七年级数学下册第三单元

合集下载

七年级下册数学第三单元笔记内容

七年级下册数学第三单元笔记内容

第一部分:引言1. 关于七年级下册数学第三单元笔记内容的重要性在学习数学的过程中,笔记的重要性不言而喻。

特别是在七年级这个阶段,数学知识开始逐渐深入,学生需要建立起扎实的数学基础。

七年级下册数学第三单元笔记内容的整理和掌握对于学生的学习至关重要。

第二部分:基础概念的理解与掌握2.1 分式的概念和运算规则七年级下册数学第三单元的笔记内容首先涉及到分式的概念和运算规则。

在笔记中,学生需要清晰地掌握分式的定义、分子、分母的含义以及分式的加减乘除运算规则。

这些基础概念的理解与掌握是学生进一步学习和应用分式知识的基础。

2.2 分式方程的解法与应用笔记内容还应包括分式方程的解法与应用。

学生需要记录下分式方程的解法步骤,以及在实际问题中如何应用分式方程进行求解。

通过记录和理解这些实际应用的例子,学生能够更好地理解分式方程在生活中的意义和实际运用。

第三部分:深入拓展与综合运用3.1 分式乘除的深入拓展除了基础概念和分式方程的应用,笔记内容还应该深入拓展到分式的乘除运算。

学生需要记录下分式乘法和除法的具体操作方法,并且掌握如何简化和化简分式表达式。

还应该记录一些在实际问题中应用分式乘除的例子,以便更好地理解和掌握这一知识点。

3.2 总结与应用笔记的内容应该包括对整个单元知识的总结和应用。

学生需要在笔记中梳理单元内容的重点和难点,进行适当的归纳总结,以便在复习和应用时能够快速回顾和理解。

还可以记录一些相关综合应用题目,帮助学生将所学知识进行综合运用。

第四部分:个人观点和总结通过对七年级下册数学第三单元笔记内容的全面评估和撰写文章,让我对这一知识点有了更深入的理解。

分式作为数学中的重要知识点,掌握其相关内容对于学生的数学学习和发展至关重要。

通过整理深度和广度兼具的笔记内容,学生能够更好地理解和掌握分式知识,为将来的学习打下坚实的基础。

总结起来,七年级下册数学第三单元笔记内容的撰写应当包括基础概念的理解与掌握、深入拓展与综合运用以及个人观点和总结。

(易错题)初中数学七年级数学下册第三单元《平面直角坐标系》测试卷(含答案解析)

(易错题)初中数学七年级数学下册第三单元《平面直角坐标系》测试卷(含答案解析)

一、选择题1.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-3.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( ) A .()3,4B .()3,4--C .()4,3-D .()3,4-4.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,6.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上7.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( )A .(0,﹣2)B .(3,0)C .(0,3)D .(﹣2,0)8.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π9.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求. A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .4912.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题13.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.14.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.15.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.16.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.17.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______. 18.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __19.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)20.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=, (1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________. (2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.三、解答题21.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 . 22.如图,在平面直角坐标系中有一个△ABC .(1)将△ABC 向右平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1. (2)写出△A 1B 1C 1,三个顶点的坐标.23.若点(1m -,32m -)在第二象限内,求m 的取值范围24.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A 1B 1C 1;(2)平移△ABC ,使对应点 A 2 的坐标为(0,﹣4),写出平移后对应△A 2B 2C 2的中B 2,C 2点坐标.25.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A 点,公共自行车停车处;B 点,公园大门;C 点,便利店;D 点,社会主义核心价值观标牌;E 点,健身器械;F 点,文化小屋,如果B 点和D 点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系; (2)在(1)的平面直角坐标系中,写出点A ,C ,E ,F 的坐标. 26.已知()4,0A ,点B 在x 轴上,且5AB =. (1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABDS=,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,可以画出相应的图形,然后即可发现点所在的位置变化特点,即可得到小球第2020次碰到球桌边时,小球的位置. 【详解】如图,小球第一次碰到球桌边时,小球的位置是(0,1) 小球第二次碰到球桌边时,小球的位置是(3,4) 小球第三次碰到球桌边时,小球的位置是(7,0) 小球第四次碰到球桌边时,小球的位置是(8,1) 小球第五次碰到球桌边时,小球的位置是(5,4) 小球第六次碰到球桌边时,小球的位置是(1,0) ……∵2020÷6=336 (4)∴小球第2020次碰到球桌边时,小球的位置是(8,1) 故选D【点睛】本题考查坐标位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.2.B解析:B 【分析】根据点A 、B 的坐标建立平面直角坐标系,由此即可得. 【详解】因为(2,1),(2,3)A B ---,所以将A 向右移2个单位,向下移动1个单位即为坐标原点, 建立平面直角坐标系如图所示:由图可知,点C 距x 轴1个单位,距离y 轴2个单位, 则(2,1)C -, 故选:B . 【点睛】本题考查了点坐标,根据已知点的坐标正确建立平面直角坐标系是解题关键.3.C解析:C 【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答. 【详解】 解:设(),P a bP 在第二象限, 0,0a b ∴<>P 到x 轴距离为3,则3b = P 到y 轴距离为4,则4a =-()4,3P ∴-故选C 【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.4.D解析:D【分析】根据各象限内点的坐标特征解答.【详解】∵210a+>,a+,3-)在第四象限.点A(21故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C解析:C【分析】应先判断出点所在的象限,进而利用这个点横纵坐标的绝对值求解.【详解】解:根据题意,则∵点A位于x轴上方,且位于y轴的左边,∴点A在第二象限,∵点A距x轴5个单位长,距y轴10个单位长,-,;∴点A的坐标为(105)故选:C.【点睛】本题主要考查了点在第二象限时坐标的特点,注意到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.6.B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,故选B.【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.7.C解析:C【分析】直接利用点的坐标特点进而画出图形得出答案. 【详解】 解:如图所示:,过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,故点B 的坐标为:(0,3). 故选C . 【点睛】此题主要考查了点的坐标,正确画出图形是解题关键.8.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而得到点的坐标; 【详解】半径为1个单位长度的半圆的周长为12, ∵点P 从原点O 出发,沿着这条曲线向右运动, 每秒2π个单位长度, ∴点1P 秒走12个半圆, 当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为1秒时,点P 的坐标为()1,1,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为2秒时,点P 的坐标为()2,0,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为3秒时,点P 的坐标为()3,1-,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为4秒时,点P 的坐标为()4,0,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为5秒时,点P 的坐标为()5,1,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为6秒时,点P 的坐标为()6,0,,∵20164=504÷, ∴2016A 的坐标为()2016,0; 故答案选B . 【点睛】本题主要考查了点的坐标规律,准确计算是解题的关键.9.D解析:D 【分析】先根据点P 和P′的坐标得出坐标的变化规律,再根据规律逐一判断即可得答案. 【详解】∵点()1,2P 平移后的坐标是,3()3P '﹣, ∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1, A.()3,24(,2)→-,横坐标加1,纵坐标减4,故该选项不符合题意,B.()(104),5,--→-,横坐标减4,纵坐标减4,故该选项不符合题意,C.(1.2,5)→(-3.2,6),横坐标减4.8,纵坐标减1,故该选项不符合题意,D.122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭,横坐标减4,纵坐标加1,故该选项符合题意, 故选:D . 【点睛】本题考查了坐标与图形变化-平移,根据点P 与P′的坐标,得出平移前后点的坐标变化规律是解题的关键.10.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得. 【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、 ∴图象可得移动4次图象完成一个循环 ∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△故选B 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.11.B解析:B【分析】设边长为10的正方形内部的整点的坐标为(x ,y ),x ,y 都为整数,根据题意可得规律求解.【详解】解:设边长为10的正方形内部的整点的坐标为(x ,y ),x ,y 都为整数.则﹣5<x <5,﹣5<y <5,故x 只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,y 只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,它们共可组成点(x ,y )的数目为9×9=81(个).故选:B .【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标特点规律,然后进行求解即可.12.C解析:C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.二、填空题13.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2,∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅ 11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.14.(8-4)【分析】直接利用平移中点的变化规律求解即可【详解】解:原来点的横坐标是5纵坐标是-2向右平移3个单位再向下平移2个单位得到新点的横坐标是5+3=8纵坐标为-2-2=-4则点B 的坐标为(8-解析:(8,-4)【分析】直接利用平移中点的变化规律求解即可.【详解】解:原来点的横坐标是5,纵坐标是-2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为-2-2=-4.则点B 的坐标为(8,-4).故答案为:(8,-4).【点睛】本题主要考查了坐标与图形变化-平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.15.(1-2)【分析】根据题意写出各个点的坐标找出点的坐标的变化规律进而即可得到答案【详解】∵∴直线OA 是第二四象限的角平分线∵∴(-21)(-2-1)(2-1)(1-2)(12)(-12)(-21)∴解析:(1,-2)【分析】根据题意,写出各个点的坐标,找出点的坐标的变化规律,进而即可得到答案.【详解】∵()3,3A -,∴直线OA 是第二、四象限的角平分线,∵()1,2P -,∴1P (-2,1),2P (-2,-1),3P (2,-1),4P (1,-2),5P (1,2),6P (-1,2),7P (-2,1),∴6个点一次循环,∵2020÷6=336…4,∴2020P 的坐标是(1,-2),故答案是:(1,-2)【点睛】本题主要考查坐标系中点的坐标的变化规律,根据点的坐标,找出规律,是解题的关键. 16.【分析】设点P 的坐标为先根据点P 的位置可得再根据点到坐标轴的距离即可得【详解】设点P 的坐标为点位于轴上方轴左侧点P 距离轴4个单位长度距离轴2个单位长度即则点P 的坐标为故答案为:【点睛】本题考查了点到 解析:(2,4)-【分析】设点P 的坐标为(,)a b ,先根据点P 的位置可得0,0a b <>,再根据点到坐标轴的距离即可得.【详解】设点P 的坐标为(,)a b ,点P 位于x 轴上方,y 轴左侧,0,0a b ∴<>,点P 距离x 轴4个单位长度,距离y 轴2个单位长度,4,2b a ∴==,4,2b a ∴=-=,即2,4a b =-=,则点P 的坐标为(2,4)-,故答案为:(2,4)-.【点睛】本题考查了点到坐标轴的距离、点坐标,掌握理解点到坐标轴的距离是解题关键. 17.(9﹣2)或(﹣3﹣2)【分析】根据平行线的性质可得点M 的纵坐标与点P 的纵坐标相同是﹣2再根据MP =6即可求出点M 的坐标【详解】解:∵点P(3−2)MP//x 轴∴点M 的横坐标与点P 的横坐标相同是﹣2解析:(9,﹣2)或 (﹣3,﹣2)【分析】根据平行线的性质可得点M 的纵坐标与点P 的纵坐标相同,是﹣2,再根据MP =6,即可求出点M 的坐标.【详解】解:∵点P(3,−2), MP//x 轴,∴点M 的横坐标与点P 的横坐标相同,是﹣2,又∵MP =6,∴点M 的横坐标为为3+6=9,或3−6=−3,∴点M 的坐标为 (9,﹣2)或 (﹣3,﹣2).故答案为:(9,﹣2)或 (﹣3,﹣2).【点睛】本题考查了点坐标的问题,掌握平行线的性质、点坐标的性质是解题的关键. 18.1【分析】先根据点坐标关于y 轴对称的变换规律求出ab 的值再代入计算有理数的乘方即可得【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数纵坐标不变则因此故答案为:1【点睛】本题考查了点坐标关于y 轴 解析:1【分析】先根据点坐标关于y 轴对称的变换规律求出a 、b 的值,再代入计算有理数的乘方即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数,纵坐标不变,则5,4b a =-=,因此()()()2020202020204511a b =+=--=, 故答案为:1.【点睛】本题考查了点坐标关于y 轴对称的变换规律、有理数的乘方,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 19.(04)(12)(20)(44)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2同时矩形AEDC 面积也为2且E 为AP1的中点由中线平分所在三角形面积即为所求【详解】解:∵又∴解析:(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2,同时矩形AEDC 面积也为2,且E 为AP 1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵11+2112222ABC ACD ABCDS S S 四边形, 又122ACDES 长方形, ∴=2ADP ACDE S S 长方形,又E 为AP 1的中点,∴DE 平分△ADP 1的面积,且△AED 面积为1, ∴△ADP 1面积为2,故P 1点即为所求,且P 1(4,4),同理C 为DP 3的中点,AC 平分△ADP 3面积,且△ACD 面积为1,故△ADP 3面积为2,故P 3点即为所求,且P 3(1,2),由两平行线之间同底的三角形面积相等可知,过P 3作AD 的平行线与网格的交点P 2和P 4也为所求,故P 2(0,4),P 4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.20.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.三、解答题21.(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2; (2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.22.(1)见解析;(2)A 1(1,3),B 1(-1,0),C 1(2,1).(1)直接根据平移的性质确定A 1、B 1、C 1点即可画图;(2)原三角形中点A 、B 、C 的坐标已知,将△ABC 向右平移3个单位后,横坐标变为x+3,而纵坐标不变,所以点A 1、B 1、C 1的坐标可知.【详解】解:(1)(2)∵A (-2,3),B (-4,0),C (-1,1)∴A 1(1,3),B 1(-1,0),C 1(2,1).【点睛】此题主要考查根据图形平移的性质画图,熟练利用平移的性质确定点的坐标是解题关键. 23.m <1【分析】根据点在第二象限的条件是:横坐标是负数,纵坐标是正数,得出不等式组,即可解答.【详解】∵点(1m -,32m -)在第二象限,∴10320m m -<⎧⎨->⎩, ∴132m m <⎧⎪⎨<⎪⎩, 解得:1m <,∴m 的取值范围是:1m <.【点睛】本题考查了点所在的象限,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限()++,,第二象限()-+,,第三象限()--,,第四象限()+-,. 24.(1)如图所示,△A 1B 1C 1 即为所求见解析;(2)如图所示见解析,△A 2B 2C 2 即为所求,其中 B 2 点坐标为(3,﹣2),C 2 点坐标为(3,﹣4).根据旋转作图的步骤:①定点一一旋转中心;②旋转方向;③旋转角度.再根据旋转的性质进行操作即可画出旋转之后的图形;接下来再根据平移作图的一般步骤,作出平移之后的图形,相信你能画出来.【详解】(1)如图所示,△A1B1C1 即为所求.(2)如图所示,△A2B2C2 即为所求,其中B2点坐标为(3,﹣2),C2 点坐标为(3,﹣4).【点睛】本题主要考查旋转和平移的知识点,解题的关键是要注意坐标的平移方法,25.(1)见解析;(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2)【分析】(1)根据B,D两点坐标建立平面直角坐标系即可.(2)根据点的位置写出坐标即可.【详解】解:(1)平面直角坐标系如图所示.(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2).【点睛】本题考查点的坐标等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)()1,0B -或()9,0;(2)()0,4C或()0,4-;(3)()1,6D 或()11,6D --【分析】 (1)由题意知A 和B 都在x 轴上,根据两点间的距离可得B 的坐标; (2)设点C 的坐标为()0,C y ,则1102ABC S AB y =⋅⋅=△,求解即可; (3)由题意可得15122ABD A S B a =⋅⋅=+△,求出a 的值代入即可. 【详解】解:(1)∵()4,0A ,点B 在x 轴上,且5AB =,∴()1,0B -或()9,0;(2)设()0,C y ,则1102ABC S AB y =⋅⋅=△, 解得4y =±,∴点C 的坐标为()0,4C 或()0,4-;(3)根据题意可得15122ABD A S B a =⋅⋅=+△, 解得4a =或8a =-,∴点D 的坐标为()1,6D 或()11,6D --.【点睛】本题考查坐标与图形,掌握三角形的面积公式是解题的关键.。

七年级下册数学第三章

七年级下册数学第三章

七年级下册数学第三章一、一元一次方程的概念。

1. 定义。

- 方程:含有未知数的等式叫做方程。

例如:2x + 3=5,其中x是未知数,这个等式就是方程。

- 一元一次方程:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。

它的一般形式是ax + b=0(a≠0),这里a是系数,x 是未知数,b是常数项。

例如3x - 1 = 0就是一元一次方程。

2. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

例如,对于方程2x+3 = 7,当x = 2时,方程左边=2×2 + 3=7,方程右边=7,所以x = 2就是这个方程的解。

二、一元一次方程的解法。

1. 移项。

- 定义:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

例如,在方程2x+3 = 5x - 1中,为了求解x,我们把5x移到左边变为-5x,把3移到右边变为-3,得到2x - 5x=-1 - 3。

- 注意事项:移项要变号。

2. 合并同类项。

- 在移项后,我们需要将方程中的同类项进行合并。

例如,对于方程2x - 5x=-1 - 3,合并同类项后得到-3x=-4。

3. 系数化为1。

- 定义:将方程ax = b(a≠0)两边同时除以a,得到x=(b)/(a)的过程叫做系数化为1。

例如,对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。

三、一元一次方程的实际应用。

1. 步骤。

- 审:审题,理解题意,找出题目中的已知量和未知量,以及它们之间的关系。

- 设:设未知数,一般用x(或其他字母)表示所求的未知量。

- 列:根据题目中的等量关系列出方程。

- 解:解方程求出未知数的值。

- 验:检验方程的解是否符合实际意义。

- 答:写出答案,回答题目所问的问题。

2. 常见类型。

- 行程问题:路程 = 速度×时间。

例如,甲、乙两人相距100千米,甲的速度是20千米/小时,乙的速度是30千米/小时,两人相向而行,设x小时后相遇,则可列方程20x + 30x=100。

初中下册数学第三单元教案

初中下册数学第三单元教案

初中下册数学第三单元教案一、教学目标:1. 让学生掌握数据收集、整理和描述的基本方法,能够运用这些方法解决实际问题。

2. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。

3. 通过对数据的收集、整理和描述,培养学生的团队协作能力和沟通交流能力。

二、教学内容:1. 数据的收集:了解数据的来源,学会使用调查、实验等方法收集数据。

2. 数据的整理:学会对数据进行分类、排序、筛选等整理方法,形成有序的数据。

3. 数据的描述:学会使用图表、统计量等方法对数据进行描述,揭示数据背后的信息。

三、教学重点与难点:1. 教学重点:数据的收集、整理和描述的方法及其应用。

2. 教学难点:如何从数据中提取有价值的信息,以及对数据的分析和解释。

四、教学过程:1. 导入:通过生活中的实例,引发学生对数据收集、整理和描述的兴趣,导入新课。

2. 新课讲解:讲解数据的收集、整理和描述的基本方法,结合实例进行演示。

3. 课堂练习:学生分组进行数据收集、整理和描述的练习,教师巡回指导。

4. 案例分析:分析实际案例,让学生学会从数据中提取有价值的信息。

5. 总结与反思:让学生谈谈自己在课堂练习中的收获,以及如何将所学方法应用到实际生活中。

6. 课后作业:布置一道与本节课内容相关的课后作业,巩固所学知识。

五、教学策略:1. 采用“实例导入+讲解演示+练习实践+案例分析”的教学模式,让学生在实际操作中掌握知识。

2. 鼓励学生主动参与课堂,培养学生的团队协作能力和沟通交流能力。

3. 注重对学生进行思维训练,提高学生分析问题和解决问题的能力。

4. 及时进行课堂反馈,了解学生掌握情况,调整教学方法和节奏。

六、教学评价:1. 学生能够掌握数据收集、整理和描述的基本方法。

2. 学生能够运用所学方法解决实际问题。

3. 学生具备一定的团队协作能力和沟通交流能力。

4. 学生能够从数据中提取有价值的信息,并对数据进行分析和解释。

七、教学资源:1. 教学PPT:包含数据的收集、整理和描述的基本方法及实例。

浙教版七年级数学下册第三单元《整式的乘除》培优题

浙教版七年级数学下册第三单元《整式的乘除》培优题

浙教版七年级数学下册第三单元《整式的乘除》培优题一.选择题(共7小题)1.=()A.1 B.C.2D.2.已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.3.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b24.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=15.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.06.设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.27.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.8.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.9.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.10.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.11.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.12.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为.13.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=;②(x﹣1)(x2+x+1)=;③(x﹣1)(x3+x2+x+1)=;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=;(5)根据猜想的规律,计算:226+225+…+2+1.15.杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.(4)由此你可以写出115=.(5)由第行可写出118=.浙教版七年级数学下册第三单元《整式乘除》参考答案与试题解析一.选择题(共7小题)1.(2012秋•南陵县期末)=()A.1 B.C.2D.【分析】根据x a•y a=(xy)a,进行运算即可.【解答】解:原式=(×)2004×=.故选B.【点评】此题考查了同底数幂的乘法运算,属于基础题,注意式子:x a•y a=(xy)a的运用.2.(2001•乌鲁木齐)已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.【分析】利用同底数幂的除法和幂的乘方的性质的逆运算计算即可.【解答】解:∵x m=a,x n=b(x≠0),∴x3m﹣2n=x3m÷x2n=.故选D.【点评】本题考查了同底数幂的除法,幂的乘方的性质,逆用性质是解题的关键.3.(2016春•苏州期中)根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b2【分析】大长方形的长为3a+2b,宽为a+b,表示出面积;也可以由三个边长为a的正方形,2个边长为b的正方形,以及5个长为b,宽为a的长方形面积之和表示,即可得到正确的选项.【解答】解:根据图形得:(3a+2b)(a+b)=3a2+5ab+2b2.故选:D.【点评】此题考查了多项式乘多项式,弄清题意是解本题的关键.4.(2016秋•简阳市期中)使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=1【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴解得:.故选:C.【点评】本题考查了多项式乘多项式的运算法则,根据不含哪一项就是让这一项的系数等于0列式是解题的关键.5.(2015春•房山区期末)已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4=[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.6.(2012•宁波模拟)设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.2【分析】已知等式变形后利用完全平方公式化简得到关系式,代入所求式子计算即可得到结果.【解答】解:m2+n2=4mn变形得:(m﹣n)2=2mn,(m+n)2=6mn,∵0<n<m,∴m﹣n>0,m+n>0,∴m﹣n=,m+n=,∴原式===2.故选D.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.7.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.【分析】根据题目所给计算方法,令S=1+5+52+53+…+52012,再两边同时乘以5,求出5S,用5S﹣S,求出4S的值,进而求出S的值.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.【点评】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.二.填空题(共5小题)8.(2012•泰州)若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是11.【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故答案为:11.【点评】此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a ﹣2)x+(b﹣a+1)是解题关键.9.(2012•杭州模拟)有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片3张,3号卡片7张.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3张,3号卡片7张.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.10.(2015•崇左)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.【点评】此题考查了整式的混合运算,弄清题中的新定义是解本题的关键.11.(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.【分析】将4m变形,转化为关于2m的形式,然后再代入整理即可【解答】解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.12.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数.【解答】解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,∵m1+m2+…+m2015=1525,∴2的个数为(1525﹣505)÷2=510个.故答案为:510.【点评】此题考查完全平方的性质,找出运算的规律.利用规律解决问题.三.解答题(共3小题)13.(2015秋•厦门期末)已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.【分析】(1)根据已知条件可得a3=2,代入可求p﹣q的值;(2)根据作差法得到p﹣(a3+)=2﹣n﹣,分三种情况:当n=1时;当n=2时;当n≥3时进行讨论即可求解.【解答】解:(1)∵a3+a﹣3=p①,a3﹣a﹣3=q②,∴①+②得,2a3=p+q=4,∴a3=2;①﹣②得,p﹣q=2a﹣3==1.(2)∵q2=22n+﹣2(n≥1,且n是整数),∴q2=(2n﹣2﹣n)2,∴q2=22n+2﹣2n,又由(1)中①+②得2a3=p+q,a3=(p+q),①﹣②得2a﹣3=p﹣q,a﹣3=(p﹣q),∴p2﹣q2=4,p2=q2+4=(2n+2﹣n)2,∴p=2n+2﹣n,∴a3+a﹣3=2n+2﹣n③,a3﹣a﹣3=2n﹣2﹣n④,∴③+④得2a3=2×2n,∴a3=2n,∴p﹣(a3+)=2n+2﹣n﹣2n﹣=2﹣n﹣,当n=1时,p>a3+;当n=2时,p=a3+;当n≥3时,p<a3+.【点评】考查了负整数指数幂:a﹣p=(a≠0,p为正整数),关键是加减消元法和作差法的熟练掌握.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=x14+x13+x12+…+x2+x+1;(5)根据猜想的规律,计算:226+225+…+2+1.【分析】(1)运用乘法公式以及多项式乘多项式的法进行计算即可;(2)根据(1)中的计算结果的变换规律进行判断即可;(3)根据(1)(2)中的计算结果总结变换规律即可;(4)根据(3)中的规律,直接求得m的表达式即可;(5)根据(3)中的规律列出等式进行变形,求得226+225+…+2+1的值.【解答】解:(1)①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4+x3+x2+x﹣x3﹣x2﹣1=x4﹣1;(2)①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)∵(x﹣1)•m=x15﹣1,∴m=x14+x13+x12+…+x2+x+1;(5)∵(2﹣1)(226+225+224+…+22+2+1)=227﹣1,∴226+225+…+2+1=227﹣1.【点评】本题主要考查了多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.计算时按一定的顺序进行,必须做到不重不漏.15.(2014春•泰兴市校级期末)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.【分析】观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.【解答】解:(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.故答案为:15,128,11,161051,9,214358881.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.。

七年级下册数学第三单元第一课

七年级下册数学第三单元第一课

七年级下册数学第三单元第一课今天我们学习了“空间位置”这一单元,是第三单元的第一课,我们首先来学习一下空间位置。

空间位置这个知识,我们可以从很多地方了解到。

比如说我们可以在生活中运用空间位置来解决一些实际问题,比如说可以根据不同物体之间的距离,利用不同数量的物体在我们所处环境和位置,用不同类型方法计算出来。

也可以根据生活或者是自己的经验进行判断:我们现在在小区里面居住着多少人?(按照年级来判断)一、通过与邻居的交谈,我们可以知道小区的建筑、树木等一些信息,那么我们在家里都有哪些物品呢?在我们的生活中,经常可以利用距离的概念来解决一些实际问题。

比如说,当我们的小区有100米的距离,我们都知道距离有10米、30米等几种不同的物体,那么我们在小区里面所处的位置就是在10米之内,或者是10米之外(如果)?还是15米之内呢?通过这样一个例子,我们可以得知这个问题可以通过不同类型玩具之间的距离来判断: A玩具 A可以在 A处摆放两个相同大小的玩具……同样在10米以外如果没有小狗陪伴也不会感到无聊吧。

可以通过数量来计算我们可以得出这个数字是10米内,我们处在多少点之间?那么我们又该如何选择呢?我们知道人站在高处就可以看到最多的东西。

因此,在日常生活中,我们要对自己的位置有所判断。

当我们可以通过这样一个计算方法来判定这几个物品如何摆放在自己的位置,那么现在我们来学习一下空间位置吧!1、用字母表示物体的投影和坐标,并将所写信息转化为图形(如图),求出投影的投影线长(即投影角)。

当我们在生活中发现一棵树,或者是一棵小树,如果将这两个信息相结合的话,可以得出这些树的投影线长是多少呢?我们可以通过观察投影图像发现我们的所写信息是非常直观就能发现物体在投影平面上的投影面积)。

其中:(1)这个是投影面积(㎡)与投影到地面的距离之和。

(2)这条线段就是投影线长。

我们可以利用这条线来判断不同高度所对应的投影方向就是什么位置(这与投影距离有关)。

最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(有答案解析)(2)

最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(有答案解析)(2)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( )A .()2,0-B .()2,2-C .()2,0D .()5,12.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( ) A .3 B .1C .1或3D .2或33.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( ) A .(-2,3)B .(2,-3)C .(3,2)D .不能确定4.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)5.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 6.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限7.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( ) A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-8.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( ) A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)9.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3-10.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 11.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47二、填空题13.下列四个命题中: ①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等; ③如果两个实数的平方相等,那么这两个实数也相等; ④当0m ≠时,点()2,P m m -在第四象限内. 其中真命题有________(填序号).14.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.15.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.16.写一个第三象限的点坐标,这个点坐标是_______________.17.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.18.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.19.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=, (1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.20.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.三、解答题21.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形 ()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OABS=?若存在,求出点B 的坐标;若不存在说明理由.22.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=.(1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积. (3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.23.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).24.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.25.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.26.已知()4,0A ,点B 在x 轴上,且5AB =. (1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABDS=,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点A 的平移规律,求出点'C 的坐标即可. 【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,,故选:C.【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.2.C解析:C【分析】根据点A到x轴的距离与到y轴的距离相等可得3m-5=m+1或3m-5=-(m+1),解出m的值.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3m-5=m+1或3m-5=-(m+1),解得:m=3或1,故选:C.【点睛】本题考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.3.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A解析:A【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2020的坐标.【详解】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2020÷4=505,所以A2020的坐标为(505×2,0),则A2020的坐标是(1010,0).故选:A.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.5.D解析:D【分析】根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D.【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.6.C解析:C【分析】确定出n+2为负数时,1-n一定是正数,再根据各象限内点的坐标特征解答.【详解】解:当n+2<0时,n<﹣2,所以,1﹣n>0,即点A的横坐标是负数时,纵坐标一定是正数,所以,点A不可能在第三象限,有可能在第二象限;当n+2>0时,n>﹣2,所以,1﹣n有可能大于0也有可能小于0,即点A的横坐标是正数时,纵坐标是正数或负数,所以,点A可能在第一象限,也可能在第四象限;综上所述:点A不可能在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.A解析:A 【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可. 【详解】解:∵230,40x y -=-= ∴x=±3,y=±2∵点(,)M x y 在第二象限 ∴x <0,y >0 ∴x=-3,y=2∴M 点坐标为(-3.2). 故答案为A . 【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键.8.C解析:C 【分析】由于线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B (-4,-1)的对应点D 的坐标. 【详解】∵线段CD 是由线段AB 平移得到的, 而点A (-1,4)的对应点为C (4,7),∴由A 平移到C 点的横坐标增加5,纵坐标增加3,则点B (-4,-1)的对应点D 的坐标为(-4+5,-1+3),即(1,2). 故选:C . 【点睛】本题考查了坐标与图形变化-平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.A解析:A 【分析】根据轴对称的性质分别求出P 1, P 2,P 3,P4,P 5,P 6的坐标,找出规律即可得出结论. 【详解】解:∵P (-3,1),∴点P 关于直线y=x 的对称点P 1(1,-3),P 1关于x 轴的对称点P 2(1,3), P 2关于y 轴的对称点P 3(-1,3), P 3关于直线y=x 的对称点P 4(3,-1), P 4关于x 轴的对称点P 5(3,1), P 5关于y 轴的对称点P 6(-3,1), ∴6个点后循环一次,∵当n=2019时, 2019÷6=336…3, ∴2019P 的坐标与P 3(-1,3)的坐标相同, 故选:A . 【点睛】本题考查的是坐标的对称变化,根据各点坐标找出规律是解答此题的关键.10.B解析:B 【分析】由题意易得121223341....2n n OA OA A A A A A A A A +=======,则根据平移方式可得每三个连续的点构成一个等边三角形的顶点,故可得2019A 所在位置,然后进行求解即可. 【详解】解:由题意及图像得:121223341....2n n OA OA A A A A A A A A +=======, 将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……,∴每三个连续的点构成一个等边三角形的顶点, ∴20193673÷=, ∴2019A 在x 轴上,()()()3694,0,8,0,12,0....A A A∴2019A 的横坐标为:6734=2692⨯, ∴()20192692,0A ;故选B . 【点睛】本题主要考查点的坐标规律,关键是根据题意得到点的坐标规律,然后进行求解即可.11.B解析:B 【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此可以作出判断. 【详解】解:∵﹣2019<0,2018>0,∴在平面直角坐标系中,点P (﹣2019,2018)所在的象限是第二象限. 故选:B .【点睛】此题主要考查了象限内点的坐标符号特征,要熟练掌握.12.B解析:B【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),所以,第2016个点的横坐标为45.故选:B.二、填空题13.①【分析】根据对顶角相等平行线的性质实数的平方不同象限内点的坐标的特征进行判断【详解】解:①对顶角相等故①是真命题;②如果两条平行线被第三条直线所截那么同位角相等故②是假命题;③如果两个实数的平方相解析:①【分析】根据对顶角相等、平行线的性质、实数的平方、不同象限内点的坐标的特征进行判断.【详解】解:①对顶角相等,故①是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,故②是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,故③是假命题;④当m≠0时,点P(m2,﹣m)在第四象限内或第一象限内,故④是假命题;故答案为:①.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向 解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.15.1或【分析】根据纵坐标相同的点平行于x 轴再分点N 在点M 的左边和右边两种情况讨论求解【详解】∵∴M 与N 两点连线与x 轴平行∴即解得:【点睛】本题考查了坐标与图形性质是基础题难点在于要分情况讨论解析:1或73-【分析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】∵2M N y m y =+=,∴M 与N 两点连线与x 轴平行,∴|23(1)|5MN m m =+--=,即|32|5m +=,325m +=±,解得:11m =,273m =-. 【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论. 16.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如( 解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.17.(ab )【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC 进行循环往复的轴对称变换∴对应图形4次循解析:(a ,b ).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同,故其坐标为:(a ,b ).故答案为:(a ,b ).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A 点变化规律是解题关键. 18.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.19.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.20.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至 解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.三、解答题21.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】(1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得 ()1232b a ab +-=, 即3b =,点B 在第一象限, 3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.22.(1)B 点坐标为(4,6),A 点坐标为(4,0),C 点坐标为(0,6);(2)3;(3)点P 的坐标为(2,32-)或(2,92). 【分析】(1)根据非负数的性质得a-b+2=0,2a-b-2=0,解得a=4,b=6,则B 点坐标为(4,6),由于线段BA ⊥x 轴于A 点,线段BC ⊥y 轴于C 点,易得A 点坐标为(4,0),C 点坐标为(0,6);(2)利用线段中点坐标公式得到点D 的坐标为(4,3),点E 的坐标为(2,32),再根据三角形面积公式和AEC AOC AOE COE S S S S =--△△△△进行计算;(3)由于点P (2,a ),点E 的坐标为(2,32),,则32PE a =-,利用三角形面积公式即可求解.【详解】(1)∵2(2)|22|0a b a b -++--=, ∴20a b -+=,220a b --=,∴4a =,6b =,∴B 点坐标为 (4,6),∵线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,∴A 点坐标为(4,0),C 点坐标为(0,6);(2)∵点D 是AB 的中点,∴点D 的坐标为(4,3),∵点E 是OD 的中点,∴点E 的坐标为(2,32), ∴AEC AOC AOE COE S S S S =--△△△△1131644622222=⨯⨯-⨯⨯-⨯⨯ 3=.(3)∵点P 的坐标为(2,a ),点E 的坐标为(2,32), ∴32PE a =-, ∵AEP AEC S S =△△, ∴132322a ⨯⨯-=, ∴32a =-或92, ∴点P 的坐标为(2,32-)或(2,92). 【点睛】本题考查了坐标与图形性质、偶次方和算术平方根的非负性质、矩形的性质等知识.记住坐标轴上点的坐标特征是解题的关键.23.(1)能,ABC 向左平移2(m -a )个单位;(2)A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【分析】(1)根据平移的性质判断能否通过平移使ABC 与222A B C △重合,根据直角坐标系和三角形的边长判断平移的单位;(2)根据平移的特点并结合直角坐标系即可确定点33A B 、坐标.【详解】(1)由图可知能通过平移使ABC 与222A B C △重合,∵点C (m ,1),BC =a又ABC 与111A B C △关于直线l 对称,∴点C 1(m -2a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点C 2(﹣m +2a ,1)∴平移单位:m -(﹣m +2a )=2(m -a )个单位使ABC 与222A B C △重合, (2)∵点C (m ,1),BC =a ,AC =b∴点A (m ,1+b ),点B (m -a ,1)又ABC 与111A B C △关于直线l 对称,∴点A 1(m -2a ,1+b ),B 1(m -a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点A 2(﹣m +2a ,1+b ),B 2(﹣m +a ,1)∵333A B C △与222A B C △关于x 轴对称∴点A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【点睛】本题主要考查平面直角坐标系,点的坐标、平面图形的平移的性质,轴对称图形的性质,解题的关键是平面图形的平移的性质,轴对称图形的性质,利用数形结合的数学思想. 24.(1)+3,+4;+2,0;+1,-2;(2)见解析【分析】(1)根据规定及实例可知A→C 记为(+3,+4),B→C 记为(+2,0),C→D 记为(+1,-2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P 的坐标,在图中标出即可.【详解】(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,+4);B→C 记为(+2,0);C→D 记为(+1,-2);故答案为:+3,+4;+2,0;+1,-2;(2)P 点位置如图所示..【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.25.儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【分析】直接利用学校的坐标是()2,5,得出原点位置进而得出答案.【详解】如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.26.(1)()1,0B -或()9,0;(2)()0,4C或()0,4-;(3)()1,6D 或()11,6D -- 【分析】(1)由题意知A 和B 都在x 轴上,根据两点间的距离可得B 的坐标;(2)设点C 的坐标为()0,C y ,则1102ABC S AB y =⋅⋅=△,求解即可; (3)由题意可得15122ABD A S B a =⋅⋅=+△,求出a 的值代入即可. 【详解】解:(1)∵()4,0A ,点B 在x 轴上,且5AB =,∴()1,0B -或()9,0;(2)设()0,C y ,则1102ABC S AB y =⋅⋅=△, 解得4y =±,∴点C 的坐标为()0,4C 或()0,4-;(3)根据题意可得15122ABD A S B a =⋅⋅=+△, 解得4a =或8a =-, ∴点D 的坐标为()1,6D 或()11,6D --.【点睛】本题考查坐标与图形,掌握三角形的面积公式是解题的关键.。

七年级下册数学第三章知识点

七年级下册数学第三章知识点

七年级下册数学第三章知识点一、分数的基本概念与性质1. 分数的定义:分数是由分子、分母和分数线组成的数,表示为 a/b,其中 a 为分子,b 为分母。

2. 分数的值:分子 a 除以分母 b 的结果,即a ÷ b。

3. 真分数与假分数:分子小于分母的分数为真分数,分子大于或等于分母的分数为假分数。

4. 带分数:由一个整数和一个真分数组成的分数,形式为 n + a/b,其中 n 为整数,a/b 为真分数。

5. 等值分数:大小相等的分数称为等值分数,例如 1/2 和 2/4。

二、分数的运算1. 分数的加法:- 同分母分数相加:分母不变,分子相加,如 1/4 + 2/4 = 3/4。

- 异分母分数相加:先找到公共分母,再将分子按比例调整,最后相加,如 1/2 + 1/3 = 5/6。

2. 分数的减法:- 同分母分数相减:分母不变,分子相减,如 3/4 - 1/4 = 2/4 = 1/2。

- 异分母分数相减:先找到公共分母,再将分子按比例调整,最后相减,如 5/6 - 1/3 = 5/6 - 2/6 = 3/6 = 1/2。

3. 分数的乘法:- 分数乘以整数:分子乘以整数,分母不变,如2/3 × 4 = 8/3。

- 分数乘以分数:分子相乘,分母相乘,如1/2 × 2/3 = 1 × 2÷ 2 ÷ 3 = 2/6 = 1/3。

4. 分数的除法:- 分数除以整数:分母不变,分子除以整数,如3/4 ÷ 2 = 3 ÷ 2 ÷ 4 = 3/8。

- 分数除以分数:将除数倒置,变为乘法运算,如2/3 ÷ 3/4 =2/3 × 4/3 = 8/9。

三、分数的简化与复杂化1. 简化分数:分子和分母同时除以它们的最大公约数,得到最简分数。

2. 复杂化分数:将分数的分子和分母同时乘以一个非零整数,得到等值的复杂分数。

七年级下册数学第三章知识点归纳

七年级下册数学第三章知识点归纳

七年级下册数学第三章知识点归纳数学是一门非常重要的学科,也是七年级下册的一门必修课程。

第三章主要讲解的是代数式和方程式的知识点,是学习数学的基础。

下面对这些知识点进行归纳总结,方便大家学习。

1. 代数式的基本概念代数式指的是用字母和数字表示的式子,它可以用来表示任何数字或量。

在代数式中,字母代表未知数或变量,而数字则代表已知数或常数。

代数式的构成包括字母、数字、运算符号、括号和指数。

2. 代数式的分类代数式可以根据字母的次数来进行分类,包括一次(线性)代数式、二次(平方)代数式和高次(立方或以上)代数式。

一次代数式只有一次幂,即指数是1;二次代数式的最高项是平方项;高次代数式的最高项的指数大于等于3。

3. 代数式的运算代数式的运算有加、减、乘和除四种基本运算。

其中,加法、减法的运算规则同普通的算数运算;乘法运算需要使用分配律和结合律;除法运算则需要注意除数不能为0。

另外,代数式的合并同类项也是常见的运算方法。

4. 方程式的基本概念方程式是用等号连接的两个代数式,左边的代数式通常称为方程式的左端,右边的代数式则被称为方程式的右端。

方程式的本质是相等关系,我们可以通过变形的方法解决方程式。

5. 方程式的解法方程式的解法包括等式的移项、消元、联立、代入等一系列步骤。

其中,等式的移项是常见的解决方程式的方法,我们可以将所有的未知元素移到同一边,使方程式简化;消元则是通过相减或相加等操作,消去一个或多个未知元素的方法;联立是多个方程式一起来解决所有的未知元素;代入则是将一个方程式的结果代入到另一个方程式中去解决未知元素。

6. 一元一次方程式一元一次方程式是指方程式中只有一个未知元素,其次数为1,形式为ax+b=0。

我们可以使用解题公式,即未知元素x=-b/a来解决方程式。

7. 不等式的基本概念不等式也是一种代数式的形式,其运算方式与方程式类似,但是它表示的是大小关系,而不是相等关系。

不等式包括有限大小关系和无限大小关系,例如$a < b$表示a小于b;$a \geq b$表示a大于或等于b。

北师大数学七年级下册第三章-认识三角形

北师大数学七年级下册第三章-认识三角形

第03讲_全等三角形辅助线的作法知识图谱三角形的内角(北师版)知识精讲概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形表示三角形有三条边、三个内角和三个顶点,“三角形”可以用符号“”表示如图,顶点是A ,B ,C 的三角形,记作,的三边,有时也用a ,b ,c 来表示.顶点A 所对的边BC 用a 表示,边AC 、边AB 分别用b ,c 来表示.按角分类直角三角形三角形中有一个角是直角 斜三角形锐角三角形 三角形中三个角都是锐角 钝角三角形 三角形中有一个角是钝角思考:如何按边分类?内角和定理三角形三个内角的和等于.证明过点A 作BC 的平行线DE ∴∠B=∠1,∠C=∠3 ∵D 、A 、E 三点共线 ∴∠1+∠2+∠3=180° ∴∠B+∠2+∠C=180°直角三角形的性质直角三角形的两个锐角互余.表示在Rt △ACB 中,∠C=90°,则∠A+∠B=90°,即两个锐角互余.五.易错点1.求角度过程中计算错误.2.注意导角计算等角的补角相等,等角的余角相等. 3.会利用三角形内角和定理判定三角形形状.三点剖析一.考点:1.按角分类;2.内角和定理;3.直角三角形的性质二.重难点:利用内角和定理求角度.三.易错点:求角度过程中计算错误.按角分类例题1、 在△ABC 中,∠A :∠B :∠C=1:1:2,则△ABC 是( ) A.等腰三角形 B.直角三角形 C.锐角三角形D.等腰直角三角形231DBCA ECBA【答案】 D【解析】 设三个内角的度数分别为k°,k°,2k°,则 k°+k°+2k°=180°, 解得k°=45°, ∴2k°=90°,∴这个三角形是等腰直角三角形.随练1、 现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是( )A.3B.4或5C.6或7D.8【答案】 A【解析】 由题意得:若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角时, ∴共有33÷3=11个三角形;又三角形中,最多有一个直角或最多有一个钝角,显然11个三角形中,有5个直角三角形和3个钝角三角形; 故还有11﹣5﹣3=3个锐角三角形.内角和定理例题1、 如图,在△ABC 中,46B ∠=︒,54C ∠=︒,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是( )A.45°B.54°C.40°D.50°【答案】 C【解析】 ∵46B ∠=︒,54C ∠=︒,∴180180465480BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 平分∠BAC ,∴11804022BAD BAC ∠=∠=⨯︒=︒,∵DE ∥AB ,∴40ADE BAD ∠=∠=︒.故选:C .例题2、 如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =22°,则∠BDC 等于( )A.44°B.60°C.67°D.77°【答案】 C【解析】 △ABC 中,∠ACB =90°,∠A =22°, ∴∠B =90°-∠A =68°,由折叠的性质可得:∠CED =∠B =68°,∠BDC =∠EDC , ∴∠ADE =∠CED -∠A =46°,∴180672ADEBDC ︒-∠∠==︒.例题3、 (1)如图①,在△ABC 中,∠B =40°,∠C =80°,AD ⊥BC 于点D ,AE 平分∠BAC ,求∠EAD 的度数;EDC B A(2)将(1)中“∠B=40°,∠C=80°”改为“∠B=x°,∠C=y°,∠C>∠B”,①其他条件不变,你能用含x,y的代数式表示∠EAD吗?请写出,并说明理由;②如图②,AE平分∠BAC,F为AE上一点,FM⊥BC于点M,用含x,y的代数式表示∠EFM,并说明理由.【答案】(1)20°(2)①1122EAD y x∠=-;理由见解析②1122EFM y x∠=-;理由见解析【解析】(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-∠B-∠C=60°∵AE平分∠BAC,∴1302CAE BAC∠=∠=︒∵AD⊥BC,∴∠ADC=90°,∵∠C=80°,∴∠CAD=90°-∠C=10°,∴∠EAD=∠CAE-∠CAD=30°-10°=20°;(2)①∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C=180°-x-y∵AE平分∠BAC,∴11(180)22CAE BAC x y∠=∠=︒--,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-y,∴∠EAD=∠CAE-∠CAD111(180)(90)222x y y y x =︒---︒-=-;②过A作AD⊥BC于D,∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴11(180)22CAE BAC x y∠=∠=︒--,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-y,∴∠EAD=∠CAE-∠CAD111(180)(90)222x y y y x =︒---︒-=-∵AD⊥BC,FM⊥BC,∴AD∥FM,∴∠EFM=∠EAD,∴1122 EFM y x ∠=-.随练1、如果将一副三角板按如图方式叠放,那么∠1=____________.【答案】105°【解析】给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.随练2、在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_________-.【答案】130°或90°【解析】∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°.直角三角形的性质例题1、如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【答案】C【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个.例题2、如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________°.【答案】 135【解析】 观察图形可知:△ABC ≌△BDE , ∴∠1=∠DBE ,又∵∠DBE +∠3=90°, ∴∠1+∠3=90°. ∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.例题3、 如图,ABC △中,AD 是高,AE 、BF 分别是BAC ∠和ABC ∠的平分线,它们相交于点O ,60A ∠=︒,70C ∠=︒.求DAC ∠,BOA ∠.【答案】 20︒;125︒【解析】 9020DAC C ∠=︒-∠=︒∵180C BAC ABC ∠+∠+∠=︒,70C ∠=︒,60BAC ∠=︒,∴50ABC ∠=︒∵AE ,BF 是角平分线,∴12302BAC ∠=∠=︒,13252ABC ∠=∠=︒∵23180BOA ∠+∠+∠=︒,∴125BOA ∠=︒.随练1、 如果一个直角三角形斜边上的中线与斜边成50°角,那么这个直角三角形的较小的内角是________度. 【答案】 25【解析】 暂无解析随练2、 图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt △ABC 的顶点都是图中的格点,其中点A 、点B 的位置如图所示,则点C 可能的位置共有( )A.9个B.8个C.7个D.6个【答案】 A【解析】 暂无解析三角形的边知识精讲按角分直角三角形三角形中有一个角是直角斜三角形锐角三角形三角形中三个角都是锐角钝角三角形三角形中有一个角是钝角按边分不等边三角形三边都不相等的三角形等腰三角形底边和腰不相等的三角形有两条边相等的三角形等边三角形(正三角形)三边相等的三角形三角形任意两边的和大于第三边三角形任意两边的差小于第三边如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征叫做三角形的稳定性.除了三角形外,其他多边形不具备稳定性,因此在生产建设中,为达到巩固的目的,把一些构件都做成三角形结构.四.易错点1.在做与三角形的边有关的计算时,最后一定要注意检验是否满足三边关系定理,即最能否组成三角形.2.在应用三边关系判断三条线段能否组成三角形时,要注意“任意”二字.三点剖析考点:1. 按边分类;2. 三边关系;3. 稳定性重难点:1. 在应用三边关系判断能否组成三角形时,可以简化为:当三条线段中最长的线段小于另两条线段之和时,或当三条线段中最短的线段大于另两条线段之差时,即可组成三角形.2. 由三角形三边关系可得,如果a, b, c三条线段能够组成三角形,那么b c a b c-<<+.易错点:在做与三角形的边有关的计算时,最后一定要注意检验是否满足三边关系定理,即最终能否组成三角形.按边分类例题1、若下列各组值代表线段的长度,以它们为边能构成三角形的是()A.6、13、7B.6、6、12C.6、10、3D.6、9、13【答案】D【解析】A、6+7=13,则不能构成三角形,故此选项错误;B、6+6=12,则不能构成三角形,故此选项错误;C、6+3<10,则不能构成三角形,故此选项错误;D、6+9>13,则能构成三角形,故此选项正确.例题2、各边长度都是整数、最大边长为11的三角形共有________个.【解析】 设另外两边长为x ,y ,且不妨设1≤x≤y≤11,要构成三角形,必须x +y≥12. 当y 取值11时,x =1,2,3,…,11,可有11个三角形; 当y 取值10时,x =2,3,…,10,可有9个三角形;当y 取值分别为9,8,7,6时,x 取值个数分别是7,5,3,1,∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36.三边关系例题1、 下列长度的三根小木棒能构成三角形的是( ) A.2cm ,3cm ,5cm B.7cm ,4cm ,2cm C.3cm ,4cm ,8cm D.3cm ,3cm ,4cm 【答案】 D【解析】 A 、因为2+3=5,所以不能构成三角形,故A 错误; B 、因为2+4<6,所以不能构成三角形,故B 错误; C 、因为3+4<8,所以不能构成三角形,故C 错误; D 、因为3+3>4,所以能构成三角形,故D 正确.例题2、 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) A.5 B.6 C.11 D.16 【答案】 C【解析】 设此三角形第三边的长为x ,则10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件. 故选:C .例题3、 如图,已知AD 是△ABC 的BC 边上的高,AE 是BC 边上的中线,求证:12AB AE BC AD AC ++>+【答案】 见解析【解析】 ∵AD BC ⊥∴AB AD >,在△AEC 中,AE EC AC +>.又∵AE 为中线,∴12EC BC =即12AE BC AC +>,∴12AB AE BC AD AC ++>+随练1、 已知一个三角形的第一条边长为(a+2b )厘米,第二条边比第一条边短(b ﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长;(2)当a=2,b=3时,求此三角形的周长. 【答案】 (1)3a+4b+1 (2)19【解析】 (1)第二条边长为:a+2b ﹣(b ﹣2)=(a+b+2)厘米, 第三条边长为:a+b+2﹣3=(a+b ﹣1)厘米, 则周长为:a+2b+a+b+2+a+b ﹣1=3a+4b+1; (2)当a=2,b=3时, 周长为:3×2+4×3+1=19.随练2、 在△ABC 中,若AB =5,BC =2,且AC 的长为奇数,则AC =________.ED CBA【解析】暂无解析随练3、如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对.【答案】3【解析】暂无解析稳定性例题1、下列图形中,不具有稳定性的是()A. B. C. D.【答案】B【解析】本题考查的是三角形稳定性.A可以看成两个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;B可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性,故本选项正确;C可以看成三个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;D可以看成7个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误.故选B.随练1、王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根【答案】B【解析】本题考查的是三角形稳定性.加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.三角形的高、中线、角平分线知识精讲一.三角形的高线、中线、角平分线概念从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线三.易错点1.画三角形的高时,只要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高.特别是钝角三角形的高,有两条是在三角形外.2.三角形的角平分线是一条线段,而角的角平分线是一条射线.3.三角形的中线是线段4.三角形边上的高是线段,而该边的垂线是直线三点剖析考点:1.三角形的高、中线、角平分线;2.面积问题;重难点:1.锐角三角形的高均在三角形内部,三条高的交点也在三角形的内部;直角三角形两条高分别与两条直角边重合,三条高的交点也在三角形的直角顶点处;钝角三角形的高线中有两个垂足落在边的延长线上,这两条高落在三角形的外部.2.三角形三条中线的交点一定在三角形内部.3.每个三角形都有三条角平分线且交于一点,这个点叫三角形的内心,它也一定在三角形内部.易错点:1.画三角形的高时,只要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高.2.三角形的角平分线是一条线段,而角的角平分线是一条射线.三角形的高、中线、角平分线例题1、如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到三边AB、AC和BC的距离分别为()A.2cm、2cm、2cmB.3cm、3cm、3cmC.4cm、4cm、4cmD.2cm、3cm、5cm【答案】A【解析】∵△ABC中,∠C=90°,AB=10cm,BC=8cm,CA=6cm,∵点O为△ABC的三条角平分线的交点,∴OE=OF=OD,设OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴12×6×8=12OF×10+12OE×6+12OD×8,∴5x+3x+4x=24,∴x=2,即点O到三边AB,AC和BC的距离都等于2.故选A.例题2、如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到'''A B C,图中标出了点B 的对应点'B.(1)补全'''A B C根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)'''A B C的面积为________【答案】(1)如图所示:'''A B C即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)8.【解析】(1)连接BB',过A、C分别做BB'的平行线,并且在平行线上截取AA CC BB'='=',顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)4421628⨯÷=÷=.故'''A B C的面积为8.随练1、如图,在△ABC中,CD是高线,点E在CD上,且∠ACD=∠DBE,则有()A.BE⊥ACB.BE平分∠ABCC.∠BCD=∠CBED.∠CBD=∠BED【答案】A【解析】延长BE到AC上一点F,∵CD是高线,∴∠BED=∠CEF,∠BDE=90°,则∠DEB+∠EBD=90°,∵∠ACD=∠DBE,∴∠ACE+∠CEF=90°,∴∠CFB=180°-(∠ACE+∠CEF)=90°,即BE⊥AC,故A选项正确;随练2、如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于点E,F为AB上一点,CF⊥AD于H.下面判断正确的有________.(1)AD是在△ABC的角平分线(2)BE是的△ABD的AD边上的中线(3)CH为△ACD边AD上的中线(4)AH是△ACF的角平分线和高线.【答案】(1)(4)【解析】(1)根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法正确;(2)根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;(3)根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法不正确;(4)根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.面积问题例题1、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S l,△ACE的面积为S2,若S△ABC=12,则S1+S2=________.【答案】14【解析】∵BE=CE,∴1112622ACE ABCS S==⨯=,∵AD=2BD,∴2212833ACD ABCS S==⨯=,∴S1+S2=S△ACD+S△ACE=8+6=14.例题2、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.【答案】 1.5或5或9【解析】如图1,当点P在AC上,∵△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.∵△APE的面积等于10,∴1124622APES AP CE t==⨯⨯=△,∴t=1.5;如图2,当点P在线段CE上,∵E是DC的中点,∴BE=CE=4.∴PE=4-(t-3)=7-t,∴11(7)6622S EP AC t==-⨯=,∴t=5,如图3,当P在线段BE上,同理:PE=t-3-4=t-7,∴11(7)6622S EP AC t==-⨯=,∴t=9,综上所述,t的值为1.5或5或9.例题3、如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2B.143C.3D.72【答案】A【解析】如图,连接AB1,BC1,CA1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB1=S △ABC ,S △A1AB1=S △ABB1=S △ABC ,∴S △A1BB1=S △A1AB1+S △ABB1=2S △ABC ,同理:S △B1CC1=2S △ABC ,S △A1AC1=2S △ABC ,∴△A 1B 1C 1的面积=S △A1BB1+S △B1CC1+S △A1AC1+S △ABC =7S △ABC =14.∴S △ABC =2.随练1、 如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2D.14cm 2 【答案】 B 【解析】 2111cm 24BCE ABC S S S ===△△阴影. 随练2、 如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD ︰CD =2︰3,AD ,BE 交于点O ,若S △AOE -S △BOD=1,则△ABC 的面积为________.【答案】【解析】 ∵点E 为AC 的中点,∴S △ABE=12S △ABC . ∵BD :CD=2:3, ∴S △ABD=25S △ABC , ∵S △AOE -S △BOD=1,∴S △ABE -S △ABD=12S △ABC -25S △ABC=1, 解得S △ABC=10.故答案为:10随练3、 阅读下列材料:某同学遇到这样一个问题:如图1,在ABC ∆中,AB AC =,BD 是ABC ∆的高.P 是BC 边上一点,PM ,PN 分别与直线AB ,AC 垂直,垂足分别为点M ,N .求证:BD PM PN =+.他发现,连接AP ,有ABC ABP ACP S S S ∆∆∆=+,即111222AC BD AB PM AC PN ⋅=⋅+⋅.由AB AC =,可得BD PM PN =+. 他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD ,PM ,PN 之间的数量关系是:请回答:(1)请补全以下该同学证明猜想的过程;∵ABC APC S S ∆∆=-___________,∴1122AC BD AC ⋅=⋅_____12AB -⋅______, ∵AB AC =,∴BD PN PM =-.(2)参考该同学思考问题的方法,解决下列问题:在ABC ∆中,AB AC BC ==,BD 是ABC ∆的高.P 是ABC ∆所在平面上一点,PM ,PN ,PQ 分别与直线AB ,AC ,BC 垂直,垂足分别为点M ,N ,Q .图3,若点P 在ABC ∆的内部,则BD ,PM ,PN ,PQ 之间的数量关系是:_________________;②若点P 在如图4所示的位置,利用图4探究得出此时BD ,PM ,PN ,PQ 之间的数量关系是:________________________.【答案】 (1)见解析(2)①BD PM PN PQ =++②BD PM PQ PN =+-【解析】 该题考查的是等面积方法的应用.(1)由图可知∵ABC APC APB S S S ∆∆∆=-∴111222AC BD AC PN AB PM ⋅=⋅-⋅, ∵AB AC =∴BD PN PM =-(2)①连接AP 、BP 、CP参考该同学思考问题的方法,则有∵ABC APB APC BPC S S S S ∆∆∆∆=++,∴11112222AC BD AB PM AC PN BC PQ ⋅=⋅+⋅+⋅,∵AB AC BC ==,∴BD PM PN PQ =++.②过点P 分别作直线AB ,AC ,BC 的垂线P ,垂足分别为点M ,N ,Q ,分别连接接AP 、BP 、CP ,参考以上的思考方法,则有∵ABC APB BPC APC S S S S ∆∆∆∆=+-, ∴11112222AC BD AB PM BC PQ AC PN ⋅=⋅+⋅-⋅, ∵AB AC BC ==,∴BD PM PQ PN =+-.拓展1、 若一个三角形的三个内角的度数之比为3:4:2,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】 A【解析】 ∵三个内角的度数之比为3:4:2,∴三个内角的度数分别是60︒,80︒,40︒;∴该三角形是锐角三角形.2、 如图,将三角尺的直角顶点放在直线a 上,a b ∥,150∠=︒,260∠=︒,则3∠的度数为( )A.50︒B.60︒C.70︒D.80︒【答案】 C 【解析】 由题意:354∠=∠=∠,由124180∠+∠+∠=︒,故123180∠+∠+∠=︒,故370∠=︒。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(含答案解析)(1)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(含答案解析)(1)

一、选择题1.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd2.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )A.B.C.D.3.圆的面积公式S=πr2中的变量是()A.S,πB.S,π ,r C.S,r D.πr24.某市一周平均气温(℃)如图所示,下列说法不正确的是()A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低5.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A地的时刻为()A.8:30 B.8:35 C.8:40 D.8:456.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A.B.C.D.7.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.678.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.9.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1) 10.如图是某市一天的气温T(℃)随时间t(时)变化的图象,那么这天的()A.最高气温是10 ℃,最低气温是2 ℃B.最高气温是6 ℃,最低气温是2 ℃C.最高气温是6 ℃,最低气温是-2 ℃D.最高气温是10 ℃,最低气温是-2 ℃11.下列各曲线中表示y是x的函数的是()A.B.C.D.12.一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A.①② B.①③ C.②③ D.①②③二、填空题13.夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为_____________.14.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.15.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.16.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.17.函数y=23xx-+中自变量x的取值范围是________.18.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的关系如下表:所售豆子数量/千克00.51 1.52 2.53 3.54总售价/元012345678(1)上表反映的变量是____________,________是因变量,______随____________的变化而变化;(2)若出售2.5千克豆子,则总售价应为________元;(3)根据你的预测,出售________千克豆子,可得总售价12元.19.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系:______________.20.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣12,则输出的结果为_____三、解答题21.在等腰梯形ABCD中,AD∥BC,AB=CD,梯形的周长为28,底角为30°,高AH=x,上下底的和为y,写出y与x之间的函数关系式.22.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间257101213141720(x)对概念的47.853.556.359.059.859.959.858.355.0接受能力(y)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是5分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?23.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.24.商店在出售某商品时,在进价的基础上增加一定的利润,其质量x与售价y之间的关系如下表所示:质量x/千克1234…售价y/元8+0.416+0.824+1.232+1.6…(1)请根据表中提供的信息,写出y与x的关系式;(2)求x=2.5时,y的值;(3)当x取何值时,y=126?25.某学校的复印任务原来由甲复印社承包,其收费y(元)与复印页数x(页)的关系如下表:x(页)1002004001000…y(元)4080160400…(1)根据表格信息写出y与x之间的关系式;(2)现在乙复印社表示:若学校每月先付200元的承包费,则可按每页0.15元收费.乙复印社每月收费y(元)与复印页数x(页)之间的关系式为_______________;(3)若学校每月复印页数在1200页左右,应选择哪个复印社?26.如图所示的图象记录了某地一月份某天的温度随时间变化.的情况,请你仔细观察图象回答下面的问题:(1)20时的温度是℃,温度是0℃时的时刻是时,最暖和的时刻是时,温度在-3℃以下的持续时间为时;(2)从图象中还能获取哪些信息?(写出1~2条即可)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:A、根据人的身高变化关系;B、根据红旗高度与时间的关系;C、跳过运动员跳跃横杆时高度与时间的关系;D、汽车紧急刹车时速度与时间的关系.解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.2.D解析:D【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【详解】解:因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选D.【点睛】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.3.C解析:C【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可【详解】解:在圆的面积计算公式S=πr2中,变量为S,r.故选C.【点睛】本题考查变量和常量,圆的面积S随半径r的变化而变化,所以S,r都是变量,其中r是自变量,S是因变量.4.C解析:C【解析】【分析】根据图象分析判断即可.【详解】由图象可得:星期二的平均气温最高,故A正确;星期四到星期日天气逐渐转暖,故B正确;这一周最高气温与最低气温相差12-4=8℃,故C错误;星期四的平均气温最低,故D正确;故选C.【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.5.C解析:C【解析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【详解】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.故选C.【点睛】本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.6.C解析:C【解析】容器上粗下细,杯子里水面的高度上升应是先快后慢.故选C.7.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.8.A解析:A【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x与y满足一次函数关系.故选A.9.A解析:A观察可知:当n=1时,y=4=3×1+1,当n=2时,y=7=3×2+1,当n=3时,y=10=3×3+1,……所以有n个正方形时,y=3n+1,故选A.【点睛】本题考查了规律型——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.D解析:D【解析】试题横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x值与y值:为12时,10℃,;温度最低应找到函数图象的最低点所对应的x值与y值:为4时,-2℃.D正确.故选D.11.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.12.C解析:C【解析】试题分析:看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x<2时,函数对应的点函数对应的点越向右越向下,即y随x的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.二、填空题13.y=23-0007x【解析】【分析】每升高l00m降低07℃则每上升1m降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式【详解】每升高l00m降低07℃则每上升1m降低0007℃解析:【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;故答案为:y=23-0.007x.【点睛】本题考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.14.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.15.①②③【分析】分析图象x=2时y值相等故买两件时售价一样当买1件时乙家的售价比甲家低买3件时甲家较合算【详解】分析题意和图象可知:①售2件时甲乙两家售价一样故此题正确;②买1件时买乙家的合算故此题正解析:①②③【分析】分析图象,x=2时y值相等,故买两件时售价一样,当买1件时乙家的售价比甲家低.买3件时,甲家较合算.【详解】分析题意和图象可知:①售2件时甲、乙两家售价一样,故此题正确;②买1件时买乙家的合算,故此题正确;③买3件时买甲家的合算,故此题正确;④买乙家的1件售价约为1元,故此题错误.故答案为①②③.【点睛】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.时间温度【解析】【分析】早穿皮袄午穿纱围着火炉吃西瓜这句谚语中早午晚是时间早穿皮袄说明早上冷午穿纱说明中午热说明温度随着时间在变化【详解】早穿皮袄午穿纱围着火炉吃西瓜这句谚语反映了我国新疆地区一天中解析:时间温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.17.x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时应该是取让两个条件都满足的公共部分【详解】根据题意得到:x+3>0解得x>-3故答案为x>-3解析:x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【详解】根据题意得到:x+3>0,解得x>-3,故答案为x>-3.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.18.所售豆子数量和总售价总售价总售价所售豆子数量56【分析】根据表中数据售价与所售数量成正比例关系售价=所售豆子的数量×单价【详解】(1)表反映的变量是所售豆子数量和售价售价是因变量售价随所售豆子数量的解析:所售豆子数量和总售价总售价总售价所售豆子数量 5 6【分析】根据表中数据,售价与所售数量成正比例关系.售价=所售豆子的数量×单价.【详解】(1)表反映的变量是所售豆子数量和售价,售价是因变量,售价随所售豆子数量的变化而变化的;(2)5;(3)根据题意设解析式为y=kx,则0.5k=1,解得k=2,∴y=2x,当y=12时2x=12,解得x=6.故答案为所售豆子数量和总售价;总售价;总售价;所售豆子数量;5;6.【点睛】函数的意义是本题考查的重点.明确变量及变量之间的关系是解好本题的关键.19.【分析】本题采取分段收费根据20本及以下单价为25元20本以上超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式再进行整理即可得出答案【详解】解:根据题意得:y=整理得:y=;故答案为y=解析:25x(0x20) y{20x100(x>20)≤≤=+【分析】本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.【详解】解:根据题意得:y=,整理得:y=;故答案为y=.20.-15【详解】∵-2<<1∴x=时y=x-1=故答案为解析:-1.5【详解】∵-2<12-<1, ∴x=12-时,y=x-1=13122--=-, 故答案为32-. 三、解答题21.428y x =-+【分析】首先解直角三角形求得腰长,然后根据等腰梯形的周长即可求得y 与x 之间的函数关系式.【详解】解:如图∵底角为30°,高AH=x ,∴在RT △ABH 中,AB=2x ,∵梯形为等腰梯形,梯形的周长为28,上下底的和为y ,∴12(28-y )=2x , ∴y=-4x+28.【点睛】 此题考查了等腰梯形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.22.(1)提出概念所用的时间x 和对概念接受能力y 两个变量;(2)当时间是5分钟时,学生的接受能力是53.5;(3)当提出概念13分钟时,学生的接受能力最强59.9(4)当2≤x≤13时,y 值逐渐增大,学生的接受能力逐步增强;当13≤x≤20时,y 值逐渐减小,学生的接受能力逐步降低【分析】(1)根据x,y 表示的意义以及函数的概念即可判定;(2)学生的接受能力最强,即y 的值最大,即可确定x 的值;(3)根据表格信息即可直接写出;(4)根据表格可以得到y 的值超过13分钟以后越来越小,即可解题.【详解】解:(1)反映了提出概念所用的时间x 和对概念接受能力y 两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为5分钟时, 学生的接受能力是53.5;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强,当x在13分钟至20分钟的范围内,学生的接受能力逐步降低,∴当提出概念13分钟时,学生的接受能力最强为59.9;(4)当2≤x≤13时,y值逐渐增大,学生的接受能力逐步增强;当13≤x≤20时,y值逐渐减小,学生的接受能力逐步降低.【点睛】本题主要考查了变量的定义,以及正确读表,中等难度,正确理解表中的变量的意义是解题的关键.23.(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【详解】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.(6)当y随x的增大而减少时,x的取值范围是﹣4≤x≤﹣2和1≤x≤3;故答案为(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【点睛】本题考查二次函数的性质,函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题关键.24.(1) y=8x+0.4x=8.4x;(2)当x=2.5时,y=21(元);(3)当y=126时, x=15.【解析】【分析】(1)根据表格中数据得出y与x的函数关系式即可;(2)将x=2.5千克时,代入求出即可;(3)将y=126代入求出x即可.【详解】(1)由表中数据规律可知:y=8x+0.4x=8.4x.(2)当x=2.5时,y=8.4×2.5=21(元).(3)当y=126时,由8.4x=126,解得x=15.【点睛】本题考查了函数关系式的求法,要注意观察、比较和归纳,本题的解题过程体现了从特殊到一般,再从一般到特殊的数学思想方法.25.(1)y =0.4x (x ≥0且x 为整数).(2)y =0.15x +200(x ≥0且x 为整数).(3)若学校每月复印页数在1200页左右,应选择乙复印社.【分析】(1)待定系数法设一次函数关系式,把任意两点代入,求得相应的函数解析式,看其余点的坐标是否适合即可.(2)根据乙复印社每月收费=承包费+按每页0.15元的复印费用,可得相应的函数解析式;(3)先画出函数图象,找到交点坐标,即可作出判断.【详解】(1)设解析式为y=kx+b ,将(100,40),(200,80)代入得1004020080k b k b +⎧⎨+⎩==, 解得0.40k b ==⎧⎨⎩. 故y=0.4x (x >0且为整数);(2)乙复印社每月收费y (元)与复印页数x (页)的函数关系为:y=0.15x+200(x≥0且为整数).(3)在同一坐标系中画出两函数图象,如下图,由图形可知每月复印页数在1200左右应选择乙复印社.【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的作图能力.注意自变量的取值范围不能遗漏.26.(1)-1,12,14,8;(2)见解析.【解析】试题分析:(1)找到图象上与相应时间(或温度)对应的点的纵坐标(或横坐标)即可得到本题答案;(2)本题答案不唯一,符合函数图象所反映的实际情况的信息都可以.试题(1)由图象可知:①20时的温度是“-1℃”;②温度是0℃的时刻是12时;③最暖和的时刻是14时;④温度在-3℃以下持续的时间为8小时;(2)从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.5℃;最高气温是2℃;温度在0℃以上的时刻是在12时到18时等信息.。

北师大版七年级数学下册第三章知识点:变量之间的关系

北师大版七年级数学下册第三章知识点:变量之间的关系

(封面)北师大版七年级数学下册第三章知识点:变量之间的关系授课学科:授课年级:授课教师:授课时间:XX学校一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

(3)利用具体情境来体会两者的依存关系。

二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。

2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。

(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。

三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。

2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。

3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。

(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。

4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。

浙教版七年级下册数学第三单元知识点汇总

浙教版七年级下册数学第三单元知识点汇总

浙教版七年级下册数学第三单元知识点汇总
人生的道路很长,但关键的却往往只有几步,而初中就是这关键几步中的第一步,查字典数学网为大家准备了七年级下册数学第三单元知识点,欢迎阅读与选择!
3.1 认识事件的可能性
1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;
2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;
3.确定事件:必然事件和不可能事件都是确定的; >>>>初一数学知识点:认识事件的可能性知识点
3.2 可能性的大小
【知识点】用分数表示可能性的大小。

客观事件中,;不可能;出现的现象用数据表示为;可能性是0;,客观事件中,;一定能;出现的现象用数据表示为;可能性是1;,当可能性是相等的时候,用数据表述是;;。

逐步体会到数据表示的简洁性与客观性。

>>>>初一下册数学知识点之可能性的大小
3.3 可能性和概率
1、通过“猜测—实践—验证”,让学生初步感受事情发生的确定性与不确定性,即一定发生或不可能发生的现象是确定的,而可能发生或可能不发生的现象是不确定的。

2、理解事件发生的可能性是有大有小的,可能性的大小与事件的基础条件及发展过程等许多因素有关。

>>>>七年级数学知识点:可能性和概率知识点
七年级下册数学第三单元知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!。

七年级下册数学第三单元知识点:因式分解

七年级下册数学第三单元知识点:因式分解

为了方便同学们复习,提高同学们的复习效率,对这一年的学习有一个更好的巩固,下面整理了七年级下册数学第三单元知识点,供大家参考,希望对同学们能有所帮助。

(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.(2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式.(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的.(4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.(5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式.(6)如果多项式的第一项的系数是负的,一般要提出-号,使括号内的第一项的系数是正的,在提出-号时,多项式的各项都要变号.(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式.(8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2=(a+b)(a-b)(10)具备什么特征的两项式能用平方差公式分解因式①系数能平方,(指的系数是完全平方数)②字母指数要成双,(指的指数是偶数)③两项符号相反.(指的两项一正号一负号)(11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么.(l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.字母表达式:a22ab+b2=(ab)2(13)完全平方公式的特点:①它是一个三项式.②其中有两项是某两数的平方和.③第三项是这两数积的正二倍或负二倍.④具备以上三方面的特点以后,就等于这两数和(或者差)的平方.(14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和).(15)利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式.(16)具备什么条件的多项式可以用分组分解法来进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法来分解因式.(17)分组分解法的前提:熟练地掌握提公因式法和公式法,是学好分组分解法的前提.(18)分组分解法的原则:分组后可以直接提出公因式,或者分组后可以直接运用公式.(19)在分组时要预先考虑到分组后能否继续进行因式分解,合理选择分组方法是关键.这篇七年级下册数学第三单元知识点就为大家分享到这里了。

数学七年级下册第三章变量之间的关系

数学七年级下册第三章变量之间的关系

时间 (分)
0
2 4 6 8 10 12 14

温度 (℃)
30 44 58 72 86 100 100 100

(1)上表反映了哪两个量之间的关系?哪个是自变量? 哪个是因变量? (2)水的温度是如何随着时间的变化而变化的? (3)时间推移2分钟,水的温度如何变化? (4)时间为8分钟,水的温度为多少?你能得出时间为9 分钟时,水的温度吗?
(4)由表中数据可知,每月的乘车人数每增加500人,每 月的利润可增加1 000元, 当每月的乘车人数为2 000人时,每月利润为0元,则当 每月利润为5 000元时,每月乘车人数为4 500人. 答案:4 500
★★3.研究发现,地表以下岩层的温度与它所处的深 度有表中的关系:
岩层的深 度h/km
(5)根据表格,你认为时间为16分钟和18分钟时水的温 度分别为多少? (6)为了节约能源,你认为应在什么时间停止烧水?
【自主解答】(1)上表反映了水的温度与时间的关系, 时间是自变量,水的温度是因变量; (2)水的温度随着时间的增加而增加,到100 ℃时恒定; (3)时间推移2分钟,水的温度增加14 ℃,到10分钟时恒 定;
后,得到的新正方形的周长为y cm,y与x间的函数关系
式是 ( )
A.y=12-4x
B.y=4x-12
C.y=12-x
D.以上都不对
A
★2.如图,在△ABC中,∠C=90°,AC=8,BC=6,D点在AC 上运动,设AD长为x,△BCD的面积y,则y与x之间的函数 表达式为____________.
年龄 x/周 0 3 6 9 12 15 18 21 24 岁
身高 h/cm
48
100
130

七年级下册数学第三章知识点

七年级下册数学第三章知识点

七年级下册数学第三章知识点数学作为一门科学,是我们日常生活中不可或缺的一部分。

它不仅可以帮助我们解决实际问题,还能培养我们的逻辑思维和分析能力。

在七年级下册的数学课程中,第三章涉及了许多有趣而重要的知识点,下面我将为大家一一介绍。

第一节:平方根与完全平方数平方根是指一个数的平方等于它本身的非负实数解。

我们可以通过开方运算来求一个数的平方根。

而完全平方数,则是指一个数是另一个整数的平方。

例如,4是2的平方,所以4是一个完全平方数。

通过研究平方根和完全平方数,我们可以更好地理解数的平方性质。

第二节:实数的比较和顺序实数的比较与顺序是指在实数集合中,通过大小关系对数进行排序。

我们可以通过大小比较符号(大于、小于、等于)来表示实数之间的大小关系。

这些符号在数学中非常重要,它们帮助我们进行数值比较、求解不等式等问题。

第三节:实数间的运算实数间的运算是数学中必不可少的一部分。

在这个章节中,我们学习了实数的加法、减法、乘法和除法运算。

通过这些运算,我们可以轻松地处理各种数学问题,如计算、建模等。

第四节:绝对值与相反数绝对值是指一个数到原点的距离。

我们可以通过取绝对值的方式来消除数的正负号,使得计算更加方便。

相反数是指一个数与其相加等于0的数。

通过学习绝对值和相反数的概念,我们可以更好地理解数的性质,解决实际问题。

第五节:重新认识分数分数是数学中非常重要的一部分。

在这个章节中,我们通过具体的例子和图形帮助我们理解分数的意义和性质。

我们学习了分数的加法、减法、乘法和除法运算,并通过实例进行了练习和巩固。

第六节:相邻数之间的关系相邻数之间的关系是一个非常有趣的数学概念。

在这个章节中,我们学习了一些有关相邻数的性质。

例如,一个整数的前驱是比它小1的整数,而后继则是比它大1的整数。

这些概念可以帮助我们更好地理解整数的性质和相互关系。

总结:七年级下册数学的第三章涵盖了许多重要的知识点。

从平方根与完全平方数到相邻数之间的关系,这些知识点不仅丰富了我们的数学知识储备,还培养了我们的逻辑思维和分析能力。

【单元练】七年级数学下册第三单元知识点(2)

【单元练】七年级数学下册第三单元知识点(2)

一、选择题1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是()D E F6颐和园奥运村7故宫日坛8天坛A.D7,E6 B.D6,E7 C.E7,D6 D.E6,D7C解析:C【分析】直接利用已知网格得出“故宫”、“颐和园”所在位置.【详解】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故选:C.【点睛】此题主要考查了坐标确定位置,正确理解位置的意义是解题关键.2.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是()A.(3,4)B.(5,4)C.(7,0)D.(8,1)D解析:D【分析】根据题意,可以画出相应的图形,然后即可发现点所在的位置变化特点,即可得到小球第2020次碰到球桌边时,小球的位置.【详解】如图,小球第一次碰到球桌边时,小球的位置是(0,1)小球第二次碰到球桌边时,小球的位置是(3,4)小球第三次碰到球桌边时,小球的位置是(7,0)小球第四次碰到球桌边时,小球的位置是(8,1)小球第五次碰到球桌边时,小球的位置是(5,4)小球第六次碰到球桌边时,小球的位置是(1,0)……∵2020÷6=336 (4)∴小球第2020次碰到球桌边时,小球的位置是(8,1)故选D【点睛】本题考查坐标位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- B解析:B【分析】 根据点A 、B 的坐标建立平面直角坐标系,由此即可得.【详解】因为(2,1),(2,3)A B ---,所以将A 向右移2个单位,向下移动1个单位即为坐标原点,建立平面直角坐标系如图所示:由图可知,点C距x轴1个单位,距离y轴2个单位,C ,则(2,1)故选:B.【点睛】本题考查了点坐标,根据已知点的坐标正确建立平面直角坐标系是解题关键.4.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(-3,5) B.(5,- 3) C.(-5,3) D.(3,5)A解析:A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标.【详解】解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:A.【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1,第二次移动到点A2,第n次移动到点A n,则点A2020的坐标是()A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)A解析:A【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A 2020的坐标.【详解】A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, 2020÷4=505,所以A 2020的坐标为(505×2,0),则A 2020的坐标是(1010,0).故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.6.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- C解析:C【分析】根据x 轴上的点的纵坐标为0求出m 的值,由此即可得出答案.【详解】∵点()1,3M m m ++在x 轴上, 30m ∴+=,解得3m =-,12m ∴+=-,则M 点的坐标为()2,0-,故选:C .【点睛】本题考查了坐标轴上的点坐标,掌握理解x 轴上的点的纵坐标为0是解题关键. 7.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,5D解析:D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D点可能的坐标,利用排除法即可求得答案.【详解】解:数形结合可得点D的坐标可能是(﹣3,﹣1),(7,﹣1),(1,5);但不可能是(2,5)故选:D.【点睛】本题考查平行四边形的性质和直角坐标系,考查学生解题的综合能力,解题的关键是在直角坐标系中画出可能的平行四边形.8.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)D解析:D【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D .【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置. 9.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ).A .第一象限B .第二象限C .第三象限D .第四象限A 解析:A【分析】根据第三象限点的横坐标与纵坐标都是负数,确定-m >0,│n│>0,再判断点Q 所在的象限即可.【详解】∵点P (m ,n )在第三象限,∴m <0,n <0,∴-m >0,│n│>0,∴点Q (-m ,│n│)在第一象限,故选A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限B 解析:B【分析】根据点的坐标特征求解即可.【详解】横坐标是50-<,纵坐标是210a +>,∴点N (5-,21a +)一定在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).二、填空题11.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.3【分析】根据平移的性质可判断出四边形ABFC 为平行四边形根据点坐标的性质可求得四边形ABFC 的底与高即可求出面积【详解】∵A(43)点C(53)∴AC=5-4=1∵沿AC 方向平移AC 长度的到∴AC解析:3【分析】根据平移的性质可判断出四边形ABFC 为平行四边形,根据点坐标的性质可求得四边形ABFC 的底与高,即可求出面积.【详解】∵A(4,3),点C(5,3),∴AC=5-4=1,//AC x ,∵OAB ∆沿AC 方向平移AC 长度的到ECF ∆,∴AC=BF ,∴四边形ABFC 为平行四边形,∴四边形ABFC 的高为C 点到x 轴的距离,∴133ABFC S =⨯=四边形,故答案为:3.【点睛】本题主要考查的是平移的性质,点坐标的性质以及四边形面积的求解,熟练掌握平移的性质,点坐标的性质以及四边形面积的求解是解答本题的关键.12.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.三【分析】根据点A (3b )在第一象限可得b >0;则可以确定点B (-3−b )的纵坐标的符号进而可以判断点B 所在的象限【详解】根据题意点A (3b )在第一象限则b >0那么点B (-3−b )中−b <0;则点B解析:三【分析】根据点A (3,b )在第一象限,可得b >0;则可以确定点B (-3,−b )的纵坐标的符号,进而可以判断点B 所在的象限.【详解】根据题意,点A (3,b )在第一象限,则b >0,那么点B (-3,−b )中,−b <0;则点B (-3,−b )在第三象限.故答案为:三.【点睛】本题考查四个象限上点的坐标的特点,并要求学生根据点的坐标,判断其所在的象限. 13.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________.5排6号【分析】根据第一个数表示排数第二个数表示号数写出即可【详解】解:∵12排5号可记为(125)∴(56)表示5排6号故答案为:5排6号【点睛】本题考查了坐标确定位置理解有序数对的两个数的实际意解析:5排6号.【分析】根据第一个数表示排数,第二个数表示号数写出即可.【详解】解:∵12排5号可记为(12,5),∴(5,6)表示5排6号.故答案为:5排6号.【点睛】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键. 14.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______.【分析】根据平行于轴的直线上的点的纵坐标相同列出方程求解即可【详解】∵点A ()B (4)直线AB ∥x 轴∴解得故答案为:【点睛】本题考查了坐标与图形性质熟记平行于轴的直线上的点的纵坐标相同是解题的关键 解析:2-【分析】根据平行于x 轴的直线上的点的纵坐标相同,列出方程求解即可.【详解】∵点A (2m +,3-),B (4,1m -),直线AB ∥x 轴,∴13m -=-,解得2m =-.故答案为:2-.【点睛】本题考查了坐标与图形性质,熟记平行于x 轴的直线上的点的纵坐标相同是解题的关键.15.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.16.如图,正方形ABCD的各边分别平行于x轴或y轴,蚂蚁甲和蚂蚁乙都由点E(3,0)出发,同时沿正方形ABCD的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.17.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1), 故答案为(−3,1); 【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.18.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键解析:四 【分析】根据直角坐标系象限坐标特征即可判断. 【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限 ∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y >< ∴*A B 在第四象限 故答案为:四 【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.19.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.四【详解】解:∵点M(a-2a+3)在y 轴上∴a-2=0∴a=2∴点N 的坐标为N(2+22-3)即(4-1)∴点N 在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y轴上,∴a-2=0,∴a=2,∴点N的坐标为N(2+2,2-3),即(4,-1),∴点N在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).20.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.(65)【分析】通过新数组确定正整数n的位置An=(ab)表示正整数n为第a组第b个数(从左往右数)所有正整数从小到大排列第n个正整数第一组(1)1个正整数第二组(23)2个正整数第三组(456)三解析:(6,5)【分析】通过新数组确定正整数n的位置,A n=(a,b)表示正整数n为第a组第b个数(从左往右数),所有正整数从小到大排列第n个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a> n,而1+2+3+4+…+(a-1)<n,能确第a组a个数从哪一个是开起,直到第b个数(从左往右数)表示正整数nA7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P7=(4,1),理解规律A20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【详解】A20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A20=(6,5).故答案为:(6,5).【点睛】本题考查按规律取数问题,关键是读懂An=(a,b)的含义,会用新数组来确定正整数n 的位置.三、解答题21.(探究):(1)在图1中,已知线段AB 、CD ,其两条线段的中点分别为E 、F ,请填写下面空格.①若(1,0)A -,(3,0)B ,则E 点坐标为______. ②若(2,2)C -,(2,1)D --,则F 点坐标为______. (2)请回答下列问题①在图2中,已知线段AB 的端点坐标为()11,A x y ,()22,B x y ,求出图中线段AB 的中点P 的坐标(用含1x ,1y ,2x ,2y 的代数式表示),并给出求解过程.②(归纳):无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为()11,A x y ,()22,B x y ,线段AB 的中点为(,)P x y 时,x =______,y =______.(直接填写,不必证明)③(运用):在图3中,在平面直角坐标系中AOB 的三个顶点(0,0)O ,(2,3)A -,(4,1)B ,若以A ,O ,B ,M 为顶点的四边形是平行四边形,请利用上面的结论直接写出顶点M 的坐标(不需写出解答过程) 解析:(1)①()1,0;②12,2⎛⎫- ⎪⎝⎭;(2)①点P 坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;②122x x x +=,122y y y +=;③(2,4)或(6,2)-或(6,2)-. 【分析】(1)①根据线段中点的几何意义解题; ②根据线段中点的几何意义解题.(2)①设点P 坐标为(,)x y ,过A 、B 两点分别作x 轴、y 轴的平行线交于点F ,再分别取AF 、BF 的中点E 、N ,连接PE 、PN ,可判定四边形PEFN 是矩形 ,得到=,PE FN PN EF =,继而证明t R PAE t ()R BPN AAS ≅,得到,AE PN PE BN ==,可证AE EF =,BN NF =,最后根据线段的和差解题即可;②由①种归纳得到答案;(3)分两种情况讨论:以AB 为对角线或以AB 为边,作出相应的平行四边形,再利用平行四边形对角线互相平分的性质及中点公式,先解得平行四边形对角线交点坐标,最后根据中点公式解题即可. 【详解】 (1)①(1,0)A -,(3,0)B ,4AB ∴=E 是AB 的中点, ∴线段2AE =E ∴()1,0故答案为:()1,0; ②(2,2)C -,(2,1)D --,3CD ∴=F 是CD 的中点,∴线段32CF =1(2,)2F ∴-故答案为: 12,2⎛⎫- ⎪⎝⎭; (2)①设点P 坐标为(,)x y ,过A 、B 两点分别作x 轴、y 轴的平行线交于点F , 再分别取AF 、BF 的中点E 、N ,连接PE 、PN ,////PN AF x ∴轴,////PE BF y 轴,∴四边形PEFN 是平行四边形=90BFE ∠︒ ∴四边形PEFN 是矩形 ∴=,PE FN PN EF =//PN AF BPN BAF ∴∠=∠在t R PAE 与t R BPN 中PEA BNP PAE BPN AP PB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴t R PAE t ()R BPN AAS ≅,AE PN PE BN ∴== AE EF =,BN NF =,点A 坐标为()11,x y ,点B 坐标为()22,x y ,∴点E 坐标为()1,x y ,点N 坐标为()2,x y ,点F 坐标为()21,x y ,1AE x x ∴=-,2EF x x =-,2BN y y =-,1FN y y =- 12x x x x ∴-=-,21y y y y -=-,122x x x +∴=,122y y y +=,∴点P 坐标为1212,22x x y y ++⎛⎫⎪⎝⎭; ②122x x x +=,122y y y +=; ③分两种情况讨论:当以AB 为对角线时,AB 的中点12431(,)22O -++ 1(1,2)O ∴在1AOBM 中,111OO O M =1O ∴是1OM 的中点,设111(,)M a b11+0+0=1,=222a b ∴11=2=4a b ∴, 1(2,4)M ∴;当以AB 为边时, ①AO 的中点22030(,)22O -++ 23(1,)2O ∴-在2AM OB 中,222BO O M =2O ∴是2BM 的中点,设222(,)M a b22+4+13=1,=222a b ∴- 22=6=2a b ∴-,2(6,2)M ∴-;当以AB 为边时, ②BO 的中点34010(,)22O ++ 31(2,)2O ∴在3AOM B 中,333AO O M = 3O ∴是3AM 的中点,设333(,)M a b332+31=2,=222a b -∴22=6=2a b ∴-, 3(6,2)M ∴-综上所述,满足条件的点P 有三个,坐标分别是(2,4)或(6,2)-或(6,2)-.【点睛】本题考查坐标与图形,涉及平行四边形的性质、中点公式、矩形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC 的面积为多少? 解析:112【分析】根据题意画出平面直角坐标系并且标出点坐标,将三角形ABC 补成长方形DFCE ,利用割补法求三角形ABC 的面积. 【详解】解:如图所示:D 的坐标是(1,6),E 的坐标是(1,2),F 的坐标是(4,6),则2AD =,3BD =,则1123322ABD S AD BD ∆==⨯⨯=, 1AF =,4CF =,则1114222ACF S AF CF ∆==⨯⨯=, 1BE =,3EC =,则11313222BEC S BE EC ∆==⨯⨯=, 3412DECF S EC CF =⋅=⨯=四边形,则311123222ABC ABD ACF BEC DECF S S S S S ∆∆∆∆=---=---=四边形.【点睛】本题考查平面直角坐标系中三角形面积的求解,解题的关键是掌握割补法求三角形面积的方法.23.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).解析:(1)能,ABC 向左平移2(m -a )个单位;(2)A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1) 【分析】(1)根据平移的性质判断能否通过平移使ABC 与222A B C △重合,根据直角坐标系和三角形的边长判断平移的单位;(2)根据平移的特点并结合直角坐标系即可确定点33A B 、坐标. 【详解】(1)由图可知能通过平移使ABC 与222A B C △重合, ∵点C (m ,1),BC =a又ABC 与111A B C △关于直线l 对称, ∴点C 1(m -2a ,1)∵222A B C △与111A B C △关于y 轴对称, ∴点C 2(﹣m +2a ,1)∴平移单位:m -(﹣m +2a )=2(m -a )个单位使ABC 与222A B C △重合, (2)∵点C (m ,1),BC =a ,AC =b ∴点A (m ,1+b ),点B (m -a ,1) 又ABC 与111A B C △关于直线l 对称, ∴点A 1(m -2a ,1+b ),B 1(m -a ,1) ∵222A B C △与111A B C △关于y 轴对称, ∴点A 2(﹣m +2a ,1+b ),B 2(﹣m +a ,1) ∵333A B C △与222A B C △关于x 轴对称∴点A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1) 【点睛】本题主要考查平面直角坐标系,点的坐标、平面图形的平移的性质,轴对称图形的性质,解题的关键是平面图形的平移的性质,轴对称图形的性质,利用数形结合的数学思想. 24.如图,在平面直角坐标系中,点A ,B 的坐标分别为(2,0)A -,(4,0)B ,现将线段AB 平移到线段CD ,其中点C 坐标为(0,a),点D 坐标为(,4)b ,连接AC ,BD ,CD .(1)直接写出点C ,D 的坐标; (2)在x 轴上是否存在一点F ,使得S S ABCDFB ∆=,若存在,请求出点F 的坐标;若不存在,请说明理由.解析:(1)C (0,4),D (6,4);(2)(10,0)或(-2,0) 【分析】(1)根据平移的性质和已知条件可求出a 、b 的值,进而可得结果; (2)根据三角形的面积公式可求出BF 的长,进一步即可求得答案. 【详解】解:(1)∵将线段AB 平移到线段CD , ∴AB ∥CD ,AB=CD , ∵(2,0)A -,(4,0)B , ∴AB=6=CD ,∵点C 坐标为(0,a ),点D 坐标为(,4)b , ∴a=4,b=6,∴点C 坐标为(0,4),点D 坐标为(6,4); (2)∵S S ABCDFB ∆=,∴1164422BF ⨯⨯=⨯,∴BF=6, ∴存在点F 满足条件,且点F 的坐标是(﹣2,0)或(10,0). 【点睛】本题考查了平移的性质和图形与坐标,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.25.如图,已知平面直角坐标系中,点A 在y 轴上,点B 、C 在x 轴上,S △ABO =8,OA =OB ,BC =10,点P 的坐标是(-6,a ) (1)求△ABC 三个顶点A 、B 、C 的坐标;(2)连接PA 、PB ,并用含字母a 的式子表示△PAB 的面积(a ≠2);(3)在(2)问的条件下,是否存在点P ,使△PAB 的面积等于△ABC 的面积?如果存在,请求出点P 的坐标;若不存在,请说明理由.解析:(1)A (0,4-),B (4-,0),C (6,0);(2)a >0时,△PAB 的面积为2a -4,a <0时,△PAB 的面积为4-2a ;(3)P (6-,12)或(6-,8-) 【分析】(1)根据三角形面积公式得到12•OA 2=8,解得OA=4,则OB=OA=4,OC=BC-OB=6,然后根据坐标轴上点的坐标特征写出△ABC 三个顶点的坐标;(2)分类讨论:当点P 在在直线AB 上方即a >2;当点P 在直线AB 下方,即a <2;利用面积的和与差求解;(3)先计算出S △ABC =20,利用(2)中的结果得到方程,然后分别求出a 的值,从而确定P 点坐标. 【详解】 解:(1)∵S △ABO =12OA•OB , ∵OA=OB , ∴12OA 2=8,解得OA=4, ∴OB=OA=4, ∴OC=BC-OB=10-4=6,∴A (0,-4),B (-4,0),C (6,0);(2)当点P 在第二象限,直线AB 的上方,即a >2,作PH ⊥y 轴于H ,如图,S △PAB =S △AOB +S 梯形BOHP -S △PBH =8+12(4+6)•a -12×6×(a+4)=2a-4; 当点P 在直线AB 下方,即a <2,作PH ⊥x 轴于H ,如图,S △PAB =S 梯形OHPA -S △PBH -S △OAB =12(-a+4)×6-12×(6-4)×(-a )-8=4-2a ; (3)S △ABC =12×10×4=20, 当2a-4=20,解得a=12.此时P 点坐标为(-6,12);当4-2a=20,解得a=-8.此时P 点坐标为(-6,-8).综上所述,点P 的坐标为(-6,12)或(-6,-8).【点睛】本题考查了坐标与图形性质,利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;掌握三角形面积公式.26.如图1,一只甲虫在55⨯的方格(每一格的边长均为1)上沿着网格线运动它从A 处出发去看望B ,C ,D 处的其他甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为()1,4A B →++;从C 到D 记为()1,2C D →+-(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A D →(_______,_______);C B →(_______,______).(2)若甲虫的行走路线为A B C D A →→→→,甲虫每秒钟行走2个单位长度,请计算甲虫行走的时间.(3)若这只甲虫去P 处的行走路线为()2,0A E →+,()2,1E F →++,()1,2F M →-+,()2,1M P →-+.请依次在图2上标出点E ,F ,M ,P 的位置. 解析:(1)+4,+1,-2,+1;(2)8秒;(3)图见解析.【分析】(1)根据题意,向上向右为正,向下向左为负,进而得出答案;(2)根据甲虫的行走路线,借助网格求出总路程,再根据时间等于路程除以速度即可; (3)结合各点变化得出其位置,进而得出答案.【详解】解:(1)结合网格可知A D →(+4,+1);CB →(-2,+1);故答案为:+4,+1,-2,+1;(2)∵甲虫的行走路线为:A→B→C→D→A ,∴甲虫走过的路程为:1+4+2+1+1+2+4+1=16甲虫行走的时间为:16÷2=8秒;(3)如图2所示:【点睛】本题考查了正数和负数,坐标位置的确定,读懂题目信息,明确正数和负数的意义是解题的关键.27.如图,已知五边形 ABCDE 各顶点坐标分别为A (-1,-1),B (3,-1),C (3,1),D (1,3),E (-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F ,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标.解析:(1)14;(2)F 是CD 中点,F (2,2)【分析】(1)延长ED 和BC ,交于点G ,根据各点坐标,利用四边形ABGE 的面积减去△DCG 的面积即可;(2)柑橘题意可得四边形ABGE 是正方形,再由ED=BC ,得到F 是CD 中点,再由点C 和点D 的坐标得到点F 的坐标.【详解】解:(1)延长ED 和BC ,交于点G ,∵A (-1,-1),B (3,-1),C (3,1),D (1,3),E (-1,3),可得:EG ∥AB ,AE ∥BG ,∴点G 的坐标为(3,3),∴五边形ABCDE 的面积=4×4-2×2÷2=14;(2)由题意可得:四边形ABGE 是正方形,ED=BC=2,∴当点F 是CD 中点时,根据轴对称性可得AF 平分五边形 ABCDE 的面积,此时点F (2,2).【点睛】本题考查了点的坐标,线段中点,正方形和三角形的面积,解题的关键是根据坐标得到相应线段的长度.28.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长; (3)求111O A B ∆的面积.解析:(1)见解析;(2)6;(3)9.【分析】(1)首先根据()1,1M 和()13,5M -可判定三角形的平移变化,然后根据图像信息可得知(0,0),(2,4),(4,1)O A B -,进而得出111(2,6),(0,2),(6,5)O A B ---,即可画出三角形; (2)点1B 到y 轴的距离即为点1B 的横坐标,由(1)中可得知; (3)利用矩形的面积减去111O A B ∆周围三角形的面积,即可得解.【详解】解:(1)由已知条件,可得111O A B ∆是OAB ∆先向右平移2个单位,再向下平移6个单位得到的,根据图像信息,可知(0,0),(2,4),(4,1)O A B - ∴111(2,6),(0,2),(6,5)O A B --- 连接三点,即可得到111O A B ∆,如图所示:(2)由(1)中知,1(6,5)B -,所以点1B 到y 轴的距离即为6个单位长; (3)111111642436149222O A B S =⨯-⨯⨯-⨯⨯-⨯⨯=△. 【点睛】此题主要考查图形的平移,熟练掌握,即可解题.。

【单元练】七年级数学下册第三单元知识点总结

【单元练】七年级数学下册第三单元知识点总结

一、选择题1.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限C解析:C 【分析】直接利用关于y 轴对称点的性质得出对应点坐标,进而得出答案. 【详解】解:点A (2,-1)关于y 轴对称的点为(-2,-1), 则点(-2,-1)在第三象限. 故选:C . 【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握各象限内点的坐标特点是解题关键. 2.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- D解析:D 【分析】根据A(3,2) B(−3,3)坐标确定原点并建立直角坐标系即可. 【详解】如图建立直角坐标系:∴C 点坐标是()5,1-- 故选D 【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.3.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)C解析:C 【分析】线段AB ∥x 轴,A 、B 两点横坐标相等,B 点可能在A 点上边或者下边,根据AB 长度,确定B 点坐标即可. 【详解】 ∵AB ∥y 轴,∴A 、B 两点横坐标都为-5,点A 的坐标为(-4,3), 又∵AB=5,∴当B 点在A 点上边时,B (-4,8), 当B 点在A 点下边时,B (-4,-2); 故选:C . 【点睛】本题考查了坐标与图形的性质,平行于y 轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.4.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( ) A .第一象限 B .第二象限C .第三象限D .第四象限D解析:D 【分析】根据各象限内点的坐标特征解答. 【详解】 ∵210a +>,点A (21a +,3-)在第四象限. 故选:D . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.点A (n+2,1﹣n )不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限C解析:C 【分析】确定出n+2为负数时,1-n 一定是正数,再根据各象限内点的坐标特征解答. 【详解】解:当n+2<0时,n <﹣2,所以,1﹣n >0,即点A 的横坐标是负数时,纵坐标一定是正数,所以,点A 不可能在第三象限,有可能在第二象限;当n+2>0时,n >﹣2,所以,1﹣n 有可能大于0也有可能小于0,即点A 的横坐标是正数时,纵坐标是正数或负数,所以,点A 可能在第一象限,也可能在第四象限; 综上所述:点A 不可能在第三象限. 故选:C . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,5D解析:D 【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D 点可能的坐标,利用排除法即可求得答案. 【详解】解:数形结合可得点D 的坐标可能是(﹣3,﹣1),(7,﹣1),(1,5);但不可能是(2,5)故选:D . 【点睛】本题考查平行四边形的性质和直角坐标系,考查学生解题的综合能力,解题的关键是在直角坐标系中画出可能的平行四边形.7.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定B解析:B 【分析】由题意易得121223341....2n n OA OA A A A A A A A A +=======,则根据平移方式可得每三个连续的点构成一个等边三角形的顶点,故可得2019A 所在位置,然后进行求解即可. 【详解】解:由题意及图像得:121223341....2n n OA OA A A A A A A A A +=======, 将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……,∴每三个连续的点构成一个等边三角形的顶点, ∴20193673÷=, ∴2019A 在x 轴上,()()()3694,0,8,0,12,0....A A A∴2019A 的横坐标为:6734=2692⨯, ∴()20192692,0A ;故选B . 【点睛】本题主要考查点的坐标规律,关键是根据题意得到点的坐标规律,然后进行求解即可. 8.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而得到点的坐标; 【详解】半径为1个单位长度的半圆的周长为12, ∵点P 从原点O 出发,沿着这条曲线向右运动, 每秒2π个单位长度, ∴点1P 秒走12个半圆, 当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为1秒时,点P 的坐标为()1,1,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为2秒时,点P 的坐标为()2,0,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为3秒时,点P 的坐标为()3,1-,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为4秒时,点P 的坐标为()4,0,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为5秒时,点P 的坐标为()5,1,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为6秒时,点P 的坐标为()6,0,,∵20164=504÷,∴2016A 的坐标为()2016,0; 故答案选B . 【点睛】本题主要考查了点的坐标规律,准确计算是解题的关键.9.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ). A .第一象限 B .第二象限C .第三象限D .第四象限A解析:A 【分析】根据第三象限点的横坐标与纵坐标都是负数,确定-m >0,│n│>0,再判断点Q 所在的象限即可. 【详解】∵点P (m ,n )在第三象限, ∴m <0,n <0, ∴-m >0,│n│>0,∴点Q (-m ,│n│)在第一象限, 故选A . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112m B .2505mC .220092m D .2504m B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA 4n =2n 知OA 2020=2×505,据此利用三角形的面积公式计算可得. 【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 由题意知OA 4n =2n , ∵2020÷4=505,∴OA 2020=2×505, 则△OA 2A 2020的面积是12×1×2×505=505m 2, 故选:B . 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.二、填空题11.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.3【分析】根据平移的性质可判断出四边形ABFC 为平行四边形根据点坐标的性质可求得四边形ABFC 的底与高即可求出面积【详解】∵A(43)点C(53)∴AC=5-4=1∵沿AC 方向平移AC 长度的到∴AC解析:3 【分析】根据平移的性质可判断出四边形ABFC 为平行四边形,根据点坐标的性质可求得四边形ABFC 的底与高,即可求出面积. 【详解】∵A(4,3),点C(5,3), ∴AC=5-4=1,//AC x ,∵OAB ∆沿AC 方向平移AC 长度的到ECF ∆, ∴AC=BF ,∴四边形ABFC 为平行四边形,∴四边形ABFC 的高为C 点到x 轴的距离, ∴133ABFC S =⨯=四边形, 故答案为:3. 【点睛】本题主要考查的是平移的性质,点坐标的性质以及四边形面积的求解,熟练掌握平移的性质,点坐标的性质以及四边形面积的求解是解答本题的关键.12.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.55【分析】在直角坐标系下现根据题意确定AB 点的位置和方向最后确定C 点的位置和方向依次连接ABC 三点根据角之间的关系求出∠5的度数即可【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到解析:55 【分析】在直角坐标系下现根据题意确定A 、B 点的位置和方向,最后确定C 点的位置和方向.依次连接A 、B 、C 三点,根据角之间的关系求出∠5的度数即可. 【详解】 根据题意作图:∵从A 点沿北偏东60°的方向走了100米到达点B ,从点B 沿南偏西10°的方向走了100米到达点C ,∴∠1+∠2=60°,AB=BC=100, ∴∠2=50°,且△ABC 是等腰三角形,∴∠BAC=180502︒-︒=65°, ∴∠5=180°-65°-60°=55°,∴点C 在点A 的南偏东55°的方向上. 故答案为:55. 【点睛】本题考查了直角坐标系的建立和运用,运用直角坐标系来确定点的位置和方向. 13.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A (2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8. 【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答. 【详解】点A (2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等, ∴2a+5=a-3, 解得a=-8. 故答案为:-8. 【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.14.写一个第三象限的点坐标,这个点坐标是_______________.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如(解析:(−1,−1)(答案不唯一) 【分析】根据在第三象限角平分线上点的坐标的特点,解答即可. 【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一). 【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.15.如果点()3,1P m m ++在坐标轴上,那么P 点坐标为_________.或【分析】根据坐标轴上点的坐标特征可以得解【详解】解:由题意可得:m+3=0或m+1=0;(1)当m+3=0时m=-3此时m+1=-3+1=-2P 点坐标为(0-2);(2)当m+1=0时m=-1此时解析:()0,2-或()2,0 【分析】根据坐标轴上点的坐标特征可以得解 . 【详解】解:由题意可得:m+3=0或m+1=0;(1)当m+3=0时,m= -3,此时m+1= -3+1= -2,P 点坐标为(0,-2); (2)当m+1=0时,m= -1,此时m+3= -1+3=2,P 点坐标为(2,0); 所以P 点坐标为(0,−2)或 (2,0);故答案为(0,−2)或 (2,0). 【点睛】本题考查平面直角坐标系的基础知识,熟练掌握坐标轴上点的坐标特征是解题关键. 16.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.【分析】先找到所在的象限然后由该象限内点的规律特点求解即可【详解】解:根据题意得由可知在第二象限通过题中点的变化观察可知第二象限内点横纵坐标互为相反数且都为6的倍数由可知故答案为:【点睛】本题考查规 解析:()150,150-【分析】先找到99A 所在的象限,然后由该象限内点的规律特点求解即可. 【详解】解:根据题意得,()46,6A --,()59,6A -,()69,12A ,()712,12A -, 由994243=⨯+,可知99A 在第二象限,通过题中点的变化,观察可知第二象限内点()36,6A -、()712,12A -横纵坐标互为相反数且都为6的倍数, 由99161504+⨯=,可知()99150,150A - 故答案为:()150,150-. 【点睛】本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题. 17.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第解析:()2021,1【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.18.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.()【分析】依据对应点的坐标变化即可得到三角形ABC向左平移2个单位向上平移3个单位后得到三角形A′B′C′进而得出点P′的坐标【详解】解:由图可得C(20)C(03)∴三角形ABC向左平移2个单位解析:(32,145)【分析】依据对应点的坐标变化,即可得到三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,进而得出点P′的坐标.【详解】解:由图可得,C(2,0),C'(0,3),∴三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,又∵点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,∴对应点P′的坐标为(12﹣2,﹣15+3),即P'(32-,145),故答案为:(32-,145).【点睛】此题主要考查了坐标与图形变化,关键是注意观察组成图形的关键点平移后的位置.解题时注意:横坐标,右移加,左移减;纵坐标,上移加,下移减.19.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0)…,按这样的规律,则点A2020的坐标为______.【分析】观察发现每6个点形成一个循环再根据点A6的坐标及2020÷6所得的整数及余数可计算出点A2020的横坐标再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现每6个点形成一个循环解析:()2020,2-【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2020÷6所得的整数及余数,可计算出点A 2020的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵()66,0A ,∴OA 6=6,∵2020÷6=336…4,∴点A 2020的位于第337个循环组的第4个,∴点A 2020的横坐标为6×336+4=2020,其纵坐标为:﹣2,∴点A 2020的坐标为()2020,2-.故答案为:()2020,2-.【点睛】本题考查点的坐标规律,确定每6个点形成一个循环且点A 2020的位于第337个循环组的第4个是解题的关键.20.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键解析:四【分析】根据直角坐标系象限坐标特征即可判断.【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y ><∴*A B 在第四象限故答案为:四【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.三、解答题21.已知点(24,1)P m m +-,请分别根据下列条件,求出点P 的坐标.(1)点P 在x 轴上;(2)点P 在过点(2,4)A -且与y 轴平行的直线上.解析:(1)(6,0)P ;(2)(2,2)P -.【分析】(1)让纵坐标为0求得m 的值,代入点P 的坐标即可求解;(2)让横坐标为2求得m 的值,代入点P 的坐标即可求解.【详解】(1)由题意得:10m -=,解得:1m =,∴24246m +=+=,∴(6,0)P ;(2)由题意得:242m +=,解得:1m =-,∴12m -=-,(2,2)P -.【点睛】本题主要考查了坐标与图形的性质,正确分析各点坐标特点是解题关键.22.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标;(2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 . 解析:(1)见解析,B 1(﹣4,﹣5);(2)见解析,B 2(4,5);(3)(2﹣a ,b ).【分析】(1)分别作出点A 、B 、C 关于x 轴的对称点,再依次连接可得△A 1B 1C 1;(2)分别作出点A 、B 、C 关于y 轴的对称点,再依次连接可得△A 2B 2C 2;(3)利用对称轴为直线x =1,进而得出P 点的对应点坐标.【详解】(1)如图所示,△A 1B 1C 1即为所求,点B 1的坐标为(﹣4,﹣5);(2)如图所示,△A 2B 2C 2即为所求,点B 2的坐标为(4,5);(3)∵△ABC 的内部一点P (a ,b ),设点P 关于直线m 对称的点P ′的横坐标为:x ,则2a x =1,故x =2﹣a , ∴点P 关于直线m 对称的点的坐标是(2﹣a ,b ).故答案为:(2﹣a ,b ).【点睛】本题主要考查作图−轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并根据轴对称变换的定义和性质得出变换后的对应点位置.23.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .解析:(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2; (2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.24.如图,A B C '''是ABC 经过平移得到的,ABC 中任意一点ABC 平移后的对应点为'(2,3)P x y +-'''各顶点的坐标;(1)求A B C'''.(2)画出A B C解析:(1)A′(1,-1),B′(-1,-2),C′(2,-4);(2)见解析【分析】(1)由△ABC中任意一点P(x,y)经平移后对应点为P′(x+2,y-3)可得△ABC的平移规律为:向右平移2个单位,向下平移3个单位,由此得到点A、B、C的对应点A′,B′,C′的坐标;(2)根据(1)中A′,B′,C′的坐标画出图形即可.【详解】(1)∵△ABC中任意一点P(x,y)平移后的对应点为P′(x+2,y-3),∴△ABC向右平移2个单位,向下平移3个单位得到△A′B′C′;∵A(-1,2),B(-3,1),C(0,-1),∴A′(1,-1),B′(-1,-2),C′(2,-4);'''即为所求.(2)如图所示,A B C【点睛】本题主要考查了作图-平移变换,关键是正确确定平移后坐标点的位置.25.如图,在平面直角坐标系中,点C(-1,0),点A(-4,2),AC⊥BC且AC=BC,求点B的坐标.解析:(1,3)【分析】过点A 作AM x ⊥轴于M ,BN x ⊥轴于N ,证明AMC CNB ∆≅∆得到AM CN =,MC NB =,即可得到结论.【详解】过点A 作AM x ⊥轴于M ,BN x ⊥轴于N则90AMC BNC ∠=∠=︒90ACB ∠=︒190A ∴∠+∠=︒2190∠+∠=︒2A ∴∠=∠AC CB ∴=AMC CNB ∴∆≅∆AM CN ∴=,MC NB =( 1.0)C -,(4,0)M -3BN ,2ON =(1,0)N ∴()1,3B ∴【点睛】∆≅∆是解答此题的关键.此题主要考查了坐标与图形,证明AMC CNB''',若B的对应点B' 26.ABC在如图所示的平面直角坐标系中,将其平移得到A B C的坐标为(1,1).''';(1)在图中画出A B C(2)此次平移可以看作将ABC向________平移________个单位长度,再向________平''';移________个单位长度,得A B C'''的面积并写出做题步骤.(3)求A B C解析:(1)图见解析;(2)右,6,下,1;(3)5.5,过程见解析.【分析】(1)根据B到对应点B'的平移方式确定'A和'C的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答即可;(3)利用△A′B′C′所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】解:(1)△A′B′C′如图所示;(2)此次平移可以看作将△ABC 向右平移6个单位长度,再向下平移1个单位长度,得△A′B′C′,故答案为:右,6,下,1;(3)△A′B′C′的面积=11153132325 5.5222.【点睛】本题考查了坐标与图形变换—平移,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.27.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ( )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A 1,B 1,C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△ABC 的面积.解析:(1)()()11A 3,5,B 1,3,1C (4,2);(2)图见解析;(3)4 【分析】(1)根据P 点的平移规律,分析解答;(2)根据(1)作图;(3)利用面积公式计算解答.【详解】解:(1)∵点P (a ,b )的对应点为P 1(a +6,b+2),∴平移规律为向右6个单位,向上2个单位,∴()()11A 3,5,B 1,3,1C (4,2); (2)△111A B C 如图所示:(3)△ABC 的面积=11133-22-13-13=4222⨯⨯⨯⨯⨯⨯⨯.【点睛】本题考查坐标的平移规律、平移作图,割补法求三角形面积,比较基础.28.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点” P '的坐标为____________;②若点P 的“k 之雅礼点” P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值. 解析:(1)①(-2,-6);②(1,1)(答案不唯一);(2)±1;(3)m=1,n=-2或m=-1,n=2【分析】(1)①根据“k 之雅礼点”的定义即可求出结论;②设点P (a ,b ),由题意可得,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2),利用赋值法令k=1,a=1,求出b 的值即可写出一个符合题意的坐标;(2)由题意可设点P (a ,0),a >0,则点P 的“k 之雅礼点” P '的坐标为(),a ka ,根据等腰直角三角形的定义可得ka = a ,从而求出k 的值;(3)根据k 的值分类讨论,根据一元一次方程解的情况即可得出结论.【详解】解:(1)①由题意可得点P (-1,-3)的“3之雅礼点” P '的坐标为31,1333-⎛⎫-+-⨯- ⎪⎝⎭ 即P '(-2,-6)故答案为:(-2,-6);②设点P (a ,b ),由题意可得点P 的“k 之雅礼点” P '的坐标,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2) 即22b a k ka b ⎧+=⎪⎨⎪+=⎩ 可令k=1则a +b=2当a=1时,b=1∴点P 的坐标可以为(1,1)故答案为:(1,1)(答案不唯一);(2)由题意可设点P (a ,0),a >0则点P 的“k 之雅礼点” P '的坐标为(),a ka∴OP=a ,P P '=ka由P '与P 的横坐标相同,OPP '△为等腰直角三角形∴∠OP P '=90°,且OP=P P ' ∴ka = a解得k=±1故答案为±1;(3)当k=-1时,2x mx mn -+=+则()12m x mn -+=+∵该方程有无数个解∴1020m mn -+=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩; 当k=1时,2x mx mn +=+则()12m x mn +=+∵该方程有无数个解∴1020m mn +=⎧⎨+=⎩解得:12m n =-=⎧⎨⎩; 综上:m=1,n=-2或m=-1,n=2【点睛】此题考查的是新定义类问题,掌握新定义、等腰直角三角形的性质和根据一元一次方程解的情况求参数是解决此题的关键.。

【单元练】内蒙古呼和浩特市七年级数学下册第三单元(含解析)

【单元练】内蒙古呼和浩特市七年级数学下册第三单元(含解析)

一、选择题1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2A解析:A【分析】 分析点P 的运动规律找到循环规律即可.【详解】解:点P 坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位, 因为2020=505×4,所以,前505次循环运动点P 共向右运动505×4=2020个单位,且在x 轴上, 故点P 坐标为(2020,0),故选A.【点睛】本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题. 2.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- C解析:C【分析】根据平移的性质,以及点A ,B 的坐标,可知点A 的横坐标加上了1,纵坐标加上了1,所以平移方法是:先向左平移1个单位,再向上平移3个单位,根据点B 的平移方法与A 点相同,即可得到答案.【详解】∵A (-2,-1)平移后对应点A '的坐标为(-3,2),∴A 点的平移方法是:先向左平移1个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴B (0,-2)平移后B '的坐标是:(0-1,-2+3)即(-1,1).故选:C .【点睛】本题考查了坐标与图形的变化-平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.3.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗A解析:A【分析】 根据题意可以画出相应的平面直角坐标系,从而可以解答本题.【详解】由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A .【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--,. 4.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.5.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303D .(30303B解析:B【分析】根据扇形弧长公式求出弧长,分别求出第4秒、第8秒时点P 的坐标,总结规律,根据规律解答.【详解】 解:扇形的弧长=603180π⨯=π, 由题意得,点P 在每一个扇形半径上运动时间为1秒,在每一条弧上运动时间为1秒, 则第4秒时,点P 的坐标是(6,0),第8秒时,点P 的坐标是(12,0),……第4n 秒时,点P 的坐标是(6n ,0),2020÷4=505,∴2020秒时,点P 的坐标是(3030,0),故选:B .【点睛】本题考查规律型-点的坐标,解此类题的关键是找到循环组规律.6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- A解析:A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.7.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2)B .(0,4)C .(3,1)D .(﹣3,1)D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:∵A 1的坐标为(3,1),∴A 2(0,4),A 3(﹣3,1),A 4(0,﹣2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(﹣3,1).故选:D .【点睛】本题主要考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.8.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1)D解析:D【分析】分两种情况考虑:①A点移动到C点,则向右移动一位,向上移动两位,另一个点同等平移即可;②B点移动到C点,则向右移动三位,再向上移动一位,另一个点同等平移即可.【详解】分两种情况考虑:1,3;①A点移动到C点,则向右移动一位,向上移动两位,则B点平移后坐标为()5,1.②B点移动到C点,则向右移动三位,再向上移动一位,则A点平移后坐标为()故答案选:D.【点睛】本题考查坐标系中点的平移变换,掌握点的变换情况以及分类讨论是解题关键.9.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25-的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上B解析:B【分析】根据被开方数越大算术平方根越大,可得5的范围,根据不等式的性质,可得答案.【详解】由被开方数越大算术平方根越大,得2<5<3,由不等式的性质得:-1<2-5<0.故选B.【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.10.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为()A.100 B.81 C.64 D.49B解析:B【分析】设边长为10的正方形内部的整点的坐标为(x ,y ),x ,y 都为整数,根据题意可得规律求解.【详解】解:设边长为10的正方形内部的整点的坐标为(x ,y ),x ,y 都为整数.则﹣5<x <5,﹣5<y <5,故x 只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,y 只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,它们共可组成点(x ,y )的数目为9×9=81(个).故选:B .【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标特点规律,然后进行求解即可.二、填空题11.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________.或8【分析】根据点P 到两坐标轴的距离相等得到计算即可【详解】∵点P 到两坐标轴的距离相等∴∴2-a=6或2-a=-6解得a=-4或a=8故答案为:-4或8【点睛】此题考查点到坐标轴的距离:点到x 轴距离解析:4-或8【分析】根据点P 到两坐标轴的距离相等,得到26a -=,计算即可. 【详解】∵点P 到两坐标轴的距离相等, ∴26a -=,∴2-a=6或2-a=-6,解得a=-4或a=8,故答案为:-4或8.【点睛】此题考查点到坐标轴的距离:点到x 轴距离是点纵坐标的绝对值,点到y 轴的距离是点横坐标的绝对值.12.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.13.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.1或【分析】根据纵坐标相同的点平行于x 轴再分点N 在点M 的左边和右边两种情况讨论求解【详解】∵∴M 与N 两点连线与x 轴平行∴即解得:【点睛】本题考查了坐标与图形性质是基础题难点在于要分情况讨论 解析:1或73-【分析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】∵2M N y m y =+=,∴M 与N 两点连线与x 轴平行,∴|23(1)|5MN m m =+--=,即|32|5m +=,325m +=±,解得:11m =,273m =-. 【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论.14.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______. (0﹣1)【分析】设M (xy )根据题意列出方程组然后求解即可解答【详解】解:设M (xy )∵M 到ABC 的实际距离相等∴∣2﹣x ∣+∣2﹣y ∣=∣4﹣x ∣+∣﹣2﹣y ∣=∣x+2∣+∣y+4∣解得:x=解析:(0,﹣1)【分析】设M (x ,y ),根据题意列出方程组,然后求解即可解答.【详解】解:设M (x ,y ),∵M 到A ,B ,C 的“实际距离”相等,∴∣2﹣x ∣+∣2﹣y ∣=∣4﹣x ∣+∣﹣2﹣y ∣=∣x+2∣+∣y+4∣,解得:x=0,y=﹣1,∴M (0,﹣1),故答案为:(0,﹣1).【点睛】本题考查坐标与图形,根据题意,利用数形结合思想列出方程组是解答的关键. 15.写一个第三象限的点坐标,这个点坐标是_______________.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如(解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.16.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.(9﹣2)或(﹣3﹣2)【分析】根据平行线的性质可得点M 的纵坐标与点P 的纵坐标相同是﹣2再根据MP =6即可求出点M 的坐标【详解】解:∵点P(3−2)MP//x 轴∴点M 的横坐标与点P 的横坐标相同是﹣2解析:(9,﹣2)或 (﹣3,﹣2)【分析】根据平行线的性质可得点M 的纵坐标与点P 的纵坐标相同,是﹣2,再根据MP =6,即可求出点M 的坐标.【详解】解:∵点P(3,−2), MP//x 轴,∴点M 的横坐标与点P 的横坐标相同,是﹣2,又∵MP =6,∴点M 的横坐标为为3+6=9,或3−6=−3,∴点M 的坐标为 (9,﹣2)或 (﹣3,﹣2).故答案为:(9,﹣2)或 (﹣3,﹣2).【点睛】本题考查了点坐标的问题,掌握平行线的性质、点坐标的性质是解题的关键. 17.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____.【分析】根据二四象限角平分线上的点的横纵坐标互为相反数可得解方程求得a的值即可【详解】∵点P ()在第二四象限的角平分线上∴解得故答案为【点睛】本题考查了二四象限角平分线上的点的坐标的特征熟知二四象限 解析:13- 【分析】 根据二四象限角平分线上的点的横纵坐标互为相反数可得12a 2a 033+++=,解方程求得a的值即可.【详解】∵点P (1a 3+,22a 3+)在第二,四象限的角平分线上, ∴ 12a 2a+033++=, 解得13a =-. 故答案为13-.【点睛】本题考查了二四象限角平分线上的点的坐标的特征,熟知二四象限角平分线上的点的横纵坐标互为相反数是解决问题的关键.18.如图,点A的坐标(-2,3)点B的坐标是(3,-2),则图中点C的坐标是______.(12)【分析】根据平面直角坐标系的特点建立坐标系即可确定C点的坐标【详解】解:∵点A的坐标(-23)点B的坐标是(3-2)故平面直角坐标系如图所示:故答案为:(12)【点睛】本题主要考查了坐标与图解析:(1,2)【分析】根据平面直角坐标系的特点建立坐标系,即可确定C点的坐标.【详解】解:∵点A的坐标(-2,3)点B的坐标是(3,-2),故平面直角坐标系如图所示:故答案为:(1,2).【点睛】本题主要考查了坐标与图形,解题的关键是根据两个已知点,确定直角坐标系.19.在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移到A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a2 2b的值为______.-1【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位向上平移解析:-1【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2-2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.20.如图所示,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P,2(1,1)P,3(1,0)P,4(1,1)P-,5(2,1)P-,6(2,0)P,…,则点2020P的坐标是______.【分析】观察题图可知先根据P3(10)P6(20)即可得到P3n(n0)P3n+1(n-1)再根据P3×673(6730) 可得P2019(6730)进而得到P2020(673-1)【详解】由图可知解析:(673,1)-【分析】观察题图可知,先根据P3(1,0), P6 (2,0),即可得到P3n(n,0),P3n+1(n,-1),再根据P3×673(673,0) ,可得P2019 (673,0),进而得到P2020(673,-1).【详解】由图可知P3(1,0), P6 (2,0),···,P3n(n,0),P3n+1(n,-1),∵3×673=2019,∴P3×673(673,0) ,即P2019 (673,0),∴P2020(673,-1).故答案为:(673,1)-.【点睛】本题主要考查了点的坐标变化规律,解题的关键是根据图形的变化规律得到P3n(n,0).三、解答题21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N→A应记为什么?解析:(1)+4,+4;+3,0;+1,﹣3;(2)12;(3)见解析;(4)(﹣2,﹣2)【分析】(1)根据规定及实例可知A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)按题目所示平移规律,通过平移即可得到点P的坐标,在图中标出即可.(4)根据M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),可知4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A 应记为什么.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4,+4;+3,0;+1,﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).【点睛】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.22.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点Q的坐标为(1,5),直线PQ∥y轴;(3)点P到x轴、y轴的距离相等.解析:(1)P(﹣6,0);(2)P(1,14);(3)P(﹣12,﹣12)或(﹣4,4).【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(3)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:(1)∵点P(a﹣2,2a+8)在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2)∵点Q的坐标为(1,5),直线PQ∥y轴,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(3)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10时,a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2时,a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12)或(﹣4,4).【点睛】此题主要考查了点的坐标性质,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及点在坐标轴上的点的性质等知识,属于基础题,要熟练掌握点的坐标性质.23.如图①,A、B、C三地依次在一条直线上,两辆汽车甲、乙分别从A、B两地同时出发驶向C 地.如图②,是两辆汽车行驶过程中到B 地的距离(km)s 与行驶时间(h)t 的关系图象,其中折线EF-FG 是甲车的图象,线段OM 是乙车的图象.(1)请求出图②中a 的值和点M 的坐标;(2)在行驶过程中,甲车有可能在乙车与B 地中点的位置吗?如有,请求出行驶时间t 的值;若没有,请说明理由.解析:(1)a=240km ,M (4,240);(2)4.5h .【分析】(1)结合题意得:E (0,150),即AB 两地相距150km ;根据F (2.5,0),得甲车2.5h 后到达B 地,从而计算得甲车的速度;根据G (6.5,a ),可计算得a 的值;根据点N 的横坐标为1.25,计算得乙车的速度,从而计算得乙车从B 地到C 地行驶的时间,即可得到答案;(2)根据题意列方程60601502t t -=,得t=5,此时乙车已到达C 地,故不合实际情况;因此得当甲车在B 地与C 地中点位置时,即甲车在乙车与B 地中点位置,经计算即可完成求解.【详解】(1)结合题意得:E (0,150)∴AB 两地相距150km∵F (2.5,0)∴甲车2.5h 后到达B 地∴甲车的速度为150÷2.5=60km/h∵G (6.5,a )∴a=60×(6.5-2.5)=240km ,即BC 两地相距240km∵点N 的横坐标为1.25∴乙车的速度为(150-1.25×60)÷1.25=60km/h∴乙车从B 地到C 地行驶的时间为240÷60=4h∴M (4,240)∴a=240km ,M (4,240);(2)当甲车在乙车与B 地中点位置时,结合题意得:60601502t t -=解得:t=5,此时乙车已到达C 地,故不合实际情况,舍去;∴当甲车在B 地与C 地中点位置时,即甲车在乙车与B 地中点位置结合(1)的结论,即BC 两地相距240km ∴24015060 4.52t h ⎛⎫=+÷= ⎪⎝⎭. 【点睛】本题考查了直角坐标系、一元一次方程的知识;解题的关键是熟练掌握直角坐标系、坐标、一元一次方程的性质,从而完成求解.24.在平面直角坐标系内,点()0,5A,点()29,32M x x --在第三象限, (1)求x 的取值范围;(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标.解析:(1)3922x <<;(2)(-4,-2);(3)(0,0)或(0,10). 【分析】(1)根据第三象限点横纵坐标都小于0,列不等式求解即可;(2)根据点到坐标轴的距离等于其横纵坐标的绝对值列等式,再利用第三象限点的特征去绝对值符号即可求解;(3)设P 点为(0,y ),以AP 距离为底,M 到y 轴的距离为高,列方程即可求解.【详解】解:(1)∵点()29,32M x x --在第三象限,∴290320x x -<-<,, 解得3922x << ; (2)∵点M 到y 轴的距离是到x 轴的2倍, 即29232x x -=⨯-,∵点()29,32M x x --在第三象限,∴()92223x x -=⨯-, 解得52x =, ∴M 点坐标(-4,-2);(3)∵P 在y 轴上,点()0,5A点,M (-4,-2),设P 点坐标为(0,y ), ∴154=102AMP S y =⨯-⨯-△ 解得0y =或10y =, ∴P 点坐标为(0,0)或(0,10).【点睛】本题主要考查直角坐标系、已知点所在象限求参数、点到坐标轴的距离等.已知点的坐标可以求出点到x 轴、y 轴的距离,应注意取相应坐标的绝对值.各象限内点的坐标符号:第一象限内点的横、纵坐标皆为正数,即(+,+);第二象限内点的横坐标为负数,纵坐标为正数,即(-,+);第三象限内点的横、纵坐标皆为负数,即(-,-);第四象限内点的横坐标为正数,纵坐标为负数,即(+,-).25.如图,已知每个小正方形的边长均为1的网格中有一个三角形.()1请你画出这个三角形向上平移3个单位长度,所得到的'''A B C ∆()2请以'A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B ,点C 及','B C 的坐标.解析:(1)见解析;(2)见解析,()()()()1,1,'1,2,3,4,'3,1B B C C ---【分析】(1)把3个顶点向上平移3个单位,顺次连接个顶点即可;(2)以点'A 为坐标原点,建立平面直角坐标系,找到所求点的坐标即可.【详解】解:()1如图,()2坐标系如图:()()()()1,1,'1,2,3,4,'3,1B B C C ---【点睛】在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,下减,上加.26.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点.(1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P 的坐标).解析:(1)点P 的坐标为1,42⎛⎫ ⎪⎝⎭.(2)17152P ⎛- ⎝⎭,2(0,4)P ,3()2,4P ,4(4,4)P .(3)若(5,0)M ,则符合条件的等腰三角形有7个.【分析】(1)因为使点P 在长方形ABCD 的一边上,△OMP 是等腰三角形,点M 的坐标是()1,0,所以点P 是线段OM 的垂直平分线于AD 的交点,即可得解;(2)分14OP OM ==,24OP OM ==,33MP OP =,44OM MP ==进行讨论即可;(3)根据条件作图求解即可;【详解】(1)符合条件的等腰OMP 只有1个;点P 的坐标为1,42⎛⎫ ⎪⎝⎭. (2)符合条件的等腰OMP 有4个.如图②,在1OPM △中,14OP OM ==,在1Rt OBP △中,72BO =,2211BP OP OB =-22742⎛⎫=- ⎪⎝⎭152=, 1715,22P ⎛⎫∴- ⎪ ⎪⎝⎭;在2Rt OMP △中,24OP OM ==,2(0,4)P ∴;在3OMP △中,33MP OP =,∴点3P 在OM 的垂直平分线上,4OM =,3(2,4)P ∴;在4Rt OMP △中,44OM MP ==,4(4,4)P ∴.(3)若(5,0)M ,则符合条件的等腰三角形有7个.点P 的位置如图③所示.【点睛】本题主要考查了等腰三角形的性质,坐标与图形的性质,准确分析计算是解题的关键. 27.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.解析:(1)(2,0)A - ,(0,6)B ;(2)62(3)S t t =-<或26(3)S t t =->;(3):S S '的值为1或425. 【分析】 (1)根据算术平方根及绝对值的非负性求出a 、b 的值,进而可得A 、B 的坐标;(2)由题意可得2BP t =,则根据(1)可得OB=6,OA=2,进而可分当点P 在OB 上,则有62OP t =-,当点P 在OB 外,则有26OP t =-,然后根据三角形面积计算公式可求解;(3)由(2)可得当点P 在OB 上时和点P 在OB 外时,然后根据S 求出时间t ,进而根据割补法求出S ',最后问题可求解.【详解】解:(1)∵260a b +-=,∴20,60a b +=-=,解得:2,6a b =-=,∴()2,0A - ,()0,6B ;(2)由(1)及题意可得:OB=6,OA=2,2BP t =,∴当点P 在OB 上,即3t <,则62OP t =-,∴AOP 的面积为:()112626222S OA OP t t =⋅=⨯⨯-=-; 当点P 在OB 外,即3t >,则有26OP t =-, ∴AOP 的面积为:()112262622S OA OP t t =⋅=⨯⨯-=-, ∴综上所述:S 关于t 的函数关系式为:()623S t t =-<或()263S t t =->; (3)由(2)及题意可得:()623S t t =-<或()263S t t =->,AQ=t ,则有: 当()623S t t =-<时,如图所示:∵4S =,∴462t =-,解得:t=1,∴AQ=1,∴OQ=2-1=1,OP=4, ∴1111261442222AOB OPQ S S S OA OB OQ OP '=-=⋅-⋅=⨯⨯-⨯⨯=, ∴:4:41S S '==;当()263S t t =->时,如图所示:∵4S =,∴426t =-,解得:t=5,∴AQ=5,∴OP=4, ∴11115654252222AQB APQ S S S AQ OB AQ OP '=-=⋅+⋅=⨯⨯+⨯⨯=, ∴4:4:2525S S '==, ∴综上所述::S S '的值为1或425. 【点睛】本题主要考查图形与坐标,关键是根据题意得到点的坐标,然后根据几何知识进行求解问题.28.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A 点,公共自行车停车处;B 点,公园大门;C 点,便利店;D 点,社会主义核心价值观标牌;E 点,健身器械;F 点,文化小屋,如果B点和D点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A,C,E,F的坐标.解析:(1)见解析;(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2)【分析】(1)根据B,D两点坐标建立平面直角坐标系即可.(2)根据点的位置写出坐标即可.【详解】解:(1)平面直角坐标系如图所示.(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2).【点睛】本题考查点的坐标等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

【单元练】人教版初中七年级数学下册第三单元经典题(含答案解析)(2)

【单元练】人教版初中七年级数学下册第三单元经典题(含答案解析)(2)

一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3B 解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.故选:B .【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- B解析:B【分析】 根据点A 、B 的坐标建立平面直角坐标系,由此即可得.【详解】因为(2,1),(2,3)A B ---,所以将A 向右移2个单位,向下移动1个单位即为坐标原点,建立平面直角坐标系如图所示:由图可知,点C 距x 轴1个单位,距离y 轴2个单位,则(2,1)C -,故选:B .【点睛】本题考查了点坐标,根据已知点的坐标正确建立平面直角坐标系是解题关键. 3.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3- A解析:A【分析】 四边形ABCD 与点A 平移相同,据此即可得到点A′的坐标.【详解】四边形ABCD 先向左平移3个单位,再向上平移2个单位,因此点A(3,−1) 也先向左平移3个单位,再向上平移2个单位,故A′坐标为(0,1).故选:A .【点睛】本题考查了坐标与图形的变化−−平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-5B解析:B【分析】先根据第二象限点坐标符号特点可得0,0x y <>,再化简绝对值可得x 、y 的值,然后代入即可得.【详解】点(,)P x y 在第二象限,0,0x y ∴<>, 又2,3x y ==,2,3x y ∴=-=,231x y ∴+=-+=,故选:B .【点睛】本题考查了第二象限点坐标符号特点、化简绝对值,熟练掌握第二象限点坐标符号特点是解题关键.5.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7)D解析:D【分析】 根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n ,n ),运动时间n (n+1)分钟,n 为奇数,运动方向向左,n 为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n ,n ),运动时间n (n+1)分钟,n 为奇数,运动方向向左,n 为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D .【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)B解析:B【分析】 根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;质点到达(5,0)时,共用25+10=35秒故答案为:B .【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.7.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】∵点()3,4-,∴点()3,4-在第二象限,故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).8.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)A解析:A【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =- 54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.9.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ).A .第一象限B .第二象限C .第三象限D .第四象限A 解析:A【分析】根据第三象限点的横坐标与纵坐标都是负数,确定-m >0,│n│>0,再判断点Q 所在的象限即可.【详解】∵点P (m ,n )在第三象限,∴m <0,n <0,∴-m >0,│n│>0,∴点Q (-m ,│n│)在第一象限,故选A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限B 解析:B【分析】根据点的坐标特征求解即可.【详解】横坐标是50-<,纵坐标是210a +>,∴点N (5-,21a +)一定在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).二、填空题11.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.(33)或(-99)【分析】根据点P 到坐标轴的距离相等列出绝对值方程然后求出a 的值再解答即可【详解】解:∵点P 到两坐标轴的距离相等∴|4a-1|=|5-2a|∴4a-1=5-2a 或4a-1=-(5-解析:(3,3)或(-9,9).【分析】根据点P 到坐标轴的距离相等列出绝对值方程,然后求出a 的值,再解答即可.【详解】解:∵点P ()41,52a a --到两坐标轴的距离相等,∴|4a-1|=|5-2a|,∴4a-1=5-2a 或4a-1=-(5-2a ),解得a=1或a=-2,∴点P 的坐标为(3,3)或(-9,9).故答案为:(3,3)或(-9,9).【点睛】本题考查了点的坐标,难点在于列出绝对值方程,求解绝对值的方程要注意绝对值的性质的利用.12.写一个第三象限的点坐标,这个点坐标是_______________.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如(解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1).故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.13.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.14.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是_____.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第解析:()2021,1【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.15.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.()【分析】依据对应点的坐标变化即可得到三角形ABC向左平移2个单位向上平移3个单位后得到三角形A′B′C′进而得出点P′的坐标【详解】解:由图可得C(20)C(03)∴三角形ABC向左平移2个单位解析:(32,145)【分析】依据对应点的坐标变化,即可得到三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,进而得出点P′的坐标.【详解】解:由图可得,C(2,0),C'(0,3),∴三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,又∵点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,∴对应点P′的坐标为(12﹣2,﹣15+3),即P'(32-,145),故答案为:(32-,145).【点睛】此题主要考查了坐标与图形变化,关键是注意观察组成图形的关键点平移后的位置.解题时注意:横坐标,右移加,左移减;纵坐标,上移加,下移减.16.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0)…,按这样的规律,则点A2020的坐标为______.【分析】观察发现每6个点形成一个循环再根据点A6的坐标及2020÷6所得的整数及余数可计算出点A2020的横坐标再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现每6个点形成一个循环解析:()2020,2-【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2020÷6所得的整数及余数,可计算出点A 2020的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵()66,0A ,∴OA 6=6,∵2020÷6=336…4,∴点A 2020的位于第337个循环组的第4个,∴点A 2020的横坐标为6×336+4=2020,其纵坐标为:﹣2,∴点A 2020的坐标为()2020,2-.故答案为:()2020,2-.【点睛】本题考查点的坐标规律,确定每6个点形成一个循环且点A 2020的位于第337个循环组的第4个是解题的关键.17.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.四【详解】解:∵点M(a-2a+3)在y 轴上∴a-2=0∴a=2∴点N 的坐标为N(2+22-3)即(4-1)∴点N 在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y 轴上,∴a-2=0,∴a=2,∴点N 的坐标为N(2+2,2-3),即(4,-1),∴点N 在第四象限,故答案为:四. 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).18.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.或【分析】由AB ∥y 轴可得AB 两点的横坐标相同结合AB=3A (32)分B 点在A 点之上和之下两种情况可求解B 点的纵坐标进而可求解【详解】解:∵AB ∥y 轴∴AB 两点的横坐标相同∵A (32)∴B 点横坐标为解析:()3,1-或()3,5 【分析】由AB ∥y 轴可得A ,B 两点的横坐标相同,结合AB=3,A (3,2),分B 点在A 点之上和之下两种情况可求解B 点的纵坐标,进而可求解. 【详解】 解:∵AB ∥y 轴, ∴A ,B 两点的横坐标相同, ∵A (3,2), ∴B 点横坐标为3, ∵AB=3,∴当B 点在A 点之上时,B 点纵坐标为2+3=5, ∴B (3,5);∴当B 点在A 点之下时,B 点纵坐标为2-3=-1, ∴B (3,-1).综上B 点坐标为(3,-1)或(3,5). 故答案为(3,-1)或(3,5). 【点睛】本题主要考查坐标与图形,运用平行于坐标轴的直线上点的特征解决问题是解题的关键. 19.在平面直角坐标系中,点()3,1A -在第______象限.二【分析】根据第二象限的横坐标小于零纵坐标大于零可得答案【详解】解:点A (-31)在第二象限故答案为:二【点睛】本题考查了点的坐标记住各象限内点的坐标的符号是解决的关键四个象限的符号特点分别是:第一解析:二 【分析】根据第二象限的横坐标小于零,纵坐标大于零,可得答案. 【详解】解:点A (-3,1)在第二象限, 故答案为:二.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).20.如图,直线BC经过原点O,点A在x轴上,AD BC⊥于D.若A(4,0),B (m,3),C(n,-5),则AD BC=______.【分析】作三角形的高线根据坐标求出BEOAOF的长利用面积法可以得出BC•AD=32【详解】解:过B作BE⊥x轴于E过C作CF⊥y轴于F∵B(m3)∴BE=3∵A(40)∴AO=4∵C(n-5)∴O解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S △AOC =12AO•OF=12×4×5=10, ∴S △AOB +S △AOC =6+10=16, ∵S △ABC =S △AOB +S △AOC , ∴12BC•AD=16, ∴BC•AD=32, 故答案为:32. 【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.三、解答题21.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点. (1)当点C 在y 轴上时,求点C 的坐标; (2)当AB ∥x 轴时,求A ,B 两点间的距离; (3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标. 解析:(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1) 【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标. 【详解】解:(1)∵点C 在y 轴上, ∴20b -=,解得2b =, ∴C 点坐标为(0,2); (2)∵AB ∥x 轴, ∴A 、B 点的纵坐标相同, ∴a +1=4,解得a =3, ∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4; (3)∵CD ⊥x 轴,CD =1, ∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1). 【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征. 22.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S ①设点A 的移动距离AA x '=.当4S =时,x =______.②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少.解析:(1)4;(2)①83,②6或2【分析】(1)根据正方形的面积求出边长,即可得出点A 所表示的数; (2)①求出重合部分的边长,即可求出平移的距离,②分为左移和右移,由重合部分的面积求出重合部分的边长,进而求出点A 移动的距离,得出点A '所表示的数. 【详解】解:(1)1234OA BC ==÷=, 故答案为:4; (2)当4S =时,①若正方形OABC 平移后得图2, 重叠部分中4433AO '=÷=,48433AA '=-=. 故答案为:83; ②当S 恰好等于原长方形OABC 面积的一半时,点A 向右或向左移动422÷=, 因此点A '表示的数为426+=或422-=, 故点A '所表示的数6或2.【点睛】此题考查数轴表示数的意义,长方形的性质,平移的性质,掌握数轴上两点之间距离的计算方法是解决问题的前提.23.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).解析:(1)能,ABC 向左平移2(m -a )个单位;(2)A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1) 【分析】(1)根据平移的性质判断能否通过平移使ABC 与222A B C △重合,根据直角坐标系和三角形的边长判断平移的单位;(2)根据平移的特点并结合直角坐标系即可确定点33A B 、坐标. 【详解】(1)由图可知能通过平移使ABC 与222A B C △重合, ∵点C (m ,1),BC =a又ABC 与111A B C △关于直线l 对称, ∴点C 1(m -2a ,1)∵222A B C △与111A B C △关于y 轴对称, ∴点C 2(﹣m +2a ,1)∴平移单位:m -(﹣m +2a )=2(m -a )个单位使ABC 与222A B C △重合, (2)∵点C (m ,1),BC =a ,AC =b ∴点A (m ,1+b ),点B (m -a ,1) 又ABC 与111A B C △关于直线l 对称,∴点A 1(m -2a ,1+b ),B 1(m -a ,1) ∵222A B C △与111A B C △关于y 轴对称, ∴点A 2(﹣m +2a ,1+b ),B 2(﹣m +a ,1) ∵333A B C △与222A B C △关于x 轴对称∴点A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1) 【点睛】本题主要考查平面直角坐标系,点的坐标、平面图形的平移的性质,轴对称图形的性质,解题的关键是平面图形的平移的性质,轴对称图形的性质,利用数形结合的数学思想. 24.在平面直角坐标系中,有点(),1A a -,点()2,B b . (1)当A ,B 两点关于直线1x =-对称时,求AOB 的面积; (2)当线段//AB y 轴,且3AB =时,求-a b 的值. 解析:(1)3;(2)0或6 【分析】(1)根据A ,B 两点关于直线1x =-对称求出a 、b 的值,再画出图象求出AOB 的面积;(2)根据//AB y 轴得到A 、B 两点横坐标相等,由3AB =得到13b --=,求出a 、b 的值,得到-a b 的值. 【详解】解:(1)∵A ,B 两点关于直线1x =-对称, ∴212a +=-,解得4a =-, ∴1b =-,则()4,1A --,()2,1B -, 如图所示,16132AOBS=⨯⨯=; (2)∵//AB y 轴, ∴2a =, ∵3AB =,∴13b --=,解得2b =或4-,∴220a b -=-=或246a b -=+=. 【点睛】本题考查点坐标的求解,解题的关键是掌握平面直角坐标系中点坐标的对称关系,三角形的面积求解方法.25.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点.(1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P 的坐标).解析:(1)点P 的坐标为1,42⎛⎫⎪⎝⎭.(2)17152P ⎛- ⎝⎭,2(0,4)P ,3()2,4P ,4(4,4)P .(3)若(5,0)M ,则符合条件的等腰三角形有7个.【分析】(1)因为使点P 在长方形ABCD 的一边上,△OMP 是等腰三角形,点M 的坐标是()1,0,所以点P 是线段OM 的垂直平分线于AD 的交点,即可得解;(2)分14OP OM ==,24OP OM ==,33MP OP =,44OM MP ==进行讨论即可; (3)根据条件作图求解即可; 【详解】(1)符合条件的等腰OMP 只有1个;点P 的坐标为1,42⎛⎫ ⎪⎝⎭.(2)符合条件的等腰OMP 有4个. 如图②,在1OPM △中,14OP OM ==,在1Rt OBP △中,72BO =,2211BP OP OB =-22742⎛⎫=- ⎪⎝⎭152=, 1715,22P ⎛⎫∴- ⎪ ⎪⎝⎭;在2Rt OMP △中,24OP OM ==,2(0,4)P ∴;在3OMP △中,33MP OP =,∴点3P 在OM 的垂直平分线上,4OM =,3(2,4)P ∴;在4Rt OMP △中,44OM MP ==,4(4,4)P ∴. (3)若(5,0)M ,则符合条件的等腰三角形有7个.点P 的位置如图③所示. 【点睛】本题主要考查了等腰三角形的性质,坐标与图形的性质,准确分析计算是解题的关键. 26.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)解析:(1)画图见解析,点1A 的坐标是(7,5);(2)﹣m ,﹣n 【分析】(1)由点C 与其对应点C 1的坐标得出平移方式是先向右平移3个单位,再向上平移2个单位,进而可得点A 1、B 1的坐标,描点后再顺次连接即可;(2)对比点A 、B 、C 与其对应点P 、Q 、R 可得这种变换的方式,从而可得答案. 【详解】解:(1)△111A B C 如图所示,点1A 的坐标是(7,5);(2)由于点A (4,3)的对应点P (﹣4,﹣3),点B (3,1)的对应点Q (﹣3,﹣1),点C(1,2)的对应点R(﹣1,﹣2),所以经过这种变换,对应点的横、纵坐标均互为相反数,因为点(),M m n,所以点N的坐标为(﹣m,﹣n);故答案为:﹣m,﹣n.【点睛】本题考查了平移变换与平移作图,属于常见题型,熟练掌握平移的性质是解题的关键.27.如图,在平面直角坐标系中,O为坐标原点,点A(4,1)B(1,1),C(4,5),D (6,﹣3),E(﹣2,5).(1)在坐标系中描出各点,并画出△AEC,△BCD.(2)求出△BCD的面积.解析:(1)见解析;(2)16【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据割补法,利用三角形面积公式计算可得.【详解】解:(1)如图所示:(2)S△BCD=12×4×4+12×4×4=16.【点睛】此题主要考查通过描点法画图、再网格图中通过割补法求三角形面积,正确看图是解题关键.28.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.解析:(1)见解析;(2)6;(3)9.【分析】(1)首先根据()1,1M 和()13,5M -可判定三角形的平移变化,然后根据图像信息可得知(0,0),(2,4),(4,1)O A B -,进而得出111(2,6),(0,2),(6,5)O A B ---,即可画出三角形; (2)点1B 到y 轴的距离即为点1B 的横坐标,由(1)中可得知;(3)利用矩形的面积减去111O A B ∆周围三角形的面积,即可得解.【详解】解:(1)由已知条件,可得111O A B ∆是OAB ∆先向右平移2个单位,再向下平移6个单位得到的,根据图像信息,可知(0,0),(2,4),(4,1)O A B -∴111(2,6),(0,2),(6,5)O A B ---连接三点,即可得到111O A B ∆,如图所示:(2)由(1)中知,1(6,5)B -,所以点1B 到y 轴的距离即为6个单位长; (3)111111642436149222O A B S =⨯-⨯⨯-⨯⨯-⨯⨯=△. 【点睛】此题主要考查图形的平移,熟练掌握,即可解题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本单元主要讲解了整式的乘除,重点介绍了同底数幂的乘法。首先通过宇宙飞船的飞行距离问题引出了同底数幂的乘法概念,详细释了底数、指数和幂的意义。通过多个例题和练习题,深入阐述了同底数幂相乘的规律,即底数不变,指数相加,并通过证明过程加以确认。此外,还提供了多个计算题,以巩固学生对这一知识点的理解和应用。除了同底数幂的乘法,本单元还涉及了单项式和多项式的乘法、乘法公式、整式的化简等内容,为学生打下了坚实的数学基础。通过学习,学生能够熟练掌握整式的乘除运算,提高数学思维能力。
相关文档
最新文档