中,P 、Q 分别是AD 、AC 的中点,如果PQ =3,那么菱形ABCD 的周长是A .30B .24C .18D .615.下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =16.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE ∶EC =2∶1,则线段CH 的长是A .3B .4C .5D .6二、解答题17.如图,在△ABC 中,AD ⊥BC 于点D ,E ,F ,G 分别是BC ,AC ,AB 的中点.若AB =2118.已知菱形ABCD中,对角线AC=16 cm,BD=12 cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.19.如图,在Y ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD上的两个动点(点E,F始终在Y ABCD的外面),且DE=12OD,BF=12OB,连接AE,CE,CF,AF.(1)求证:四边形AFCE为平行四边形.(2)若DE=13OD,BF=13OB,上述结论还成立吗?由此你能得出什么结论?(3)若CA平分∠BCD,∠AEC=60°,求四边形AECF的周长.20.如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)当AB∶AD=__________时,四边形MENF是正方形,并说明理由.21.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;参考答案1.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB2.【答案】23.【答案】144.【答案】3.55-16:CACBC BDBDB CB17.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12人教版八年级数学下册第十八章平行四边形单元测试题(有答案)一、选择题:(每小题3 分,共30 分)1 、下列对正方形的描述错误的是()A.正方形的四个角都是直角B.正方形的对角线互相垂直C.邻边相等的矩形是正方形D.对角线相等的平行四边形是正方形2 、菱形和矩形一定都具有的性质是()A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角线互相平分且相等3 、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以C .8cm 和10cmD .10cm 和12cm4 、四边形ABCD 的对角线AC 、BD 交于点O ,能判定它是正方形的是()A 、AO =OC ,OB =OD B 、AO =BO =CO =DO ,AC ⊥ BDC 、AO =OC ,OB =OD ,AC ⊥ BD D 、AO =OC =OB =OD5 、给出下列四个命题⑴一组对边平行的四边形是平行四边形⑵一条对角线平分一个内角的平行四边形是菱形⑶两条对角线互相垂直的矩形是正方形⑷顺次连接四边形四边中点所得的四边形是平行四边形。
人教版四年级数学上册课件第5单元《平行四边形和梯形》知识梳理 整理与复习课件
园的上底长6米,下底长14米,两腰各长7米,但李大
伯只用了20米长的篱笆,你知道李大伯是怎么围的吗
?
下底靠墙,14米不需篱笆,总
共只需6+7×2=20(米)。
过关检测
1.填空题。 (1)过直线外一点,可以画( 一 )条已知直线的平行线,
可以画( 一 )条已知直线的垂线。 (2)从直线外一点到这条直线的所有线段中,( 垂直线段 )
图①a与b互相平行,记作a∥b,读作a平行于b。
要点牢记
(二)
深化知识
1.平行与垂直
a
②
两条直线相交成直角,就说这两条直线互相垂直,
其中一条直线叫做另一条直线的垂线,这两条直线的交 点叫做垂足。 图 ② 中a与b互相垂直,记作a⊥b,读作a垂直于b。
深化知识
【对应训练】
下面各组直线中,哪组互相平行?哪组互相垂直?
间画一条垂线段,这条垂线段的长是( 6 )厘米。
人教版四年级上册数学:平行四边形 和梯形 整理和复习
过关检测
2.判断题。
(1)不相交的两条直线叫做平行线。
( ×)
(2)一条直线,可以画出无数条它的平行线。 ( √ )
(3)垂直于同一条直线的两条直线互相平行。 ( √ )
(4)两条直线相交,只要有一个角是直角,其他的
伸缩门 伸缩门里有平行四边形,利用它容易变形的 特征伸缩的。
知识梳理 核心要点
平行与垂直的概念
同一平面内不相交的两条直线叫做平 行线
a b
直线a是直线b的平等线,直线a与直 线b互相平行
知识梳理 核心要点
平行与垂直的概念
两条直线相交成直角,就说这两条
a
直线互相垂直
b
直线a叫做直线b的垂线,交点叫做
第08讲特殊平行四边形单元整体分类总复习(原卷版)
第08讲特殊平行四边形章节分类总复习考点一矩形的判定与性质【知识点睛】❖矩形的判定方法:①有一个角是直角的平行四边形是矩形; ②有三个角是直角的四边形是矩形;③四个角都相等的四边形是矩形; ④对角线相等的平行四边形是矩形;⑤对角线相等且互相平分的四边形是矩形.❖矩形的性质①矩形的对边平行且相等; ②矩形的四个角都是直角;③矩形的对角线相等且互相平分; ④矩形既是轴对称图形,又是中心对称图形。
【类题训练】1.如图,在矩形ABCD中,AC、BD交于点O,DE⊥AC于点E,∠AOD=124°,则∠CDE 的度数为()A.62°B.56°C.28°D.30°2.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且,连接EF.若AC=10,则EF的长为()A.B.3C.4D.53.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=2,∠ABE=45°,则DE的长为()A.2﹣2B.﹣1C.﹣1D.24.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S25.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.MB=MO B.OM=AC C.BD⊥AC D.∠AMB=∠CND6.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.47.如图,在矩形ABCD中,AB=12,AD=10,点P在AD上,点Q在BC上,且AP=CQ,连结CP、QD,则PC+QD的最小值为()A.22B.24C.25D.268.如图,在▱ABCD中,下列条件①AC=BD;②∠1+∠3=90°;③OB=AC;④∠1=∠2,能判断▱ABCD是矩形的有()A.1个B.2个C.3个D.4个9.如图,在矩形ABCD中,AB=4,BC=6,E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.如图,在平面直角坐标系xOy中,矩形OABC的边OA=3,OC=4,点M(2,0),在边AB存在点P,使得△CMP为“智慧三角形”,则点P的坐标为()A.(3,1)或(3,3)B.(3,)或(3,3)C.(3,)或(3,1)D.(3,)或(3,1)或(3,3)11.如图所示,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.12.矩形ABCD中,AB=8,AD=4,点A是y轴正半轴上任意一点,点B在x轴正半轴上.连接OD.则OD的最大值是.13.如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=°.14.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.15.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是.17.矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH=.18.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.19.如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠ACB的角平分线于点E,交∠ACB的外角平分线于F.问:(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.20.如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=10,BD=8,求△BCF的面积.考点二菱形的判定与性质【知识点睛】❖菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②四条边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线互相垂直平分的四边形是菱形。
第十八章 平行四边形 单元复习专题折纸中的数学课件-2023-2024学年人教版 数学八年级下册
第十八章 平行四边形单元复习专题
折纸中的数学
创设情境 探究活动 学以致用 中考链接 折纸科学 归纳总结
1.你们小时候折过纸吗?都折过些什么? 2.不用任何作图工具,利用矩形纸,怎么折出45°角?
3.用一张矩形纸片你还能折出哪些度数的角?
创设情境 探究活动 学以致用 中考链接 折纸科学 归纳总结
现有一张矩形的彩纸ABCD,已知AD上有一点E,请你通过 折纸的方法,做等边△EMN,使得点M、N在BC上.
用 一 用
A
E
D
用
一
用
P
1
2
B
M
F
N
C
创设情境 探究活动 学以致用 中考链接 折纸科学 归纳总结
六、知识运用
例1:如图,将正方形纸片对折,折痕为EF,展开后继 续折叠,使点A落在EF上,折痕为GB,求∠AGB的度数。
追问:120°,150°角呢?你还能得到哪些度数的角?
一 想
展 一 展
证 一 证 延一延一 延延
创设情境 探究活动 学以致用 中考链接 折纸科学 归纳总结
在矩形纸片中剪出等边三角形,怎样剪出的等边三角形才是最大的?
用
A
M
D
一 用
用
一
E
G
N
F
用
1
2
B
H
C
创设情境 探究活动 学以致用 中考链接 折纸科学 归纳总结
一
延
创设情境 探究活动 学以致用 中考链接 折纸科学 归纳总结
问题4:哪些同学能代表小组上台展示方案?
A
法一:
E
△ABN B
A
D
H
《第18章 平行四边形》单元测试(2)
《第18章平行四边形》单元测试(2)一.选择题(共10小题)1.如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点D在AB上,点E在AC上,分别过B、E作AC、BC的平行线,两平行线交于点H,已知CD=4,则BE长度是()A.4B.4C.4D.52.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2011个正方形(正方形ABCD看作第1个)的面积为()A.5()2010B.5()2010C.5()2011D.5()2011 3.我们给出如下定义,顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4.如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()A.4B.8C.D.5.如图,把一张长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,BE与AD相交于点F,则下列结论不一定成立的是()A.△BFD是等腰三角形B.△ABF≌△EDFC.BE平分∠ABDD.折叠后的图形是轴对称图形6.如图,平行四边形ABCD中,AC、BD交于点O,分别以点A和点C为圆心,大于AC 的长为半径作弧,两弧相交于M、N两点,作直线MN,交AB于点E,交CD于点F,连接CE,若AD=3,CD=4,则△BCE的周长为()A.7B.6C.5D.37.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,若AB=4,EF=1,则BC长为()A.7B.8C.9D.108.下列四边形中,对角线互相垂直的是()A.B.C.D.9.Rt△ABC中,∠C=90°,锐角为30°,最短边长为5cm,则最长边上的中线是()A.5cm B.15cm C.10cm D.2.5cm10.如图,矩形ABCD的周长是16,DE=2,△FEC是等腰三角形,∠FEC=90°,则AE 的长是()A.3B.4C.5D.6二.填空题(共8小题)11.如图,在边长为6的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=S,则PB+PC的最小值为.菱形ABCD12.若菱形的周长为16,高为2,则该菱形两邻角的度数分别是.13.如图,直线m过正方形ABCD的顶点B,点A,C到直线m的距离分别是1和3,则正方形的边长是.14.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是.15.如图,在△ABC中,∠C=90°,AB=13,AD是△ABC的一条角平分线,E为AB的中点,连接DE,若CD=,则△AED的面积为.16.如图,将一张矩形纸片沿EF折叠后,点D、C分别落在点D′,C′的位置,若∠1=40°,则∠D′EF=.17.如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.18.已知直角坐标系中,菱形ABCD的顶点A、B、C的坐标分别是A(﹣2,0),B(0,﹣4),C(2,0),则点D的坐标是三.解答题(共9小题)19.如图所示,把四个相同的直角三角形拼成正方形,直角三角形两直角边长分别为24和7,通过面积计算该直角三角形的斜边长.20.如图,E,F是四边形ABCD的对角线BD的三等分点,CE,CF的延长线分别平分AB,AD,交点分别为点G,H.(1)求证:CE=2EG;(2)求证:四边形ABCD是平行四边形.21.2022年新版的《义务教育数学课程标准》、重新将梯形的概念作为需要理解的内容,如图所示:四边形ABCD为梯形,AB∥CD,E为AD的中点、解答下列问题:(1)作图:过点E作EF∥AB、交BC于点F;(2)EF和CD的位置关系如何?请写出简单的推理过程(推理的依据要写出来);(3)用刻变尺量一下BF和CF的长度,请你大胆猜想,直接写出BF和CF的数量关系;(4)用刻度尺量一下CD、EF、AB的长度,请你大胆猜想,直接写出CD、EF、AB这三条线段的数量关系.22.如图,将边长为6的正三角形ABC沿着MN折叠,使点A落在BC边上的D点处.(1)当折痕MN为△ABC的中位线时,求BD的长;(2)试说明△BDM与△CND是否相似;(3)若AM:AN=2:3时,求S△ABD:S△ADC.23.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是AO,CO的中点,连结BE,DF.(1)求证:BE=DF.(2)若BD=2AB=8,BC=6,求AC的长.24.矩形ABCD中,AB=3,AD=4,△ABC沿着AC翻折得到△AB'C,B'C交AD于点E,连接B'D.(1)求证:B'D∥AC;(2)求线段AE的长,直接写出线段B'D的长.25.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1.请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画一个周长为8的菱形ABCD(非正方形);(2)在图2中画出一个面积为9,且∠MNP=45°的▱MNPQ,并直接写出▱MNPQ较长的对角线的长度.26.下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,ABC=90°.求作:矩形ABCD.作法:如图,①分别以点A,C为圆心、大于AC的长为半径作弧,两弧相交于E,F两点;②作直线EF,交AC于点P;③连接BP并延长至点D,使得PD=BP;④连接AD,CD.则四边形ABCD是矩形.根据小明设计的尺规作图过程,解决以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AE,CE,AF,CF.∵AE=CE,AF=CF,∴EF是线段AC的垂直平分线.∴AP=.又∵BP=DP,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴四边形ABCD是矩形()(填推理的依据).27.[定义]:如果四边形的某条对角线平分一组对角,那么把这条对角线叫做“美妙线”,该四边形叫做“美妙四边形”.如图,在四边形ABDC中,对角线BC平分∠ACD和∠ABD,那么对角线BC叫“美妙线”,四边形ABDC就称为“美妙四边形”.[问题]:(1)下列四边形:平行四边形,矩形,菱形,正方形,其中是“美妙四边形”的是;(填写名称)(2)四边形ABCD是“美妙四边形”,AB=2,∠BAD=60°,∠ABC=90°,求美妙四边形ABCD的面积.(请画出图形,并写出解答过程)。
人教版四年级上册数学 第五单元 平行四边形和梯形 整理复习
C A B
D
人教版四年级上册数学
第五单元 平行四边形和梯形 整理复习
一、填空。
1、任意一个四边形的四个内角的度数和都是( )°。
2、
在下面的平行四边形中,A=130°,那么∠B=( )°,∠C=( )°, ∠D=( )°
3 )。
4、两条平行线间可以画( )条垂直线段,这些线段的长度都( )。
5、平行四边形的相邻两条边分别为3厘米、7厘米,这个平行四边形的周长是( )。
6、过直线外一点,可以画( )条这条直线的平行线,可以画( )条这条直线的垂线。
7、如果一个平行四边形的四个角都变成直角,那么这个平行四边形就成了( )或( )。
8、用两个( )的梯形可以拼成一个平行四边形,如果平行四边形的底是25厘米,高是15厘米,那么梯形的上底和下底的和是( )厘米。
二、按要求画一画。
1、过点A 画已知直线的垂线。
2、分别画出每个图形的一条高。
3、画出一个长为5厘米、宽2厘米的长方形。
4、分别过点B 画对边的垂线段。
三、解决问题。
1、已知平行四边形的周长是48厘米,其中一条边长是9厘米,另一条边长是多少厘米?
2、如下图,等腰梯形的腰长为15厘米,上底比腰短8厘米,求梯形的周长是多少?
3、琪琪家有一块等腰梯形的菜地,它的周长是24米,它的一条腰长多少米?。
北师大新版九年级数学上册:第1章《特殊的平行四边形》单元复习试题 (含答案)
第1章特殊的平行四边形一.选择题(共15小题)1.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 2.菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长约是()A.4cm B.1 cm C.cm D.2cm3.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.54.菱形的两条对角线分别为8和6,则菱形的周长和面积分别是()A.20,48 B.14,48 C.24,20 D.20,245.如图,菱形ABCD的顶点C在直线MN上,若∠1=50°,∠2=20°,则∠ABD的度数为()A.20°B.35°C.40°D.50°6.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连结OE.若OE=3,则菱形ABCD的周长是()A.6 B.12 C.18 D.247.如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF的度数是()A.90°B.60°C.45°D.30°8.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E为垂足,连接DF,则∠CDF=()A.50°B.40°C.30°D.15°9.如图,要使平行四边形ABCD成为菱形,添加一个条件不正确的是()A.AC⊥BD B.AB=AD C.AC=BD D.AC平分∠BAD 10.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,﹣4),要使四边形AOBC是菱形,则满足条件的点C的坐标是()A.(﹣3,0)B.(3,0)C.(6,0)D.(5,0)11.如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是()A.①或②B.②或③C.③或④D.①或④12.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形13.如图,矩形ABCD的两条对角线相交于点O,AB=2,∠ACB=30°,则矩形的面积为()A.4B.2 C.4 D.214.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOD=120°,AC=4,则CD的长为()A.2 B.3 C.2D.215.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.4二.填空题(共9小题)16.工人师博常常通过测量平行四边形零件的对角线是否相等来检验零件是否为矩形,请问工人师博此种检验方法依据的道理是.17.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.18.如图,平行四边形ABCD,添加一个条件使它成为一个矩形,你会加上.19.如图,P是正方形ABCD内一点,且PA=PD,PB=PC.若∠PBC=60°,则∠PAD=.20.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.21.已知正方形的对角线长为2,则它的面积.22.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.23.如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,请你添加一个条件,使四边形BECF是正方形.24.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).三.解答题(共5小题)25.如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.26.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,27.如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=BC,∠D=45°,CD的垂直平分线交CD于E,交AD于F,交BC的延长线于G,若AD=a.(1)求证:四边形ABCF是正方形;(2)求BG的长.28.如图,在正方形ABCD中,对角线AC和BD相交于O,点E、F、G、H分别是OA、OB、OC、OD上,且AE=BF=CG=DH,求证:四边形EFGH是正方形.29.如图,在正方形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的点,且AE=BF=CG=DH,试判定四边形EFGH的形状,并证明你的结论.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.2.【解答】解:如图,设AC=2cm,∵四边形ABCD是菱形,∴AO=CO=1cm,BO=DO,AC⊥BD,∵BO===cm,∴BD=2cm,故选:D.3.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=AC=6,BO=BD=8,AO⊥BO,∴BC==10,∴S菱形ABCD=AC•BD=×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH==故选:B.4.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故菱形的周长是20,面积是24,故选:D.5.【解答】解:∵四边形ABCD是菱形,∴∠A=∠BCD,AB=AD,∵∠1=50°,∠2=20°,∴∠BCD=180°﹣50°﹣20°=110°,∴∠A=110°,∵AB=AD,∴∠ABD=∠ADB==35°,故选:B.6.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故选:D.7.【解答】解:连接AC,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°﹣180°﹣120°=60°.故选:B.8.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:C.9.【解答】解:A、对角线互相垂直的平行四边形是菱形,此选项不符合题意;B、邻边相等的平行四边形是菱形,此选项不符合题意;C、由对角线相等不能证明平行四边形ABCD是菱形,此选项符合题意;D、对角线平分对角的平行四边形是菱形,此选项不符合题意;故选:C.10.【解答】解:如图,连接AB交OC于D,∵四边形AOBC是菱形,∴AD⊥OC,OD=CD,∵点A的坐标是(3,4),点B的坐标是(3,﹣4),∴OD=3,∴OC=6,∴C(6,0),故选:C.11.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB=BC,∴平行四边形ABCD是菱形;故①④能判定.故选:D.12.【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B.13.【解答】解:∵四边形ABCD是矩形∴∠ABC=90°,且∠ACB=30°∴BC=AB=2,∴矩形ABCD的面积=AB×BC=2×2=4故选:A.14.【解答】解:∵∠AOD=120°,∴∠COD=180°﹣∠AOD=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=CO=DO=2,∴△COD是等边三角形,∴CD=DO=2,故选:A.15.【解答】解:∵点A的坐标是(﹣1,0),点C的坐标是(2,4),∴线段AC==5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.二.填空题(共9小题)16.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故答案为:对角线相等的平行四边形是矩形.17.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.18.【解答】解:答案不唯一,∵四边形ABCD是平行四边形,∴可添加:∠A=90°、AC=BD等.故答案为:∠A=90°.19.【解答】解:∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠CBA=90°,∵PB=PC,∠PBC=60°,∴△PAB是等边三角形,∴∠APB=∠PBA=60°,PA=PB=AB,∴∠DAP=∠CBP=30°,∵PA=PD,∴∠PDA==75°.∴∠PAD=15°,故答案为:15°.20.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm 向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2021.【解答】解:∵正方形的一条对角线的长2,∴这个正方形的面积==4,故答案为422.【解答】解:∵四边形ABCD是菱形∴AB=BC,且∠B=60°,∴△ABC是等边三角形,∴AB=AC=3,∵四边形ACEF是正方形,∴AC=EF=3故答案为:323.【解答】解:添加条件:AC=BC.理由如下:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故答案为AC=BC.24.【解答】解:∵四边形ABCD为菱形,∴当∠BAD=90°时,四边形ABCD为正方形.故答案为∠BAD=90°.三.解答题(共5小题)25.【解答】解:(1)四边形AEBO是矩形.证明:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.(2)∵四边形AEBO是矩形∴EO=AB,在菱形ABCD中,AB=DC.∴EO=DC.26.【解答】解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE===4.27.【解答】解:(1)∵CD的垂直平分线交CD于E,交AD于F,∴FC=FD,∴∠D=∠FCD=45°,∴∠CFD=90°,即∠AFC=90°,又∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABCF是矩形,又∵AB=BC,∴四边形ABCF是正方形;(2)∵FG垂直平分CD,∴CE=DE,∠CEG=∠DEF=90°,∵BG∥AD,∴∠G=∠EFD,在△CEG和△DEF中,,∴△CEG≌△DEF(AAS),∴CG=FD,又∵正方形ABCF中,BC=AF,∴AF+FD=BC+CG,∴AD=BG=a.28.【解答】证明:∵四边形ABCD是正方形,∴OA=OB=OC=OD,AC⊥BD,∵AE=BF=CG=DH,∴OE=OF=OG=OH,EG⊥FH,∴四边形EFGH是正方形.29.【解答】答:四边形EFGH的形状是正方形,证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AE=BF=CG=DH,∴BE=CF=DG=AH,∴△EBF≌△FCG≌△GDH≌△HAB,∴EF=FG=GH=HE,∠AEH=∠EFB,∵∠B=90°,∴∠EFB+∠FEB=90°,∴∠AEH+∠FEB=90°,∴∠HEF=90°,∵EF=FG=GH=HE,∴四边形EFGH的形状是正方形.。
第五单元 平行四边形和梯形(期末复习讲义)四年级数学上册(人教版)
人教版四年级数学上册期末复习重难点知识点第五单元平行四边形和梯形同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。
每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。
加油!知识点一:平行与垂直1.在同一个平面内,不相交的两条直线叫做平行线。
2.在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
3.ɑ与b互相平行,记作ɑ∥b,读作ɑ平行于b。
4.两条直线相交成直角,就说这两条直线互相垂直;其中一条直线是另一条直线的垂线;这两条直线的交点叫垂足。
5.直线ɑ与b互相垂直,记作ɑ⊥b,读作ɑ垂直于b。
知识点二:画垂线一靠,二移,三画,四标。
知识点三:点到直线的距离1.点到直线的距离是垂直线段最短。
2.从直线外一点到这条直线所画的垂直线段的长度,叫做这点到这条直线的距离。
3.与两条平行线相互垂直的线段的长度都相等。
知识点四:画垂线的实际应用1.先画长;2.再用画垂线的方法画出两条宽(等长的边);3.最后连接两条宽(边)。
知识点五:认识平行四边形1.平行四边形的对边互相平行,且相等。
2.平行四边形的对角相等。
3.两组对边分别平行的四边形,叫做平行四边形。
4.从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
知识点六:平行四边形的特性1.平行四边形容易变形,具有不稳定性。
2.平行四边形在实际生活中的一些应用。
知识点七:认识梯形、平行四边形的关系1.只有一组对边平行的四边形叫做梯形。
特殊梯形:两个腰相等的等腰梯形;有一个角是直角的直角梯形。
2.长方形、正方形、平行四边形和梯形这几种四边形之间的关系:重点:1.掌握平行和垂直的特点并能描述平行与垂直两种位置关系;2.掌握画垂线的步骤并能画出一条已知直线的垂线;3.理解点到直线的距离,并理解两条平行线之间的垂直线段都相等;4.掌握长方形的画法,按照题目的要求正确画出长方形,应用垂直于平行知识解决实际问题。
初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (131)
初中八年级数学下册第十八章平行四边形单元复习试题一(含答案)(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:如图1,AD∥BC,连接AB,AC,BD,CD,则S△ABC=S△BCD.证明:分别过点A和D,作AF∥BC于F.DE∥BC于E,由AD∥BC,可得AF=DE,又因为S△ABC=12×BC×AF,S△BCD=12×BC×DE .所以S△ABC=S△BCD由此我们可以得到以下的结论:像图1这样.(2)问题解决:如图2,四边形ABCD中,AB∥DC,连接AC,过点B 作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,请你运用上面的结论证明:S▱ABCD=S△APD(3)应用拓展:如图3,按此方式将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2.【答案】(1)同底等高的两三角形面积相等;(2)证明见解析(3)40 【解析】试题分析:(1)利用图形直接得出:同底等高的两三角形面积相等(2)利用(1)的结论△ABC和△AEC的公共边AC上的高也相等,从而S▱ABCD=S△APD。
(3)设正方形ABCD的边长为a,正方形DGFE的边长为b,阴影部分面积是S△AFG+S正方形DEFG+S△ADC﹣S△CEF,分别计算.试题解析:(1)利用图形直接得出:同底等高的两三角形面积相等;故答案为:同底等高的两三角形面积相等.(2)△AB△CE,BE△AC,△四边形ABEC为平行四边形,△△ABC和△AEC的公共边AC上的高也相等,△S△ABC=S△AEC,△S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.(3)设正方形ABCD的边长为a,正方形DGFE的边长为b,△S△ACF=S四边形ACEF﹣S△CEF=S△AFG+S正方形DEFG+S△ADC﹣S△CEF=12×b×(a﹣b)+b×b+12×a×a﹣12×b×(b+a)=12ab﹣12b2+b2+12a2﹣12b2﹣12ab=12a2,△S△ACF=12S正方形ABCD=12×80cm2=40cm2.故答案为:40.102.如图,正方形ABCD的边长为10,点E、F分别在边BC、CD上,且∠EAF=45°,AH⊥EF于点H,AH=10,连接BD,分别交AE、AH、AF 于点P、G、Q.(1)求△CEF的周长;(2)若E是BC的中点,求证:CF=2DF;(3)连接QE,求证:AQ=EQ.【答案】(1)△ECF的周长为20;(2)证明见解析;(3)证明见解析. 【解析】【分析】(1)想办法证明EB=EH,FD=FH,即可解决问题;(2)通过计算求出CF、DF即可解决问题;(3)想办法证明△APB∽△QPE,可得∠AEQ=∠ABP=45°即可解决问题. 【详解】解:(1)在Rt△ABE和Rt△AHE中,∵∠ABE=∠AHE=90°,AB=AH=10,AE=AE,∴△ABE≌△AHE,∴BE=HE,同理,DF=FH,∴△ECF的周长=CE+CF+EF=CE=CE+BE+CF+FD=CB+CD=20.(2)∵E是BC中点,∴BE=EC=EH=5,设DF=FH=x,则CF=10﹣x,在Rt△ECF中,∵∠C=90°,∴EF2=EC2+CF2,∴52+(10﹣x)2=(5+x)2,解得x=103,即DF=103,则CF=10﹣103=203,∴CF=2DF;(3)在△BPE和△APQ中,∠EBP=∠QAP=45°,∠BPE=∠APQ,∴△BPE∽△APQ,∴BPAP=EPQP,即BPEP =AP QP,∵∠APB=∠QPE,∴△APB∽△QPE,∴∠QEP=∠ABP=45°,∵∠EAF=45°,∴∠QEA=∠QAE=45°,∴AQ=EQ.【点睛】本题考查相似三角形的判定和性质、正方形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.103.△ACB和△ECD均为等腰直角三角形,∠ACB=∠ECD=90°.(1)如图1,点E在BC上,则线段AE和BD有怎样的关系?请直接写出结论(不需证明);(2)若将△DCE绕点C旋转一定的角度得图2,则(1)中的结论是否仍然成立?请说明理由;(3)当△DCE旋转到使∠ADC=90°时,若AC=5,CD=3,求BE的长.【答案】(1)AE=BD,AE⊥BD ;(2)见解析;(3)【解析】分析:(1)延长AE交BD于F,由△AEC≌△BDC,可得AE=BD,再利用同角的余角相等,可得出AE⊥BD ;(2)不发生变化,只要证明△AEC≌△BDC,推出AE=BD,∠EAC=∠DBC,由∠EAC+∠AFC =90°,∠AFC=∠BFG,可得∠BGF=90°,从而得证;(3)过B作BM⊥EC于M,则∠M=90°,在RT△ACD 中利用勾股定理可得AD=4,再利用△BCM≌△ACD,得出CM=CD=3,BM=AD=4,在△BME中利用勾股定理即可求出结果.本题解析:(1)AE=BD,AE⊥BD ;(2)(1)中的结论仍然成立,理由如下:∵△ACB和△ECD均为等腰直角三角形,∠ACB=△ECD=90°∴AC=BC, △ACE=△BCD,EC=DC∴△ACE≌△BCD(SAS), ∴AE=BD, △EAC=△DBC∵△EAC+△AFC =90°,△AFC=△BFG∴△DBC+△BFG=90°, ∴△BGF=90°,∴AE△BD(3) 过B作BM△EC于M,则∠M=90°∵△ADC=90°,AC=5,CD=3,∴AD=4=∵△ACB=△ECD=90°, ∴△CBE+△ACD=180°∵△CBE+△BCM=180°, ∴△BCM=△ACD∵△M=△ADC=90°, AC=BC∴△BCM≌△ACD(AAS), ∴CM=CD=3, BM=AD=4∵CE=CD=3,∴EM=6,∴B E=104.在正方形ABCD中,点E是直线CD上一动点,以BE为斜边向上方作等腰直角△BEF ,连接AF ,试求线段AF 与DE 的数量关系.(1)小可同学进行探索:△将点E 的位置特殊化,发现DE= ___ AF ; △点E 运动过程中,△BAF= ___ ;(填度数)(2)如图1,当点E 在线段CD 上时,证明AF 与DE 的数量关系;(3)如图2,当边EF 被对角线BD 平分时,求DEM AFB S S 值. 【答案】(1)△DE =;△45°或135°;(2)DE =;(3)34DMEABF S S = 【解析】【分析】(1)△当点E 与点C 重合、点F 与点O 重合时,可证得AF ,△BAF=45°;△当点E 在CD 延长线上时,利用两边对应成比例且夹角相等证得△ABF △△DBE ,即可求得△BAF=△BDE=135°;(2)利用两边对应成比例且夹角相等证得△ABF △△DBE ,即可求得答案;(3)利用(2)的结论证得22EDB AFB S DE S AF==(),BF 2a =,则FE=2a ,BE=,求得BM =,证得△MBE ∽△EBD ,得到BE BM BD BE=,即可求得BD和MD 的长,从而求得答案.【详解】(1)△△四边形ABCD 是正方形,△OB=OC=12AC=12BD ,△BOC=90°, 当点E 与点C 重合、点F 与点O 重合时,如图:△BEF 等腰直角三角形,△AF ,△△BAF=45°;当点E 在CD 延长线上时,如图:连接BD ,△四边形ABCD 是正方形△△ABD=45°,△cos 452AB BD =︒=, △△BEF 是等腰直角三角形,△BFE=90°, △BF=FE ,△FBE=45°,△cos 45BF BE =︒=, △AB BF BD BE =,即AB BD BF BE=, △△ABF+△EBA =△DBE+△EBA =45°, △△ABF=△DBE ,△△ABF △△DBE ,△△BAF=△BDE=△ADB+△ADE =45°+90°=135°, 故答案为:△AF ,△△BAF=45°或135°;(2)连接BD ,△四边形ABCD 是正方形△△ABD=45°,△cos 452AB BD =︒=, △△BEF 是等腰直角三角形,△BFE=90°, △BF=FE ,△FBE=45°,△cos 452BF BE =︒=, △AB BF BD BE =,即AB BD BF BE=, △△ABF+△DBF =△DBE+△DBF=45°, △△ABF=△DBE ,△△ABF △△DBE ,△DE BD AF AB==,△DE =;(3)△△ABF △△EBD , △22EDB AFB S DE S AF==(),又△△MEB=△BDE=45°,△MBE=△EBD , △△MBE △△EBD ,△BE BM BD BE=, 令BF 2a =,△FE=2a ,BE=, △M 是FE 的中点,△FM=12FE a =, △==,=, △,△,△3588DME DBE SMD S BD ===, △34DMEABFSS =. 【点睛】本题属于相似形综合题,考查了正方形的性质,相似三角形的判定和性质,三角函数等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.105.如图,在平行四边形ABCD 中,点E 是边BC 的中点,DE 的延长线与AB 的延长线相交于点F.(1)求证:△CDE ≌△BFE ;(2)试连接BD 、CF ,判断四边形CDBF 的形状,并证明你的结论【答案】(1)证明见解析;(2)四边形CDBF 是平行四边形,证明见解析.【解析】【分析】(1)用AAS 证明△CDE ≌△BFE ;(2)根据全等三角形的对应边相等,得DE=FE ,由对角线互相平分的四边形是平行四边形证得四边形DBFC为平行四边形.【详解】(1)∵四边形ABCD 是平行四边形,∴AB∥CD即AF∥CD.∴∠F=∠CDE∵BE=CE,∠BEF=∠CED∴△CDE≌△BFE;(2)由(1)知:△CDE≌△BFE∴DE=FE又BE=CE,∴四边形DBFC为平行四边形.106.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少.【答案】(1)证明见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠ADB的度数,根据三角形内角和定理求出∠AOB,从而可得到∠CDO,最后,依据∠BDE=90°-∠DOC求解即可.【详解】解:(1)∵AO=CO ,BO=DO ,∴四边形ABCD 是平行四边形,∴∠ABC=∠ADC ,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD 是矩形;(2)∵∠ADC=90°,∠ADB :∠CDB=2:3,∴∠ADB=36°,∵四边形ABCD 是矩形,∴OA=OD ,∴∠OAD=∠ADB=36°,∴∠DOC=72°,∵DE ⊥AC ,∴∠BDE=90°-∠DOC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.107.如图所示,在ABC 中,90ACB ∠=︒,CE 是AB 边上的高,AF 平分CAB ∠交CE 于点F ,过点F 作//FD CB 交AB 于点D .求证:AC AD =.【答案】见解析.【解析】【分析】由平行线的性质和直角三角形的性质可证明∠ADF=∠B=∠ACF,结合角平分线的定义可证明△ACF≌△ADF,可得AC=AD.【详解】证明:∵FD∥BC,∴∠ADF=∠B,∵AC⊥BC,CE⊥AB,∴∠ACB=∠CEB=90°,∴∠ACF+∠ECB=∠ECB+∠B=90°,∴∠ACF=∠B,∴∠ACF=∠ADF,∵AF平分∠CAB,∴∠CAF=∠DAF,在△ACF和△ADF中,CAF DAFACF ADF AF AF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ADF(AAS),∴AC=AD.【点睛】本题主要考查全等三角形的判定和性质、平行线的性质、角平分线的定义,正确寻找全等三角形是解题的关键,属于中考常考题型.108.已知:如图1,菱形ABCD的边长为6,∠DAB=60°,点E是AB 的中点,连接AC、EC.点Q从点A出发,沿折线A—D—C运动,同时点P 从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边△PQF,△PQF与△AEC重叠部分的面积为S,当点Q运动到点C时P、Q同时停止运动,设运动的时间为t.(1)当等边△PQF的边PQ恰好经过点D时,求运动时间t的值;当等边△PQF的边QF恰好经过点E时,求运动时间t的值;(2)在整个运动过程中,请求出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q到达C点时,将等边△PQF绕点P旋转α° (0<α<360°),直线PF 分别与直线AC、直线CD交于点M、N.是否存在这样的α,使△CMN 为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.【答案】(1)6t =,9t =;(2)见解析;(3)见解析.【解析】【分析】(1)根据题意求出运动的距离,再除以速度即可求出时间;(2)分当0<t ≤3时,当3<t ≤6时,当6<t ≤9时,当9<t ≤12时,四种情况,分别求出重叠部分面积即可;(3)分交点都在BC 左侧,顶角为120°,交点都在BC 右侧时,顶角可能为30°和120°;交点在BC 两侧时,顶角为150°进行讨论求解即可.【详解】解:(1)当等边△PQF 的边PQ 恰好经过点D 时,如图1,AQ=AD=6,∴t=6÷1=6(秒);当等边△PQF 的边QF 恰好经过点E 时,如图2,由菱形ABCD的边长为6,∠DAB=60°,P、Q的速度均为每秒1个单位长度,知:∠APQ=60°,∠QEB=60°,∴QE∥AD,∵点E是AB的中点,∴此时点Q是CD的中点,可求:AD+DQ=6+3=9,所以t=9÷1=9(秒);(2)如图3,当0<t≤3时,由菱形ABCD的边长为6,∠DAB=60°,可求:∠PAG=30°,∵∠APQ=60°,∴∠AGP=90°,由AP=t ,可求:PG=12t ,,∴S=12PG ×AG=8t 2; 当3<t ≤6时,如图4,,AE=3,AP=t ,∴PE=t-3,过点C 作AB 的垂线,垂足为H ,由菱形ABCD 的边长为6,∠DAB=60°,可求:BH=3,EH=6,tan ∠KEB=2, 过点K 作KM ⊥AB ,作CN ∥PK 交AB 的延长线于N , ∵△EKP ∽△ECN ,可得EM CH =EB EN,可求,∴S △PEK 可求∠QAG=30°,又∠AQG=60°,AQ=t ,可求∠AGQ=90°,DG=12t ,,∴S △AGQ 2,等边三角形APD 的面积为:24,∴S=24-8t 2-2t-36)=−2t 24t −2, 当6<t ≤9时,如图5,,与前同理可求:S△FQPS △GQN =28),S △KEP ,∴=2, 当9<t ≤12时,如图6,求出:S△PQFS △QGH =28),S △NEP =2t-36),S △KEF∴S=S △PQF -S △QGH -S △NEP +S △KEFt 2− (3)逆时针旋转:①α=150°,如图7,此时,易求∠CNM=∠NCM=∠APM=∠MAP=∠DAP=30°, 可证△ACD ∽△APM , ∴AD AM =AC AP, 易求AP=12,,AD=6,解得:,所以,②α=105°,如图8,此时,易求CM=CN,∠CMN=∠CNM=∠APM=75°,∴AM=AP=12,在菱形ABCD中,AD=CD=6,∠D=120°,可求AC=6所以,;③α=60°,如图9,此时,易求∠CMN=∠MCN=∠ACB=30°,∴BC∥PM,由AB=BP=6可得,CM=AC=6,所以:④α=15°,如图10,此时,易求∠APM=∠M=15°,∴AM=AP=12,所以:CM=AM+AC , .【点睛】此题主要考察四边形动点综合问题,会分析运动情况,用定点研究动点问题,会用变量表示图形面积,会针对等腰三角形进行分类讨论是解题的关键.109.如图①,在半径为6的扇形AOB 中,120AOB ∠=︒,点C 是弧AB 上的一个动点(不与点A 、B 重合),OD AC ⊥、OE BC ⊥,垂足分别为D 、E .(1)△当4BC =时,线段OE = ;△当BC 的度数= °时,四边形OACB 成为菱形;(2)试说明:四边形ODCE 的四个顶点在同一个圆上;(3)如图②,过点O 作OF DE ⊥,垂足为F ,连接AF ,随着点C 的运动,在△AOF 中是否存在保持不变的角?如果存在,请指出这个角并求出它的度数;如果不存在,请说明理由;(4)在(3)条件下,若点C 从点B 运动到点A ,则点F 的运动路径长为 .【答案】(1)①;②60;(2)证明见详解;(3)存在,60AOF ∠=︒;(4)3【解析】【分析】(1)△根据勾股定理即可求得线段OE ;△点C 为AC 中点,即BC =60°时,得△OBC ,△OAC 为等边三角形,可得四边形OACB 成为菱形;(2)取OC 中点M ,连接ME ,MD ,根据直角三角形斜边上的直线等于斜边的一半,证得EM CM OM DM ===,问题得证;(3)先求得∠EOD =60°,根据(2)的结论,进行角的转化,证明∠EOF =∠AOD ,进而求得60AOF EOD ∠=∠=︒;(4)根据60AOF ∠=︒不变,确定F 的运动轨迹是一条线段,当点C 与A 、B 重合时,OF 最小,当C 位于BC 的中点时,OF 最长,分别求出OF 长,计算可得.【详解】解:(1)△∵OB=OC , OE BC ⊥,∴BE =122BC =,∴在R t △OBE 中,OE ==故答案为:②当∠BOC=60°时,∠AOC =60°,△OBC ,△OAC 为等边三角形, ∴OA=AC=OC=BC=OB ,∴四边形OACB 成为菱形;故答案为:60;(2)取OC 中点M ,连接ME ,MD∵OD AC ⊥,OE BC ⊥∴EM CM OM ==,DM CM OM ==∴EM CM OM DM ===∴以M 为圆心,ME 为半径的圆过,,C D O 三点即四边形ODCE 的四个顶点在同一个圆上(3)答:AOF ∠不变,60AOF ∠=︒;证明:∵OB=OC=OA , OD AC ⊥、OE BC ⊥,∴∠COE =∠BOE =12BOC ∠,∠COD =∠AOD =12AOC ∠, ∴∠EOD =∠COE +∠COD =()111206022AOC BOC ∠+∠=⨯︒=︒, ∵四边形ODCE 的四个顶点在同一个圆上,∴=OD OD ,∴∠OED =∠OCD ,∵OF ⊥DE ,OD ⊥OC ,∴∠OEF +∠EOF =90°, ∠OCD +∠COD =90°,∴∠EOF=∠COD ,∵∠COD =∠AOD ,∴∠EOF =∠AOD ,∴60AOF AOD DOF EOF DOF EOD ∠=∠+∠=∠+∠=∠=︒;(4)由(3)得,60AOF ∠=︒,∴点F 的运动轨迹在∠AOB 的平分线上, 如图1,当点C 与A 重合时,F 与E 重合,∠OAB =30°,OF ⊥AB , ∴OF =132OA =;如图2,当点C 运动到AB 中点时,∠AOD =∠DOC =30°,OD=OA ·cos ∠AOD =6= OF= OD ·cos ∠FOD =392; ∴933=22-; 当点C 从点B 运动到AB 中点时,也运动了32, ∴在(3)条件下,若点C 从点B 运动到点A ,则点F 的运动路径长为3.【点睛】本题考查了圆,直角三角形,菱形,圆内接四边形等数学知识,综合性较强,为几何题中压轴题,解题时要注意,每一步为后续解题提供了条件或方法上的帮助,这是解题关键.110.如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=△DEF.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF△AB,DE△AC,再根据平行四边形的定义证明即可.(2)根据平行四边形的对角线相等可得△DEF=△BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得△DAH=△DHA,△FAH=△FHA,然后求出△DHF=△BAC,等量代换即可得到△DHF=△DEF.试题解析:证明:(1)△点D,E,F分别是AB,BC,CA的中点,△DE、EF都是△ABC的中位线.△EF△AB,DE△AC,△四边形ADEF是平行四边形.(2)△四边形ADEF是平行四边形,△△DEF=△BAC.△D,F分别是AB,CA的中点,AH是边BC上的高,△DH=AD,FH=AF.△△DAH=△DHA,△FAH=△FHA.△△DAH+△FAH=△BAC,△DHA+△FHA=△DHF,△△DHF=△BAC.△△DHF=△DEF.考点:1.三角形中位线定理;2.直角三角形斜边上的中线性质;3.平行四边形的判定.。
第一单元《平行四边形》知识点
第一单元《平行四边形》知识点
本文档旨在介绍第一单元《平行四边形》的知识点。
1. 平行四边形的定义
平行四边形是指具有两组对边平行的四边形。
四个角均为直角的平行四边形称为矩形。
2. 平行四边形的性质
- 平行四边形的对边相等。
- 平行四边形的对角线相交于一点,并且该点到四个顶点的距离相等。
- 平行四边形的邻边互补,即相邻两边之和等于180度。
- 平行四边形的对角线等分对角线角。
3. 平行四边形的分类
根据边长和角度的不同,平行四边形可以分为以下几类:
- 矩形:具有四个内角均为直角的平行四边形。
- 正方形:具有四条边长相等且四个内角均为直角的平行四边形。
- 长方形:具有两组对边相等且四个内角均为直角的平行四边形。
- 平行四边形:为一般性的平行四边形,具有两组对边平行但
不一定角度相等或边长相等。
4. 平行四边形的应用
平行四边形的概念在几何学和实际生活中有广泛的应用。
例如,在建筑设计中,平行四边形常被用作地板砖、窗户和门的形状。
在
数学中,平行四边形的性质也与向量、矩阵和平面几何等领域密切
相关。
以上是第一单元《平行四边形》的知识点概述。
对于每个具体
的内容,我们将在课堂上进行深入讲解和练。
- 完 -。
平行四边形单元整体分类总复习 专题突破八年级数学下学期重难点及章节分类精品讲义
第6讲 平行四边形单元整体分类总复习考点一 多边形的内角和、外角和知识点睛:1. n 边形的内角和为()()31802≥︒⨯-n n ,外角和为360°,反过来,已知一些内、外角的度数或数量关系也能确定多边形的边数2. 对角线公式从n 边形的一个顶点可引出(n-3)条对角线,将n 边形分成(n-2)个三角形,n 边形的对角线共有()23-n n 条 类题训练1.(2022•九龙坡区校级开学)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,这个多边形是( )A .十边形B .十一边形C .十二边形D .十三边形【分析】设这个多边形为n 边形,根据多边形的内角和公式及外角和定理即可求解.【解答】解:设这个多边形为n 边形,它的外角分别为x 1,x 2,⋯,x n ,则对应的内角分别为4x 1+30°,4x 2+30°,⋯,4x n +30°,根据题意得,x 1+x 2+⋯+x n =360°,(4x 1+30°)+(4x 2+30°)+⋯+(4x n +30°)=(n ﹣2)×180°,∴4×(x 1+x 2+⋯+x n )+30°n =(n ﹣2)×180°,∴4×360°+30°n =(n ﹣2)×180°,∴1440°+30°n =180°n ﹣360°,∴150°n =1800°,∴n =12,故选:C .2.(2021秋•黄冈期末)一个多边形的每个外角都等于40°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .9条B .8条C .7条D .6条【分析】首先计算出多边形的边数,再根据n 边形从一个顶点出发可引出(n ﹣3)条对角线可得答案.【解答】解:多边形的边数:360°÷40°=9,从一个顶点出发可以引对角线的条数:9﹣3=6(条),故选:D .3.(2021秋•海阳市期末)小东在计算多边形的内角和时不小心多计算一个内角,得到的和为1350°,则这个多边形的边数是()A.7B.8C.9D.10【分析】根据多边形的内角和公式(n﹣2)•180°列方程即可得解.【解答】解:设多边形的边数为n,多加的内角度数为α,则(n﹣2)•180°=1350°﹣α,∵0°<α<180°,∴(1350﹣180)÷180<n﹣2<1350÷180,∴6<n−2<7,∵n为正整数,∴n=9,∴这个多边形的边数n的值是9.故选:C.4.(2021秋•丹东期末)如果过一个多边形的一个顶点的对角线有5条,则该多边形是()A.九边形B.八边形C.七边形D.六边形【分析】根据从每一个顶点出发可以作的对角线的总条数为n﹣3计算即可.【解答】解:∵过一个多边形的一个顶点的对角线有5条,∴多边形的边数为5+3=8,故选:B.5.(2021秋•天元区期末)如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值是()A.36°B.72°C.108°D.144°【分析】由l1∥l2,得∠2=∠BMD.由∠1=∠BMD﹣∠MBC,得∠BMD=∠1﹣∠MBC,那么∠1﹣∠2=∠MBC.欲求∠1﹣∠2,需求∠MBC.由正五边形的性质,得∠MBC=72°,从而解决此题.【解答】解:如图,AB的延长线交l2于点M,∵五边形ABCDE是正五边形,∴正五边形ABCDE的每个外角相等.∴∠MBC==72°.∵l1∥l2,∴∠2=∠BMD,∵∠1=∠BMD+∠MBC,∴∠BMD=∠1﹣∠MBC,∴∠1﹣∠2=∠MBC=72°.故选:B.6.(2021春•浦江县期末)如图,在四边形ABCD中,∠C=110°,与∠BAD,∠ABC相邻的外角都是110°,则∠ADC的外角α的度数是()A.90°B.85°C.80°D.70°【分析】根据多边形外角和为360°,进行求解即可.【解答】解:∵在四边形ABCD中,∠C=110°,∴∠C相邻的外角度数为:180°﹣110°=70°,∴∠α=360°﹣70°﹣110°﹣110°=70°.故选:D.考点二平行四边形的性质知识点睛:1.平行四边形的性质定理∶(1)平行四边形的对边平行且相等.(2)平行四边形的对角相等,邻角互补.(3)平行四边形的对角线互相平分.2.利用平行四边形的性质证明边、角关系时,一定要找准那些对解题有帮助的性质,有时也可以根据结论逆向推理看是否符合那些性质.类题训练1.(2021秋•任城区校级期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,则下列判断错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD 【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴AD∥BC,故B正确;∴AD=BC,故C正确;故选:D.2.(2021秋•鄞州区校级期末)如图,在▱ABCD中,过点C作CE⊥AB,垂足为E,若∠BAD=120°,则∠BCE的度数为()A.30°B.20°C.40°D.35°【分析】由平行四边形的性质得出∠B+∠BAD=180°,可得∠B的度数,由直角三角形的两上锐角互余得出∠BCE=90°﹣∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B+∠BAD=180°,∵∠BAD=120°,∴∠B=60°,∵CE⊥AB,∴∠E=90°,∴∠BCE=90°﹣∠B=90°﹣60°=30°;故选:A.3.(2022春•秀英区校级月考)如图,在▱ABCD中,AD=8,AB=5,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F,则EF=()A.2B.2.5C.3D.3.5【分析】根据平行线的性质得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代换得到∠DFC=∠FDC,根据等腰三角形的判定得到CF=CD,同理BE=AB,根据已知条件得到四边形ABCD是平行四边形,根据平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【解答】解:在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∴BC=BE+CF﹣EF=2AB﹣EF=8,∴EF=2;故选:A.4.(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1)B.(1,2)C.(2,1)D.(2,2)【分析】分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,由平行四边形的性质可得CG=2EF,AG=2AF,结合A,E两点坐标可求解CG,OG的长,进而求解C 点坐标.【解答】解:分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,∴EF∥CG,∵四边形ABCD为平行四边形,∴AE=CE,∴AG=2AF,CG=2EF,∵A(4,0),E(3,1),∴OA=4,OF=3,EF=1,∴AF=OA﹣OF=4﹣3=1,CG=2,∴AG=2,∴OG=OA﹣OG=4﹣2=2,∴C(2,2).故选:D.5.(2022•越秀区校级开学)如图,平行四边形ABCD的对角线AC,BD交于点O,AB=,∠AOB=60°,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+2EF的值为()A.+1B.C.D.【分析】依据含30°角的直角三角形的性质可求解AO=1,BO=2,利用三角形的面积公式计算△ABO的面积,结合平行四边形的性质可得DO=BO=2,S△ADO=S△ABO=,即可得到OE+2EF的值.【解答】解:∵∠BAO=90°,∠AOB=60°,∴∠ABO=30°,∴BO=2AO,∵AB=,∴AO=1,BO=2,∴S△ABO=AO•AB=,∵四边形ABCD为平行四边形,∴DO=BO=2,S△ADO=S△ABO=,∵OF⊥AO,EF⊥OD,∴S△ADO=S△AEO+S△EDO===,即OE+2EF=.故选:B.6.(2021秋•九江期末)在平行四边形ABCD中,对角线AC长为8cm,∠BAC=30°,AB =5cm,则它的面积为.【分析】根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.【解答】解:如图,过B作BE⊥AC于E.在直角三角形ABE中,∠BAC=30°,AB=5cm,∴BE=AB•sin∠CAB=5×=2.5(cm),S△ABC=AC•BE÷2=10(cm2),∴S▱ABCD=2S△ABC=20cm2.故答案为:20cm2.7.(2021秋•鄞州区校级期末)平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=10,BD=6,AB=m,那么m的取值范围是.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA与OB的值,然后根据三角形三边关系,即可求得m的取值范围.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC=×10=5,OB=OD=BD=×6=3,∵OA﹣OB<AB<OA+OB,∴5﹣3<m<5+3,∴m的取值范围是:2<m<8.故答案为:2<m<8.8.(2021秋•桓台县期末)如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.【分析】作AM⊥BC于M,如图所示:根据直角三角形的性质得到BM=AB=×2=1,根据勾股定理得到AM===,得到S平行四边形ABCD=BC•AM =3,根据平行四边形的性质得到AD∥BC,BO=DO,根据全等三角形的性质得到S=S△DOF,于是得到结论.△BOE【解答】解:作AM⊥BC于M,如图所示:则∠AMB=90°,∵∠ABC=60°,∴∠BAM=30°,∴BM=AB=×2=1,在Rt△ABM中,AB2=AM2+BM2,∴AM===,∴S平行四边形ABCD=BC•AM=3,∵四边形ABCD是平行四边形,∴AD∥BC,BO=DO,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴图中阴影部分的面积=▱ABCD的面积=,故答案为:.9.(2022•海曙区校级开学)如图,在平行四边形ABCD中,点E,F分别是边AD,BC的中点.(1)求证:AF=CE;(2)若四边形AECF的周长为10,AF=3,AB=2,求平行四边形ABCD的周长.【分析】(1)根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论;(2)根据平行四边形的性质和平行四边形的周长公式即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵点E,F分别是边AD,BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形,∴AF=CE;(2)解:∵四边形AECF的周长为10,AF=3,∴AE+CF=10﹣2×3=4,∵点E,F分别是边AD,BC的中点,∴AD+BC=2(AE+CF)=8,∵AB=2,∴平行四边形ABCD的周长=8+2×2=12.10.(2021秋•海曙区校级期末)如图,在平行四边形ABCD中,点F是AD中点,连接CF 并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.【分析】(1)由题意易得AB=CD,AB∥CD,进而易证△AFE≌△DFC,则有CD=AE,然后问题可求证;(2)由(1)及题意易得AF=AE,则∠AFE=∠E=31°,然后根据三角形外角的性质可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,BC=AD,∴∠E=∠DCF,∵点F是AD中点,∴AF=DF,∵∠EF A=∠CFD,∴△AFE≌△DFC(AAS),∴CD=AE,∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD,∵BC=2AE,∴AE=AF,∵∠E=31°,∴∠AFE=∠E=31°,∴∠DAB=2∠E=62°.11.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.【分析】(1)根据四边形ABCD是平行四边形,得AD=BC,AD∥BC,BO=DO,可证∠ADE=∠CBF,DE=BF,然后通过SAS即可证得△ADE≌△CBF;(2)证出四边形AHCG是平行四边形,由平行四边形的性质可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BO=DO,∴∠ADE=∠CBF,∵OE=OF,∴DE=BF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAC=∠BCA,∵△ADE≌△CBF,∴∠DAE=∠BCF,∴∠EAO=∠FCO,∴AG∥HC,∵AH∥CG,∴四边形AHCG是平行四边形,∴AH=CG.考点三平行四边形的判定知识点睛:1.平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形。
平行四边形单元测试卷(5套题)
第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。
【三套打包】成都树德实验中学东区人教版八年级数学下册第十八章平行四边形单元试题含答案
八年级数学下册第18章小专题平行四边形的证明思路小专题(三)平行四边形的证明思路类型1若已知条件出现在四边形的边上,则应考虑:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.2.如图,在▱ABCD中,点E,F分别在边AB,CD上,BE=DF.求证:四边形AECF是平行四边形.3.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.4.(钦州中考)如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.(1)求证:BF=DC;(2)求证:四边形ABFD是平行四边形.类型2若已知条件出现在四边形的角上,则应考虑利用“两组对角分别相等的四边形是平行四边形”来证明.5.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则应考虑利用“对角线互相平分的四边形是平行四边形”来证明6.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.求证:四边形ABFC为平行四边形.7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,▱ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点,求证:四边形AECF是平行四边形.人教版八年级数学下单元测试题:第十八章平行四边形一、填空题(每题3分,共24分)1.如图,▱ABCD中,AC,BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.2.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件____________,使四边形ABCD成为菱形(只需添加一个即可).3.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.4.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为________.5.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.6.矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为________.7.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是__________.8.如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第n个菱形的边长是________.二、选择题(每题3分,共30分)9.如图,在▱ABCD中,已知AC=4 cm,若△ACD的周长为13 cm,则▱ABCD的周长为()A.26 cm B.24 cm C.20 cm D.18 cm10.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为()A.12 cm B.9 cm C.6 cm D.3 cm11.下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BCC.AB∥DC,AD=BC D.AB∥DC,AB=DC12.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为()A.4 cm B.5 cm C.6 cm D.8 cm13.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为一边的正方形ACEF的周长为()A.14 B.15 C.16 D.1714.下列说法中,正确的个数有( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A .1个B .2个C .3个D .4个15.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( )A .16 3B .16C .8 3D .816.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )17.如图,在矩形ABCD 中,AD =3AB ,点G ,H 分别在AD ,BC 上,连接BG ,DH ,且BG ∥DH ,当AGAD=( )时,四边形BHDG 为菱形.A.45B.35C.49D.3818.如图,在▱ABCD 中,CD =2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF ,BF ,下列结论:①∠ABC =2∠ABF ;②EF =BF ;③S 四边形DEBC =2S △EFB ;④∠CFE =3∠DEF ,其中正确的结论有( )A .1个B .2个C .3个D .4个三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分)19.如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.21.如图,矩形ABCD中,E是AD的中点,连接CE并延长与BA的延长线交于点F,连接AC、DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.22.在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.24.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,判断中点四边形EFGH的形状,并说明理由;(3)若改变(2)中的条件,使∠人教版八年级下册第十八章平行四边形复习练习一、选择题1、下列判断错误的是( )A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形2、如图,“回”字形的道路宽为1米,整个“回”字形的长为8米,宽为7米,从入口点A沿着道路中央走到终点B,他共走了()米A.55B.56C.55.5D.56.53、如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P 是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为( )A.1 B.2 C.3 D.44、如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm5、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )A.8 B.10 C.12 D.146、如图,□ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是()A.20 B.22 C.29 D.317、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB 于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDE=45°;④DG=DE在以上4个结论中,正确的共有()个A.1个 B.2 个 C.3 个 D.4个8、如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC9、如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠DHO=20°,则∠CAD的度数是( )A.20°B.25°C.30°D.40°10、如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4 B.3 C.2 D.1二、填空题11、如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH=___.12、如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3 cm,则BF=______cm.13、如图,在▱ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为10,AB=4,那么对角线AC+BD= .14、如图,在边长为4的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=4,则线段EF长的最小值是.15、如图,在矩形ABCD中,BC=20 cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3 cm/s和2 cm/s,则最快___s后,四边形ABPQ 成为矩形.16、如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ= 度.三、简答题17、如图,延长▱ABCD的边AD到点F,使DF=DC,延长CB到点E,使BE=BA,分别连接点A,E 和C,F.求证:AE=CF.18、如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF交BD于点O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求AE的长.19、如图,在▱ABCD中,AB=DB,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DFBE是矩形.20、已知在□ABCD中,AE BC于E,DF ADC 交线段AE于F.(1)如图1,若AE=AD ADC=60, 请直接写出线段CD与AF+BE之间所满足的等量关系;(2)如图2, 若AE=AD,你在(1)中得到的结论是否仍然成立, 若成立,对你的结论加以证明, 若不成立, 请说明理由;图1 图221、如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B 重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.22、如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.23、如图,在矩形ABCD中,AB=2,BC=5,E,P分别在AD,BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形?并证明你的判断.24、如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP 于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP= .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= .参考答案一、选择题1、D2、B3、D4、B【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=25、B6、.C7、C8、D【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.9、A 10、A二、填空题11、4_12、613、12 .【解答】解:因为△AOB的周长为10,AB=4,所以OA+OB=6;又因为平行四边形的对角线互相平分,所以AC+BD=12.14、2 ;15、4_16、30三、简答题17、证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC.∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.18、解:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.又∵∠BOE=∠DOF,BE=DF,∴△OBE≌△ODF,∴BO=DO.(2)∵EF⊥AB,AB∥DC,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°,∴AE=EG.∵BD⊥AD,∴∠ADB=∠GDO=90°,∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1.由(1)可知OE =OF=1,∴GE=OE+OF+FG=3,∴AE=3.19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,CD∥AB.∴∠CDB=∠ABD.∵BE平分∠ABD,DF平分∠CDB,∴∠FDB=∠CDB,∠EBD=∠ABD.∴∠FDB=∠EBD.∴DF∥EB.又∵AD∥BC,∴四边形DFBE是平行四边形.∵AB=DB,BE平分∠ABD,∴BE⊥AD.∴∠DEB=90°.∴四边形DFBE是矩形.20、(1)CD=AF+BE.(2)解:(1)中的结论仍然成立.证明:延长EA到G,使得AG=BE,连结DG.∵四边形ABCD是平行四边形,∴AB=CD, AB∥CD,AD=BC.∵AE⊥BC于点E,∴∠AEB=∠AEC=90.∴∠AEB=∠DAG=90.∴∠DAG=90.∵AE=AD,∴△ABE≌△DAG.∴∠1=∠2, DG=AB.∴∠GFD=90-∠3.∵DF平分∠ADC,∴∠3=∠4.∴∠GDF=∠2+∠3=∠1+∠4=180-∠FAD-∠3=90-∠3.∴∠GDF=∠GFD. ∴DG=GF.∴CD=GF=AF+AG= AF + BE. 即CD = AF +BE.21、解:(1)在Rt△AEB中,∵AC=BC,∴,∴CB=CE,∴∠CEB=∠CBE.∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD.(2)能.理由如下:若四边形ACFE为平行四边形,则AC∥EF,AC=EF,又∵AC=BC,BF=EF∴BC=BF,……3分∴∠BCA=45°∵四边形ACFE为平行四边形∴ CF//AD ∴∠A=45°∴当∠A=45°时四边形ACFE为平行四边形.22、解:(1)四边形CEGF为菱形.证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC.∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE.∵图形翻折后EC与GE,FC与FG完全重合,∴GE=EC,GF=FC,∴GF=GE=EC=FC,∴四边形CEGF 为菱形.(2)当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是正方形,根据正方形的性质即可得到CE=CD=AB=3;当G与A重合时,CE取最大值,由折叠的性质得AE=CE.∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9-CE)2,∴CE=5.∴线段CE的取值范围是3≤CE≤5.23、解:(1)△BEC是直角三角形.理由:∵四边形ABCD为矩形,∴∠ADC=∠BAD=90°,AD=BC=5,AB=CD=2.∴CE2+BE2=5+20=25.∵BC2=52=25,∴BE2+CE2=BC2.∴∠BEC=90°.∴△BEC是直角三角形.(2)四边形EFPH为矩形.证明:∵四边形ABCD为矩形,∴AD=BC,AD∥BC.又∵DE=BP,∴四边形DEBP是平行四边形.∴BE∥DP.∵AD=BC,DE=BP,∴AE=CP.∴四边形AECP是平行四边形.∴AP∥CE.又∵BE∥DP,∴四边形EFPH是平行四边形.又∵∠BEC=90°,∴四边形EFPH是矩形.24、解:(1)8-2t;2+t (2分)(2)∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2,(5分)(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,(9分)(4)(或8)(12分。
平行四边形单元 易错题难题质量专项训练
一、选择题1.如图,矩形ABCD 中,AB=5,AD=4,M 是边CD 上一点,将△ADM 沿直线AM 对折,得△ANM ,连BN ,若DM=1,则△ABN 的面积是( )A .B .C .D .2.如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )A .5B .7C .8D .132 3.如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A .3B .13+C .7D .34.如图,在四边形ABCD 中,AB ∥CD ,∠C =90°,AB =8,AD =CD =5,点M 为BC 上异于B 、C 的一定点,点N 为AB 上的一动点,E 、F 分别为DM 、MN 的中点,当N 从A 到B 的运动过程中,线段EF 扫过图形的面积为 ( )A .4B .4.5C .5D .65.如图所示,在周长是10cm 的ABCD 中,AB AD ≠,AC 、BD 相交于点O ,点E 在AD 边上,且OE BD ⊥,是ABE △的周长是( )A .2cmB .3cmC .4cmD .5cm6.如图,在平面直角坐标系中,A 点坐标为(8,0),点P 从点O 出发以1个单位长度/秒的速度沿y 轴正半轴方向运动,同时,点Q 从点A 出发以1个单位长度/秒的速度沿x 轴负半轴方向运动,设点P 、Q 运动的时间为(08)t t <<秒.以PQ 为斜边,向第一象限内作等腰Rt PBQ ∆,连接OB .下列四个说法:①8OP OQ +=;②B 点坐标为(4,4);③四边形PBQO 的面积为16;④PQ OB >.其中正确的说法个数有( )A .4B .3C .2D .17.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .62B .122C .6D .128.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a +D .12b a + 9.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=725.其中正确结论的个数是()A.2个B.3个C.4个D.5个10.已知菱形ABCD的面积为83,对角线AC的长为43,∠BCD=60°,M为BC的中点,若P为对角线AC上一动点,则PB+PM的最小值为()A.3B.2 C.23D.4二、填空题11.已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边ABD△和等边BCE,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是__________.12.如图,正方形ABCD中,DAC的平分线交DC于点E,若P,Q分别是AD和AE上的动点,则DQ+PQ能取得最小值4时,此正方形的边长为______________.13.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.14.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是__.15.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.16.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.17.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处)①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______;②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______; 22.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .23.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.24.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+25.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.26.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.27.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.28.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD 的平分线,则线段AB ,AD ,DC 之间的等量关系为 ;(2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.29.如图1,在正方形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 上的点,HA=EB=FC=GD ,连接EG ,FH ,交点为O .(1)如图2,连接EF ,FG ,GH ,HE ,试判断四边形EFGH 的形状,并证明你的结论;(2)将正方形ABCD 沿线段EG ,HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD 的边长为3cm ,HA=EB=FC=GD=1cm ,则图3中阴影部分的面积为 cm 2.30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】【分析】延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=4,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=7.5,AQ=8.5,即可求出△ABN的面积.【详解】解:延长MN交AB延长线于点Q,∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S△NAB=S△NAQ=×AN•NQ=××4×7.5=;故选:D.【点睛】本题考查折叠的性质勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质是解题的关键.2.B解析:B【解析】【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则343CH AB ==,4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠=,ABC ∆∴为等边三角形,3432CH AB ∴==,4AH BH ==, 3PB =,1HP ∴=,在Rt CHP ∆中,32(43)17CP =+=,梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上,∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠,7CQ CP ∴==.故选:B .【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.3.C解析:C【分析】设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,则'BO 即为PO +PB 的最小值,易证△ABO 为等边三角形,过点A 作AH ⊥BO 于H ,求出AH OO =',然后利用勾股定理求出BO 即可.【详解】解:如图,设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,∵P 为AE 中点,∴点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,∴OP OP =',∴PO +PB =BP O P BO +='',∵四边形ABCD 是矩形,∠AOD =120°,∴OA =OB ,∠AOB =60°,∴△AOB 为等边三角形,∴AB =BO =4,过点A 作AH ⊥BO 于H , ∴2221=3AH =-,∵MN ∥BD ,点H 关于MN 的对称点为A ,点O 关于MN 的对称点为'O , ∴3AH OO =='OO BD ⊥', ∴2222+=2+(3)=7BO BO OO =''即PO +PB 7故选:C .【点睛】本题考查了利用轴对称求最短路径,矩形的性质,三角形中位线定理,等边三角形的判定及性质,勾股定理的应用,通过作辅助线,得出'BO 为PO +PB 的最小值是解题关键.4.A解析:A【分析】取MB 的中点P ,连接FP ,EP ,DN ,由中位线的性质,可得当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP ,求出当点N 与点A 重合时,FP 的值,以及FP 上的高,进而即可求解.【详解】取MB 的中点P ,连接FP ,EP ,DN ,∵FP 是∆MNB 的中位线,EF 是∆DMN 的中位线,∴FP ∥BN ,FP=12BN ,EF ∥DN ,EF=12DN , ∴当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP .∴当点N 与点A 重合时,FP=12BN =12BA =4, 过点D 作DQ ⊥AB 于点Q ,∵AB ∥CD ,∠C =90°,AB =8,AD =CD =5,∴AQ=8-5=3,∴DQ=2222534AD AQ -=-=,∴当点N 与点Q 重合时,EF=11222DN DQ ==,EF ∥DQ ,即:EF ⊥AB ,即:EF ⊥FP , ∴∆EFP 中,FP 上的高=2, ∴当N 从A 到B 的运动过程中,线段EF 扫过图形的面积=12×4×2=4. 故选A .【点睛】本题主要考查中位线的性质定理,勾股定理以及三角形的面积公式,添加合适的辅助线,构造三角形以及三角形的中位线,是解题的关键.5.D解析:D【分析】根据平行四边形的性质求出AB+AD=5cm,根据线段的垂直平分线求出BE=DE,求出ABE ∆的周长等于AB+AD ,代入求出即可.【详解】∵10ABCD C cm =∴=5AB AD cm +∵在ABCD 中,OB=OD ,OE BD ⊥∴EB=ED∴AEB CAB AE BE AB AE BE AB AD =++=++=+ ∴5AEB C cm =故选:D .【点睛】本题主要考查的知识点是平行四边形对边相等的这条性质,结合线段的垂直平分线的性质来进行计算是解题的关键.6.B解析:B【分析】根据题意,有OP=AQ ,即可得到8OP OQ OA +==,①正确;当4t =时,OP=OQ=4,此时四边形PBQO 是正方形,则PB=QB=OP=OQ=4,即点B 坐标为(4,4),②正确;四边形PBQO 的面积为:4416⨯=,在P 、Q 运动过程面积没有发生变化,故③正确;由正方形PBQO 的性质,则此时对角线PQ=OB ,故④错误;即可得到答案.【详解】解:根据题意,点P 与点Q 同时以1个单位长度/秒的速度运动,∴OP=AQ ,∵OQ+AQ=OA=8,∴OQ+OP=8,①正确;由题意,点P 与点Q 运动时,点B 的位置没有变化,四边形PBQO 的面积没有变化, 当4t =时,如图:则AQ=OP=4,∴OQ=844-=,∴点B 的坐标为:(4,4),②正确;此时四边形PBQO 是正方形,则PB=QB=OP=OQ=4,∴四边形PBQO 的面积为:4416⨯=,③正确;∵四边形PBQO 是正方形,∴PQ=OB ,即当4t =时,PQ=OB ,故④错误;∴正确的有:①②③,共三个;故选择:B.【点睛】本题考查了正方形的判定和性质,等腰直角三角形的性质,以及坐标与图形,解题的关键是根据点P 、Q 的运动情况,进行讨论分析来解题.7.A解析:A【分析】设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得AB =CD =,最后利用平行四边形的面积公式即可得.【详解】设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=,909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,2,BG AG AB ∴====CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=,故选:A .【点睛】本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.8.B解析:B【分析】如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,△PEQ 是等腰直角三角形,进而可得△MNE 是等腰直角三角形,然后根据等腰直角三角形的性质可得EG =12MN ,而12EG EF A F =-,进一步即可求得答案.【详解】解:如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∠EPQ =11904522APQ ∠=⨯︒=︒,∠EQP =11904522DQP ∠=⨯︒=︒, ∴∠PEQ =90°,∴△PEQ 是等腰直角三角形,如图4,∵MN ∥PQ ,∴△MNE 是等腰直角三角形,∵EG ⊥MN , ∴EG=MG=NG =12MN , ∵12EG EF A F =-=a ﹣2(a ﹣12b )=b ﹣a , ∴MN =2EG =22b a -.故选:B .【点睛】本题考查了矩形的性质、折叠的性质以及等腰直角三角形的判定与性质,正确理解题意、熟练掌握等腰直角三角形的判定和性质是解题的关键.9.D解析:D【分析】根据翻折变换的性质和正方形的性质可证Rt △ABG ≌Rt △AFG ;根据角的和差关系求得∠GAF =45°;在直角△ECG 中,根据勾股定理可证CE =2DE ;通过证明∠AGB =∠AGF =∠GFC =∠GCF ,由平行线的判定可得AG ∥CF ;求出S △ECG ,由S △FCG =35GCE S ∆即可得出结论.【详解】①正确.理由:∵AB =AD =AF ,AG =AG ,∠B =∠AFG =90°,∴Rt △ABG ≌Rt △AFG (HL );②正确.理由:∵∠BAG =∠FAG ,∠DAE =∠FAE .又∵∠BAD =90°,∴∠EAG =45°;③正确.理由:设DE =x ,则EF =x ,EC =12-x .在直角△ECG 中,根据勾股定理,得:(12﹣x )2+62=(x +6)2,解得:x =4,∴DE =x =4,CE =12-x =8,∴CE =2DE ;④正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;⑤正确.理由:∵S△ECG=12GC•CE=12×6×8=24.∵S△FCG=35GCES∆=3245⨯=725.故选D.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.10.C解析:C【分析】作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;由菱形的面积可求出BD=4,由题意可证△BCD是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD 是等边三角形,∴BD=BC=4,∵M 是BC 的中点,∴DM ⊥BC ,CM=BM=2,在Rt △CDM 中,CM=2,CD=4,∴=故选:C .【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB 与PM 之和的最小值转化为线段DM 的长是解题的关键.二、填空题11【分析】如图(见解析),先根据等边三角形的性质、平行四边形的判定与性质可得//,4ME AB ME AB ==,再根据平行线的性质可得60FEM C ∠=∠=︒,然后利用直角三角形的性质、勾股定理可得2,EF MF ==,从而可得3FN =,最后在Rt FMN 中,利用勾股定理即可得.【详解】如图,连接ME ,过点M 作MF CE ⊥,交CE 延长线于点F ,ABD △和BCE 都是等边三角形,2BC =,60,2,A CBE C BE CE AD A C B B ∴∠=∠=∠=︒====,//AD BE ∴,6AC =,624AD AB ∴==-=,点M ,N 分别是AD ,CE 的中点,112,122AM AD EN CE ∴====, AM BE ∴=,∴四边形ABEM 是平行四边形,//,4ME AB ME AB ∴==,60FEM C ∴∠=∠=︒,在Rt EFM △中,906030EMF ∠=︒-︒=︒,12,2EF ME MF ∴==== 123FN EN EF ∴=+=+=,则在Rt FMN 中,22223(23)21MN FN MF =+=+=,故答案为:21.【点睛】本题考查了等边三角形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质等知识点,通过作辅助线,构造直角三角形和平行四边形是解题关键.12.42【分析】作P 点关于线段AE 的对称点P ',根据轴对称将DQ PQ +转换成DP ',然后当DP AC '⊥的时候DP '是最小的,得到DP '长,最后求出正方形边长DC .【详解】∵AE 是DAC ∠的角平分线,∴P 点关于线段AE 的对称点一定在线段AC 上,记为P '由轴对称可以得到PQ P Q '=,∴DQ PQ DQ P Q DP ''+=+=,如图,当DP AC '⊥的时候DP '是最小的,也就是DQ PQ +取最小值4,∴4DP '=,由正方形的性质P '是AC 的中点,且DP P C ''=,在Rt DCP '中,2222443242DC DP P C ''=+=+==.故答案是:42.【点睛】本题考查轴对称的最短路径问题,解题的关键是能够分析出DQ PQ +取最小值的状态,并将它转换成DP '去求解.13.5设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点,∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF , ∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC =2x =5故答案为:5本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.14.3013≤AM<6【分析】由勾股定理得BC=13从而得到点A到BC的距离, M为EF中点,所以AM=12EF,继而求得AM的范围.【详解】因为∠BAC=90°,AB=5,AC=12,所以由勾股定理得BC=13,则点A到BC的距离为AC512BC13AB⨯⨯==6013,所以AM的最小值为6013÷2=3013,因为M为EF中点,所以AM=12EF,当E越接近A,F越接近C时,EF越大,所以EF<AC,则AM<6,所以3013≤AM<6,故答案为3013≤AM<6.15【分析】先根据菱形的性质可得OC垂直平分BD,从而可得=DP BP,再根据两点之间线段最短可得EP BP+的最小值为DE,然后利用等边三角形的判定与性质求出点D的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP、DP、EP、DE、BD,过点D作DA OB⊥于点A,(23,0)B,OB∴=四边形ABCD是菱形,OC∴垂直平分BD,OB OD==点P是对角线OC上的点,DP BP∴=,EP BP EP DP∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形,DA OB ⊥, 132OA OB ∴==,2222(23)(3)3AD OD OA =-=-=, (3,3)D ∴,又(0,1)E -,22(30)(31)19DE ∴=-++=,即EP BP +的最小值为19,故答案为:19.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.16.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可17.6【分析】先证明△AEB ≌△FEB ≌△DEF ,从而可知S △ABE =13S △DAB ,即可求得△ABE 的面积. 【详解】解:由折叠的性质可知:△AEB ≌△FEB∴∠EFB=∠EAB=90°∵ABCD 为矩形∴DF=FB∴EF 垂直平分DB∴ED=EB在△DEF 和△BEF 中DF=BF EF=EF ED=EB∴△DEF ≌△BEF∴△AEB ≌△FEB ≌△DEF ∴13666AEB FEB DEF ABCD S S S S ∆∆∆====⨯=矩形. 故答案为6.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB ≌△FEB ≌△DEF 是解题的关键.18.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴= ,,AF EC n m BC BC m n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键. 19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形. 20.【分析】作AB 的中点E ,连接EM 、CE ,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE 和EM 的长,然后确定CM 的范围.【详解】解:作AB 的中点M ,连接EM 、CM .在Rt △ABC 中,AB 22AC BC +2286+10,∵M 是直角△ABC 斜边AB 上的中点,∴CM =12AB =5. ∵E 是BD 的中点,M 是AB 的中点,∴ME =12AD =2.∴5﹣2≤CE ≤5+2,即3≤CE ≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.三、解答题21.(1)①6;②结论://P EC A ;(2)为4和16.【分析】()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.理由勾股定理可得DE .②如图2中,结论:EC//PA.只要证明PA BE ⊥,EC BE ⊥即可解决问题. ()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.在Rt ADE 中,90D ∠=,10AE AB ==,8AD =,22221086DE AE AD ∴-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE ,即PA BE ⊥,PB PC PE ==,90BEC ∠∴=,EC BE ∴⊥,//EC PA ∴.()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=, 在Rt BQC 中,222CQ BC BQ +=, 222(10x)8(x 6)∴-+=+,x 4∴=,DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB ,DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=,AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16.故答案为4和16.【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD 是平行四边形,∴∠BAE =∠BCD =70°,AD ∥BC ,∵∠DCE =20°,∵AB ∥CD ,∴∠CDE =180°﹣∠BAE =110°,∴∠DEC =180°﹣∠DCE ﹣∠CDE =50°;(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠BAE =∠BCD ,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.23.(1)见解析;(23;(3)2【分析】(1)由线段垂直平分线的性质可得BE=DE,BF=DF,可得∠EBD=∠EDB,∠FBD=∠FDB,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF,可证BE∥DF,DE∥BF,可得四边形DEBF是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF的长;(3)过点D作BC的垂线,垂足为H,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH的长度,再利用底乘高得出结果.【详解】解:证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵EF垂直平分BD,∴BE=DE,BF=DF,∵∠EBD=∠EDB,∠FBD=∠FDB,∴∠EBD=∠BDF,∠EDB=∠DBF,∴BE∥DF,DE∥BF,∴四边形DEBF是平行四边形,且BE=DE,∴四边形BEDF是菱形;(2)过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE=2,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=12DF=1,33,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=1,∴3+1;(3)过点D作BC的垂线,垂足为H,∵四边形BEDF是菱形,∠BDE=15°,∴∠DBF=∠BDF=∠ABD=15°,∴∠DFH=∠ABC=30°,∵DE=DF=2,∴DH=1,∴菱形BEDF的面积=BF×DH=2×1=2.【点睛】本题考查了菱形的判定和性质,线段垂直平分线的性质,直角三角形的性质等知识,掌握菱形的判定方法是本题的关键.24.(1)证明见解析;(2)62BE =(3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AEDG CG CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论. 【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC ,∴∠E=∠EGD ,∠H=∠DFG ,∵∠CGH=∠EGD ,∠DFG=∠AFE ,∴∠E=∠CGH ,∠H=∠AFE ,∵//EH AC ,AB//CD ,∴四边形ACGE 是平行四边形,∴AE=CG ,∴△AEF ≌△CGH (AAS );(2)∵四边形ABCD 为平行四边形,∴AB//CD ,AB=CD ,∴∠E=∠EGD ,∠D=∠EAF ,∵F 是AD 的中点,∴AF=FD ,∴△AEF ≌△DGF (AAS );由(1)得△AEF ≌△CGH (AAS ); ∴△DGF ≌△CGH,∴12AE DG CG CD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =,∴2422AB CD AD ,∴22AE =, ∴62BE AB BE =+=;(3)如下图,∵四边形ABCD 为平行四边形,∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD ,∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==,且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键.25.(1)见解析;(2) HG =OH +BG ;(3)能成矩形,y 3342x =-. 【分析】(1)根据旋转和正方形的性质可得出CD =CB ,∠CDG =∠CBG =90,根据全等直角三角形的判定定理(HL )即可证出Rt △CDG ≌Rt △CBG ,即∠DCG =∠BCG ,由此即可得出CG 平分∠DCB ;(2)由(1)的Rt △CDG ≌Rt △CBG 可得出BG =DG ,根据全等直角三角形的判定定理(HL )即可证出Rt △CHO ≌Rt △CHD ,即OH =HD ,再根据线段间的关系即可得出HG =HD +DG =OH +BG ;(3)根据(2)的结论即可找出当G 点为AB 中点时,四边形AEBD 为矩形,再根据正方形的性质以及点B 的坐标可得出点G 的坐标,设H 点的坐标为(x ,0),由此可得出HO =x ,根据勾股定理即可求出x 的值,即可得出点H 的坐标,结合点H 、G 的坐标利用待定系数法即可求出直线DE 的解析式.【详解】。
【精品】人教版八年级数学下册 第十八章 平行四边形 复习检测题(含答案)【3套】试题
人教版八年级数学下册第十八章平行四边形复习检测题(含答案)一、选择题。
1.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等2.在▱ABCD中,已知AB=(x+1)cm,BC=(x-2)cm,CD=4 cm,则▱ABCD的周长为()A.5 cm B.10 cm C.14 cm D.28 cm3.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.54.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C. 3 D.1+ 35.正方形的一条对角线长为4,则这个正方形面积是()A.8 B.4 2 C.8 2 D.166.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.167.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH等于()A.245B.125C .5D .48.如图,把矩形纸片ABCD 沿对角线BD 折叠,设重叠部分为△EBD ,则下列说法错误的是( )A .AB =CD B .∠BAE =∠DCEC .EB =ED D .∠ABE 一定等于30°9.如图,在矩形ABCD 中,E ,F 分别是AD ,BC 中点,连接AF ,BE ,CE ,DF 分别交于点M ,N ,四边形EMFN 是( )A .正方形B .菱形C .矩形D .无法确定10.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图1,测得AC =2,当∠B =60°时,如图2,AC =( ) A. 2 B .2 C. 6 D .2 2二、填空题11.如图,在菱形ABCD 中,AC ,BD 相交于点O ,若∠BCO =55°,则∠ADO =____________.12.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为____________.13.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD =8,AB=4,则DE的长为____________.14.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是____________.(写出一个即可)15.如图,正方形ABCO的顶点C,A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是____________.16.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是____________.三、解答题(共52分)17.(10分)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)请写出图中两对全等的三角形;(2)求证:四边形BCEF是平行四边形.18.(10分)如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=23,求▱ABCD的面积.19.(10分)如图,已知,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.20.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?21.(12分)已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG,当点E在线段BC上时,如图1,易证:AB=CG+CE.(1)当点E在线段BC的延长线上时(如图2),猜想AB,CG,CE之间的关系并证明;(2)当点E在线段CB的延长线上时(如图3),直接写出AB,CG,CE之间的关系.参考答案一、选择题1.C2.B3.D4.A5.A6.A7.A8.D9.B 10.A 二、填空题。
平行四边形判定定理的复习
OF
四边形ABCD是平行四边形
E
OA=OC,OB=OD
又 BE=DF
B
C
OB-BE=OD-DF
OE=OF
又 OA=OC
四边形ABCD是平行四边形
你还有其他办法证明吗?
练练手:
1如图,点B,E,C,F在一条直线,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC ≌△DFE;
(2)连接AF,BD. 求证:四边形ABDF是平行四边形.
{ 在∆DCO和∆BAO中
∠CDO=∠ABO ∠DCO=∠BAO
∆DCO ≌∆BAO AO=CO
DO=BO
又 AO=CO
四边形ABCD是平行四边形
你还有其他办法证明吗?
例2.已知,如图,在 ABCD中,点E、F是对角线
BD上的两点,且BE=DF.
求证:四边形AECF是平行四边形。
A
D
证明: 连接AC,交BD于点O
D
几何语言: OA=OC,OB=OD
对角线:
四边形ABCD是平行四边形
AC和BD A
C
B
C O
B
D
例1.(西藏中考2015)如图,在四边形ABCD中,
O
C
AB//CD,对角线AC、BD相交于点O,且AO=CO.
求证:四边形ABCD是平行四边形。
证明: AB//CD
A
BHale Waihona Puke ∠DCO=∠BAO, ∠CDO=∠ABO
2.已知,如图,在∆ABC中,点D、E、F分别为AB、BC、CA的中点。
求证:四边形DECF是平行四边形。 A
D
F
B
E
C
作业:中考总复习第十四单元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师辅导教案
授课日期: 2016 年月日授课课时:课时
2001)如图,田村有一口呈四边形的池塘,在它的四个角A 、B 田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,请你设计并画出图形;
下列几组几何图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是(.正方形、菱形、矩形、平行四边形
求证:四边形D B BD ''是菱形
中,E是边CD的中点,将△
课后作业:
1.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AF=8,CF=6,则四边形BDFG的周长为多少?。