2013到2019高考解析几何压轴题精选

合集下载

2013年高考数学压轴题训练详细及解析

2013年高考数学压轴题训练详细及解析

2013年高考数学压轴题训练注:试题均为历年高考试题,特别精选了其中有代表性的题目。

非常适合2013年参加高考的学生和老师复习及冲刺使用。

1.(本小题满分14分)已知f(x)=222+-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x 1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x)=x 2-ax -2,方法一:ϕ(1)=1-a -2≤0,① ⇔ ⇔-1≤a ≤1,ϕ(-1)=1+a -2≤0.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0 ∴A={a|-1≤a ≤1}. 方法二:2a ≥0, 2a <0, ①⇔ 或ϕ(-1)=1+a -2≤0 ϕ(1)=1-a -2≤0⇔ 0≤a ≤1 或 -1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0 ∴A={a|-1≤a ≤1}.(Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,∴ 从而|x 1-x 2|=212214)(x x x x -+=82+a .x 1x 2=-2,∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt+(m 2-2),方法一:g(-1)=m 2-m -2≥0,② ⇔g(1)=m 2+m -2≥0, ⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.方法二:当m=0时,②显然不成立;当m ≠0时,m>0, m<0,②⇔ 或g(-1)=m 2-m -2≥0 g(1)=m 2+m -2≥0⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.2.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST +的取值范围. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ① 得y '=x.∴过点P 的切线的斜率k 切= x 1,∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1), 方法一:联立①②消去y ,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点x 0=221x x +=-11x , ∴y 0=21x 12-11x (x 0-x 1). 消去x 1,得y 0=x 02+2021x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+2021x +1(x ≠0). 方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +, 得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2), 则x 0=2121x x y y --=k l =-11x ,∴x 1=-01x , 将上式代入②并整理,得y 0=x 02+2021x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+2021x +1(x ≠0).(Ⅱ)设直线l:y=kx+b ,依题意k ≠0,b ≠0,则T(0,b).分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'. y=21x 2 由 消去x ,得y 2-2(k 2+b)y+b 2=0. ③y=kx+by 1+y 2=2(k 2+b),则y 1y 2=b 2.方法一:∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b =2. ∵y 1、y 2可取一切不相等的正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2b b k +. 当b>0时,||||||||SQ ST SP ST +=b 22)(2b b k +=b b k )(22+=b k 22+2>2; 当b<0时,||||||||SQ ST SP ST +=-b 22)(2bb k +=b b k -+)(22. 又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b.所以||||||||SQ ST SP ST +>bb b -+-)2(2=2. ∵当b>0时,bk 22可取一切正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x b y -. 则x 1y 2-bx 1=x 2y 1-bx 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b=122212122121x x x x x x -⋅-⋅=-21x 1x 2. ∴||||||||SQ ST SP ST +=||||||||21y b y b +=1|21|21x x -+1|21|21x x -=||12x x +||21x x ≥2. ∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 3.(本小题满分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用...=采取预防措施的费用+发生突发事件损失的期望值.) 本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分.解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元);②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元)③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元);2 2④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元). 综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.4.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列 (I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示); (II )设;)(:,,2,1,1A b A b b n A a b n n n n n +-==-=+证明 (III )若 ,2,121||=≤n b n n 对都成立,求a 的取值范围. 本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→ .24,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得 (II ).11,11Ab a A b a a a A b a n n n n n n ++=++=+=++得由 都成立对即 ,2,1)(.)(11111=+-=+-=++-=++-=∴++n A b A b b A b A b A b A A b A a b n n n n n n n n (III ).21|)4(21|,21||21≤++-≤a a a b 得令 .,2,121||,23.23,14.21|)4(21|22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a n n (i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(kk b k k n ≤≥=k k k k k A b A A b A b b 21||1|)(|||||1⨯+≤+=+ 故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k .212121||,23.2||,1212||||.2,14,23,422411222++=⨯≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k k k k k k k b a A b A b A A b A a a a a a a a A 时故当即时而当由于即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立.故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b nn 5.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知a R ∈,函数2()||f x x x a =-.(Ⅰ)当2a =时,求使()f x x =成立的x 的集合;(Ⅱ)求函数()y f x =在区间[12],上的最小值.本小题主要考查运用导数研究函数性质的方法,考查分类讨论的数学思想和分析推理能力. 满分14分. 解:(Ⅰ)由题意,2()2f x x x =-.当2x <时,2()(2)f x x x x =-=,解得0x =或1x =;当2x ≥时,2()(2)f x x x x =-=,解得12x =+. 综上,所求解集为{}0112+,,. (Ⅱ)设此最小值为m .①当1a ≤时,在区间[12],上,32()f x x ax =-.因为22()323()03f x x ax x x a '=-=->,(12)x ∈,, 则()f x 在区间[12],上是增函数,所以(1)1m f a ==-.②当12a <≤时,在区间[12],上,2()()0f x x x a =-≥,由()0f a =知()0m f a ==.③当2a >时,在区间[12],上,23()f x ax x =-.22()233()3f x ax x x a x '=-=-. 若3a ≥,在区间(12),内()0f x '>,从而()f x 为区间[12],上的增函数,由此得 (1)1m f a ==-.若23a <<,则2123a <<. 当213x a <<时,()0f x '>,从而()f x 为区间2[1]3a ,上的增函数; 当223a x <<时,()0f x '<,从而()f x 为区间2[2]3a ,上的减函数. 因此,当23a <<时,(1)1m f a ==-或(2)4(2)m f a ==-. 当723a <≤时,4(2)1a a -≤-,故(2)4(2)m f a ==-; 当733a <<时,14(2)a a -<-,故(1)1m f a ==-. 综上所述,所求函数的最小值111274(2)23713a a a m a a a a -≤⎧⎪<≤⎪⎪=⎨-<≤⎪⎪->⎪⎩,当时;0,当时;,当时;,当时. 6.(本小题满分14分,第一小问满分2分,第二、第三小问满分各6分)设数列{}n a 的前n 项和为n S ,已知1231611a a a ===,,,且1(58)(52)123n n n S n S An B n +--+=+= ,,,,,其中A B ,为常数.(Ⅰ)求A 与B 的值;(Ⅱ)证明:数列{}n a 为等差数列;(Ⅲ)证明:不等式51mn m n a a a ->对任何正整数m n ,都成立.本小题主要考查等差数列的有关知识、不等式的证明方法,考查思维能力、运算能力. 解:(Ⅰ)由已知,得111S a ==,2127S a a =+=,312318S a a a =++=.由1(58)(52)n n n S n S An B +--+=+,知2132372122S S A B S S A B --=+⎧⎨-=+⎩,, 即 28248A B A B +=-⎧⎨+=-⎩,, 解得 20A =-,8B =-.(Ⅱ)方法1由(Ⅰ),得 1(58)(52)208n n n S n S n +--+=--, ① 所以 21(53)(57)2028n n n S n S n ++--+=--. ② ②-①,得 21(53)(101)(52)20n n n n S n S n S ++---++=-, ③ 所以 321(52)(109)(57)20n n n n S n S n S ++++-+++=-. ④ ④-③,得 321(52)(156)(156)(52)0n n n n n S n S n S n S ++++-+++-+=. 因为 11n n n a S S ++=-, 所以 321(52)(104)(52)0n n n n a n a n a ++++-+++=. 又因为 520n +≠,所以 32120n n n a a a +++-+=, 即 3221n n n n a a a a ++++-=-,1n ≥. 所以数列{}n a 为等差数列.方法2由已知,得111S a ==,又1(58)(52)208n n n S n S n +--+=--,且580n -≠, 所以数列{}n S 是唯一确定的,因而数列{}n a 是唯一确定的. 设54n b n =-,则数列{}n b 为等差数列,前n 项和(53)2n n n T -=.于是 1(1)(52)(53)(58)(52)(58)(52)20822n n n n n n n T n T n n n +++---+=--+=--, 由唯一性得 n n b a =,即数列{}n a 为等差数列. (Ⅲ)由(Ⅱ)可知,15(1)54n a n n =+-=-. 要证 51mn m n a a a ->, 只要证 512mn m n m n a a a a a >++. 因为 54mn a mn =-,(54)(54)2520()16m n a a m n mn m n =--=-++, 故只要证 5(54)12520()162m n mn mn m n a a ->+-+++, 即只要证 2020372m n m n a a +->. 因为 2558m n m n a a a a m n ≤+=+- 558(151529)m n m n <+-++-202037m n =+-,所以命题得证.。

高考数学解析几何专题汇编及详细答案

高考数学解析几何专题汇编及详细答案

解析几何专题汇编1.(2013·高考新课标全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:选C.由e =52,得c a =52,∴c =52a ,b =c 2-a 2=12a .而x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax , ∴所求渐近线方程为y =±12x .2.(2013·高考新课标全国卷Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4解析:选C.设P (x 0,y 0),则|PF |=x 0+2=42, ∴x 0=32, ∴y 20=42x 0=42×32=24, ∴|y 0|=2 6.∵F (2,0),∴S △POF =12|OF |·|y 0|=12×2×26=2 3.3.(2013·高考新课标全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 解析:选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1. ②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2, ∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2, ∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.4.(2013·高考新课标全国卷Ⅱ)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点, PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33 解析:选D.如图,由题意知s in 30°=|PF 2||PF 1|=12, m∴|PF 1|=2|PF 2|.又∵|PF 1|+|PF 2|=2a ,∴|PF 2|=2a3.∴tan 30°=|PF 2||F 1F 2|=2a32c =33.∴c a =33.故选D. 5.(2013·高考新课标全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1)C .y =3(x -1)或y =-3(x -1)D .y =22(x -1)或y =-22(x -1)解析:选C.设直线AB 的倾斜角为θ,由题意知p =2,F (1,0),|AF ||BF |=3.又1|F A |+1|FB |=2p , ∴13|BF |+1|BF |=1, ∴|BF |=43,|AF |=4,∴|AB |=163.又由抛物线焦点弦公式:|AB |=2psin 2,∴163=4sin 2θ, ∴s in 2θ=34,∴s in θ=32,∴k =tan θ=±3.故选C.6.(2013·高考大纲全国卷)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]解析:选B.由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y=-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P在椭圆上得点P (2619,2419),此时直线P A 1的斜率k =38.同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P (27,127),此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是[38,34].7.(2013·高考大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1 解析:选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y 2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.8.(2013·高考大纲全国卷)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =( )A.12B.22C. 2 D .2解析:选D.抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2. 9.(2013·高考山东卷)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=04解析:选A.设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆方程为(x -2)2+(y -12)2=54①,圆C :(x -1)2+y 2=1②,①-②得2x +y -3=0,此即为直线AB 的方程.10.(2013·高考山东卷)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316B.38C.233 D.433解析:选D.∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′(0,p2).设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433.11.(2013·高考浙江卷)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62解析:选D.由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3. 因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|=12-4=8,所以|AF 2|-|AF 1|=22, 因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62.12.(2013·高考北京卷)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83 D.1623 解析:选C.∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S =4-2⎠⎛02x 24d x =4-2·x 312⎪⎪⎪20=4-43=83. 13.(2013·高考天津卷)已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的两条渐近线与抛物线y 2=2p x (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .3解析:选C.由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3,即渐近线方程为y =±3x .而抛物线准线方程为x =-p 2,于是A ⎝⎛⎭⎫-p 2,-3p 2,B ⎝⎛⎭⎫-p 2,3p 2,从而△AOB 的面积为12·3p·p 2=3,可得p =2.14.(2013·高考北京卷)双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( ) A .m>12 B .m ≥1C .m>1D .m>2解析:选C.∵双曲线x 2-y2m=1的离心率e =1+m ,又∵e>2,∴1+m>2,∴m>1.15.(2013·高考福建卷)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25 B.45 C .255 D.455解析:选C.双曲线的渐近线为直线y =±12x ,即x ±2y =0,顶点为(±2,0),∴所求距离为d=|±2±0|5=255.16.(2013·高考天津卷)已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线a x -y +1=0垂直,则a =( )A .-12B .1C .2D.12解析:选C.由题意知圆心为(1,0),由圆的切线与直线a x -y +1=0垂直,可设圆的切线方程为x +ay +c =0,由切线x +ay +c =0过点P(2,2),∴c =-2-2a ,∴|1-2-2a|1+a 2=5,解得a =2.17.(2013·高考福建卷)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ) A .12 B.22 C .1 D. 2解析:选B.双曲线x 2-y 2=1的顶点坐标为(±1,0),渐近线为y =±x ,∴x ±y =0,∴顶点到渐近线的距离为d =|±1±0|2=22.18.(2013·高考湖南卷)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 发射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1C .83 D.43 解析:选D.分别以AB ,AC 所在直线为x 轴,y 轴,A 为原点建立如图所示的平面直角坐标系.因为AB =AC =4,故B(4,0),C(0,4).设P(t,0)为线段AB 上的点,点P 关于AC 的对称点P ′(-t,0).点P 关于直线BC 的对称点为M(4,4-t).由光的反射定理知,点P ′,M 一定在直线RQ 上.又△ABC 的重心坐标为G(43,43),由题意知点G 在线段RQ 上,即P ′,G ,M 三点共线.∵P ′G →=(43+t ,43),MP ′→=(-4-t ,t -4),P ′G →∥MP ′→,∴(43+t)(-4+t)-43(-4-t)=0,解得t =43, 即|AP →|=43.19.(2013·高考辽宁卷)已知点O(0,0),A(0,b),B(a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a)=0D .|b -a 3|+|b -a 3-1a|=0解析:选C.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a=-1, 所以a(a 3-b)=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件. 20.(2013·高考陕西卷)已知点M(a ,b)在圆O :x 2+y 2=1外, 则直线a x +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定解析:选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交.21.(2013·高考江西卷)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A .33B .-33C .±33D .- 3解析:选B.由于y =1-x 2,即x 2+y 2=1(y ≥0),直线l 与x 2+y 2=1(y ≥0)交于A ,B 两点,如图所示,S △AOB =12·s in ∠AOB ≤12,且当∠AOB =90°时,S △AOB 取得最大值,此时AB =2,点O 到直线l 的距离为22,则∠OCB =30°,所以直线l 的倾斜角为150°,则斜率为-33.22.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D.双曲线C 1的焦点在x 轴上,a =co s θ,b =s in θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =s in θ,b =s in θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ.故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等.23.(2013·高考江西卷)已知点A(2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|∶|MN|=( )A .2∶ 5B .1∶2C . 1∶ 5D .1∶3 解析:选C.如图所示,由抛物线定义知|MF|=|MH|,所以|MF|∶|MN|=|MH|∶|MN|.由于△MHN ∽△FOA ,则|MH||HN|=|OF||OA|=12,则|MH|∶|MN|=1∶5, 即|MF|∶|MN|=1∶ 5.24.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等 解析:选D.双曲线C 1和C 2的实半轴长分别是s in θ和co s θ,虚半轴长分别是co s θ和s in θ,则半焦距c 都等于1,故选D.25.(2013·高考四川卷)抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .2 3 B .2 C . 3 D .1解析:选D.抛物线y 2=8x 的焦点为F(2,0),则d =|2-3×0|12+(-3)2=1.故选D. 26.(2013·高考四川卷)从椭圆x 2a 2+y 2b2=1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A .24 B.12 C .22 D.32解析:选C.设P(-c ,y 0),代入椭圆方程求得y 0,从而求得k OP ,由k OP =k AB 及e =ca可得离心率e.由题意设P(-c ,y 0),将P(-c ,y 0)代入x 2a 2+y 2b 2=1,得c 2a 2+y 20b 2=1,则y 20=b 2⎝⎛⎭⎫1-c 2a 2=b 2·a 2-c 2a2=b 4a2. ∴y 0=b 2a 或y 0=-b 2a (舍去),∴P ⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac.∵A(a,0),B(0,b),∴k AB =b -00-a =-ba .又∵AB ∥OP ,∴k AB =k OP ,∴-b a =-b 2ac,∴b =c.∴e =c a =c b 2+c2=c 2c 2=22.故选C.27.(2013·高考四川卷)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A .12 B.32 C .1 D. 3解析:选B.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32 或d 2=|3×1+0|(3)2+12=32. 28.(2013·高考重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17解析:选A.设P(x ,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC 1|-1,|PN|=|PC 2|-3, ∴|PM|+|PN|=|PC 1|+|PC 2|-4≥52-4. 29.(2013·高考重庆卷)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6B .4C .3D .2 解析:选B.如图,圆心M(3,-1)与定直线x =-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.30.(2013·高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0解析:选A.与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b|12+12=1,故b =±2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,故直线方程为x +y -2=0,故选A.31.(2013·高考广东卷)已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B.x 24-y 25=1 C .x 22-y 25=1 D.x 22-y 25=1 解析:选B.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为ca=32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,故选B. 32.(2013·高考广东卷)已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C的方程是( )A .x 23+y 24=1 B.x 24+y 23=1 C .x 24+y 22=1 D.x 24+y 23=1 解析:选D.右焦点为F(1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1,故选D.33.(2013·高考安徽卷)直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( )A .1B .2C .4D .4 6 解析:选C.圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C(1,2),半径R = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP|=|1+4-5+5|12+22=1.在Rt △ACP 中,|AP|=R 2-d 2=2,故直线被圆截得的弦长|AB|=4. 34.(2013·高考山东卷)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.解析:设A(3,1),易知圆心C(2,2),半径r =2,当弦过点A(3,1)且与CA 垂直时为最短弦.|CA|=(2-3)2+(2-1)2= 2.∴半弦长=r 2-|CA|2=4-2= 2. ∴最短弦长为2 2. 答案:2 2 35.(2013·高考安徽卷)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:设C(x ,x 2),由题意可取A(-a ,a),B(a ,a), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a)x 2+a 2-a =0, 即y 2+(1-2a)y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.答案:[1,+∞)36.(2013·高考江苏卷)双曲线x 216-y 29=1的两条渐近线的方程为________.解析:由双曲线方程可知a =4,b =3,所以两条渐近线方程为y =±34x .答案:y =±34x37.(2013·高考江苏卷)在平面直角坐标系x Oy 中,椭圆C 的标准方程为x 2a 2+y 2b2=1(a>b>0),右焦点为F,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.解析:依题意,d 2=a 2c -c =b 2c .又BF =c 2+b 2=a ,所以d 1=bca.由已知可得b 2c =6·bca,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e =c a =33.答案:3338.(2013·高考浙江卷) 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x-y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 5 39.(2013·高考北京卷)若抛物线y 2=2p x 的焦点坐标为(1,0),则p =________;准线方程为________.解析:∵ 抛物线y 2=2p x 的焦点坐标为(p2,0),∴准线方程为x =-p2.又抛物线焦点坐标为(1,0),故p =2,准线方程为x =-1. 答案:2;x =-1 40.(2013·高考浙江卷)设F 为抛物线C :y 2=4x 的焦点,过点P(-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ|=2,则直线l 的斜率等于________.答案:±141.(2013·高考天津卷)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.解析:由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1. 答案:x 2-y23=142.(2013·高考福建卷)椭圆Γ:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3, ∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c. 由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-143.(2013·高考辽宁卷)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|AF|=6,co s ∠ABF =45,则椭圆C 的离心率e =________.解析:设椭圆的右焦点为F 1,因为直线过原点,所以|AF|=|BF 1|=6,|BO|=|AO|.在△ABF中,设|BF|=x ,由余弦定理得36=100+x 2-2×10x ×45,解得x =8,即|BF|=8.所以∠BFA=90°,所以△ABF 是直角三角形,所以2a =6+8=14,即a =7.又因为在Rt △ABF 中,|BO|=|AO|,所以|OF|=12|AB|=5,即c =5.所以e =57.答案:5744.(2013·高考陕西卷)双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析:x 216-y2m =1中,a =4,b =m ,∴c =16+m.而e =54,∴16+m 4=54,∴m =9.答案:945.(2013·高考福建卷)椭圆Γ:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3, ∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c. 由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-146.(2013·高考辽宁卷)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为________.解析:由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ|=16.由左焦点F(-5,0),且A(5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF|-|PA|=2a ,|QF|-|QA|=2a ,两式相加得,|PF|+|QF|-(|PA|+|QA|)=4a ,则|PF|+|QF|=4a +|PQ|=4×3+16=28,故△PQF 的周长为28+16=44.答案:4447.(2013·高考陕西卷)双曲线x 216-y 29=1的离心率为________.解析:由题意a 2=16⇒a =4.又b 2=9,则c 2=a 2+b 2=16+9=25⇒c =5,故e =c a =54.答案:5449.(2013·高考湖南卷)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的两个焦点,P 是C上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:设点P 在双曲线右支上,F 1为左焦点,F 2为右焦点,则|PF 1|-|PF 2|=2a. 又|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a.∵在双曲线中c>a ,∴在△PF 1F 2中|PF 2|所对的角最小且为30°.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|co s 30°,即4a 2=16a 2+4c 2-83ac ,即3a 2+c 2-23ac =0.∴(3a -c)2=0,∴c =3a ,即ca= 3.∴e = 3.答案: 350.(2013·高考江西卷)抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:由于x 2=2py(p>0)的准线为y =-p 2,由⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为A ⎝⎛⎭⎫-3+14p 2,-p 2,B ⎝⎛⎭⎫3+14p 2,-p 2,所以AB =23+14p 2.由△ABF 为等边三角形,得32AB =p ,解得p =6. 答案:651.(2013·高考江西卷)椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.解:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)证明:法一:因为B(2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)⎝⎛⎭⎫k ≠0,k ≠±12,① ①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D(0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N(x ,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).法二:设P(x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0,联立,得⎩⎨⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).52.(2013·高考四川卷)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4). 答案:(2,4) 53.(2013·高考新课标全国卷Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB|.解: 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=4.设圆P 的圆心为P(x ,y),半径为R.(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM|+|PN|=(R +r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P(x ,y),由于|PM|-|PN|=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2,所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP||QM|=Rr 1,可求得Q(-4,0),所以可设l :y =k(x +4).由l 与圆M 相切得|3k|1+k2=1,解得k =±24. 当k =24时,将y =24x +2代入x 24+y23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±627,所以|AB|=1+k 2|x 2-x 1|=187. 当k =-24时,由图形的对称性可知|AB|=187.综上,|AB|=23或|AB|=187.54.(2013·高考新课标全国卷Ⅱ)在平面直角坐标系x Oy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.(2)设P(x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1. 此时,圆P 的半径r = 3. 由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1, 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.55.(2013·高考大纲全国卷)已知双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的左、右焦点分别为F 1、F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a 、b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB|、|BF 2|成等比数列.解:(1)由题设知ca =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =± a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.① 由题意可设l 的方程为y =k(x -3),|k|<22,将其代入①并化简,得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8 =-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1. 由|AF 1|=|BF 1|,得-(3x 1+1)=3x 2+1,即x 1+x 2=-23,故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16, 因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列.56.(2013·高考山东卷)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a.由题意知2b2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)法一:设P(x 0,y 0)(y 0≠0), 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0, lPF 2:y 0x -(x 0-3)y -3y 0=0.由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2. 由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|(32x 0+2)2=|m -3|(32x 0-2)2.因为-3<m<3,-2<x 0<2, 可得m +332x 0+2=3-m 2-32x 0,所以m =34x 0.因此-32<m<32.法二:设P(x 0,y 0),当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P(3,-12).若P(3,12),则直线PF 1的方程为x -43y +3=0.由题意得|m +3|7=3-m ,因为-3<m<3,所以m =334.若P(3,-12),同理可得m =334.②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22,所以(m +3)2(m -3)2=1+1k 211+1k 22.因为x 204+y 20=1,且k 1=y 0x 0+3,k 2=y 0x 0-3, 所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+83x 0+163x 20-83x 0+16=(3x 0+4)2(3x 0-4)2, 即|m +3||m -3|=|3x 0+4||3x 0-4|. 因为-3<m<3,0≤x 0<2且x 0≠3,所以3+m 3-m =4+3x 04-3x 0,整理得m =3x 04,故0≤m<32且m ≠334. 综合①②可得0≤m<32.当-2<x 0<0时,同理可得-32<m<0.综上所述,m 的取值范围是(-32,32).(3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2k x 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 204+y 20=1, 所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k (1k 1+1k 2)=(-4y 0x 0)·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.57.(2013·高考山东卷)在平面直角坐标系x Oy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得⎩⎨⎧a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m. 由题意得-2<m<0或0<m< 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|= 2-m 22.所以 S △AOB =|m|·2-m 22=64.解得m 2=32或m 2=12.①因为OP →=tOE →=12t(OA →+OB →)=12t(2m,0)=(mt,0),又P 为椭圆C 上一点,所以(mt )22=1.②由①②,得t 2=4或t 2=43,又t>0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =k x +h.将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4kh x +2h 2-2=0. 设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2,此时x 1+x 2=-4kh1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k 2,所以|AB|=1+k 2×(x 1+x 2)2-4x 1x 2=22×1+k 2×1+2k 2-h 21+2k 2.因为点O 到直线AB 的距离d =|h|1+k 2,所以S △AOB =12|AB|d =12×22×1+k 2×1+2k 2-h 21+2k 2×|h|1+k 2 =2×1+2k 2-h 21+2k 2×|h|.又S △AOB =64,所以2×1+2k 2-h 21+2k2×|h|=64.③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0.解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④因为OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=(-2kht 1+2k 2,ht 1+2k 2), 又P 为椭圆C 上一点,所以t 2[12(-2kh 1+2k 2)2+(h 1+2k 2)2]=1, 即h 2t 21+2k 2=1.⑤ 将④代入⑤,得t 2=4或t 2=43.又t>0,故t =2或t =233.经检验,适合题意.综合(ⅰ)(ⅱ),得t =2或t =233.58.(2013·高考江苏卷)如图,在平面直角坐标系x Oy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =k x +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3. 整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为[0,125].59.(2013·高考浙江卷)已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点, 求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1. 由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2|84-x 1-84-x 2|=82|x 1-x 2x 1x 2-4(x 1+x 2)+16|=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 2 25t 2+6t +1>2 2.当t <0时,|MN |=2 2 (5t +35)2+1625≥852.综上所述,当t =-253,即k =-43时,|MN |的最小值是852.60.(2013·高考安徽卷)设椭圆E :x 2a 2+y21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1、F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解:(1)因为椭圆的焦点在x 轴上且焦距为1,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y23=1.(2)证明:设出点P 的坐标,并求出其横、纵坐标的关系式. 注意点在直线上时,点的坐标满足直线方程.设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c,直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c(x -c ).当x =0时,y =cy 0c -y 0,即点Q 坐标为(0,cy 0c -x 0).因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1).①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限,解得x 0=a 2,y 0=1-a 2, 即点P 在定直线x +y =1上.61.(2013·高考北京卷)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形, 所以AC 与OB 互相垂直平分.所以可设A (t ,12),代入椭圆方程得t 24+14=1,即t =±3.所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0. 由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则 x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2, 所以AC 的中点为M (-4km 1+4k 2,m1+4k 2).因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·(-14k)≠-1,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.62.(2013·高考天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程; (2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解:(1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D(x 2,y 2),由F (-1,0)得直线C D 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2。

2013年高考数学压轴题训练及详细的解析

2013年高考数学压轴题训练及详细的解析

2013年高考数学压轴题训练注:试题均为历年高考试题,精选其中有代表性的题目。

非常适合2013年参加高考的学生和老师复习及冲刺使用。

1.(本小题满分14分)已知椭圆)0(12222>>=+b a by ax 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x ac a P F +=||1;(Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分. (Ⅰ)证法一:设点P 的坐标为).,(y x由P ),(y x 在椭圆上,得.)()()(||222222221x ac a xab bc x y c x P F +=-++=++=由0,>+-≥+≥a c x ac a a x 知,所以 .||1x ac a P F +=………………………3分证法二:设点P 的坐标为).,(y x 记,||,||2211r P F r P F ==则.)(,)(222221y c x r y c x r ++=++=由.||,4,211222121x a c a r P F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x a c a由椭圆第二定义得ac cax P F =+||||21,即.||||||21x ac a c a x a c P F +=+=由0,>+-≥+-≥a c x ac a a x 知,所以.||1x ac a P F +=…………………………3分(Ⅱ)解法一:设点T 的坐标为).,(y x当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF PT 且时,由0||||2=⋅TF PT ,得2TF PT ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a Q F OT ==||21||1,所以有.222a yx =+综上所述,点T 的轨迹C 的方程是.222a y x =+…………………………7分解法二:设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥.又||||2PF PQ =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x因此⎩⎨⎧='-='.2,2y y c x x ①由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+……………………7分(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20cby ≤ 所以,当cb a 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.………………………11分 当cba 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF MF =-=+-=⋅,212121cos ||||MF F MF MF MF MF ∠⋅=⋅,③ ④22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F解法二:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20cby ≤ 上式代入③得.0))((2224220≥+-=-=cba cba cb a x于是,当cba 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.………………………11分当cb a 2≥时,记cx y k k cx y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan212121=+-=∠k k k k MF F (14)分2.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分 (Ⅰ)解:).()(000x f x x f m '-=…………………………………………2分 (Ⅱ)证明:令.0)(),()()(),()()(00=''-'='-=x h x f x f x h x f x g x h 则 因为)(x f '递减,所以)(x h '递增,因此,当0)(,0>'>x h x x 时;当0)(,0<'<x h x x 时.所以0x 是)(x h 唯一的极值点,且是极小值点,可知)(x h 的最小值为0,因此,0)(≥x h 即).()(x f x g ≥…………………………6分(Ⅲ)解法一:10≤≤b ,0>a 是不等式成立的必要条件,以下讨论设此条件成立.③ ④0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是.)1(221b a -≤另一方面,由于3223)(x x f =满足前述题设中关于函数)(x f y =的条件,利用(II )的结果可知,3223x b ax =+的充要条件是:过点(0,b )与曲线3223x y=相切的直线的斜率大于a ,该切线的方程为.)2(21b x b y +=-于是3223x b ax≥+的充要条件是.)2(21b a ≥…………………………10分综上,不等式322231x b ax x ≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤- ①显然,存在a 、b 使①式成立的充要条件是:不等式.)1(2)2(2121b b -≤- ②有解、解不等式②得.422422+≤≤-b ③因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分(Ⅲ)解法二:0,10>≤≤a b 是不等式成立的必要条件,以下讨论设此条件成立. 0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是.)1(221b a -≤………………………………………………………………8分令3223)(x b ax x -+=φ,于是3223x b ax ≥+对任意),0[+∞∈x 成立的充要条件是.0)(≥x φ 由.0)(331--==-='ax x a x 得φ当30-<<ax 时;0)(<'x φ当3->ax 时,0)(>'x φ,所以,当3-=ax 时,)(x φ取最小值.因此0)(≥x φ成立的充要条件是0)(3≥-a φ,即.)2(21-≥b a ………………10分综上,不等式322231x b ax x≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤- ①显然,存在a 、b 使①式成立的充要条件是:不等式2121)1(2)2(b b -≤- ②有解、解不等式②得.422422+≤≤-b因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分3.(本小题满分12分)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈ (I )证明数列{}1n a +是等比数列;(II )令212()n n f x a x a x a x =+++ ,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;(II )由(I )知321n n a =⨯-因为212()n n f x a x a x a x =+++ 所以112()2n n f x a a x na x -'=+++ 从而12(1)2n f a a na '=+++ =()()23212321(321)n n ⨯-+⨯-++⨯- =()232222n n +⨯++⨯ -()12n +++ =()1(1)31262n n n n ++-⋅-+由上()()22(1)23131212n f n n n '--=-⋅-()21221n n --=()()1212121(21)nn n n -⋅--+=12(1)2(21)nn n ⎡⎤--+⎣⎦① 当1n =时,①式=0所以22(1)2313f n n '=-;当2n =时,①式=-120<所以22(1)2313f n n '<-当3n ≥时,10n ->又()011211nnn nn n nn C C C C -=+=++++ ≥2221n n +>+所以()()12210nn n ⎡⎤--+>⎣⎦即①0>从而2(1)f '>22313n n -4.(本小题满分14分) 已知动圆过定点,02p⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程;(II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线O A 和O B 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线A B 恒过定点,并求出该定点的坐标.yA xoB,02p F ⎛⎫⎪⎝⎭MN2p x =-解:(I )如图,设M 为动圆圆心,,02p⎛⎫⎪⎝⎭为记为F ,过点M 作直线2p x =-的垂线,垂足为N ,由题意知:M F M N =即动点M 到定点F 与定直线2p x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中,02pF ⎛⎫⎪⎝⎭为焦点,2p x =-为准线,所以轨迹方程为22(0)y px P =>;(II )如图,设()()1122,,,A x y B x y ,由题意得12x x ≠(否则αβπ+=)且12,0x x ≠所以直线A B 的斜率存在,设其方程为y kx b =+,显然221212,22y y x x pp==,将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+=由韦达定理知121222,p pb y y y y kk+=⋅=①(1)当2πθ=时,即2παβ+=时,tan tan 1αβ⋅=所以121212121,0y y x x y y x x ⋅=-=,221212204y y y y p-=所以2124y y p =由①知:224pb p k=所以2.b pk =因此直线A B 的方程可表示为2y k x P k =+,即(2)0k x P y +-=所以直线A B 恒过定点()2,0p - (2)当2πθ≠时,由αβθ+=,得tan tan()θαβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p+-将①式代入上式整理化简可得:2tan 2p b pkθ=-,所以22tan p b pk θ=+,此时,直线A B 的方程可表示为y kx =+22tan ppk θ+即2(2)0tan p k x p y θ⎛⎫+--= ⎪⎝⎭ 所以直线A B 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭所以由(1)(2)知,当2πθ=时,直线A B 恒过定点()2,0p -,当2πθ≠时直线A B 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭. 5.(本小题满分12分)已知椭圆C 1的方程为1422=+yx,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-yx(II )将.0428)41(1422222=+++=++=kx x k yxkx y 得代入由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆kk k即 .412>k ①0926)31(1322222=---=-+=kx x k yxkx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A B A B A B B A A kx kx x x y y x x y y x x OB OA kx x kk x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=kk kk k kk x x k x x kB A B A.0131315,613732222>--<-+kk kk 即于是解此不等式得.31151322<>k k或 ③由①、②、③得.11513314122<<<<kk或故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----6.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a nn a a nn n 且.(Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828…. (Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+kk k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:由递推公式及(Ⅰ)的结论有 )1.()2111(21)11(221≥+++≤+++=+n a nn a nn a n nnn n两边取对数并利用已知不等式得 n nn a nn a ln )2111ln(ln 21++++≤+.211ln 2nn nn a +++≤ 故nn n n n a a 21)1(1ln ln 1++≤-+ ).1(≥n上式从1到1-n 求和可得 121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n nn a a.22111121121121111)3121(211<-+-=--⋅+--++-+-=nnn nn即).1(,2ln 2≥<<n ea a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n对成立,故).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a nn a n nn n令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b nn n n 则取对数并利用已知不等式得 n n b n n b ln ))1(11ln(ln 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得 )1(1321211ln ln 21-++⨯+⨯≤-+n n b b n.11113121211<--++-+-=nn因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n ee b b a b n n 故故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立. 7.(本小题满分12分)已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+(1)证明;,21N n a a n n ∈<<+ (2)求数列}{n a 的通项公式a n . 解:(1)方法一 用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a∴210<<a a ,命题正确. 2°假设n=k 时有.21<<-k k a a 则)4(21)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时).4)((21))((21)(211111k k k k k k k k k k a a a a a a a a a a ---=+---=-----而.0,04.0111<-∴>--<----k k k k k k a a a a a a又.2])2(4[21)4(2121<--=-=+k k k k a a a a∴1+=k n 时命题正确.由1°、2°知,对一切n ∈N 时有.21<<+n n a a 方法二:用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴2010<<<a a ;2°假设n=k 时有21<<-k k a a 成立, 令)4(21)(x x x f -=,)(x f 在[0,2]上单调递增,所以由假设有:),2()()(1f a f a f k k <<-即),24(221)4(21)4(2111-⨯⨯<-<---k k k k a a a a也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有 (2)下面来求数列的通项:],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a an n n n n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令, 又b n =-1,所以1212)21(22,)21(---=+=-=n nn n n b a b 即。

2013年高考数学压轴大题训练:解析几何中的交汇性问题

2013年高考数学压轴大题训练:解析几何中的交汇性问题

一、解答题(共8小题,满分100分)1.(14分)在平面直角坐标系xoy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.(1)求抛物线C的标准方程;(2)求过点F,且与直线OA垂直的直线的方程;(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.解答:解:(1)由题意,可设抛物线的标准方程为y2=2px,因为点A(2,2),在抛物线上,所以p=1,抛物线的标准方程为y2=2x(2)由(1)可得焦点F坐标是(,0),又直线AO斜率为=1,故与直线OA垂直的直线的斜率为﹣1,因此所求直线的方程为x+y﹣=0(3)设点D和E的坐标分别是(x1,y1)和(x2,y2直线DE的方程是y=k(x﹣m).k≠0,将x=+m代入抛物线方程有ky2﹣2y﹣2km=0,解得y1,2=由ME=2DM知1+=2(﹣1),化简得k2=,∴DE2=(x1﹣x2)2+(y1﹣y2)2=(m2+4m)所以f(m)=(m>0)点评:本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力.2.(12分)(2012•天津)设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.解答:(1)解:设P(x0,y0),∴①∵椭圆的左右顶点分别为A,B,∴A(﹣a,0),B(a,0)∴,∵直线AP与BP的斜率之积为,∴代入①并整理得∵y0≠0,∴a2=2b2∴∴∴椭圆的离心率为;(2)证明:依题意,直线OP的方程为y=kx,设P(x0,kx0),∴∵a>b>0,kx0≠0,∴∴②∵|AP|=|OA|,A(﹣a,0),∴∴∴代入②得∴k2>3∴直线OP的斜率k满足|k|>.3.(在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点F作直线l与椭圆C分别交于A、B两点,其中点A在x轴下方,且=3.求过O、A、B三点的圆的方程.解答:解:(1)由题意,设椭圆C:(a>b>0),则2a=4,a=2.∵点(2,1)在椭圆上,∴,解得b=,∴所求椭圆的方程为.(2)设A(x1,y1),B(x2,y2)(y1<0,y2>0),点的坐标为F(3,0),由=3,得3﹣x1=3(x2﹣3),﹣y1=3y2,即x1=﹣3x2+12,y1=﹣3y2①.又A、B在椭圆C上,∴=1,,解得x2=,y2=,∴B(),代入①得A(2,﹣).设过O、A、B三点的圆的方程为x2+y2+Dx+Ey+F=0,则将O、A、B三点的坐标代入得F=0,6+2D﹣E+F=0,+D,解得D=,E=,F=0,故过O、A、B三点的圆的方程为x2+y2﹣x﹣y=04.(12分)如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)当λ∈[2,4]时,求椭圆的离心率e的取值范围.解答:(1)证明:∵椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线P:x2=2py(p>0)的焦点与F1重合,∴,∴抛物线P:x2=4cy.设过F2的直线l的方程为y+c=kx,与抛物线联立,可得x2﹣4kcx+4c2=0,∵过F2的直线l与抛物线P相切,切点E在第一象限,∴△=16k2c2﹣16c2=0,k>0∴k=1,即切线l的斜率为定值;(2)解:由(1),可得直线l的方程为y=x﹣c,代入椭圆方程可得(a2+b2)x2﹣2b2cx+b2c2﹣a2b2=0设A(x1,y1),B(x2,y2),则①,②∵∴x2=﹣λx1③由①②③可得=∵f(λ)=,当λ∈[2,4]时,单调递增,∴f(λ)∈∴∵0<e<1∴椭圆的离心率e的取值范围是[].5.(12分)(2012•东莞一模)已知椭圆的一个顶点为A(0,﹣1),焦点在x轴上.若右焦点到直线的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.解答:解:(1)依题意可设椭圆方程为,则右焦点F()由题设解得a2=3故所求椭圆的方程为;(2)设P为弦MN的中点,由得(3k2+1)x2+6mkx+3(m2﹣1)=0由于直线与椭圆有两个交点,∴△>0,即m2<3k2+1①∴从而∴又|AM|=||AN|,∴AP⊥MN,则即2m=3k2+1②把②代入①得2m>m2解得0<m<2由②得解得.故所求m的取范围是().~6.(12分)(2010•赤峰模拟)设A、B是椭圆3x2+y2=λ上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(1)确定λ的取值范围,并求直线AB的方程;(2)求以线段CD的中点M为圆心且与直线AB相切的圆的方程.解答:解:(1)依题意,显然直线AB的斜率存在,可设直线的方程为y=k(x﹣1)+3,代入椭圆3x2+y2=λ,整理得(k2+3 )x2﹣2k(k﹣x+(k﹣3)2﹣λ=0 ①设 A (x1,y1),B (x2,y2),则x1,x2是方程①的两个不同的根,∴△=4k2(k﹣3)2﹣4 (k2+3 )[(k﹣3)2﹣λ]>0且x1+x2=.由N(1,3)是线段AB的中点,得=1,∴k﹣3)=k2+3,∴k=﹣1.代和②得λ>12,即λ的取值范围是(12,+∞),于是直线AB的方程为y﹣3=﹣(x﹣1),即x+y﹣4=0.(2)∵CD垂直平分线段AB,∴直线CD的方程为y﹣﹣1,即x﹣y+2=0,代入椭圆方程,整理得4x2+4x+4﹣λ=0 ③.设C(x3,y3),D (x4,y4),CD的中点为M(y0),则x3,x4是方程③的两根,∴x3+x4=﹣1,∴x0==﹣,y0=x0+1=,即M(﹣,).又M(﹣,)到直线AB的距离d==,故所求圆的方程为.7.(14分)如图,已知椭圆的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.(1)已知椭圆和判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;(2)写出与椭圆C1相似且半短轴长为b的椭圆C b的方程,并列举相似椭圆之间的三种性质(不需证明);(3)已知直线l:y=x+1,在椭圆C b上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.解答:解:(1)椭圆C2与C1相似.因为C2的特征三角形是腰长为4,底边长为的等腰三角形,而椭圆C1的特征三角形是腰长为2,底边长为的等腰三角形,因此两个等腰三角形相似,且相似比为2:1.根据题中两个椭圆相似的定义可得:椭圆C2与C1相似.﹣﹣﹣﹣﹣﹣(4分)(2)∵椭圆C b与椭圆C1相似∴椭圆C b的长轴是短轴的2倍∵椭圆C b的半短轴长为b∴椭圆C b的方程为:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)由(1)可得两个相似椭圆之间的性质有:①两个相似椭圆的面积之比为相似比的平方;②分别以两个相似椭圆的顶点为顶点的四边形也相似,相似比即为椭圆的相似比;③两个相似椭圆被同一条直线所截得的线段中点重合,过原点的直线截相似椭圆所得线段长度之比恰为椭圆的相似比.﹣﹣﹣﹣(10分)(3)假定存在满足条件的两点M、N,则设M、N所在直线为y=﹣x+t,MN中点为(x0,y0).则⇒5x2﹣8tx+4(t2﹣b2)=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)设M(x1,y1),N(x2,y2),可得∴结合中点在直线y=x+1上,所以有.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(16分)∵∴所求函数的解析式为:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(18分)8.(12分)(2009•深圳一模)如图,两条过原点O的直线l1,l2分别与x轴、y轴成30°的角,已知线段PQ的长度为2,且点P(x1,y1)在直线l1上运动,点Q(x2,y2)在直线l2上运动.(Ⅰ)求动点M(x1,x2)的轨迹C的方程;(Ⅱ)设过定点T(0,2)的直线l与(Ⅰ)中的轨迹C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.解答:解:(Ⅰ)由已知得直线l1⊥l2,l1:,l2:∵P(x1,y1)在直线l1上运动,Q(x2,y2)直线l2上运动,∴,,由|PQ|=2得(x12+y12)+(x22+y22)=4,即,⇒,∴动点M(x1,x2)的轨迹C的方程为.(Ⅱ)直线l方程为y=kx+2,将其代入,化简得(1+3k2)x2+12kx+9=0,设A(x1,y1)、B(x2,y2)∴△=(12k)2﹣36×(1+3k2)>0,⇒k2>1,且,∵∠AOB为锐角,∴,即x1x2+y1y2>0,⇒x1x2+(kx1+2)(kx2+2)>0,∴(1+k2)x1x2+2k(x1+x2)+4>0.将代入上式,化简得,.由k2>1且,得.。

高考解析几何压轴题精选(含答案)

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。

(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。

(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。

(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。

设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。

高中数学解析几何最难压轴题

高中数学解析几何最难压轴题

高中数学解析几何最难压轴题
高中数学解析几何最难压轴题,也就是最难的题目,是一种考察学生数学知识和技能的综合考查。

这类题目通常包括运用数学知识,解决复杂几何概念、计算、求解几何图形及其相关几何关系等多项内容,以及考查学生对几何图形的解析和抽象思维能力。

高中数学解析几何最难压轴题的一个典型题目如下:已知正方形ABCD中,AB=
3,M为CD边上的点,点P在正方形ABCD的对角线
AC上,且AP=
2,求点M到点P的距离。

解:由正方形ABCD的对角线AC等于根号2AB,可以
得到AC=根号2*3=3√2;因为AP=
2,则PM=AC-AP=3√2-2;由勾股定理得到PM的距离,
答案是1√
2。

从这个典型题目可以看出,高中数学解析几何最难压轴题的解题方法是:首先要搞清楚几何概念,了解几何图形的特性,
并正确运用数学知识,如勾股定理、直角三角形的性质等,结合题目中给出的数据进行计算,最后得出最终答案。

总之,高中数学解析几何最难压轴题,就是一种考查学生综合运用数学知识和抽象思维能力的复杂题目,解题过程中,学生要正确运用数学知识,灵活运用抽象思维能力,以达到最终的正确答案。

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

高考2013-2019理数立体几何真题(解答题)

高考2013-2019理数立体几何真题(解答题)

立体几何(解答题)【2019 全国1】如图,直四棱柱ABCD–A1B1C1D1 的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N 分别是BC,BB1,A1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N 的正弦值.【2019 全国2】如图,长方体ABCD–A1B1C1D1 的底面ABCD 是正方形,点E 在棱AA1 上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1 的正弦值.【2019 全国3】图1 是由矩形ADEB,Rt△ABC 和菱形BFGC 组成的一个平面图形,其中AB=1,BE=BF=2,∠ FBC=60°,将其沿AB,BC 折起使得BE 与BF 重合,连结DG,如图2.(1)证明:图2 中的A,C,G,D 四点共面,且平面ABC⊥平面BCGE;(2)求图2 中的二面角B−CG−A的大小.【2019 北京卷】如图,在四棱锥P–ABCD 中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD 的中点,点F 在PC 上,且PF=1.PC 3 (1)求证:CD⊥平面PAD;(2)求二面角F–AE–P 的余弦值;(3)设点G 在PB 上,且PG=2.判断直线AG 是否在平面AEF 内,说明理由.PB 3【2019 天津卷】如图,AE ⊥平面ABCD ,CF ∥AE, AD ∥B C ,AD ⊥AB, AB =AD = 1, AE =BC = 2 .(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;1(3)若二面角E -BD -F 的余弦值为3,求线段CF 的长.【2019 江苏卷】如图,在直三棱柱ABC-A1B1C1 中,D,E 分别为BC,AC 的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.POM【 2019 浙 江 卷 】 如 图 , 已 知 三 棱 柱 ABC - A 1B 1C 1 , 平 面 A 1 ACC 1 ⊥ 平 面 ABC , ∠ABC = 90︒ ,∠BAC = 30︒, A 1A = A 1C = AC , E , F (1) 证明: EF ⊥ BC ;分别是 AC ,A 1B 1 的中点.(2) 求直线 EF 与平面 A 1BC 所成角的余弦值.【2018 全国 1】如图,四边形 ABCD 为正方形, E , F 分别为 AD , BC 的中点,以 DF 为折痕把△DFC 折起, 使点C 到达点 P 的位置,且 PF ⊥ BF .(1) 证明:平面 PEF ⊥ 平面 ABFD ; (2) 求 DP 与平面 ABFD 所成角的正弦值.【2018 全国 2】如图,在三棱锥 P - ABC 中, AB = BC = 2(1) 证明: PO ⊥ 平面 ABC ;, PA = PB = PC = AC = 4 , O 为 AC 的中点.(2) 若点 M 在棱 BC 上,且二面角 M - PA - C 为30︒ ,求 PC 与平面 PAM 所成角的正弦值.AC2【2018 全国 3】如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1) 证明:平面 AMD ⊥平面 BMC ;(2) 当三棱锥 M - ABC 体积最大时,求面 MAB 与面 MCD 所成二面角的正弦值.【2018 江苏卷(选做题)】如图,在正三棱柱 ABC −A 1B 1C 1 中,AB =AA 1=2,点 P ,Q 分别为 A 1B 1,BC 的中点.(1) 求异面直线 BP 与 AC 1 所成角的余弦值;(2) 求直线 CC 1 与平面 AQC 1 所成角的正弦值.【2018 江苏卷】在平行六面体 ABCD - A 1B 1C 1D 1 中, AA 1 = AB , AB 1 ⊥ B 1C 1 .求证:(1) AB ∥平面A 1B 1C ;(2)平面 ABB 1 A 1 ⊥ 平面 A 1 BC .【2018 浙江卷】如图,已知多面体 ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面 ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1) 证明:AB 1⊥平面 A 1B 1C 1;(2) 求直线 AC 1 与平面 ABB 1 所成的角的正弦值.【2018 北京卷】如图,在三棱柱 ABC − A 1 B 1C 1 中, CC 1 ⊥ 平面 ABC ,D ,E ,F ,G 分别为 AA 1 ,AC , A 1C 1 , BB 1的中点,AB=BC = ,AC = AA 1 =2.(1) 求证:AC ⊥平面 BEF ; (2) 求二面角 B−CD −C 1 的余弦值;(3) 证明:直线 FG 与平面 BCD 相交.【2018 天津卷】如图, AD ∥BC 且 AD =2BC , AD ⊥ CD , EG ∥AD 且 EG =AD , CD ∥FG 且 CD =2FG ,DG ⊥ 平面ABCD ,DA =DC =DG =2.(1) 若 M 为 CF 的中点,N 为 EG 的中点,求证: MN ∥平面CDE ;(2) 求二面角 E - BC - F 的正弦值;(3) 若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为 60°,求线段 DP 的长.5【2017 全国1】如图,在四棱锥P−ABCD 中,AB//CD,且∠BAP =∠CDP = 90 .(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD = 90 ,求二面角A−PB−C 的余弦值. .【2017 全国2】如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB =BC=1AD, ∠BAD =∠ABC = 90o ,2E 是PD 的中点.(1)证明:直线CE∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45o ,求二面角M -AB -D 的余弦值.【2017 全国3】如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D–AE–C 的余弦值.【2017 江苏卷】如图,在三棱锥A -BCD 中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E 与A,D 不重合)分别在棱AD,BD 上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.3PE【2017 江苏卷(选做题)】如图,在平行六面体 ABCD-A 1B 1C 1D 1 中,AA 1⊥平面 ABCD ,且 AB =AD =2,AA 1= ,∠BAD = 120︒ .(1) 求异面直线 A 1B 与 AC 1 所成角的余弦值;(2) 求二面角 B-A 1D-A 的正弦值.【2017 山东卷】如图,几何体是圆柱的一部分,它是由矩形 ABCD (及其内部)以 AB 边所在直线为旋转轴旋转120︒ 得到的, G 是 D F 的中点.(1) 设 P 是C E 上的一点,且AP ⊥ BE ,求∠CBP 的大小; (2) 当 AB = 3 , AD = 2 时,求二面角 E - AG - C 的大小.【2017 浙江卷】如图,已知四棱锥 P –ABCD ,△PAD 是以 AD 为斜边的等腰直角三角形, BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为 PD 的中点.ADBC(1) 证明: CE ∥平面 PAB ; (2) 求直线 CE 与平面 PBC 所成角的正弦值.6 【2017 北京卷】如图,在四棱锥 P−ABCD 中,底面 ABCD 为正方形,平面 PAD ⊥平面 ABCD ,点 M 在线段 PB上,PD//平面 MAC ,PA =PD = ,AB =4.(1) 求证:M 为 PB 的中点;(2) 求二面角 B −PD −A 的大小;(3) 求直线 MC 与平面 BDP 所成角的正弦值.【2017 天津卷】如图,在三棱锥 P -ABC 中,PA ⊥底面 ABC , ∠BAC = 90︒.点 D ,E ,N 分别为棱 PA ,PC ,BC 的中点,M 是线段 AD 的中点,PA =AC =4,AB =2.(1) 求证:MN ∥平面 BDE ;(2) 求二面角 C -EM -N 的正弦值;(3) 已知点 H 在棱 PA 上,且直线 NH 与直线 BE 所成角的余弦值为7,求线段 AH 的长.21【2016 全国 1】如图,在以 A ,B ,C ,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形,AF=2FD ,∠AFD=90°, 且二面角 D ﹣AF ﹣E 与二面角 C ﹣BE ﹣F 都是 60°. (Ⅰ)证明平面 ABEF ⊥平面 EFDC ;(Ⅱ)求二面角 E ﹣BC ﹣A 的余弦值.【2016 全国2】如图,菱形ABCD 的对角线AC 与BD 交于点O,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF= ,EF 交于BD 于点H,将△DEF 沿EF 折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C 的正弦值.【2016 全国3】如图,四棱锥P﹣ABCD 中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点.(1)证明:MN∥平面PAB;(2)求直线AN 与平面PMN 所成角的正弦值.【2015 全国1】如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD,DF 丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.【2015 全国2】如图,长方体ABCD﹣A1B1C1D1 中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1 上,A1E=D1F=4,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【2014 全国1】如图,三棱柱ABC﹣A1B1C1 中,侧面BB1C1C 为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1 的余弦值.【2014 全国2】如图,四棱锥P﹣ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD,E 为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C 为60°,AP=1,AD=,求三棱锥E﹣ACD 的体积.【2014 大纲版】如图,三棱柱ABC﹣A1B1C1 中,点A1 在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1 与平面BCC1B1 的距离为,求二面角A1﹣AB﹣C 的大小.【2013 全国1】如图,三棱柱ABC﹣A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C 所成角的正弦值.【2013 全国2】如图,直棱柱ABC﹣A1B1C1 中,D,E 分别是AB,BB1 的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E 的正弦值.【2013 大纲版】如图,四棱锥P﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD,△PAB 与△PAD 都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C 的大小.⎪⎩参考答案【2019 全国 1】【答案】(1)见解析;(2) 10.5【解析】(1)连结 B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点,1 所以ME ∥B 1C ,且ME = 2B 1C .又因为N 为A 1D 的中点,1 所以ND = 2A 1D .由题设知A 1B 1 =DC ,可得B 1C = A 1D ,故ME = ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄ 平面EDC 1, 所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点, DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则A (2, 0, 0) ,A 1(2,0,4),M (1, 3, 2) ,N (1, 0, 2) ,A 1 A = (0, 0, -4) ,A 1M = (-1, 3, -2) ,A 1 N = (-1, 0, -2) ,MN = (0, - 3, 0) .⎧⎪m ⋅ 设 m = (x , y , z ) 为平面A 1MA 的法向量,则⎨ A 1M = 0,⎧⎪-x + 3y - 2z = 0,⎪⎩m ⋅ A 1 A = 0 所以⎨-4z = 0. 可取 m = ( 3,1, 0) .2 3 2 ⨯ 5 15 10 ⎧⎪n ⋅ MN = 0, ⎩⎩设 n = ( p , q , r ) 为平面A 1MN 的法向量,则⎨ ⎪⎩n ⋅ A 1N = 0. ⎧⎪- 3q = 0, 所以可取 n = (2, 0, -1) . ⎨⎪- p - 2r = 0.m ⋅ n于是cos 〈m , n 〉 == = ,| m ‖n | 5所以二面角A - MA 1 - N 的正弦值为 . 5【2019 全国 2】【答案】(1)证明见解析;(2) 3 .2【解析】(1)由已知得, B 1C 1 ⊥ 平面 ABB 1 A 1 , BE ⊂ 平面 ABB 1 A 1 , 故 B 1C 1 ⊥ BE .又 BE ⊥ EC 1 ,所以 BE ⊥ 平面 EB 1C 1 .(2)由(1)知∠BEB 1 = 90︒ .由题设知Rt △ABE ≌ Rt △A 1B 1E ,所以∠AEB = 45︒ , 故 AE = AB , AA 1 = 2 AB .以 D 为坐标原点, DA 的方向为x 轴正方向,| DA | 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB = (1, 0, 0),CE = (1, -1,1) ,CC 1 = (0, 0, 2) .设平面EBC 的法向量为n =(x ,y ,x ),则⎧ ⎪CB ⋅ n = 0, ⎨⎪⎩CE ⋅ n = 0, ⎧x = 0,即⎨x - y + z = 0,所以可取n = (0, -1, -1) .33⎩设平面ECC1 的法向量为m=(x,y,z),则⎧⎪CC1 ⋅m = 0,⎨⎪⎩CE⋅m=0,⎧2z = 0,即⎨x -y +z = 0.所以可取m=(1,1,0).于是cos <n, m >=n ⋅m=-1.| n || m | 2所以,二面角B -EC -C1 的正弦值为.2【2019 全国3】【答案】(1)见解析;(2)30 .【解析】(1)由已知得AD BE,CG BE,所以AD CG,故AD,CG 确定一个平面,从而A,C,G,D四点共面.由已知得AB ⊥BE,AB ⊥BC,故AB ⊥平面BCGE.又因为AB ⊂平面ABC,所以平面ABC ⊥平面BCGE.(2)作EH ⊥BC,垂足为H.因为EH ⊂平面BCGE,平面BCGE ⊥平面ABC,所以EH ⊥平面ABC.由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH= .以H为坐标原点,HC 的方向为x轴的正方向,建立如图所示的空间直角坐标系H–xyz,则A(–1,1,0),C(1,0,0),G(2,0,),CG =(1,0,),AC =(2,–1,0).设平面ACGD的法向量为n=(x,y,z),则⎪CG ⋅n = 0, ⎧⎪x+ 3z = 0,⎨⋅= 0,即⎨2x -y = 0.⎪⎩AC n⎪⎩33⎧所以可取n=(3,6,–).3又平面BCGE的法向量可取为m=(0,1,0),3 3 n ⋅ m所以cos 〈n , m 〉 == .| n || m | 2因此二面角B –CG –A 的大小为30°.【2019 北京卷】【答案】(1)见解析;(2) 3 ;(3)见解析.3【解析】(1)因为 PA ⊥平面 ABCD ,所以 PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD .(2) 过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,- 1,0),C (2,2,0),D (0,2,0),P (0, 0,2).因为E 为PD 的中点,所以E (0,1,1).所以 AE = (0,1,1), PC = (2, 2, -2), AP = (0, 0, 2) .1 ⎛2 2 2 ⎫⎛ 2 2 4 ⎫所以PF = 3PC = , , - ⎪ , AF = AP + PF = , , ⎪ . ⎝ 3 3 3 ⎭ ⎝ 3 3 3 ⎭设平面AEF 的法向量为n =(x ,y ,z ),则⎧n ⋅⎧y + z = 0, ⎪ AE = 0, ⎪ ⎨n ⋅ 即⎨ 2 x + 2 y + 4 z = 0. ⎩⎪ AF = 0, ⎪⎩ 3 3 3令z =1,则y = -1, x = -1.于是 n =( -1, -1,1) .又因为平面PAD 的法向量为p =(1,0,0),n ⋅ p所以cos 〈n , p 〉 == - .| n ‖p | 3由题知,二面角F −AE −P 为锐角,所以其余弦值为 3.3AB ,A D ,A E CE n⎨(3) 直线AG 在平面AEF 内. 因为点G 在PB 上,且PG = 2 ,PB = (2, -1, -2) , PB 32 ⎛ 4 2 4 ⎫⎛ 4 2 2 ⎫所以 PG = 3 PB = 3 , - 3 , - 3 ⎪ , AG = AP + PG = 3 , - , ⎪ .⎝ ⎭ ⎝由(2)知,平面AEF 的法向量 n =( -1, -1,1) .3 3 ⎭4 2 2 所以AG ⋅ n = - + + = 0 . 3 3 3所以直线AG 在平面AEF 内.4 【2019 天津卷】【答案】(1)见解析;(2) 98;(3) .7【解析】依题意,可以建立以 A 为原点,分别以的方向为 x 轴, y 轴, z 轴正方向的空间直角坐标系(如图),可得 A (0, 0, 0),则 F (1, 2, h ) .B (1, 0, 0),C (1, 2, 0),D (0,1, 0) ,E (0, 0, 2) .设CF = h(h >>0) , (1)依题意,AB = (1, 0, 0) 是平面 ADE 的法向量,又 BF = (0, 2, h ) ,可得 BF ⋅ AB = 0 ,又因为直线 BF ⊄平面 ADE ,所以 BF ∥平面 ADE .(2)依题意, BD = (-1,1, 0), BE = (-1, 0, 2), CE = (-1, -2, 2) .⎧⎪n ⋅ = 0, ⎧-x + y = 0, 设 n = (x , y , z ) 为平面 BDE 的法向量,则⎨ ⎪⎩BDn ⋅ BE = 0, 即 ⎩-x + 2z = 0, 不妨令 z = 1,可得 n = (2, 2,1) .因此有cos CE , n⋅ 4 == - . | CE || n |9 4所以,直线CE 与平面 BDE 所成角的正弦值为 9.⎧m ⋅(3)设 m = (x , y , z ) 为平面 BDF 的法向量,则⎪ BD = 0, ⎧-x + y = 0,即 ⎨⎨2 y + hz = 0,不妨令 y = 1,可得 m = ⎛1,1, - 2 ⎫ .⎪⎩m ⋅ BF = 0, ⎩h ⎪ ⎝ ⎭由题意,有 cos 〈m , n 〉 =| m ⋅ n | ,解得 h = 8.经检验,符合题意. | m || n | 3 78所以,线段CF 的长为.7【2019江苏卷】【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E 分别为BC,AC 的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1 中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 ⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E 为AC 的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1 是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.3【2019 浙江卷】【答案】(1)见解析;(2).5【解析】方法一:(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E ⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.3 3, , 2 3)(2) 取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =2 ,EG = .由于O 为A 1G 的中点,故 EO = OG =A 1G =15 ,22EO 2 + OG 2 - EG 23所以cos ∠EOG == . 2EO ⋅OG53因此,直线EF 与平面A 1BC 所成角的余弦值是 .5方法二:(1) 连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂ 平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,2),B ( ,1,0), B 1 ( 3, 3, 2 3) , F ( 3 3,C (0,2,0).2 23 33⎧3因此,EF = ( , , 2 3) ,BC = (-2 23,1, 0) .由EF ⋅BC = 0 得EF ⊥BC .(2)设直线EF与平面A1BC所成角为θ.由(1)可得BC=(- 3 ,1,0) ,A1C=(0 ,2 ,- 2 3) .设平面A1BC的法向量为n=(x,y,z),⎪BC ⋅n = 0⎧⎪- 3x +y = 0由⎨AC ⋅n = 0,得⎨,⎩⎪1⎪⎩y- 3z = 0| EF ⋅n| 4 取n= (1, 3 ,1) ,故sinθ=|cos EF,n| = =,| EF | ⋅ | n | 53因此,直线EF与平面A1BC所成的角的余弦值为.5【2018 全国1】【答案】(1)见解析;(2)3.4【解析】方法一:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF ⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)在平面DEF 中,过P 作PH⊥EF 于点H,连接DH,如图,由于EF 为平面ABCD 和平面PEF 的交线,PH⊥EF,则PH⊥平面ABFD,故PH⊥DH.则DP 与平面ABFD 所成的角为∠PDH .在三棱锥P-DEF 中,可以利用等体积法求PH.因为DE∥BF 且PF⊥BF,所以PF⊥DE,又△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V =1PF ⋅S ,F -P DE 3△PDE因为BF∥DA 且BF⊥平面PEF,所以DA⊥平面PEF,所以DE⊥EP.设正方形的边长为2a,则PD=2a,DE=a,在△PDE 中,PE = 3a ,所以S△PDE =3a2 ,2故VF -PDE =3a3 ,6又S△DEF =1a ⋅ 2a =a2 ,2所以PH =3VF -PDE =a23a ,2所以在△PHD 中,sin∠PDH =PH=3,PD 4故DP 与平面ABFD 所成角的正弦值为3. 4方法二:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF ⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H 为坐标原点,HF 的方向为y 轴正方向,| BF | 为单位长,建立如图所示的空间直角坐标系H−xyz.3 3 33 3 3 3 HP DP 由(1)可得,DE ⊥PE .又 DP =2,DE =1,所以 PE = .又 PF =1,EF =2,故 PE ⊥PF .可得 PH = 3 , EH = 3 .2 23 3则 H (0, 0, 0), P (0, 0, ), D (-1, - , 0), DP = (1, , ), HP = (0, 0, ) 为平面ABFD 的法向量. 2 2 2 2 23 设 DP 与平面 ABFD 所成角为θ,则 ⋅ sin θ=| | HP || DP ||= 4 = . 4 所以 DP 与平面 ABFD 所成角的正弦值为 3.4【2018 全国 2】【答案】(1)见解析;(2) 3.4【解析】(1)因为 AP = CP = AC = 4 , O 为 AC 的中点,所以OP ⊥ AC ,且OP = 2 .连结OB .因为 AB = BC = 2AC ,所以△ABC 为等腰直角三角形,2 且OB ⊥ AC , OB = 1AC = 2 . 2由OP 2 + OB 2 = PB 2 知 PO ⊥ OB .由OP ⊥ OB , OP ⊥ AC 知 PO ⊥ 平面 ABC .(2)如图,以O 为坐标原点, OB 的方向为 x 轴正方向,建立空间直角坐标系O - xyz .由已知得 O (0, 0, 0), B (2, 0, 0), A (0, -2, 0), C (0, 2, 0), P (0, 0, 2 3), AP = (0, 2, 2 3), 取平面 PAC 的法向量OB = (2, 0, 0) .设 M (a , 2 - a , 0)(0 < a ≤ 2) ,则 AM = (a , 4 - a ,0) . 设平面 PAM 的法向量为 n = (x , y , z ) .332 55⎩⎧⎪2y+23z=0由AP ⋅n = 0, AM ⋅n = 0 得⎨⎪ax+(4-a)y=0,可取n = ( 3(a - 4), 3a, -a) ,u u r所以cos OB, n =2 3(a - 4).2 3(a - 4)2 + 3a2 +a2u u r由已知可得| cos OB, n |=.2所以23|a-4|=3.解得a =-4 (舍去),a=4.2 3(a - 4)2 + 3a2 +a2所以n = (-8 3,4 3, -4) .3 3 32 3uuur又PC = (0, 2, -2 3) ,所以cos PC, n =.4所以PC 与平面PAM 所成角的正弦值为3.4【2018 全国3】【答案】(1)见解析;(2).【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC ⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为C D上异于C,D的点,且DC为直径,所以DM⊥CM.又BC C M=C,所以DM⊥平面BMC.而DM ⊂平面AMD,故平面AMD⊥平面BMC.(2)以D 为坐标原点, DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D−xyz.2 5 2 5 5= 当三棱锥 M −ABC 体积最大时,M 为C D 的中点.由题设得 D (0, 0, 0), A (2, 0, 0), B (2, 2, 0), C (0, 2, 0), M (0,1,1) ,AM = (-2,1,1), AB = (0, 2, 0), DA = (2, 0, 0)设 n = (x , y , z ) 是平面 MAB 的法向量,则⎧n ⋅ ⎪ AM = 0, ⎧-2x + y + z = 0, ⎨ n ⋅ 即⎨2 y = 0. ⎪⎩ AB = 0. ⎩可取 n = (1, 0, 2) .DA 是平面 MCD 的法向量,因此n ⋅ cos n , DADA 5 , | n || DA | 5 sin n , DA = , 5所以面 MAB 与面 MCD 所成二面角的正弦值是 . 【2018 江苏卷(选做题)】【答案】(1) 3 10 ;(2) 5 .20 5【解析】如图,在正三棱柱 ABC −A 1B 1C 1 中,设 AC ,A 1C 1 的中点分别为 O ,O 1,则 OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB ,OC ,OO 1} 为基底,建立空间直角坐标系 O −xyz .因为 AB =AA 1=2,所以 A (0, -1, 0), B ( 3, 0, 0),C (0,1, 0),A 1(0, -1, 2) ,B 1( 3, 0, 2),C 1 (0,1, 2) .=3 , 1, 2) ,2 2(1)因为P 为A1B1 的中点,所以P(5 ⨯ 2 2 3 5 ⨯ 2⎧ ⎪ 从而 = (- 3 , - 1 = (0, 2, 2) ,BP 2 2 , 2), AC 1 | BP ⋅ AC 1 | | -1 + 4 | 3 10 故| cos BP , AC 1 |= = = . | BP | ⋅ | AC 1 |20 因此,异面直线 BP 与 AC 1 所成角的余弦值为 3 10 .20(2) 因为 Q 为 BC 的中点,所以Q ( 1 , , 0) , 2 2因此 AQ = ( 3 , , 0) 2 2, AC 1 = (0, 2, 2),CC 1 = (0, 0, 2) . 设 n =(x ,y ,z )为平面 AQC 1 的一个法向量,⎪ AQ ⋅ n = 0, ⎧ x + 3 y = 0,则⎨ ⎪⎩ AC 1 ⋅ n = 0, 即⎨ 2 2 ⎪⎩2 y + 2z = 0. 不妨取 n = ( 3, -1,1) ,设直线 CC 1 与平面 AQC 1 所成角为θ,| CC 1 ⋅ n | 2 5 则sin θ=| cos CC 1 , n |= = = , | CC 1 | ⋅ | n | 5 所以直线 CC 1 与平面 AQC 1 所成角的正弦值为 5 .5【2018 江苏卷】【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体 ABCD -A 1B 1C 1D 1 中,AB ∥A 1B 1. 因为 AB ⊄ 平面 A 1B 1C ,A 1B 1 ⊂ 平面 A 1B 1C ,所以 AB ∥平面 A 1B 1C .(2)在平行六面体 ABCD -A 1B 1C 1D 1 中,四边形 ABB 1A 1 为平行四边形. 又因为 AA 1=AB ,所以四边形 ABB 1A 1 为菱形,因此 AB 1⊥A 1B .又因为 AB 1⊥B 1C 1,BC ∥B 1C 1,所以 AB 1⊥BC .又因为 A 1B ∩BC =B ,A 1B ⊂ 平面 A 1BC ,BC ⊂ 平面 A 1BC ,所以 AB 1⊥平面A 1BC . 因为 AB 1 ⊂ 平面ABB 1A 1,3 3所以平面ABB1A1⊥平面A1BC.2 53 13 21 7 339 1 1 1 1 1 1 1 【2018 浙江卷】【答案】(1)见解析;(2) 39.13【解析】方法一:(1)由 AB = 2, AA 1 = 4, BB 1 = 2, AA 1 ⊥ AB , BB 1 ⊥ AB 得 AB 1 = A 1B 1 = 2 ,所以 A B 2 + AB 2 = AA 2 .故 AB 1 ⊥ A 1B 1 .由 BC = 2 , BB 1 = 2,CC 1 = 1, BB 1 ⊥ BC ,CC 1 ⊥ BC 得 B 1C 1 = ,由 AB = BC = 2, ∠ABC = 120︒ 得 AC = 2 ,由CC ⊥ AC ,得 AC =,所以 AB 2 + B C 2 = AC 2,故 AB ⊥ B C . 11 1 1 1 1 1 1 1 因此 AB 1 ⊥ 平面 A 1B 1C 1 .(2)如图,过点C 1 作C 1D ⊥ A 1B 1 ,交直线 A 1B 1 于点 D ,连结 AD .由 AB 1 ⊥ 平面 A 1B 1C 1 得平面 A 1B 1C 1 ⊥ 平面 ABB 1 ,由C 1D ⊥ A 1B 1 得C 1D ⊥ 平面 ABB 1 ,所以∠C 1 AD 是 AC 1 与平面 ABB 1 所成的角.由 B 1C 1 = 5, A 1B 1 = 2 2, A 1C 1 = 得cos ∠C 1 A 1B 1 =, s in ∠C 1 A 1B 1 = ,所以C 1D = ,故sin ∠C AD =C 1D = 39 .AC 1 13 因此,直线 AC 与平面 ABB 所成的角的正弦值是 . 13方法二:(1)如图,以 AC 的中点 O 为原点,分别以射线 OB ,OC 为 x ,y 轴的正半轴,建立空间直角坐标 6 7 139 11 1 系 O -xyz .由题意知各点坐标如下:A (0, - 3, 0),B (1, 0, 0), A 1 (0, - 3, 4), B 1 (1, 0, 2),C 1 (0, 3,1),因此 AB 1 = (1, 3, 2), A 1B 1 = (1, 3, -2), A 1C 1 = (0, 2 3, -3),由 AB 1 ⋅ A 1B 1 = 0 得AB 1 ⊥ A 1B 1 . 由 AB 1 ⋅ A 1C 1 = 0 得 AB 1 ⊥ A 1C 1 .所以 AB 1 ⊥ 平面 A 1B 1C 1 .(2)设直线 AC 1 与平面 ABB 1 所成的角为θ.由(1)可知 AC 1 = (0, 2 3,1), AB = (1, 3, 0), BB 1 = (0, 0, 2),设平面 ABB 1 的法向量 n = (x , y , z ) .⎧n ⋅ u u r = 0, ⎧⎪ AB 由⎨ u u u r ⎪x + 即⎨3y = 0, 可取 n = (- 3,1, 0) . ⎪⎩n ⋅ BB 1 = 0, ⎪⎩2z = 0, uuur uuur 所以sin θ= |cos AC 1 , n | AC ⋅ n | |= uuur = | AC 1| ⋅ | n | 39 13 .因此,直线 AC 与平面 ABB 所成的角的正弦值是 . 13【2018 北京卷】【答案】(1)见解析;(2) -【解析】(1)在三棱柱 ABC -A 1B 1C 1 中, ∵CC 1⊥平面 ABC ,∴四边形 A 1ACC 1 为矩形.又 E ,F 分别为 AC ,A 1C 1 的中点, 21 ;(3)见解析. 2121 ∴AC ⊥EF .∵AB =BC .∴AC ⊥BE ,∴AC ⊥平面 BEF .(2)由(1)知 AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又 CC 1⊥平面 ABC ,∴EF ⊥平面 ABC .∵BE ⊂ 平面 ABC ,∴EF ⊥BE . 如图建立空间直角坐标系 E -xyz .由题意得 B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴ CD =(2 ,0 ,1) ,CB =(1,2 ,0) ,设平面 BCD 的法向量为n = (a ,b ,c ) , ⎧n ⋅ uuur ⎪ CD = 0 ∴ ⎨ uur⎧2a + c = 0 ,∴ ⎨a + 2b = 0 , ⎪⎩n ⋅ CB = 0⎩令 a =2,则 b =-1,c =-4,∴平面 BCD 的法向量 n = (2 ,- 1,- 4) , 又∵平面 CDC 1 的法向量为 EB =(0 ,2 ,0) , uur ∴cos < n ⋅ EB >= n ⋅ EB uur = - . | n || E B | 21由图可得二面角 B -CD -C 1 为钝角,所以二面角 B -CD -C 1 的余弦值为-(3)由(2)知平面 BCD 的法向量为 n = (2 ,- 1,- 4) , ∵G (0,2,1),F (0,0,2),∴ GF =(0 ,- 2 ,1) ,∴ n ⋅ GF = -2 ,∴ n 与GF 不垂直,21.21⎩ ∴GF 与平面 BCD 不平行且不在平面 BCD 内,∴GF 与平面 BCD 相交.【2018 天津卷】【答案】(1)见解析;(2)10 ;(3)3 .103【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分 13 分.依题意,可以建立以 D 为原点,分别以 DA , DC , DG 的方向为 x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得 D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1, 2),G (0,0,2),M (0, 3,1),N (1,0,2).2⎧n ⋅ ⎪ 0 DC = 0,(1)依题意 DC =(0,2,0), DE =(2,0,2).设 n 0=(x ,y ,z )为平面 CDE 的法向量,则⎨即⎧2 y = 0 ,不妨令 z=–1,可得 n =(1,0,–1).又 =(1, - 3,1),可得 ⋅ n⎪⎩n 0 ⋅ DE = 0,= 0 ,又因为直线⎨2x + 2z = 0 ,0 MN 2MN 0 MN ⊄ 平面 CDE ,所以 MN ∥平面 CDE .(2)依题意,可得 BC =(–1,0,0), BE = (1,- 2 ,2) , CF =(0,–1,2).⎧n ⋅⎪ BC = 0, ⎧-x = 0,设 n =(x ,y ,z )为平面 BCE 的法向量,则⎨n ⋅即⎨x - 2 y + 2z = 0,不妨令 z =1,可得 n =(0,1,1). ⎩⎪ BE = 0, ⎩ ⎧m ⋅ ⎪ BC = 0, ⎧-x = 0,设 m =(x ,y ,z )为平面 BCF 的法向量,则⎨m ⋅ 即⎨- y + 2z = 0,不妨令 z =1,可得 m =(0,2,1). ⎩⎪ CF = 0, ⎩ 因此有 cos<m ,n >=m ⋅ n = 3 10 ,于是 sin<m ,n >= 10.| m || n| 10 10所以,二面角E–BC–F 的正弦值为10.10(3)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得BP=(-1,-2,h).h 2 + 52 FA⎩易知, DC =(0,2,0)为平面 ADGE 的一个法向量,故cos < BP ⋅ DC > = BP ⋅ DCBP DC = 2 ,h 2 + 5 2 3 3 由题意,可得=sin60°=,解得 h =∈[0,2].23所以线段 DP 的长为3 .3【2017 全国 1】【答案】(1)见解析;(2) -3 .3【解析】(1)由已知∠BAP = ∠CDP = 90︒ ,得 AB ⊥AP ,CD ⊥PD . 由于 AB//CD ,故 AB ⊥PD ,从而 AB ⊥平面 PAD . 又 AB ⊂ 平面 PAB ,所以平面 PAB ⊥平面 PAD . (2)在平面 PAD 内作 PF ⊥ AD ,垂足为 F ,由(1)可知, AB ⊥ 平面 PAD ,故 AB ⊥ PF ,可得 PF ⊥ 平面 ABCD . 以 F 为坐标原点,的方向为 x 轴正方向, | AB | 为单位长,建立如图所示的空间直角坐标系 F - xyz .由(1)及已知可得 A (2 , 0, 0) , P (0, 0,22 ) , B ( 22 ,1, 0) , C (- 2 2,1, 0) . 2所以 PC = (- ,1, - 2 2 ) , CB = ( 2, 0, 0) , PA = ( , 0, - 2 2) , AB = (0,1, 0) .设 n = (x , y , z ) 是平面 PCB 的法向量,则⎧n ⋅ ⎧ ⎪PC = 0, ⎪- ⎨ 即⎨ x + y - 22 z = 0, 可取 n = (0, -1, - 2) . ⎪⎩n ⋅ CB = 0, ⎪ 2x = 0,2 2 2 22设m (x, y, z) 是平面PAB 的法向量,则32⎧⎪m ⋅ ⎧ 2 x - 2 z = 0, PA = 0, ⎪ ⎨ 即 可取 m = (1, 0,1) . ⎨ 2 2⎪⎩m ⋅ AB = 0, ⎪⎩ y = 0.n ⋅ m则cos <n , m > == - ,| n || m | 3所以二面角 A - PB - C 的余弦值为-3 .3【2017 全国Ⅱ】【答案】(1)见解析;(2) 10.5【解析】(1)取 PA 的中点 F ,连结 EF , BF .因为 E 是 PD 的中点,所以 EF ∥ AD , EF = 1AD ,2由∠BAD = ∠ABC = 90︒ 得 BC ∥ AD , 又 BC = 1AD ,2所以 EF ∥BC ,四边形 BCEF 是平行四边形, CE ∥BF . 又 BF ⊂ 平面 PAB , CE ⊄ 平面 PAB ,故CE ∥平面 PAB .(2)由已知得 BA ⊥ AD ,以 A 为坐标原点, AB 的方向为 x 轴正方向, AB 为单位长,建立如图所示的空间直角坐标系 A - xyz ,则 A (0, 0, 0) , B (1, 0, 0) , C (1,1, 0) , P (0,1, 3 ), PC = (1, 0, -3) ,AB = (1, 0, 0) , 设 M ( x , y , z )(0 < x < 1) ,则 BM = (x -1, y , z ), PM = (x , y -1, z - 3) ,因为 BM 与底面 ABCD 所成的角为 45°,而 n = (0, 0,1) 是底面 ABCD 的法向量,= 2 2 2所以 cos BM , n = sin 45︒2 ,即( x -1) + y - z = 0 . ①z( x -1)2 + y 2 + z 23 ⎨ AM又 M 在棱 PC 上,设 PM = λPC ,则x = λ, y = 1, z = -3λ. ②⎧ x = 1+ ⎧x = 1- 2⎪ ⎪ 由①②解得⎨ ⎪ 2 y = 1 ⎪(舍去), ⎪⎪2 y = 1 .⎪ z = - ⎩2 ⎪ z = ⎩ 2所以 M (1-,1,6) ,从而=(1-2 2,1, 6 ) .2 2⎧m ⋅ ⎧m = ( x , y , z ⎪ AM = 0, ⎪(2 - 2)x 0 + 2 y 0 + 6z 0 = 0, 设)是平面 ABM 的法向量,则⎨ 即⎨ ⎪⎩ m ⋅ AB = 0, ⎪⎩x 0 = 0,所以可取 m = (0, -6, 2) .于是cos m , n =m ⋅ n = 10 ,m n 5因此二面角 M - AB - D 的余弦值为10.5【2017 全国Ⅲ】【答案】(1)见解析;(2) 7 .7【解析】(1)由题设可得, △ABD ≌△CBD ,从而 AD = DC . 又△ACD 是直角三角形,所以∠ADC =90︒ . 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于△ABC 是正三角形,故 BO ⊥ AC . 所以∠DOB 为二面角 D - AC - B 的平面角. 在Rt △AOB 中, BO 2 + AO 2 = AB 2 .又 AB = BD ,所以 BO 2 + DO 2 = BO 2 + AO 2 = AB 2 = BD 2 , 故∠DOB = 90 . 所以平面ACD ⊥平面ABC .(2)由题设及(1)知, OA , OB , OD 两两垂直,以O 为坐标原点, OA 的方向为 x 轴正方向, OA 为单位长,建立如图所示的空间直角坐标系O - xyz .则 A (1, 0, 0), B (0, 3, 0 ), C (-1, 0, 0 ), D (0, 0,1) .2 66 2 2 ⎪3 3 ⎧⎪m ⋅ 1 由题设知,四面体 ABCE 的体积为四面体 ABCD 的体积的 2,从而 E 到平面 ABC 的距离为 D 到平面 ABC 的1 距离的 ⎛ 1 ⎫ ,即E 为 DB 的中点,得 E 0, , ⎪ . 2⎝ 2 2 ⎭⎛ 1 ⎫ 故AD = (-1, 0,1), AC = (-2, 0, 0), AE = -1, , ⎪ . ⎝2 2 ⎭ ⎧⎪n ⋅ ⎧ -x + z = 0, 设 n = (x , y, z ) 是平面 DAE 的法向量,则⎨ AD = 0, ⎪ ⎪n ⋅ = 0即⎨-x + 3 y + 1 z = 0.可取 n = ⎛1, 3 ,1⎫.⎩ AE , ⎪⎩ 2 23 ⎪ ⎝ ⎭AC = 0, 设 m 是平面 AEC 的法向量,则⎨同理可取 m = (0, -1, 3 ).则cosn , m=n ⋅ m = 7 .n m 7⎪⎩m ⋅ AE = 0,所以二面角 D -AE -C 的余弦值为7 .7【2017 江苏卷】【答案】(1)见解析;(2)见解析.【解析】(1)在平面 ABD 内,因为 AB ⊥AD , EF ⊥ AD , 所以 EF ∥AB .又因为 EF ⊄ 平面 ABC , AB ⊂ 平面 ABC , 所以 EF ∥平面 ABC .(2)因为平面 ABD ⊥平面 BCD ,平面 ABD 平面 BCD =BD , BC ⊂平面 BCD , BC ⊥ BD , 所以 BC ⊥ 平面 ABD . 因为 AD ⊂ 平面 ABD , 所以 BC ⊥ AD .又 AB ⊥AD , BC AB = B , AB ⊂ 平面 ABC , BC ⊂平面 ABC , 所以 AD ⊥平面 ABC , 又因为 AC ⊂ 平面 ABC , 所以 AD ⊥AC .34( 3, 0, 0) ⋅ (3, 3, 2) 3 ⨯ 4 ⎧⎪m ⋅ AE m 1【2017 江苏卷(选做题)】【答案】(1) 1;(2)7 .74【解析】在平面 ABCD 内,过点 A 作 AE ⊥ AD ,交 BC 于点 E . 因为 AA 1 ⊥ 平面 ABCD ,所以 AA 1 ⊥ AE ,AA 1 ⊥ AD .如图,以{AE , AD , AA 1} 为正交基底,建立空间直角坐标系 A -xyz .因为 AB =AD =2,AA 1= , ∠BAD = 120︒ .则 A (0, 0, 0), B ( 3, -1, 0), D (0, 2, 0), E ( 3, 0, 0), A 1 (0, 0, 3), C 1 ( 3,1, 3) .(1) A 1B = ( 3, -1, - 3), AC 1 = ( 3,1, 3) ,A 1B ⋅ AC 1 ( 3, -1, - 3) ⋅ ( 3,1, 3) 1则cos A 1B , AC 1 == | A 1B || AC 1 |7 1= - . 7 因此异面直线 A 1B 与 AC 1 所成角的余弦值为 .7(2)平面 A 1DA 的一个法向量为 AE = ( 3, 0, 0) .设m = (x , y , z ) 为平面 BA 1D 的一个法向量,A 1B = 0,⎪⎧ 3x - y -3z = 0,又 A 1B = ( 3, -1, - 3), BD = (- 3, 3, 0) ,则⎨即⎨ ⎪⎩m ⋅ BD = 0, ⎪⎩- 3x + 3y = 0.不妨取 x =3,则 y =3, z = 2 ,所以 m = (3, 3, 2) 为平面 BA 1D 的一个法向量,从而cos AE , m ⋅ 3 == = , | AE || m |4 设二面角 B -A D -A 的大小为θ,则| cos θ|= 3.因为θ∈[0, π] ,所以sin θ=41- c os 2 θ = 7 .4因此二面角 B -A 1D -A 的正弦值为7 .34353 2 + 22 13 13 -1 3 3 【2017 山东卷】【答案】(1)30°;(2)60°.【解析】(1)因为 AP ⊥ BE , AB ⊥ BE , AB , AP ⊂ 平面 ABP , AB AP = A , 所以 BE ⊥ 平面 ABP , 又 BP ⊂ 平面 ABP , 所以 BE ⊥ BP , 又∠EBC = 120︒ , 因此∠CBP = 30︒ .(2)解法一:取 E C 的中点H ,连接 EH , GH , CH . 因为∠EBC = 120︒ , 所以四边形 BEHC 为菱形,所以 AE = GE = AC = GC = = .取 AG 中点 M ,连接 EM , CM , EC . 则 EM ⊥ AG , CM ⊥ AG , 所以∠EMC 为所求二面角的平面角.又 AM = 1 ,所以 EM = CM = = 2 .在△BEC 中,由于∠EBC = 120︒ ,由余弦定理得 EC 2 = 22 + 22 - 2 ⨯ 2 ⨯ 2 ⨯ cos120︒ = 12 ,所以 EC = 2 ,因此△EMC 为等边三角形,故所求的角为 60︒.解法二:以 B 为坐标原点,分别以 BE , BP , BA 所在的直线为 x , y , z 轴,建立如图所示的空间直角坐标系.由题意得 A (0, 0, 3) E (2, 0, 0) , G (1, 3, 3) , C (-1, 3, 0) ,故 AE = (2, 0, -3) , AG = (1, 3, 0) ,CG = (2, 0, 3) ,设m = (x1, y1, z1) 是平面AEG 的一个法向量.⎧m ⋅ ⎧2x - 3z= 0,⎪AE = 0 ⎪ 1 1由⎨可得⎨ x + 3y = 0,⎪⎩m⋅AG=0⎩⎪ 1 1取z1= 2 ,可得平面AEG 的一个法向量m = (3, -设n = (x2 , y2, z2) 是平面ACG 的一个法向量.3, 2) .⎧n ⋅⎧⎪AG = 0 ⎪x2 + 3y2 = 0,由⎨可得⎨ 2x+3z = 0,⎪⎩n⋅C G=0⎩⎪ 2 2取z2 =-2 ,可得平面ACG 的一个法向量n = (3, - 3, -2) .所以cos m, n =m ⋅n=1. | m | ⋅ | n | 2因此所求的角为60︒.【2017 浙江卷】【答案】(1)见解析;(2)2.8【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15 分.(1)如图,设PA 中点为F,连接EF,FB.因为E,F 分别为PD,PA 中点,所以又因为BC∥AD ,BC =1AD ,所以2EF∥AD 且EF =1AD ,2EF∥BC 且EF =BC ,即四边形BCEF 为平行四边形,所以CE∥BF ,因此CE∥ 平面PAB.2 2 2 (2) 分别取 BC ,AD 的中点为 M ,N .连接 PN 交 EF 于点 Q ,连接MQ . 因为 E ,F ,N 分别是 PD ,PA ,AD 的中点,所以 Q 为 EF 中点, 在平行四边形 BCEF 中,MQ//CE .由△PAD 为等腰直角三角形得PN ⊥AD .由 DC ⊥AD ,N 是 AD 的中点得BN ⊥AD .所以AD ⊥平面 PBN ,由 BC //AD 得BC ⊥平面 PBN ,那么平面 PBC ⊥平面PBN . 过点 Q 作 PB 的垂线,垂足为 H ,连接 MH .MH 是 MQ 在平面 PBC 上的射影,所以∠QMH 是直线 CE 与平面 PBC 所成的角. 设 CD =1.在△PCD 中,由 PC =2,CD =1,PD= 得 CE = ,在△PBN 中,由 PN =BN =1,PB = 得 QH = 1,4在 Rt △MQH 中,QH= 1,MQ = ,4 所以sin ∠QMH =2 ,8所以直线 CE 与平面 PBC 所成角的正弦值是 2.832 【2017 北京卷】【答案】(1)见解析;(2) π;(3)26 .39【解析】(1)设 AC , BD 交点为 E ,连接 ME .因为 PD ∥平面 MAC ,平面 MAC 平面 PDB = ME , 所以 PD ∥ME . 因为 ABCD 是正方形, 所以 E 为 BD 的中点, 所以 M 为 PB 的中点.(2)取 AD 的中点O ,连接OP , OE . 因为 PA = PD ,所以OP ⊥ AD .又因为平面 PAD ⊥ 平面 ABCD ,且OP ⊂ 平面 PAD , 所以OP ⊥ 平面 ABCD .因为OE ⊂ 平面 ABCD ,所以OP ⊥ OE . 因为 ABCD 是正方形,所以OE ⊥ AD .如图建立空间直角坐标系O - xyz ,则 P (0, 0, 2) , D (2, 0, 0) , B (-2, 4, 0) ,BD = (4, -4, 0) , PD = (2, 0, - 2) .⎧⎪n ⋅ = 0⎧⎪4x - 4 y = 0 设平面 BDP 的法向量为 n = (x , y , z ) ,则⎨ BD ,即⎨ .⎪⎩n ⋅ PD = 0 令 x = 1 ,则 y = 1, z = .于是n = (1,1, 2) . ⎪⎩2x - 2z = 0平面 PAD 的法向量为 p = (0,1, 0) ,所以cos <n , p > = n ⋅ p = 1 .| n || p | 2π由题知二面角 B - PD - A 为锐角,所以它的大小为 3.2 69MC⎩(3)由题意知 M (-1, 2, 2 ), C (2, 4, 0) , = (3, 2, -22 ) . 2α | n ⋅ MC | 2 6 设直线 MC 与平面 BDP 所成角为,则sin α=| cos <n , MC > |= = . | n || MC |9所以直线 MC 与平面 BDP 所成角的正弦值为.【2017 天津卷】【答案】(1)证明见解析;(2)105 ;(3) 8 或 1.215 2【解析】如图,以 A 为原点,分别以 AB , AC , AP 方向为 x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得 A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)易得 DE =(0,2,0), DB =(2,0,-2 ). ⎧n ⋅ n = (x , y , z )⎪ DE = 0 ⎧2 y = 0 设 为平面 BDE 的法向量,则⎨n ⋅,即⎨2x - 2z = 0 . ⎩⎪ DB = 0 ⎩ 不妨设 z = 1 ,可得 n = (1, 0,1) .又 MN =(1,2, -1 ),可得 MN ⋅ n = 0 .因为 MN ⊄ 平面 BDE ,所以 MN ∥平面 BDE . (2)易知 n 1 = (1, 0, 0) 为平面 CEM 的一个法向量.⎧⎪n⋅ 设 n 2 = (x , y , z ) 为平面 EMN 的法向量,则⎨ 2 EM = 0,⎪⎩n 2 ⋅ MN = 0⎧-2 y - z = 0因为 EM = (0, -2, -1) , MN = (1, 2, -1) ,所以⎨x + 2 y - z = 0.= (-4,1, -2) .不妨设y = 1 ,可得n2h 2+ 5 ⨯ 2 3 7因此有cos < n , n >= n 1 ⋅ n 2 = - 4,于是sin < n , n >=105 .| n 1 || n 2 |21 1221 所以,二面角 C -EM -N 的正弦值为 105.21(3)依题意,设 AH =h ( 0 ≤ h ≤ 4 ),则 H (0,0,h ),进而可得 NH = (-1, -2, h ) , BE = (-2, 2, 2) .| NH ⋅ BE | | 2h - 2 | 由已知,得| cos < NH , BE >|= = = , | NH || BE | 21 整理得10h 2 - 21h + 8 = 0 ,解得 h = 8 或 h = 1.5 2所以,线段 AH 的长为 8 或 1.5 2【2016 全国 1】【解答】(Ⅰ)证明:∵ABEF 为正方形,∴AF ⊥EF .∵∠AFD=90°,∴AF ⊥DF ,∵DF ∩EF=F ,∴AF ⊥平面 EFDC ,∵AF ⊂平面 ABEF ,∴平面 ABEF ⊥平面 EFDC ;(Ⅱ)解:由 AF ⊥DF ,AF ⊥EF ,可得∠DFE 为二面角 D ﹣AF ﹣E 的平面角; 由 ABEF 为正方形,AF ⊥平面 EFDC , ∵BE ⊥EF ,∴BE ⊥平面 EFDC即有 CE ⊥BE ,可得∠CEF 为二面角 C ﹣BE ﹣F 的平面角. 可得∠DFE=∠CEF=60°.∵AB ∥EF ,AB ⊄ 平面 EFDC ,EF ⊂平面 EFDC , ∴AB ∥平面 EFDC ,∵平面 EFDC ∩平面 ABCD=CD ,AB ⊂平面 ABCD ,∴AB ∥CD ,∴CD ∥EF ,∴四边形 EFDC 为等腰梯形.以 E 为原点,建立如图所示的坐标系,设 FD=a ,1 2。

解析几何小题压轴题题库题(适用培优)

解析几何小题压轴题题库题(适用培优)

解析几何压轴小题题库一、单选题1.中,,,,中,,则的取值范围是()A.B.C.D.2.是双曲线的左、右焦点,直线l为双曲线C的一条渐近线,关于直线l的对称点为,且点在以F2为圆心、以半虚轴长b为半径的圆上,则双曲线C的离心率为A.B.C.2D.3.已知椭圆的左、右焦点分别为,,为椭圆上不与左右顶点重合的任意一点,,分别为的内心、重心,当轴时,椭圆的离心率为( )A.B.C.D.4.设,分别是椭圆的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于C点,若满足且,则椭圆的离心率为A.B.C.D.5.若点A,F分别是椭圆的左顶点和左焦点,过点F的直线交椭圆于M,N两点,记直线的斜率为,其满足,则直线的斜率为A.B.C.D.6.已知点,是椭圆上的动点,且,则的取值范围是()A.B.C.D.7.过抛物线焦点的直线与抛物线交于,两点,与圆交于,两点,若有三条直线满足,则的取值范围为( )A .B .C .D .8.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[]0,1B .[]1,1- C .⎡⎢⎣⎦ D .⎡⎢⎣⎦9.过双曲线的左焦点作直线与双曲线交于,两点,使得,若这样的直线有且仅有两条,则离心率的取值范围是( )A .B .C .D .10.已知直线,直线,其中,.则直线与的交点位于第一象限的概率为( ) A .B .C .D . 11.已知正方体,空间一动点P 满足,且,则点P 的轨迹为A .直线B .圆C .椭圆D .抛物线12.已知直线l :x-y+3=0和点A (0,1),抛物线y=x 2上一动点P 到直线l 和点A 的距离之和的最小值是( ) A .2 B .C .D .13.已知实数满足,,则的最大值为( ) A .B .2C .D .414.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2B.3C.D.15.设不等式组所表示的平面区域为,其面积为.①若,则的值唯一;②若,则的值有2个;③若为三角形,则;④若为五边形,则.以上命题中,真命题的个数是( )A.B.C.D.16.过双曲线的焦点且垂直于x轴的直线与双曲线交于A,B两点,D为虚轴上的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为A.B.C.D.17.过原点的一条直线与椭圆=1(a>b>0)交于A,B两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.B.C.D.18.已知抛物线的焦点为F,过F点的直线交抛物线于不同的两点A、B,且,点A关于轴的对称点为,线段的中垂线交轴于点D,则D点的坐标为A.(2,0)B.(3,0)C.(4,0)D.(5,0)19.在平面直角坐标系中,过双曲线上的一点作两条渐近线的平行线,与两条渐近线的交点分别为,,若平行四边形的面积为3,则该双曲线的离心率为()A.B.C.D.20.在坐标平面内,与点距离为2,且与点距离为1的直线共有()条A.4B.3C.2D.121.已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是()A.B.[,]C.D.)22.已知双曲线的一个焦点恰为圆Ω:的圆心,且双曲线C的渐近线方程为.点P在双曲线C的右支上,,分别为双曲线C的左、右焦点,则当取得最小值时,=()A.2B.4C.6D.823.已知是双曲线的右焦点,过点作垂直于轴的直线交于双曲线于两点,分别为双曲线的左、右顶点,连接交轴于点,连接并延长交于点,且为线段的中点,则双曲线的离心率为()A.B.C.D.24.设F为双曲线E:的右焦点,过E的右顶点作x轴的垂线与E的渐近线相交于A,B两点,O为坐标原点,四边形OAFB为菱形,圆与E在第一象限的交点是P,且,则双曲线E的方程是A.B.C.D.25.已知抛物线:与圆:交于,,,四点.若轴,且线段恰为圆的一条直径,则点的横坐标为()A.B.3C.D.626.在圆锥中,已知高,底面圆的半径为4,为母线的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为()①圆的面积为;②椭圆的长轴为;③双曲线两渐近线的夹角为;④抛物线中焦点到准线的距离为.A.1个B.2个C.3个D.4个27.已知F为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,其中O为坐标原点,则与面积之和的最小值是A.B.3C.D.28.已知,是椭圆的左右焦点,点M的坐标为,则的角平分线所在直线的斜率为A.B.C.D.29.双曲线的左、右焦点分别为,过的直线与圆相切,与的左、右两支分别交于点,若,则的离心率为()A.B.C.D.30.已知是抛物线的焦点,过点的直线与抛物线交于不同的两点,与圆交于不同的两点(如图),则的值是( )A.B.2C.1D.31.已知抛物线的焦点为,过点的直线与抛物线交于,两点,则的面积的最小值为( )A.B.C.D.32.已知双曲线C:,过左焦点的直线l的倾斜角满足,若直线l分别与双曲线的两条渐近线相交于A,B两点,且线段AB的垂直平分线恰好经过双曲线的右焦点,则该双曲线的离心率为( )A.B.C.D.33.在平面直角坐标系中,圆经过点,,且与轴正半轴相切,若圆上存在点,使得直线与直线关于轴对称,则的最小值为()A.B.C.D.34.已知A,B分别是双曲线C:的左、右顶点,P为C上一点,且P在第一象限.记直线PA,PB的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的重心坐标为()A.B.C.D.35.如图所示,,是椭圆C:的短轴端点,点M在椭圆上运动,且点M不与,重合,点N满足,,则A.B.C.D.36.若三次函数()的图象上存在相互平行且距离为的两条切线,则称这两条切线为一组“距离为的友好切线组”.已知,则函数的图象上“距离为4的友好切线组”有()组?A.0B.1C.2D.337.已知是双曲线:上的一点,半焦距为,若(其中为坐标原点),则的取值范围是()A.B.C.D.38.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知、是一对相关曲线的焦点,是椭圆和双曲线在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是( )A.B.C.D.239.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A.B.C.2D.40.已知抛物线的焦点为,点在抛物线上,以为边作一个等边三角形,若点在抛物线的准线上,则()A.B.C.D.41.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,则的横坐标范围是( )A.B.C.D.42.已知是双曲线上一点,是左焦点,是右支上一点,与的内切圆切于点,则的最小值为 ( )A.B.C.D.43.已知直线过抛物线:的焦点,交于两点,交的准线于点。

高中数学解析几何压轴题

高中数学解析几何压轴题

高中数学解析几何压轴题一.选择题1.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()A.钝角B.直角C.锐角D.都有可能2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B ∠PFR=∠QFR C.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1C.D.e2+15.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.156.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4xB.y2=4x(x≠0)C.y2=﹣4xD.y2=﹣4x(x≠0)9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22B.20C.18D.1611.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()A.B.(,+∞)C.D.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.8D.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m 的值为()A.4B.﹣4C.0或4D.0或﹣41.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()钝角B.直角C.锐角D.都有可能A.考点:直线与圆锥曲线的综合问题.专题:压轴题.分析:根据题设条件推导出以AB为直径的圆与右准线相离.由此可知∠APB为锐角.解答:解:如图,设M为AB的中点,过点M作MM1垂直于准线于点M1,分别过A、B作AA1、BB1垂直于准线于A1、B1两点.则∴以AB为直径的圆与右准线相离.∴∠APB为锐角.点评:本题考查圆锥曲线的性质和应用,解题时作出图形,数形结合,往往能收到事半功倍之效果.2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B.∠PFR=∠QFRC.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:设Q、P到l 的距离分别为d1,d2,垂足分别为M,N,则PN∥MQ,=,又由双曲线第二定义可知,由此能够推导出RF是∠PFQ的角平分线,所以∠PFR=∠QFR.解答:解:设Q、P到l 的距离分别为d1,d2,垂足分别为M,N,则PN∥MQ,∴=,又由双曲线第二定义可知,∴,,∴,∴RF是∠PFQ的角平分线,∴∠PFR=∠QFR故选B.点评:本题考查双曲线的性质和应用,解题时利用双曲线第二定义综合平面几何知识求解.3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.考点:直线与圆锥曲线的综合问题.专题:综合题;压轴题.分析:设直线l的斜率为k,则直线l的方程是y=k(x﹣c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2﹣2a2ck2x+a2c2k2﹣a2b2=0.然后利用向量关系及根与系数的关系,可求得λ1+λ2的值.解答:解:设M,N,P点的坐标分别为M(x1,y1),N(x2,y2),P(0,y0),又不妨设F点的坐标为(c,0).显然直线l存在斜率,设直线l的斜率为k,则直线l的方程是y=k(x﹣c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2﹣2a2ck2x+a2c2k2﹣a2b2=0.∴,.又∵,将各点坐标代入得,=.故选C.点评:本题以向量为载体,考查直线与椭圆的位置关系,是椭圆性质的综合应用题,解题时要注意公式的合理选取和灵活运用.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1 C.D.e2+1考点:圆锥曲线的综合.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:利用抛物线的定义,确定M的坐标,利用点差法将线段AB中点M的坐标代入,即可求得结论.解答:解:∵M在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,∴M的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB中点M的坐标代入,可得∴∴故选A.点评:本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.5.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13 D.15考点:圆与圆锥曲线的综合;椭圆的简单性质.专题:计算题;压轴题.分析:由题意可得:椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,再结合椭圆的定义与圆的有关性质可得答案.解答:解:依题意可得,椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,所以根据椭圆的定义可得:(|PM|+|PN|)min=2×5﹣1﹣2=7,故选B.点评:本题考查圆的性质及其应用,以及椭圆的定义,解题时要认真审题,仔细解答,注意公式的合理运用.6.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.考点:圆与圆锥曲线的综合.专题:综合题;压轴题.分析:由=(+),知E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,能推导出在Rt△PFF′中,PF2+PF′2=FF′2,由此能求出离心率.解答:解:∵若=(+),∴E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,∵E为切点,∴OE⊥PF∴PF′⊥PF∵PF﹣PF′=2a∴PF=PF′+2a=3a在Rt△PFF′中,PF2+PF′2=FF′2即9a2+a2=4c2∴离心率e==.故选:A.点评:本题考查圆与圆锥曲线的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.考点:圆与圆锥曲线的综合.专题:计算题;压轴题.分析:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,由此可知=,从而能够得到结果.解答:解:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,则==.故选A.点评:本题考查圆锥曲线的性质和应用,解题时要注意合理地选取特殊点.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4x B.y2=4x(x≠0)C.y2=﹣4x D.y2=﹣4x(x≠0)考点:圆锥曲线的轨迹问题.专题:计算题;压轴题.分析:设P(x,y),欲动点P的轨迹方程,即寻找x,y之间的关系式,利用向量间的关系求出向量、的坐标后垂直条件即得动点P的轨迹方程.解答:解:设P(x,y),E(﹣1,y1),F(﹣1,y2)(y1,y2均不为零)由∥⇒y1=y,即E(﹣1,y).由∥⇒.由y2=4x(x≠0).故选B.点评:本题主要考查了轨迹方程的问题.本题解题的关键是利用了向量平行和垂直的坐标运算求得轨迹方程.9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)考点:圆锥曲线的轨迹问题.专题:综合题;压轴题.分析:设出切线方程,表示出圆心到切线的距离求得a和b的关系,再设出焦点坐标,根据抛物线的定义求得点A,B到准线的距离等于其到焦点的距离,然后两式平方后分别相加和相减,联立后,即可求得x和y的关系式.解答:解:设切线ax+by﹣1=0,则圆心到切线距离等于半径∴=2∴,∴a2+b2=设抛物线焦点为(x,y),根据抛物线定义可得平方相加得:x2+1+y2=4(a2+1)①平方相减得:x=4a,∴②把②代入①可得:x2+1+y2=4(+1)即:∵焦点不能与A,B共线∴y≠0∴∴抛物线的焦点轨迹方程为故选B.点评:本题以圆为载体,考查抛物线的定义,考查轨迹方程,解题时利用圆的切线性质,抛物线的定义是关键.10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22 B.20 C.18 D.16考点:圆与圆锥曲线的综合;抛物线的定义.专题:计算题;压轴题.分析:先以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100,根据条件得出M,N在以A为焦点,PT为准线的抛物线上,联立半圆方程和抛物线方程结合根与系数的关系,利用抛物线的定义即可求得答案.解答:解:以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100又,设M(x1,y1),N(x2,y2),M,N在以A为焦点,PT为准线的抛物线上;以AT的垂直平分线为y轴,TA方向为x轴建立坐标系,则有抛物线方程为y2=8x(y≥0),联立半圆方程和抛物线方程,消去y得:x2﹣16x+44=0∴x1+x2=16,|AM|+|AN|=|MP|+|NQ|=x1+x2+4=20.故选B.点评:本小题主要考查抛物线的定义、圆的方程、圆与圆锥曲线的综合等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.11.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.考点:圆锥曲线的共同特征.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:利用双曲线、椭圆的定义,建立方程,求出|PF1|=,|PF2|=,再利用余弦定理,即可求得结论.解答:解:不妨令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2①由椭圆的定义|PF1|+|PF2|=2②由①②可得|PF1|=,|PF2|=∵|F1F2|=4∴cos∠F1PF2==故选A.点评:本题考查圆锥曲线的共同特征,利用双曲线、椭圆的定义,建立方程是关键.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()C.D.A.B.(,+∞)考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:如图,求出BC的斜率,根据圆心到切线的距离等于半径,求得切线BE的斜率k′,由题意可知,k′<k≤K BC,从而得到实数k的取值范围.解答:解:曲线即x2+(y﹣1)2=4,(y≥1),表示以A(0,1)为圆心,以2为半径的圆位于直线y=1 上方的部分(包含圆与直线y=1 的交点C和D),是一个半圆,如图:直线y=k(x﹣2)+4过定点B(2,4),设半圆的切线BE的切点为E,则BC的斜率为K BC==.设切线BE的斜率为k′,k′>0,则切线BE的方程为y﹣4=k′(x﹣2),根据圆心A到线BE距离等于半径得2=,k′=,由题意可得k′<k≤K BC,∴<k≤,故选A.点评:本题考查直线和圆的位置关系,点到直线的距离公式,倾斜角和斜率的关系,体现了数形结合的数学思想,判断k′<k≤K BC,是解题的关键.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.C.8D.考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:根据向量关系,用坐标进行表示,求出点A,B的坐标,再利用抛物线的定义,可求|AF|+|BF|.解答:解:设A(x1,y1),B(x2,y2),则∵P(1,0)∴=(1﹣x2,﹣y2),=(x1﹣1,y1)∵,∴2(1﹣x2,﹣y2)=(x1﹣1,y1)∴将A(x1,y1),B(x2,y2)代入抛物线y2=12x,可得,又∵﹣2y2=y1∴4x2=x1又∵x1+2x2=3解得∵|AF|+|BF|=故选D.点评:本题重点考查抛物线的定义,考查向量知识的运用,解题的关键是确定点A,B的横坐标.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.考点:直线与圆锥曲线的关系.专题:综合题;压轴题.分析:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22)A,B的中点坐标是(,)因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,由此能求得m.解答:解:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22),A,B的中点坐标是(,),因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,,x12+x22═+m,x2+x1=﹣,因为,所以xx12+x22=(x1+x2)2﹣2x1x2=,代入得,求得m=.故选B.点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值为()A.4B.﹣4 C.0或4 D.0或﹣4考点:直线与圆锥曲线的关系.专题:综合题;压轴题.分析:根据双曲线上存在两点M,N关于直线y=x+m对称,求出MN中点P(﹣,m),利用MN的中点在抛物线y2=9x上,即可求得实数m的值.解答:解:∵MN关于y=x+m对称∴MN垂直直线y=x+m,MN的斜率﹣1,MN中点P(x0,x0+m)在y=x+m上,且在MN上设直线MN:y=﹣x+b,∵P在MN上,∴x0+m=﹣x0+b,∴b=2x0+m由消元可得:2x2+2bx﹣b2﹣3=0∴M x+N x=﹣b,∴x0=﹣,∴b=∴MN中点P(﹣,m)∵MN的中点在抛物线y2=9x上,∴∴m=0或4故选D.点评:本题考查直线与双曲线的位置关系,考查对称性,考查抛物线的标准方程,解题的关键是确定MN中点P 的坐标.二.解答题(共15小题)16.已知椭圆C:,F1,F2是其左右焦点,离心率为,且经过点(3,1)(1)求椭圆C的标准方程;(2)若A1,A2分别是椭圆长轴的左右端点,Q为椭圆上动点,设直线A1Q斜率为k,且,求直线A2Q斜率的取值范围;(3)若Q为椭圆上动点,求cos∠F1QF2的最小值.考点:椭圆的简单性质;椭圆的应用.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的离心率为,且经过点(3,1),求椭圆C的标准方程;(2)设A2Q的斜率为k',Q(x0,y0),则可得kk'==,利用,即可求直线A2Q斜率的取值范围;(3)利用椭圆的定义、余弦定理,及基本不等式,即可求cos∠F1QF2的最小值.解答:解:(1)∵椭圆的离心率为,且经过点(3,1),建立方程,求出几何量,即可∴,∴椭圆C的标准方程为…(3分)(2)设A2Q的斜率为k',Q(x0,y0),则,…(5分)∴kk'=及…(6分)则kk'==又…(7分)∴,故A2Q斜率的取值范围为()…(8分)(3)设椭圆的半长轴长、半短轴长、半焦距分别为a,b,c,则有,由椭圆定义,有…(9分)∴cos∠F1QF2=…(10分)=…(11分)≥…(12分)==…(13分)∴cos∠F1QF2的最小值为.(当且仅当|QF1|=|QF2|时,即Q取椭圆上下顶点时,cos∠F1QF2取得最小值)…(14分)点评:本题考查椭圆的标准方程与几何性质,考查椭圆的定义,考查余弦定理,考查基本不等式的运用,综合性强.17.已知椭圆x2+=1的左、右两个顶点分别为A,B.双曲线C的方程为x2﹣=1.设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.(Ⅰ)设P,T两点的横坐标分别为x1,x2,证明x1•x2=1;(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且•≤15,求S﹣S的取值范围.考点:直线与圆锥曲线的关系;平面向量数量积的运算.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线AP的方程与椭圆方程联立,确定P、T的横坐标,即可证得结论;(Ⅱ)利用•≤15,结合点P是双曲线在第一象限内的一点,可得1<x1≤2,利用三角形的面积公式求面积,从而可得S﹣S的不等式,利用换元法,再利用导数法,即可求S﹣S的取值范围.解答:(Ⅰ)证明:设点P(x1,y1)、T(x2,y2)(x i>0,y i>0,i=1,2),直线AP的斜率为k(k>0),则直线AP的方程为y=k(x+1),代入椭圆方程,消去y,整理,得(4+k2)x2+2k2x+k2﹣4=0,解得x=﹣1或x=,故x2=.同理可得x1=.所以x1•x2=1.(Ⅱ)设点P(x1,y1)、T(x2,y2)(x i>0,y i>0,i=1,2),则=(﹣1﹣x1,y1),=(1﹣x1,y1).因为•≤15,所以(﹣1﹣x1)(1﹣x1)+y12≤15,即x12+y12≤16.因为点P在双曲线上,所以,所以x12+4x12﹣4≤16,即x12≤4.因为点P是双曲线在第一象限内的一点,所以1<x1≤2.因为S1=|y2|,S2=,所以S﹣S==由(Ⅰ)知,x1•x2=1,即.设t=,则1<t≤4,S﹣S=5﹣t﹣.设f(t)=5﹣t﹣,则f′(t)=﹣1+=,当1<t<2时,f'(t)>0,当2<t≤4时,f'(t)<0,所以函数f(t)在(1,2)上单调递增,在(2,4]上单调递减.因为f(2)=1,f(1)=f(4)=0,所以当t=4,即x1=2时,S﹣S的最小值为f(4)=0,当t=2,即x1=时,S﹣S的最大值为f(2)=1.所以S﹣S的取值范围为[0,1].点评:本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力.18.设椭圆D:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足,且AB⊥AF2.(Ⅰ)若过A、B、F2三点的圆C恰好与直线l:x﹣y﹣3=0相切,求圆C方程及椭圆D的方程;(Ⅱ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足(O为坐标原点),求实数t取值范围.考点:直线与圆锥曲线的综合问题;椭圆的应用.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用,可得F1为BF2的中点,根据AB⊥AF2,可得a,c的关系,利用过A、B、F2三点的圆C恰好与直线l:相切,求出a,即可求出椭圆的方程与圆的方程;(Ⅱ)设直线MN方程代入椭圆方程,利用韦达定理及向量知识,即可求实数t取值范围.解答:解:(Ⅰ)由题意知F1(﹣c,0),F2(c,0),A(0,b).因为AB⊥AF2,所以在Rt△ABF2中,,又因为,所以F1为BF2的中点,所以又a2=b2+c2,所以a=2c.所以F2(,0),B(﹣,0),Rt△ABF2的外接圆圆心为F1(﹣,0),半径r=a,因为过A、B、F2三点的圆C恰好与直线l:相切,所以=a,解得a=2,所以c=1,b=.所以椭圆的标准方程为:,圆的方程为(x+1)2+y2=1;(Ⅱ)设直线MN方程为y=k(x﹣3),M(x1,y1),N(x2,y2),P(x,y),则直线方程代入椭圆方程,消去y可得(4k2+3)x2﹣24k2x+36k2﹣12=0,∴△=(24k2)﹣4(4k2+3)(36k2﹣12)>0,∴k2<,x1+x2=,x1x2=,∵,∴x1+x2=tx,y1+y2=ty,∴tx=,ty=,∴x=,y=,代入椭圆方程可得3×[]2+4×[]2=12,整理得=∵k2<,∴0<t2<4,∴实数t取值范围是(﹣2,0)∪(0,2).点评:本题考查椭圆方程与圆的方程,考查直线与圆的位置关系,考查直线与椭圆的位置关系,难度大19.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且•的最大值为1,最小值为﹣2.(1)求椭圆C的方程;(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题;圆锥曲线的定义、性质与方程.分析:(1)设M(x',y'),化简•=x'2+2b2﹣a2(﹣a≤x≤a),从而求最值,进而求椭圆方程;(2)设直线MN的方程为x=ky﹣6并与椭圆联立,利用韦达定理求•的值,从而说明是直角.解答:解:(1)设M(x',y'),则y'2=b2﹣x'2,•=x'2+2b2﹣a2(﹣a≤x≤a),则当x'=0时,•取得最小值2b2﹣a2=﹣2,当x'=±a时,•取得最大值b2=1,∴a2=4,故椭圆的方程为.(2)设直线MN的方程为x=ky﹣,联立方程组可得,化简得:(k2+4)y2﹣2.4ky﹣=0,设M(x1,y1),N(x2,y2),则y1+y2=,y1y2=﹣,又A(﹣2,0),•=(x1+2,y1)•(x2+2,y2)=(k2+1)y1y2+k(y1+y2)+==﹣(k2+1)+k+=0,所以∠MAN为直角.点评:本题考查了圆锥曲线方程的求法及直线与圆锥曲线的位置关系应用,同时考查了向量的应用,属于难题.20.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.考点:圆与圆锥曲线的综合.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:设P(x0,y0),B(0,b),C(0,c),设b>c.直线PB:y﹣b=,化简,得(y0﹣b)x﹣x0y+x0b=0,由圆心(1,0)到直线PB的距离是1,知,由此导出(x0﹣2)b2+2y0b﹣x0=0,同理,(x0﹣2)c2+2y0c﹣x0=0,所以(b﹣c)2=,从而得到S△PBC=,由此能求出△PBC面积的最小值.解答:解:设P(x0,y0),B(0,b),C(0,c),设b>c.直线PB的方程:y﹣b=,化简,得(y0﹣b)x﹣x0y+x0b=0,∵圆心(1,0)到直线PB的距离是1,∴,∴(y0﹣b)2+x02=(y0﹣b)2+2x0b(y0﹣b)+x02b2,∵x0>2,上式化简后,得(x0﹣2)b2+2y0b﹣x0=0,同理,(x0﹣2)c2+2y0c﹣x0=0,∴b+c=,bc=,∴(b﹣c)2=,∵P(x0,y0)是抛物线上的一点,∴,∴(b﹣c)2=,b﹣c=,∴S△PBC===(x0﹣2)++4≥2+4=8.当且仅当时,取等号.此时x0=4,y0=.∴△PBC面积的最小值为8.点评:本昰考查三角形面积的最小值的求法,具体涉及到抛物线的性质、抛物线和直线的位置关系、圆的简单性质、均值定理等基本知识,综合性强,难度大,对数学思想的要求较高,解题时要注意等价转化思想的合理运用.21.已知直L1:2x﹣y=0,L2:x﹣2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.(Ⅰ)求圆心M的轨迹方程M;(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=﹣2x上存在点N使得|NA|=|NB|成立,求k的取值范围.考点:圆与圆锥曲线的综合;直线与圆相交的性质.专题:综合题;压轴题.分析:(Ⅰ)设M(x,y),M到L1,L2的距离分别为d1,d2,则d12+42=d22+82.所以,由此能求出圆心M的轨迹方程.(Ⅱ)设A(x1,y1),B(x2,y2),由,得(1﹣k2)x2﹣20kx﹣180=0.AB的中点为,AB的中垂线为,由,得.由此能求出k的取值范围.解答:解:(Ⅰ)设M(x,y),M到L1,L2的距离分别为d1,d2,则d12+42=d22+82.…(2分)∴,∴x2﹣y2=80,即圆心M的轨迹方程M:x2﹣y2=80.…(4分)(Ⅱ)设A(x1,y1),B(x2,y2),由,得(1﹣k2)x2﹣20kx﹣180=0.①∴AB的中点为,…(6分)∴AB的中垂线为,即,…(7分)由,得②…(8分)∵存在N使得|NA|=|NB|成立的条件是:①有相异二解,并且②有解.…(9分)∵①有相异二解的条件为,∴⇒且k≠±1.③…(10分)②有解的条件是,∴,④…(11分)根据导数知识易得时,k3﹣k+40>0,因此,由③④可得N点存在的条件是:﹣1或1<k<.…(12分)点评:本题主要考查双曲线标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.22.已知直线l1:ax﹣by+k=0;l2:kx﹣y﹣1=0,其中a是常数,a≠0.(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.考点:圆锥曲线的轨迹问题.专题:综合题;压轴题;分类讨论;转化思想.分析:(1)联立直线l1和l2的方程,消去参数即可得到交点的轨迹方程,根据a的取值a>0,﹣1<a<0,a=﹣1,a<﹣1说明轨迹曲线,利用二次曲线判断形状,直接求出焦点坐标和离心率.(2)通过a>0,y≥1时,说明轨迹的图形,求出轨迹上的点P(x,y)到点A(0,b)距离的表达式,通过配方讨论b与的大小,求出|PA|的最小值.解答:解:(1)由消去k,得y2﹣ax2=1①当a>0时,轨迹是双曲线,焦点为,离心率;②当﹣1<a<0时,轨迹是椭圆,焦点为,离心率;③当a=﹣1时,轨迹是圆,圆心为(0,0),半径为1;④当a<﹣1时,轨迹是椭圆,焦点为,离心率(2)当a>0时,y≥1时,轨迹是双曲线y2﹣ax2=1的上半支.∵|PA|2=x2+(y﹣b)2==①当b>时,|PA|的最小值为;②当b≤时,|PA|的最小值为|1﹣b|点评:本题考查知识点比较多,涉及参数方程,双曲线方程椭圆方程,圆的方程,两点的距离公式等等,涉及分类讨论思想二次函数的最值,是难度比较大,容易出错的题目,考试常靠题型,多以压轴题为主.23.如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):(Ⅰ).求点M的轨迹方程;(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.考点:圆锥曲线的轨迹问题;向量在几何中的应用.专题:计算题;压轴题.分析:(1)设出M的坐标,根据两点关于直线对称时两点连线与对称轴垂直,且两点的中点在对称轴上,再根据平行四边形的对角线对应的向量等于两邻边对应向量的和得到点M的轨迹方程;(2)利用函数在切点处的导数值为曲线的切线斜率,求出腰A1B1的方程,分别令y=0和y=1求出与两底的交点横坐标,利用梯形的面积公式表示出梯形A1B1C1D1面积,利用基本不等式求出其最小值.解答:解:(1)如图,设M(x,y),B′(x0,2),又E(0,b)显然直线l的斜率存在,故不妨设直线l的方程为y=kx+b,则而BB′的中点在直线l上,故,①由于⇒代入①即得,又0≤x0≤2点M的轨迹方程(0≤x≤2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)易知曲线S的方程为(﹣2≤x≤2)设梯形A1B1C1D1的面积为s,点P的坐标为.由题意得,点Q的坐标为(0,1),直线B1C1的方程为y=1.对于有∴∴直线A1B1的方程为,即:令y=0得,,∴.令y=1得,,∴所以当且仅当,即时,取“=”且,时,s有最小值为.梯形A1B1C1D1的面积的最小值为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(15分)点评:本题考查两点关于一条直线对称的充要条件;向量运算的几何意义;曲线在切点处的导数值为曲线的切线斜率;利用基本不等式求函数的最值.属于一道难题.24.(1)已知一个圆锥母线长为4,母线与高成45°角,求圆锥的底面周长.(2)已知直线l与平面α成φ,平面α外的点A在直线l上,点B在平面α上,且AB与直线l成θ,①若φ=60°,θ=45°,求点B的轨迹;②若任意给定φ和θ,研究点B的轨迹,写出你的结论,并说明理由.考点:圆锥曲线的轨迹问题;旋转体(圆柱、圆锥、圆台).专题:综合题;压轴题.分析:(1)由圆锥的母线长为4,母线与高成45°角,知高和底面半径与母线构成一个等腰直角三角形,由勾股定理可知底面半径为2,由圆周公式2πR可算出底面周长.(2)①设l∩α=C,点A在平面α上的射影为点O.建立空间直角坐标系,设|AC|=a,有A(0,0,asin60°),C(0,﹣acos60°).设B(x,y,0),则=(0,﹣acos60°,﹣asin60°).=(x,y,﹣asin60°).所以.又由|•cos45°,知﹣acos60°•y+a2sin60°=a,平方整理得,由此知点B的轨迹.②设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asinφ),C(0,﹣acosφ),(0<φ<).设B(x,y,0),则(6分)=(0,﹣acosφ,﹣asinφ).=(x,y,﹣asinφ).所以φ.由|•cosθ=a••cosθ.知cos2θ•x2+(cos2θ﹣cos2φ)y2+a2ysinφsin2φ+a2sin2φ(cos2θ﹣sin2φ)=0.故当φ=时,点B的轨迹为圆;当θ<φ<时,点B的轨迹为椭圆;当θ=φ<时,点B的轨迹为抛物线;当θ>φ时,点B的轨迹为双曲线.解答:解:(1)∵圆锥的母线长为4,母线与高成45°角,高和底面半径与母线构成一个等腰直角三角形,即高和底面半径长度一样,则由勾股定理可知底面半径为2,则由圆周公式2πR可算出底面周长4π;(2分)(2)①设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asin60°),C(0,﹣acos60°).设B(x,y,0),则=(0,﹣acos60°,﹣asin60°).=(x,y,﹣asin60°).∴.又∵|•cos45°=a•.∴﹣acos60°•y+a2sin60°=a.(11分)平方整理得cos245°•x2+(cos245°﹣cos260°)y2+a2ysin60°sin120°+a2sin260°(cos245°﹣sin260°)=0.即,∴点B的轨迹椭圆;(4分)②设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asinφ),C(0,﹣acosφ),(0<φ<).设B(x,y,0),则(6分)=(0,﹣acosφ,﹣asinφ).=(x,y,﹣asinφ).∴φ.又∵|•cosθ=a••cosθ.∴﹣acosφ•y+a2sinφ=a.(11分)平方整理得cos2θ•x2+(cos2θ﹣cos2φ)y2+a2ysinφsin2φ+a2sin2φ(cos2θ﹣sin2φ)=0.i.当cos2θ﹣cos2φ=0,即θ=φ时,上式为抛物线方程;ii.当cos2θ﹣cos2φ>0,即θ<φ时,上式为椭圆方程;iii.当cos2θ﹣cos2φ<0,即θ>φ时,上式为双曲线方程.(14分)故当φ=时,点B的轨迹为圆;当θ<φ<时,点B的轨迹为椭圆;当θ=φ<时,点B的轨迹为抛物线;当θ>φ时,点B的轨迹为双曲线.(16分)点评:第(1)题考查圆锥的性质和应用,是基础题,解题时要认真审题,仔细解答.第(2)题考查圆锥曲线的轨迹的求法和判断,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.25.已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C 于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.考点:椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.专题:压轴题.分析:(1)待定系数法求椭圆的方程.(2)设出A、B坐标,利用一元二次方程根与系数的关系,求出A、B横坐标之差,纵坐标之差,从而求出AB斜率.(3)设出AB直线方程,与椭圆方程联立,运用根与系数的关系求AB长度,计算P到AB的距离,计算△PAB面积,使用基本不等式求最大值.解答:解:(Ⅰ)设椭圆C的方程为.由题意,解得a2=4,b2=2.所以,椭圆C的方程为.故点P(1,)(Ⅱ)由题意知,两直线PA,PB的斜率必存在,设PB的斜率为k,则PB的直线方程为.由得,.。

压轴题经典题-解析几何部分

压轴题经典题-解析几何部分

压轴题经典题——解析几何部分22.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分。

如图,已知直线L :)0(1:12222>>=++=b a by a x C my x 过椭圆的右焦点F ,且交椭圆C 于A 、B 两点,点A 、F 、B 直线2:a x G =上的射影依次为点D 、K 、E 。

(1)若抛物线y x 342=的焦点为椭圆C 的上顶点,求椭圆C 的方程;(2)对于(1)中的椭圆C ,若直线L 交y 轴于点M ,且,,21λλ==当m 变化时,求21λλ+的值;(3)连接AE 、BD ,试探索当m 变化时,直线AE 、BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由。

22.解:(1)易知)0,1(,332F b b 又=∴=…………2分41222=+=∴=∴c b a c13422=+∴y x C 的方程为椭圆 …………4分(2))1,0(mM y l -轴交于与 0)1(144096)43(012431),(),,(222222211>+=∆=-++∴⎩⎨⎧=-++=m my y m y x my x y x B y x A 由设 321121m y y =+∴(*) …………6分1111111111),1()1,(my y x my x --=∴--=+∴=λλλ又由同理2211my --=λ…………8分38322)11(122121-=--=+--=+∴y y m λλ 3821-=+∴λλ…………10分(3))0,(),0,1(2a k F =先探索,当m=0时,直线L ⊥ox 轴,则ABED 为矩形,由对称性知,AE 与BD 相交于FK 中点N且)0,21(2+a N …………11分猜想:当m 变化时,AE 与BD 相交于定点)0,21(2+a N …………12分证明:设),(),,(),,(),,(12222211y a D y a E y x B y x A 当m 变化时首先AE 过定点N)0)()1()1()2(21)(21(0)21(21)(2121,21)1(0)1(40)1(2)(012222222222222222212121222121222121222222222222222222=+-⋅-=+-⋅-+-⋅-=-+-=----+-=---=---=>>-+=∆=-+++⎩⎨⎧=-++=b m a mb mb a b m a a b m b m a mb a y my y y a my a a y my y y a K K a y K my a y K a b m a b a a b y mb y m b a b a y a x b my x EN AN ENAN 这是而又即∴K AN =K EN ∴A 、N 、E 三点共线同理可得B 、N 、D 三点共线∴AE 与BD 相交于定点)0,21(2+a N …………18分22.(本小题14分)已知椭圆9x 2+2y 2=18上任意一点P ,由P 向x 轴作垂线段PQ ,垂足为Q ,点M 在线段PQ 上,且2=,点M 的轨迹为曲线E.(Ⅰ)求曲线E 的方程;(Ⅱ)若过定点F (0,2)的直线交曲线E 于不同的两点G ,H (点G 在点F ,H 之间),且满足λλ求FH =的取值范围.22.解:(I )设点P (x 0,y 0),是椭圆上一点,则Q (x 0,0),M (x ,y )由已知得:x 0=x ,y 0=3y 代入椭圆方程得9x 2+18y 2=18即x 2+2y 2=2为曲线E 的方程.……………………………………4分 (II )设G (x 1,y 1),H (x 2,y 2)当直线GH 斜率存在时,设直线GH 的斜率为k则直线GH 的方程为:y=kx+2,……………………………………5分代入x 2+2y 2=2,得:(21+k 2)x 2+4kx+3=0 由△>0,解得:k 2>23…………………………………………6分 y x y x k kx x k k x x λ=-=-=+=⋅+-=+又有分),2,(),2,(7)1(213,2142211221221222122121,)1(xx x x x x x x λλλ=⋅+=+∴=∴λλ2122221)1(x x x x x ⋅==++∴……………………………………(2) ∴将(1)代入(2)整理得:λλ22)1()211(316+=+k………………9分分且即分121,331316214,316)1(411316)211(3164,23222 ≠<<∴<++<<+<∴<+<∴>λλλλλλkk又∵0<λ<1,∴31<λ<1………………13分 当直线GH 斜率不存在时,直线GH 的方程为x 31,0== ∴λ=31 ∴所求λ的范围为31≤λ<1…………………………14分 22.(本小题满分14分)已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点.(Ⅰ)若椭圆的离心率为33,焦距为2,求线段AB 的长; (Ⅱ)若向量OA 与向量OB 互相垂直(其中O 为坐标原点),当椭圆的离心率 ]22,21[∈e 时,求椭圆的长轴长的最大值. 22.解:(Ⅰ)33,22,33===a c c e 即 2,322=-==∴c ab a 则 ∴椭圆的方程为12322=+y x …………………………………………………………2分 联立⎪⎩⎪⎨⎧+-==+112322x y y x 消去y 得:03652=--x x 设),(),,(2211y x B y x A 则53,562121-==+x x x x 2122122212214)(])1(1[)()(||x x x x y y x x AB -+-+=-+-=∴538512)56(22=+= ……………………………………………………………6分(Ⅱ)设),(),,(2211y x B y x AOB OA ⊥ 0=⋅∴OB OA ,即02121=+y y x x由⎪⎩⎪⎨⎧+-==+112222x y b y a x 消去y 得0)1(2)(223222=-+-+b a x a x b a 由0)1)((4)2(222222>-+=-=∆b b a a a 整理得122>+b a ……………8分又22222122221)1(2b a b a x x b a a x x +-=+=+1)()1)(1(21212121++-=+-+-=∴x x x x x x y y由02121=+y y x x 得:01)(22121=++-x x x x012)1(22222222=++-+-∴ba ab a b a 整理得:022222=-+b a b a ……………………………………………………10分222222e a a c a b -=-=∴代入上式得221112e a -+= )111(2122e a -+=∴ …………………………………………12分2221≤≤e21412≤≤∴e 431212≤-≤∴e 211342≤-≤∴e 3111372≤-+≤∴e 23672≤≤∴a 适合条件122>+b a 由此得26642≤≤a 62342≤≤∴a 故长轴长的最大值为6 …………………………………………………………… 14分 22.(本小题满分14分)如图,已知圆O :422=+y x 与y 轴正半轴交于点P ,A (-1,0),B (1,0),直线l 与圆O 切于点S (l 不垂直于x 轴),抛物线过A 、B 两点且以l 为准线。

圆锥曲线高考真题总汇编(2013--2019新课标卷)(2019)

圆锥曲线高考真题总汇编(2013--2019新课标卷)(2019)

解析几何高考真题1、【2019年新2文理】若抛物线22y px =(p>0)的焦点是椭圆2213x y p p+=的一个焦点,则p=( ) A.2 B.3 C.4 D.82、【2019年新2文理】设F 为双曲线C:22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P,Q 两点,若PQ OF =,则C 的离心率为( )B.C. 2 3、【2019新1文理】已知双曲线C:22221(0,0)x y a b a b-=>>D 的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于A,B 两点,若112,0F A AB FB F B =⋅=,则C 的离心率为________4、【2019新1文理】已知椭圆C 的焦点为12(1,0),(1,0)F F -,过2F 的直线与C 交于A,B 两点2212,AF F B AB BF ==,则C 的方程为( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 5、【2019新3文理】10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O为坐标原点,若=PO PF ,则△PFO 的面积为( )A .4B .2C .D .6、【2019新3文理】15.设12F F ,为椭圆C :22+13620x y=的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.7、【2018新2文理】5.双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A .y =B .y =C .2y x = D .y =8、【2018新2理】12.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .149、【2018新2文】11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 110、【2018新1理】8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .811、【2018新1理】11.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .D .412、【2018新1文】4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 13、【2018新1文】15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________ 14、【2018新3文理】6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值围是( )A .[]26,B .[]48,C .D .⎡⎣ 15、【2018新3理】11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为( )AB .2CD16、【2018新3理】16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.17、【2018新3文】10.已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .18、【2017新2理】9. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BCD .319、【2017新2理】16. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则FN = .20、【2017新1理】10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1021、【2017新1理】15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。

解析几何高考题及答案

解析几何高考题及答案

3(7619(0,)74F ⨯519(,0)73F ⨯2(1,)74⨯323(0,)74F ⨯3,)7解析几何初步2013年高考题精编一、直线及其方程(一)平面直角坐标系中的基本公式1 .(2013年辽宁(理))已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有( )A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--= (2012年高考(大纲理))正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC上,37AE BF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 ( )A .16B .14C .12D .10答案B【命题意图】本试题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可.【解析】如图,易知3(,0)7E .记点F 为1F ,则13(1,)7F 由反射角等于入射角知,44173-⨯,得25(,1)73F ⨯又由531734-⨯⨯得323(0,)74F ⨯,依此类推,42(1,)74F ⨯、519(,0)73F ⨯、619(0,)74F ⨯、73(,1)7F .由对称性知,P点与正方形的边碰撞14次, 可第一次回到E 点.法二:结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. (二)直线的方程1.(2013年新课标Ⅱ卷(理))已知点(1,0),(1,0),(0,1)A B C -,直线(0)y ax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .1(1)2 ( C) 1(1]3D . 11[,)32(2012年高考(浙江理))设a ∈R,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;若直线l 1与直线l 2平行,则有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 二、圆的方程及其应用 (一)圆的方程:(二)点与圆、直线与圆、圆与圆之间的那些事儿1.(2013年山东(理))过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C 430x y --=D .430x y +-=2.(2012年高考(天津理))设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A .[1B .(,1)-∞∞UC .[2-D .(,2)-∞-∞U 【答案】D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n +=++≤,设=t m n +,则21+14t t ≥,解得(,2)t ∈-∞-∞U . 3.(2012年高考(重庆理))对任意的实数k,直线y=kx+1与圆222=+y x 的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心【答案】C【解析】圆心(0,0)C 到直线10kx y -+=的距离为11d r =<<=,且圆心(0,0)C 不在该直线上.法二:直线10kx y -+=恒过定点(0,1),而该点在圆C 内,且圆心不在该直线上,故选C. 【考点定位】此题考查了直线与圆的位置关系,涉及的知识有:两点间接距离公式,点与圆的位置关系,以及恒过定点的直线方程.直线与圆的位置关系利用d 与r 的大小为判断.当0d r ≤<时,直线与圆相交,当d r =时,直线与圆相切,当d r >时,直线与圆相离.4.(2012年高考(陕西理))已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 ( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析: 22304330+-⨯=-<,所以点(3,0)P 在圆C 内部,故选A.(2012年高考(天津理))如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,=3AF ,=1FB ,3=2EF ,则线段CD 的长为______________. 【答案】43【命题意图】本试题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质.【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵BD ∥CE,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=CD x ,则=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD .5.(2012年高考(浙江理))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2=2到直线l :y =x 的距离,则实数a =______________. 【答案】94【解析】C 2:x 2+(y +4) 2=2,圆心(0,—4),圆心到直线l :y =x 的距离为:d ==,故曲线C 2到直线l :y =x的距离为d d r d '=-==另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),94d a '===⇒=6.(2012年高考(江苏))在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上D至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是____. 【答案】43. 【考点】圆与圆的位置关系,点到直线的距离【解析】∵圆C 的方程可化为:()2241x y -+=,∴圆C 的圆心为(4,0),半径为1. ∵由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点;∴存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤. ∵min AC 即为点C 到直线2y kx =-,2≤,解得403k ≤≤. ∴k 的最大值是43. 7 .(2013年江苏卷)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C的半径为,圆心在上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.。

全国卷历年高考解析几何解答题真题分类解析2019

全国卷历年高考解析几何解答题真题分类解析2019
(1)当 , 时,求△AMN的面积;
(2)当 时,求k的取值范围.
【解析】⑴当 时,椭圆E的方程为 ,A点坐标为 ,则直线AM的方程为 .联立 并整理得,
解得 或 ,则
因为 ,所以
因为 , ,所以 ,
整理得 , 无实根,所以 .
所以 的面积为 .
⑵直线AM的方程为 ,联立 并整理得,
,解得 或 ,
所以 ,所以
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C1,直线 交C1于M,N两点,过B且与 垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
【解析】(1)圆A整理为(x+1)2+y2=16,点A坐标为(-1,0),如图,∵BE∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|,
= ,∴S四边形MPNQ= |MN|·|PQ|= · = =24
∈[12,8 ).
【小结】这类题所解决的问题不需要对交点坐标进行转换,主要考查弦长公式的应用,圆锥曲线的统一弦长公式是:斜率为k的直线与圆锥曲线交于 两点,联立直线与圆锥曲线方程消元后得关于x或y的一元二次方程的二次项系数为a,判别式为△,则
因此,四边形ADBE的面积 .
设M为线段AB的中点,则 ,
由于 ,而 , 与向量 平行,所以 ,解得 或 .
当 时, ;当 时
因此,四边形 的面积为3或 .
【小结】这类题将所要证的结论(或给的条件)转化为交点坐标关系时候,经过变形化简没能完全化为韦达定理中的两根之和与两根之积的结构,此时,必需将x转化为y(或y转化为x),这在高考中是比较常见的。多数情况下用直线方程转换,此时,影响到运算处理难度关键在于直线方程的假设与消去x还是消去y的选择。一般来说,假设直线方程时首先考虑直线过的定点是x轴上的点还是y轴上的点,若过定点(t,0),则设为 运算较简便,若过定点(0,t),则设为 运算较简便。此外,还需要注意对特殊情形进行讨论,直线系 不包平行x轴的直线,直线系 不包垂直x轴的直线,对特殊情况讨论往往能帮助我们找到解题的突破口。直线圆锥曲线有两个交点时,把直线方程和圆锥曲线方程联立后是消去x还是消去y,关键在于将所要证的结论(或给的条件)转化为交点坐标关系经过变形化简的结果来定。

高考解析几何压轴题

高考解析几何压轴题

高考解析几何压轴题圆锥曲线解答题考纲解读:●每年必考,1年1题.特点:载体以直线和椭圆为主,其次是抛物线,双曲线考的较少,由于圆有丰富的几何性质,因此近年来用上圆作为载体的高考题越来越多!●圆锥曲线一定过方法关、运算关.其实近几年的圆锥曲线题目更侧重于运算.方法还是比较常规的.为什么这样呢?这与命题人的苦衷有关系,因为圆锥曲线是压轴题,压轴题不能简单,简单了肯定不行.但太难、或是思维量太大又怕把很多人拒之门外,所以又不敢出思维量太大的题目,最后就只剩下运算了,谁有能耐谁就能算出来,没有能耐就算不出来,但不能说题目难.十几年来,笔者认真解析了若干圆锥曲线题,精选了一些典型题,从中分析出方法和运算策略,总结如下:一.一个定值问题:“一定二动斜率定值”问题的高等背景与初等解法二.一个定点问题:圆锥曲线内接直角三角形性质初探三、一个最值问题:直线与圆、椭圆同时相切问题的初等解法与高等解法四、定值最值综合题:一个面积公式巧解两个高考题五、优化解题方法,探求命题过程六、浅谈抛物线对称轴上五个重要点七、2012年江苏卷解析几何题的轨迹解法八、例谈解析几何题的计算策略一.一个定值问题:“一定二动斜率定值”问题的高等背景与初等解法以下四个例题,都有类似条件:A 是圆锥曲线C 上的定点,,E F 是圆锥曲线C 上的两个动点,求证直线EF 的斜率为定值.我们把这类问题简称“一定二动斜率定值”问题,笔者经过仔细分析发现,这类问题的命题者利用了导数法研究曲线的切线斜率,也就是利用了导数产生的几何背景,本文利用极限与导数这一高等数学的方法先探求这个定值,然后利用初等方法给出证明.例1、如图1,已知,E F 是椭圆22143x y +=上的两个动点,3(1,)2A 是椭圆上的定点,如果直线AE 与AF 关于直线1x =对称,证明直线EF 的斜率为定值,并求出这个定值.高等背景:当AE 与AF 的倾斜角都趋近于90o时,直线EF 的斜率就趋向于过13(1,)2A -的切线斜率. 在22143x y +=中,两边对x 求导有,220,43x yy '+=把13(1,)2A -代入有:32()2120,43y '⨯-⨯+=解得12y '=.因此,可以确定所求的定值为12.初等解法:因为直线AE 与AF 关于直线1x =对称,所以直线AE 的斜率与AF 的斜率互为相反数.设直线AE 的方程为3(1)2y k x =-+,则直线AF 的方程为3(1)2y k x =--+.把3(1)2y k x =-+代入22143x y +=得: 2223(34)4(32)4()120(1)2k x k k x k ++-+--=L L ,设1122(,),(,)E x y F x y ,注意到1x =是方程(1)的一个根,由根与系数关系得,21234()12234k x k--=+, 图1同理可求22234()12234k x k+-=+, 12121212121233(1)[(1)]()222EFk x k x y y k x x k k x x x x x x -+-----+-===---, 把1x ,2x 代入上式得1.2EF k =例2、如图2,已知,E F 是椭圆221124x y +=上的两个动点,A 是椭圆上的定点,如果直线AE 与AF关于直线y =EF 的斜率为定值,并求出这个定值.高等背景:当AE 与AF 的倾斜角一个趋近于180o时,另一个趋近于0o时,直线EF 的斜率就趋向于过1(A 的切线斜率. 在221124x y +=中,两边对x 求导有,0,62x yy '+=把1(A 代入0,=解得13y '=.因此,可以确定所求的定值为13.初等解法:设直线AE的方程为(y k x =+代入221124x y +=得:222(13)(1)91830(1)k x k x k k ++-+--=L L , 设1122(,),(,)E x y F x y,注意到x =(1)的一个根,所以21x =,同理可求22x =,12121212()EF y y k x x k x x x x -+-==--,把1x ,2x 代入得1.3EF k = 例3、如图3,已知,E F 是抛物线2y x =上的两个动点,(1,1)A 是抛物线上的定点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个图2定值.高等背景:当AE 与AF 的倾斜角一个趋近于0o 时,另一个趋近于180o 时,直线EF 的斜率就趋向于过1(1,1)A -的切线斜率. 而2y x '=,所以1|2x y =-'=-,因此,可以确定所求的定值为2-.初等解法:设直线AE 的方程为(1)1y k x =-+, 代入2y x =得:210(1)x kx k -+-=L L ,设1122(,),(,)E x y F x y ,注意到1x =是方程(1)的一个根,所以11x k =-,同理可求21x k =--, 所以221212121212EFy y x x k x x x x x x --===+--,把1x ,2x 代入上式得 2.EF k =- 例4、如图4,已知,E F 是抛物线2y x =上的两个动点,(1,1)A 是抛物线上的定点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.高等背景:当AE 与AF 的倾斜角都趋近于90o 时,直线EF 的斜率就趋向于过1(1,1)A -的切线斜率. 由2y x =解得y =而在1(1,1)A -附近导数y '=,所以11|2x y ='=-,因此,可以确定所求的定值为12-.初等解法:设直线AE 的方程为(1)1y k x =-+,显然0k ≠,11y x k-=+,代入2y x =得:2110(1)y y k k-+-=L L ,设1122(,),(,)E x y F x y ,注意到1y =是方程(1)的一个根,所以1110(1)y k=-=L L , 同理可求21 1.y k =--而122212121EF y y k y y y y -==-+,把1y ,2y 代入得1.2EF k =- 解题规律总结:1、注意利用导数法探求定值,作为选择题或者填空题时要利用导数法,作为解答题图3图4时注意利用导数法进行检验;2、题目条件的变化:“直线AE 的斜率与AF 的斜率互为相反数”,等价于“直线AE 与AF 的倾斜角互补”,或者“直线AE 与AF 关于直线A x x =对称”,或者“直线AE 与AF 关于直线A y y =对称”.3、直线方程与圆锥曲线方程组成的方程组的一个解为 (,)A A x y ,消元后所得方程有一个根为A x 或A y ,此时一定要利用根与系数的关系求另一个根.4、注意以k -替换k 由E 点坐标直接求得F 点坐标.5、对于直线与椭圆或者双曲线,1212EF y y k x x -=-的进一步化简要利用直线方程,对于直线与抛物线,1212EF y y k x x -=-的进一步化简利用抛物线方程比利用直线方程更加简单. 把握住以上几点,你也可以轻松地自己改编一些类似的题目,你当然更能准确快速的解答一下练习题:1、已知,E F 是抛物线24y x =上的两个动点,(1,2)A -是抛物线上的定点,直线AE 与AF 关于直线1x =对称,证明直线EF 的斜率为定值,并求出这个定值. (答案:1)2、如图5,已知11,,,E F E F 是椭圆22143x y += 上的两个动点,3(1,)2A 是椭圆上的定点,如直线 AE 与AF 关于直线1x =对称,且直线1AE 与1AF 也关于直线1x =对称, 求证:11EF E F ∥.(提示:由例1知,11,EF E F 的斜率相等).二.一个定点问题:圆锥曲线内接直角三角形性质初探一、问题的提出:以圆锥曲线的一个顶点为端点作两条互相垂直的射线交圆锥曲线于两点(不是顶点),那么由这两点确定的直线有怎样的性质呢?图5二、问题的探究: (一)、抛物线例1:已知抛物线2:C y x =,O 是坐标原点,作射线OA OB 、交抛物线C 于A B 、,OA OB ⊥.求证:直线AB 过定点.证明:如图1,显然直线AB 斜率不是0,设直线AB 的方程为x y m λ=+,联立2y x =得:20y y m λ--=,显然0m ≠,240m λ∆=+≠,设1122((A x B x ,y )、,y ),则12λ+=y y ,12m =-y y ,又OA OB ⊥,∴0OA OB ⋅=u u u r u u u r,即12120x x =+y y ,又211y x =,222y x =, ∴21212)0+=(y y y y ,∴20m m -=, 解得0m =,或1m =.当0m =时, 直线AB 的方程为x y λ=,直线AB 过定点(0,0),不符合题意. 当1m =时,直线AB 的方程为1x y λ=+,显然直线AB 过定点(1,0). 综上, 直线AB 过定点(1,0). (二)、椭圆:例2:已知椭圆22:12x C y +=,(0,1)M 是C 的一个顶点,作射线MA MB 、交椭圆C 于A B 、,MA MB ⊥.求证:直线AB 过定点.证明:如图2,显然直线AB 有斜率,设直线AB 的方程为y kx m =+,联立2212x y +=得:222(21)4220k x kmx m +++-=,当0∆>时,设1122((A x B x ,y )、,y ),则2121222422,,2121km m x x x x k k -+=-=++ 又MA MB ⊥,∴0MA MB ⋅=u u u r u u u r,即12120x x =+(y -1)(y -1),121212()10x x y y y y +-++=,又1y kx m =+,2y kx m =+,图1图2∴221212(1)(1)()210k x x k m x x m m ++-++-+=,把2121222422,2121km m x x x x k k -+=-=++代入上式得:22222224(1)(1)2102121m km k k m m m k k -+⋅--⋅+-+=++,注意到1m =显然不合题意,于是上式化为:2222(1)4(1)(1)02121m kmk k m k k ++⋅-⋅+-=++,整理得310m +=,∴13m =-.即直线AB 的方程为13y kx =-,显然直线AB 过定点1(0,)3-.(三)、双曲线:例3:已知等轴双曲线22:1C x y -=,(1,0)M 是等轴双曲线C 的一个顶点,作射线MA MB 、交椭圆C 于A B 、,MA MB ⊥.试探求直线AB 是否过定点.解:如图3,当直线AB 没有斜率时,容易计算90AMB ∠≠︒,当直线AB 有斜率时,设直线AB 的方程为y kx m =+,联立221x y -=得:222(1)210k x kmx m ----=, 当210k -≠,0∆>时,设1122((A x B x ,y )、,y ),则212122221,,11km m x x x x k k ++=-=--又MA MB ⊥,∴0MA MB ⋅=u u u r u u u r,即1212(1)(1)0x x --=+y y , 又1y kx m =+,2y kx m =+,∴221212(1)(1)()10k x x km x x m ++-+++=,把212122221,,11km m x x x x k k ++=-=--代入上式化简得20k km +=,解得:0k =,或k m =-.当0k =时, 直线AB 的方程为(0)y m m =≠,直线AB 平行于x 轴,不过定点. 当k m =-时,直线AB 的方程为y mx m =-+,显然直线AB 过定点(1,0),不合题意. 综上, 直线AB 不过定点.例4:已知双曲线22:12y C x -=,(1,0)M 是双曲线C 的一个顶点,作射线MA MB 、交椭圆C 于A B 、,MA MB ⊥.试探求直线AB 是否过定点.解:如图4, 当直线AB 没有斜率时,容易计算90AMB ∠≠︒,当直线AB 有斜率时,设直线AB 的方程为y kx m =+,联立2212y x -=得:222(2)220k x kmx m ----=,当220k -≠,0∆>时,设1122((A x B x ,y )、,y ),则212122222,,22km m x x x x k k ++=-=-- 又MA MB ⊥,∴0MA MB ⋅=u u u r u u u r,即1212(1)(1)0x x --=+y y , 又1y kx m =+,2y kx m =+,∴221212(1)(1)()10k x x km x x m ++-+++=,把212122222,,22km m x x x x k k ++=-=--代入上式化简得22230m km k --=, 解得:m k =-,或3m k =.当m k =-时, 直线AB 的方程为y kx k =-,直线AB 过定点(1,0),不合题意. 当3m k =时,直线AB 的方程为3y kx k =+,显然直线AB 过定点(3,0)-. 综上, 直线AB 过定点(3,0)-.例5:已知双曲线22:21C x y -=,(1,0)M 是双曲线C 的一个顶点,作射线MA MB 、交椭圆C 于A B 、,MA MB ⊥.试探求直线AB 是否过定点.解:如图5, 当直线AB 没有斜率时,容易计算90AMB ∠≠︒,当直线AB 有斜率时,设直线AB 的方程为y kx m =+,联立2221x y -=得:222(12)4210k x kmx m ----=,当2120k -≠,0∆>时,设1122((A x B x ,y )、,y ),则2121222421,,2121km m x x x x k k ++=-=--又MA MB ⊥,∴0MA MB ⋅=u u u r u u u r,即1212(1)(1)0x x --=+y y , 又1y kx m =+,2y kx m =+,∴221212(1)(1)()10k x x km x x m ++-+++=,图5把2121222421,,2121km m x x x x k k ++=-=--代入上式化简得22430m km k ++=,解得:m k =-,或3m k =-.当m k =-时, 直线AB 的方程为y kx k =-,直线AB 过定点(1,0),不合题意. 当3m k =-时,直线AB 的方程为3y kx k =-,显然直线AB 过定点(3,0). 综上, 直线AB 过定点(3,0). 三、问题的总结:通过上面的例题可以得到如下的结论:圆锥曲线内接直角三角形,当直角顶点是圆锥曲线的顶点时,斜边有如下性质: 1、当圆锥曲线为等轴双曲线时,斜边所在的直线互相平行;2、当圆锥曲线为抛物线、椭圆、非等轴双曲线时,斜边所在的直线过定点. 四、问题的再探究:1、圆是特殊的圆锥曲线,类似的性质显然是90︒的圆周角所对的弦是直径(过圆心).2、在解题方法上,以上解法都是先设两个动点A B 、所在直线方程 ,然后寻求所设直线方程中两个参数的关系;我们也可以先设MA MB 、的方程,设方程时要利用MA MB ⊥,即MA MB 、的斜率都存在且不为0时,其乘积为1-,即若,MA k k = 则 1MB k k=- ,然后可以用k 表示A B 、的坐标,进一步可以用k 表示AB 所在直线方程,这种方法的计算量对于有些情形可能大一些.3、上面的研究仅仅利用了特殊的圆锥曲线,至于一般的含参数的圆锥曲线,斜边所过的定点如何求解,留给有兴趣的读者探究,例如,对于抛物线2:2C y px =,O 是坐标原点,作射线OA OB 、交抛物线C 于A B 、,若OA OB ⊥,则直线AB 过定点(2,0)p .4、当圆锥曲线内接直角三角形的直角顶点不是圆锥曲线的顶点时,是否也有类似的性质,这个问题供有兴趣的读者进一步探究.三、最值问题直线与圆、椭圆同时相切问题的初等解法与高等解法题目: 如图,设直线l 与圆222C x y R +=∶(12R <<)相切于A ,与椭圆2214x E y +=∶相切于点B ,当R 为何值时,||AB 取得最大值?并求最大值.初等解法:设直线l 的方程为y kx m =+,因为直线l 与圆C :222x y R +=(12R <<)相切于A , 所以R =即222(1)m R k =+ ①,因为l 与椭圆2214x E y +=∶相切于点B ,由2214y kx m x y ++==⎧⎪⎨⎪⎩得224()4x kx m ++=, 即222(14)8440k x kmx m +++-=有两个相等的实数解, 则2222226416(14)(1)16(41)0k m k m k m =-+-=-+=⊿, 即22410k m -+=, ②由①、②可得2222223414R m R R k R ⎧=⎪⎪-⎨-⎪=⎪-⎩, 设11(,)B x y ,由求根公式得1228442(14)km km kx k m m=-=-=-+,∴2211441()k k m y kx m k m m m m -+=+=-+==, ∴222221211614||5k OB m R x y +===-+=, ∴在直角三角形OAB 中,222222244||||||55()AB OB OA R R R R =-=--=-+, 因为2244R R+≥,当且仅当(1,2)R =时取等号,所以2||541AB -=≤,即当(1,2)R =时,||AB 取得最大值,最大值为1. 高等解法:上述解法用的是初等数学的解题方法,即解决二次曲线问题常利用的判别式及根与系数的关系(韦达定理),包括求根公式;特别地,对于直线与圆的相切,可利用直线与圆相切时,圆心到直线的距离等于圆的半径.现在提供高等数学方法,即导数的方法.首先利用导数证明下面的常用结论:定理:在曲线221mx ny +=上的任意一点00(,)x y 的切线方程为001mx x ny y +=. 证明:在221mx ny +=的两边对x 求导, 得220mx nyy '+=,即0mx nyy '+=, 所以过00(,)x y 的切线当有斜率时,斜率为0mx k y ny '==-, 切线方程为0000()mx y y x x ny -=--,即220000ny y ny mx x mx -=-+,又22001mx ny +=,∴001mx x ny y +=,此切线方程对斜率不存在时也适合. 注意,若从221mx ny +=先求出()y f x =±,再求导,则比较麻烦. 利用上面的定理,有下面的高等解法: 设11(,)B x y ,22(,)A x y ,则圆222C x y R +=∶在22(,)A x y 的切线为222x x y y R +=,轨迹2214x E y +=∶在11(,)B x y 的切线为1114x x y y +=即1144x x y y +=,由题意222x x y y R +=与1144x x y y +=应表示同一条直线,所以222`1144x y R x y ==,所以2242222111616x y R x y ==,2242222111616x y R x y +=+,又22222x y R +=,所以2422111616R R x y =+,221121616x y R+=, 又221144x y +=,所以21216124y R =-,即2124133y R =-,所以2124144()33x R =--, ∴2212214||5x y O R B +=-=+, ∴在直角三角形OAB 中,222222244||||||55()AB OB OA R R R R=-=--=-+, 因为2244R R+≥,当且仅当(1,2)R =时取等号,所以2||541AB -=≤,即当(1,2)R =时,||AB 取得最大值,最大值为1.比两种解法,显然初等方法比较麻烦,而高等方法比较简单.但是对于文科学生,没有学习复合函数求导法则,更没有学习隐函数求导方法,因此考生是很难想到的,除非平时已经对圆锥曲线上任意一点的切线方程作为一个结论已经记住(这个结论很好记忆). 巩固练习:1、已知焦点在x 轴上,中心在坐标原点的椭圆C 的离心率为45,且过点。

解析几何专题训练(高考真题)

解析几何专题训练(高考真题)

解析几何专题训练(高考真题)1.【2013高考真题大纲版理】已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C (I)求,;a b ;(II)设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF =,证明:22AF AB BF 、、成等比数列.【答案】1.【2013高考真题湖北理】如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n ()m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记m nλ=,BDM ∆和ABN ∆的面积分别为1S 和2S .(I)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(II)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.【答案】解:(I)12S S λ=()m n m n λ⇒+=-,1111m n m n λλλ++∴==--解得:1λ=+(舍去小于1的根)第21题图(II)设椭圆()22122:1x y C a m a m +=>,22222:1x y C a n+=,直线l :ky x = 22221ky x x y a m =⎧⎪⎨+=⎪⎩2222221a m k y a m +⇒=A y ⇒= 同理可得,B y =又BDM ∆和ABN ∆的的高相等12B D B A A B A BS BD y y y y S AB y y y y -+∴===-- 如果存在非零实数k 使得12S S λ=,则有()()11A B y y λλ-=+,即:()()222222222211a n k a n kλλλλ-+=++,解得()()2222232114a k n λλλλ--+= ∴当1λ>+时,20k >,存在这样的直线l ;当11λ<≤+时,20k ≤,不存在这样的直线l .2.【2013高考真题新课标Ⅱ理】平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F作直0x y +交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.3.【2013高考真题山东理】椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别是12,F F ,离过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.【答案】解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =± 由题意知221b a =,即22a b = 又c e a ==2 所以2a =,1b = 所以椭圆方程为2214x y += 1||||PF PM PF PM ⋅=2||||PF PM PF PM ⋅,1||PF PM PF ⋅=2||PF PM PF ⋅,设中204x ≠,将向量坐标代入并化简得:m(23000416)312x x x -=-,因为204x ≠,001200114(8x x kk kk x x +=-+=-为定值.4.【2013高考真题四川理】已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P . (Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.【答案】解:122a PF PF =+== 所以,a =又由已知,1c =, [来源:]所以椭圆C的离心率2c e a ===()II 由()I 知椭圆C 的方程为2212x y +=. 设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q点坐标为0,2⎛ ⎝⎭ (2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则 22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+ 由222211AQ AM AN =+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +-=+= ①将2y kx =+代入2212x y +=中,得 ()2221860k x kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③ 因为点Q 在直线2y k x =+上,所以2y k x -=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即60,x ⎛⎫⎛⎫∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.又0,25⎛- ⎝⎭满足()22102318y x --=,故22x ⎛∈- ⎝⎭. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤,又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,22y ⎛∈- ⎝⎦. 所以点Q 的轨迹方程是()22102318y x --=,其中,x ⎛∈ ⎝⎭,1,22y ⎛∈- ⎝⎦6.【2012高考真题湖北理】设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【答案】(Ⅰ)如图1,设(,)M x y ,00(,)A x y ,则由||||(0,1)DM m DA m m =>≠且,可得0x x =,0||||y m y =,所以0x x =,01||||y y m=. ① 因为A 点在单位圆上运动,所以22001x y +=. ②将①式代入②式即得所求曲线C 的方程为222 1 (0,1)y x m m m+=>≠且. 因为(0,1)(1,)m ∈+∞,所以 当01m <<时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(0),0);当1m >时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,,(0,. (Ⅱ)解法1:如图2、3,0k ∀>,设11(,)P x kx ,22(,)H x y ,则11(,)Q x kx --,1(0,)N kx ,直线QN 的方程为12y kx kx =+,将其代入椭圆C 的方程并整理可得222222211(4)40m k x k x x k x m +++-=.依题意可知此方程的两根为1x -,2x ,于是由韦达定理可得21122244k x x x m k -+=-+,即212224m x x m k =+. 因为点H 在直线QN 上,所以2121222224km x y kx kx m k -==+. 于是11(2,2)PQ x kx =--,22112121222242(,)(,)44k x km x PH x x y kx m k m k =--=-++. 而PQ PH ⊥等价于2221224(2)04m k x PQ PH m k -⋅==+, 即220m -=,又0m >,得m =故存在m =使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥.解法2:如图2、3,1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --,1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③图2 (01)m << 图3 (1)m >图1 第21题解答图依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合,故1212()()0x x x x -+≠. 于是由③式可得212121212()()()()y y y y m x x x x -+=--+. ④ 又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212*********()()12()()2PQ PH y y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PH k k ⋅=-,即212m -=-,又0m >,得m =故存在m 2212y x +=上,对任意的0k >,都有PQ PH ⊥.7.【2012高考真题福建理】如图,椭圆E :)0(12222>>=+b a by a x 的左焦点为1F ,右焦点为2F ,离心率21=e .过1F 的直线交椭圆于A 、B 两点,且△ABF2的周长为8.(Ⅰ)求椭圆E 的方程.(Ⅱ)设动直线l :y=kx+m 与椭圆E 有且只有一个公共点P ,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.8.【2012高考真题四川理】如图,动点M 到两定点(1,0)A -、(2,0)B 构成MAB ∆,且2MBA MAB ∠=∠,设动点M 的轨迹为C 。

2013~2019年各省市高考真题:解析几何—直线与圆(附详细答案 老师和学生通用)

2013~2019年各省市高考真题:解析几何—直线与圆(附详细答案 老师和学生通用)
段长为 2 3 . (I)求圆心 P 的轨迹方程; (II)若 P 点到直线 y x 的距离为 2 ,求圆 P 的方程.
2 39.(2011 新课标)在平面直角坐标系 xoy 中,曲线 y x2 6x 1与坐标轴的交点都在圆 C 上.
(I)求圆 C 的方程;
(II)若圆 C 与直线 x y a 0 交于 A,B 两点,且 OA OB, 求 a 的值.
32.(2014 湖北)已知圆 O : x2 y2 1和点 A(2, 0) ,若定点 B(b, 0) (b 2) 和常数 满足:对圆 O 上任
意一点 M ,都有 | MB | | MA | ,则
(Ⅰ) b

(Ⅱ)
.
33.(2013 浙江)直线 y 2x 3 被圆 x2 y2 6x 8y 0 所截得的弦长等于__________.
D. 4 或 3 34
8.(2015 广东)平行于直线 2x y 1 0 且与圆 x2 y2 5 相切的直线的方程是
A. 2x y 5 0 或 2x y 5 0
B. 2x y 5 0 或 2x y 5 0 C. 2x y 5 0 或 2x y 5 0
D. 2x y 5 0 或 2x y 5 0 9.(2015 新课标 2)过三点 A(1,3) , B(4, 2) , C(1, 7) 的圆交于 y 轴于 M 、 N 两点,则 MN =
18.(2014 江西)在平面直角坐标系中, A, B 分别是 x 轴和 y 轴上的动点,若以 AB 为直径的圆 C 与直线
2x y 4 0 相切,则圆 C 面积的最小
C. (6 2 5)
D. 5 4
19.(2013 山东)过点(3,1)作圆 x 12 y2 1的两条切线,切点分别为 A,B,则直线 AB 的方程为

高考数学解析几何压轴题

高考数学解析几何压轴题

2.圆锥曲线1.(2017·福建厦门第一中学期中)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 是抛物线C 2:y 2=4x 的焦点,M 是C 1与C 2在第一象限内的交点,且||MF =53. (1)求C 1的方程;(2)已知菱形ABCD 的顶点A ,C 在椭圆C 1上,顶点B ,D 在直线7x -7y +1=0上,求直线AC 的方程. 解 (1)设M (x 1,y 1)(x 1>0,y 1>0),椭圆的左、右焦点分别为F 1,F 2,由题意知点F 2即为点F (1,0).由抛物线的定义,|MF 2|=53⇒x 1+1=53⇒x 1=23, 因为y 21=4x 1, 所以y 1=263,即M ⎝⎛⎭⎫23,263, 所以|MF 1|=⎝⎛⎭⎫23+12+⎝⎛⎭⎫2632=73,由椭圆的定义得2a =|MF 1|+|MF 2|=73+53=4⇒a =2, 所以b =a 2-c 2=3,所以椭圆C 1的方程为x 24+y 23=1. (2)因为直线BD 的方程为7x -7y +1=0,四边形ABCD 为菱形,所以AC ⊥BD ,设直线AC 的方程为y =-x +m ,代入椭圆C 1的方程,得7x 2-8mx +4m 2-12=0,由题意知,Δ=64m 2-28(4m 2-12)>0⇔-7<m <7.设A (x 1,y 1),C (x 2,y 2),则x 1+x 2=8m 7,y 1+y 2=2m -(x 1+x 2)=-8m 7+2m =6m 7, 所以AC 中点的坐标为⎝⎛⎭⎫4m 7,3m 7,由四边形ABCD 为菱形可知,点⎝⎛⎭⎫4m 7,3m 7在直线BD 上,所以7·4m 7-7·3m 7+1=0⇒m =-1∈()-7,7. 所以直线AC 的方程为y =-x -1,即x +y +1=0.2.(2017·湖南师大附中月考)已知椭圆C 的中心在原点,离心率为22,其右焦点是圆E :(x -1)2+y 2=1的圆心. (1)求椭圆C 的标准方程;(2)如图,过椭圆C 上且位于y 轴左侧的一点P 作圆E 的两条切线,分别交y 轴于点M ,N .试推断是否存在点P ,使|MN |=143?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c , 因为椭圆的右焦点是圆E 的圆心,所以c =1, 因为椭圆的离心率为22,则c a =22,即a =2c =2, 从而b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)设点P (x 0,y 0)(x 0<0),M (0,m ),N (0,n ),则直线PM 的方程为y =y 0-m x 0x +m , 即(y 0-m )x -x 0y +mx 0=0.因为圆心E (1,0)到直线PM 的距离为1, 即|y 0-m +x 0m |(y 0-m )2+x 20=1,即(y 0-m )2+x 20=(y 0-m )2+2x 0m (y 0-m )+x 20m 2,即(x 0-2)m 2+2y 0m -x 0=0,同理可得,(x 0-2)n 2+2y 0n -x 0=0.由此可知,m ,n 为方程(x 0-2)x 2+2y 0x -x 0=0的两个实根,所以m +n =-2y 0x 0-2,mn =-x 0x 0-2, |MN |=|m -n |=(m +n )2-4mn =4y 20(x 0-2)2+4x 0x 0-2=4x 20+4y 20-8x 0(x 0-2)2. 因为点P (x 0,y 0)在椭圆C 上,则x 202+y 20=1, 即y 20=1-x 202, 则|MN |=2x 20-8x 0+4(x 0-2)2=2(x 0-2)2-4(x 0-2)2=2-4(x 0-2)2, 令2-4(x 0-2)2=143, 则(x 0-2)2=9,因为x 0<0,则x 0=-1,y 20=1-x 202=12,即y 0=±22, 故存在点P ⎝⎛⎭⎫-1,±22满足题设条件. 3.已知点P 是椭圆C 上任意一点,点P 到直线l 1:x =-2的距离为d 1,到点F (-1,0)的距离为d 2,且d 2d 1=22,直线l 与椭圆C 交于不同的两点A ,B (A ,B 都在x 轴上方),且∠OF A +∠OFB =180°.(1)求椭圆C 的方程;(2)当A 为椭圆与y 轴正半轴的交点时,求直线l 的方程;(3)对于动直线l ,是否存在一个定点,无论∠OF A 如何变化,直线l 总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.解 (1)设P (x ,y ),则d 1=|x +2|,d 2=(x +1)2+y 2, ∴d 2d 1=(x +1)2+y 2|x +2|=22,化简得,x 22+y 2=1, ∴椭圆C 的方程为x 22+y 2=1. (2)A (0,1),F (-1,0),∴k AF =1-00-(-1)=1, 又∵∠OF A +∠OFB =180°,∴k BF =-1,直线BF 的方程为y =-(x +1)=-x -1,代入x 22+y 2=1,解得⎩⎪⎨⎪⎧ x =0y =-1(舍),⎩⎨⎧ x =-43,y =13.∴B ⎝⎛⎭⎫-43,13, k AB =1-130-⎝⎛⎭⎫-43=12, ∴直线AB 的方程为y =12x +1,即直线l 的方程为x -2y +2=0. (3)方法一 ∵∠OF A +∠OFB =180°,∴k AF +k BF =0.设A (x 1,y 1),B (x 2,y 2),直线AB 方程为y =kx +b ,将直线AB 的方程y =kx +b 代入x 22+y 2=1,得⎝⎛⎭⎫k 2+12x 2+2kbx +b 2-1=0.∴x 1+x 2=-2kb k 2+12,x 1x 2=b 2-1k 2+12, ∴k AF +k BF =y 1x 1+1+y 2x 2+1=kx 1+b x 1+1+kx 2+b x 2+1=(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)(x 1+1)(x 2+1)=0, ∴(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=2kx 1x 2+(k +b )(x 1+x 2)+2b=2k ×b 2-1k 2+12-(k +b )×2kb k 2+12+2b =0, ∴b -2k =0,∴直线AB 的方程为y =k (x +2),∴直线l 总经过定点M (-2,0),方法二 由于∠OF A +∠OFB =180°,∴点B 关于x 轴的对称点B 1在直线AF 上.设A (x 1,y 1),B (x 2,y 2),B 1(x 2,-y 2),直线AF 方程为y =k (x +1).代入x 22+y 2=1,得⎝⎛⎭⎫k 2+12x 2+2k 2x +k 2-1=0. ∴x 1+x 2=-2k 2k 2+12,x 1x 2=k 2-1k 2+12, ∴k AB =y 1-y 2x 1-x 2, 直线AB 的方程为y -y 1=y 1-y 2x 1-x 2(x -x 1), 令y =0,得x =x 1-y 1(x 1-x 2)y 1-y 2=x 2y 1-x 1y 2y 1-y 2. 又∵y 1=k (x 1+1),-y 2=k (x 2+1),∴x =x 2y 1-x 1y 2y 1-y 2=x 2×k (x 1+1)+x 1×k (x 2+1)k (x 1+1)+k (x 2+1)=2x 1x 2+x 1+x 2x 1+x 2+2=2×k 2-1k 2+12-2k 2k 2+122-2k 2k 2+12=-2. ∴直线l 总经过定点M (-2,0).4.(2017·广西南宁二中、柳州高中、玉林高中联考)已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=3FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.解 (1)依题意可设直线AB :x =my +1,设A (x 1,y 1),B (x 2,y 2),将直线AB 与抛物线联立⎩⎪⎨⎪⎧ x =my +1y 2=4x⇒y 2-4my -4=0, 由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=4m ,y 1y 2=-4, ∵AF →=3FB →,∴y 1=-3y 2,∴m 2=13,∴直线AB 的斜率为3或- 3.(2)S 四边形OACB =2S △AOB =2·12||OF ||y 1-y 2=||y 1-y 2=(y 1+y 2)2-4y 1y 2=16m 2+16≥4, 当m =0时,四边形OACB 的面积最小,最小值为4.5.(2017·惠州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同的交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由.解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝⎛⎭⎫1,22在椭圆C 上,所以2a =||AF 1+||AF 2=22, 因此a =2,b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)椭圆C 上不存在这样的点Q ,理由如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x ,得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t 9且-3<t <3. 由PM →=NQ →,得⎝⎛⎭⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53. (也可由PM →=NQ →知四边形PMQN 为平行四边形而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,可得y 4=2t -159.) 又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围[-1,1]矛盾. 因此点Q 不在椭圆上,即椭圆上不存在满足题意的Q 点.6.(2017·河南开封月考)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Г的方程;(2)已知A ,B ,C 是轨迹Г的三个动点,点A 在一象限,B 与A 关于原点对称,且|CA |=|CB |,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.解 (1)∵Q 在线段PF 的垂直平分线上,∴|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4,又|EF |=23<4,∴Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆,∴Г:x 24+y 2=1. (2)由点A 在第一象限,B 与A 关于原点对称,设直线AB 的方程为y =kx (k >0),∵|CA |=|CB |,∴C 在AB 的垂直平分线上,∴直线OC 的方程为y =-1kx . ⎩⎪⎨⎪⎧ y =kx x 24+y 2=1⇒(1+4k 2)x 2=4,|AB |=2|OA |=2x 2+y 2=4k 2+14k 2+1,同理可得|OC |=2k 2+1k 2+4, S △ABC =12|AB |×|OC |=4(k 2+1)2(4k 2+1)(k 2+4)=4(k 2+1)(4k 2+1)(k 2+4), (4k 2+1)(k 2+4)≤4k 2+1+k 2+42=5(k 2+1)2,当且仅当k =1时取等号, ∴S △ABC ≥85. 综上,当直线AB 的方程为y =x 时,△ABC 的面积有最小值85.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(20)(本小题满分12分)
已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线 C.
(Ⅰ)求C 的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.
2013-2
(20)(本小题满分12分)
平面直角坐标系xOy 中,过椭圆M :(a>b>0)右焦点的直线x+y- =0交M 于A ,B 两点,P 为AB 的中点,
且OP 的斜率为
(Ι)求M 的方程
(Ⅱ)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值
M 22(1)1x y ++=N 22(1)9x y -+=P M N P l P M l 22
221x y a b +=1
2
21.(本小题满分12分)
已知双曲线离心率为直线
(I )求;
(II )
证明:
()22
1222:10,0x y C a b F F a b
-=>>的左、右焦点分别为,,3
,2y C =与,;a b 2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -22.AF AB BF 、、成等比数列
20. (本小题满分12分) 已知点(0,-2),椭圆:
,是椭圆的焦点,直线
,为坐标原点. (Ⅰ)求的方程;
(Ⅱ)设过点的直线与相交于两点,当的面积最大时,求的方程.
2014-2
20. (本小题满分12分)
设,分别是椭圆C:的左,右焦点,M 是C 上一点且与x 轴垂直,直线与C 的另一个交点为N.
(Ⅰ)若直线MN 的斜率为,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且,求a,b .
A E 22
221(0)x y a b a b
+=>>F AF O E A l E ,P Q OPQ ∆l 1F 2F ()222210y x a b a b +=>>2MF 1MF 34
15MN F N =
(20)(本小题满分12分)
在直角坐标系xoy 中,曲线C :y =2
4
x 与直线l:y =kx +a (a >0)交于M ,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;
(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.
2015-2
20.(本小题满分12分)
已知椭圆C :2229(0)x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。

(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;
(2)若l 过点(,)3
m m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由。

2016-1
20.(2016·全国Ⅰ理,20)(本小题满分12分)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .
(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;
(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于
2016-2
20.(2016·全国Ⅱ理,20)(本小题满分12分)已知椭圆E :x 2t +y 23
=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .
(1)当t =4,|AM |=|AN |时,求△AMN 的面积;
(2)当2|AM |=|AN |时,求k 的取值范围.
20.(2016·全国Ⅲ,20)(本小题满分12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
20.(2017·全国Ⅰ理,20)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上.
(1)求C 的方程;
(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.
2017-2
20.(2017·全国Ⅱ理,20)设O 为坐标原点,动点M 在椭圆C :x 22
+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.
(1)求点P 的轨迹方程;
(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .
20.(2017·全国Ⅲ理,20)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
设椭圆2
2:12
x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程;
(2)设O 为坐标原点,证明:OMA OMB ∠=∠.
2018-2
19.(12分)
设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;
(2)求过点A ,B 且与C 的准线相切的圆的方程.
已知斜率为的直线与椭圆交于,两点,线段的中点为. (1)证明:; (2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该
数列的公差.
k l 22
143
x y C +=:A B AB ()()10M m m >,12
k <-F C P C FP FA FB ++=0u u u r u u u r u u u r FA u u u r FP u u u r FB u u u r
已知抛物线C :23y x =的焦点为F ,斜率为
32
的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若||||4AF BF +=,求l 的方程; (2)若3AP PB =u u u r u u u r ,求||AB .
2019-2
21.(12分) 已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12
-,记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;
(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .
(ⅰ)证明:△PQG 是直角三角形;
(ⅱ)求△PQG 面积的最大值.
已知曲线C:
2
2
x
y=,D为直线
1
2
y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线
AB过定点;(2)若以
5
(0,)
2
E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.。

相关文档
最新文档