正激式变压器的设计6

合集下载

正激变压器的设计

正激变压器的设计

正激变压器的设计本文以一个20A的汽车铅酸电池充电器变压器计算过程为例,来说明正激变压器的计算过程1、相关规格参数SPEC:INPUT:AC 180V~260V 50HzOUTPUT:DC Uomax= 20APout: 274W Pomax=294Wη≧80%,fs: 60KHZ;主电路拓扑采用单管正激自冷散热2、选择core材质.决定△B选择PC40材质Core,考虑到是自冷散热的方式,取ΔB=3、确定core AP值.决定core规格型号.AP=AW×Ae=Ps×104/2×ΔB×fs×J×KuPs : 變壓器傳遞視在功率W Ps=Po/η+Po正激式Ps=294/+294=J : 電流密度 A .取400 A/cm2Ku: 銅窗占用系數. 取AP=×104/2××60×103×400×≈ cm2選用CORE ER42/15 PC40.其參數為: AP= Ae=194 mm2 Aw=223mm2Ve=19163mm3 AL=4690±25% Pt=433W 100KHz 25℃4、計算Np Ns.1. 計算匝比 n = Np /Ns 設 Dmax=n = Np / Ns = Vi / Vo = Vinmin ×Dmax/ Vo+VfVf :二极管正向壓降取1VVinmin=180××√2-20=209 VDCVinmax=260×√2=370VDCn=209/+= 取CHECK DmaxDmax=nVo+Vf/Vinmin=+1/209=≈Dmin=nVo+Vf/Vinmax=+1 /370=2. 計算NpNp=Vinmin ×ton/ΔB×AeTon:MOS管导通时间ton= Dmax/ fs=60×103=Np = 209×/ ×194= 取34TS3. 計算NsNs = Np / n = 34÷=取整为6 TS4. CHECK Np 以Ns驗算NpNp = Ns×n = 6×5 .5=33TS 取 Np = 33TS5.確定N RN R = Np= 33TS6. CHECK ΔB之選擇合理性.ΔB=Vinmin ×Dmax×Ts/ Np×Ae=209×/ 33×194=5、計算线径:1. 求初級線徑dwp:Ip = Pi / VL = Po / η×Dmax×VIN =294/××209 = AIprms= Ip×√D = ×√ =Awp = I/J = 5 =dwp=√4Awp/π=√4×=Φ orΦ×42. 求N R繞組線徑dw R.N R =33TS L = N2×ALL = 332×4690× =Im = Vinmin×ton / L = 209× / ×103≈AWN = / 5 =dwN=√4× = 取Φ3. 求繞組Ns之線徑dwsIsrms=16×√= 设计输出电流最大为16AAws= I / J=÷5=mm2查ER42/15 BOBBIN幅寬±.考虑扣除挡墙約6mm,則有- 6=之可繞寬度,預留適當空間,W=20mm則:dws=√4Aws/π=√4×=选用Φ×166、计算副边输出储能电感的感量Lo=Vo×1-Dmin÷×Io×Fs=×÷×20×60×103=÷240×103=45μH正激由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等;所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去的正向压降,所以我们又称正激电源是BUCK的隔离版本;首先说说初次级匝数的选择:以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好;其实这是个误区,匝数的多少决定了初级的电感量在不开气隙,或开同样的气隙情况下,而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致deltB变大,不加气隙来平衡的话,变压器容易饱和;无论是单管正激还是双管正激,都存在磁复位的问题;且都可以看成是被动方式的复位;复位的电流很重要,如果太小了复位效果会被变压器自身分布参数主要是不可控的,漏感的影响;复位电流是因为电感电流不能突变,初级关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生复位电流关系到能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小;但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠,大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=ILlik/nAe,就大,加气隙是为了减小漏感Llik;正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=VinD,跟次级的电流无关Vo=VinDVo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK电感的Vin,也就是说变压器的输出电压基本就定下来了;在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过;知道变压器的输出电压Vs之后,那么就可以根据输入的电压来计算出变压器的匝比了,这里要用最低输入直流电压来计算匝比,因为最低输入的直流电压对应最大的占空比;此Vs的电压对于选择次级整流二极管的耐压也是一个很重要的数据;选择匝比的时候请大家注意,因为计算出来的值一般都是小数点后有一位甚至几位的值,而我们在实际绕制变压器的时候,零点几匝的绕法非常困难,所以尽量取整数倍的匝比;当然,如果计算变压器的时候,变压器的初次级匝数比也不排除刚好是小数的情况;正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加气隙也相当于增大了变压器磁芯,但实际好处特别是抗饱和能力是胜于加大磁芯的;加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心;复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好如果并绕,当然跟初级的耦合是最好的,但对的耐压是个考验当然这不至于直接击穿;无论从EMC角度还是工艺角度来说,复位绕组放在最内层比较好,实际量产中这是这样绕的占多数;单管正激,如果是市电或有PFC输出电压作为输入的话,MOSFET的最低耐压是2倍直流母线电压,再加上漏感的因素,MOSFET建议选800V甚至900V的管子;大功率的电源中,考虑到可靠性,一般变压器的余量较大,为避免变压器饱和,一般将deltB选得较小,一般取以下;由于EMC与MOSFET的开关损耗考虑,将频率设得较低,一般为40KHz以下;大功率电源一般都会带主动式PFC电路,所以单管或双管正激拓扑的母线电压大概是400V左右;由于上面三个原因,根据变压器匝数计算公式Np=VinTon/deltBAe,可知变压器的初次级匝数较多,而较多的匝数会使分布参数漏感,分布电容变大,从而使绕组的交流损耗,特别是直流损耗都变大,在加上大功率变压器内部绕组的特性很差,故绕组温升相当可观,再加之大功率变压器的铁芯散热面积小,中柱发热比两个边柱更严重,而散热更差,所以铁芯的损耗导致的温升也较可观;较大的铁损与铜损导致磁芯的温度上升,从而导致变压器的磁通密度饱和点下降,如果设计的余量不够,当变压器在高温大负载的冲击下,可能立即饱和从而导致炸管而加点小气隙可以减少变压器的剩磁,从而使避免变压器在高温大负载的冲击下饱和;为什么有的变压器不加复位绕组,也能正常复位可以利用外部复位RCD,LCD,有源钳位等方式;谐振复位正激变换器,它是利用变压器激磁电感与MOSFET结电容进行谐振复位的,但是所需的电感量和电容量是需要详细计算的,通常需要对正激变压器开气隙才行;复位电流一般都比较小,所以复位绕组的发热也较小,放在内层一般一层就可以绕完便于工艺的控制;我做的变压器一般是复位,初级,次级,辅助;次级绕组如果在里面,这绕组所用铜线的单匝长度小,直流损耗低,但散热就差了一点,如果在外面的话,则情况相反;对于正激电源来说,匝比影响的是占空比,初次级的峰值电流,匝数以及次级储能电感的电感量;正激没有偏磁和直通的毛病,主要优点就是可靠性高.同样频率下,正激变压器磁芯的发热量只有桥式的1/3;200W-500W的正激变压器,可加的气隙,这样可以减少初级匝数,还可适当提高频率,进一步减少匝数,以降低导线发热量;正激电源开通、关断瞬间,初、次级电流包含哪些成分稳态之后呢双管正激的那两个钳位二极管是在复位的时候导通,从而钳位MOSFET两端的电压近似等于直流母线电压,复位二极管最好用超快回复的,最理想的选择是BYV26C之类的管子,UF系列也可以;硬开关电路,从理论上分析,提高频率的益处:可以允许使用更少的匝数或者使用更小型号的变压器同样型号的变压器输出同样功率,铁损将明显减少,减少电源的体积,增大电源的功率密度;当然也有不好的一面:提高频率将使MOSFET的开关损耗加大,变压器绕线的趋肤深度降低,分布参数的振荡将更加剧烈,EMI变差;所以,可靠性跟频率没有必然的联系,只要将电路处理好,特别是热设计做好了,一般可靠性还是比较高的;匝比的大小跟输入的电压范围以及占空比有关;正激与反激不一样,反激的“电感”变压器之前,而正激的电感在变压器之后,所以同样的占空比下,正、反激的变压器次级输出电压是不一样的;次级完全可以看成一个BUCK电路,那么这个BUCK电路的输入电压就是变压器次级输出电压减去整流管的压降,只要确定好占空比,就可以计算出电感前端的输入电压,即变压器次级的电压,然后通过占空比凡推出匝比,选好变压器之后就可以计算出初级的匝数,通过匝比计算出次级匝数;在算变压器的时候经常会因为匝比或匝数的小数而有所调整,这样先计算的输出电感余量不是要再留大些是的,一般在实际电路设计的时候,跟计算值相比都会留有一定的余量,而且当发生取值使用近似值的时候,都需要进行反推验证,这样才能保证电路的工作状态在我们的控制之中;正激变压器在开关管导通时存在三个电流,1.励磁电流,I1=VINTon/Lp;也就是Ip中的斜坡电流;这部分电流不传递能量,只维持变压器的电动势;中的平台电流I2,这一部分是传递能量的;3.次级感应电流I3=nI2;因为I3=nI2,I2,I3产生的磁场相互抵消,所以在正激变压器计算中不考虑;开关损耗是硬开关电路的硬伤,除非上软开关,则可以明显降低开关损耗;硬开关要降低开关损耗的方法有降低开关频率,加快开通与关断的速度使波形上升与下降沿更陡峭,但会使EMI更差,采用输入电容小的MOSFET,提升电路的驱动能力等;双管正激与单管正激变压器的计算方法完全一样;其实正激变压器稳态时的初级电流可以通过变压器的等效模型得到的,用文字表述下,Ton时,整流管导通,续流管关断忽略反向恢复时间与漏感的影响等因素的影响,次级储能电感电流线性上升,diL/dt=Us-Uo/L,而这个电流会通过匝比反馈到变压器初级的电流波形中去;当然,变压器的初级励磁电感在输入电压Uin的作用下,也会有一个线性上升的励磁电流,dim/dt=Uin/Lm,这两个电流都是要流经变压器初级线圈的,所以我们测试的电流就是这两个电流的叠加;这也解释了为何复位线圈的线径比初级线圈的线径小得多的原因;的取值大小限制变压器铁芯的损耗大小,小的B值变压器越不容易饱和,但相反需要更多的绕线匝数,有时甚至因为窗口面积饶不下,所以铜损在增加;正激一般都是工作在CCM模式,有较大的直流分量,如果要用较大的deltB的话,就需要加入一点气隙以降低剩磁,来平衡直流分量带来的影响,不过这会让励磁电流增大,变压器的铜损增加,开关管的电流应力相应的也会增大;因为正激的占空比一般都会小于,所以次级续流二极管的导通时间要更长;除开电容的影响,整流二极管跟续流二极管的平均电流应该是一样的;正激很少用在全电压的范围,是因为占空比变化过大吗是的,占空比的变化太大就会使次级的电感设计变得麻烦;正激有个最小占空比的问题;下面开始说变压器;第一个需要面对的就是变压器与磁芯的选择,其需要考虑的因素实在太多,我们列举其中一部分来讨论下:首先用Ap法磁芯面积乘积法来计算变压器的AP值:AP=AWAe=Ps10^4/2ΔBfsJKuAW: core之窗口面积. cm^2;Ae: core有效截面积 . cm^2;Ps :变压器传递视在功率W Ps=Po/η+Po正激式;ΔB: 磁感应增量T ;fs : 变压器工作频率HZ ;J :电流密度 A .根据散热方式不同可取300~1000 A/cm^2;Ku:磁芯窗口系数. 可取;对于上式Ap算法得到的值,跟实际使用的变压器AP值相差较远,所以被人广泛诟病;其实产生误差的根本原因是,上式基本上都是在工程应用中才有优化近似而得到的,所以有些参数是较为理想,而实际使用中很多的参数是变化的,甚至还有些分布参数在“捣乱”,所以造成了偏差,在实际使用在还要考虑到余量,所以对于计算得到的Ap值乘上一个的系数比较合理;其实这里的ΔB 磁感应增量是个比较重要的物理量,需要大家注意;ΔB表征磁芯的在电源工作时,磁感应强度的变化范围,ΔB=Bmax-Br,Bmax是最大磁感应强度,Br剩余磁感应强度;在输入电压与工作频率不变的前提条件下,对于同一幅磁芯,ΔB取得越大,磁感应强度的变化范围越宽,磁芯的铁损越大,但所需要的匝数就越少,相应的铜损就小;选用磁芯的时候,需要选择饱和磁通密度尽量高,剩余磁通密度尽量小的磁芯,这样可以实现小磁芯出大功率的目的;得到AP值之后,可能有非常多的变压器都符合需要,这是首先需要考虑结构尺寸的限制,特别是高度与宽度的限制;比如EFD30与EI28的AP值同样都是左右,但EFD30的高度小很多,更适合与扁平化的电源中,而EI28对于紧凑型电源则显得更重要;其次,从降低漏感与分布电容的角度出发,应该选择骨架宽度较宽的变压器磁芯跟骨架,这样单层绕线的匝数会更多,有利于降低绕线层数,从而降低漏感与分布电容,关于漏感的问题,我们在后面再展开讨论;再次,还要从通用性与经济性的角度来考虑,这是工程设计中无法回避的现实问题;当然还有安规,EMI,温升,绕法等一些问题需要考虑;计算好匝比之后,一般会综合考虑次级整流管的电压应力,将计算的匝比调整或将匝比取整,接着我们就可以通过匝比来反推电路的真实占空比范围Dmax=nVo+Vf/VinminDmin=nVo+Vf/Vinmax后面的就是要根据真实的占空比范围来计算,这样得到的参数才是比较合理的;接着就可以计算最大与最小的导通时间,tonmax= Dmax/ fstonmin= Dmin/ fs接着就能计算初级绕组的匝数了Np =Vinmin ×tonmax/ΔB×AeNp:初级绕组的最少匝数Vinmin:初级绕组的最低输入直流电压tonmax:初级MOSFET的最大导通时间ΔB:磁感应强度的变化量,正激类电源根据散热条件,一般可以取:所选磁芯的横截面积,一般在磁芯手册上可以查到接下来计算次级匝数,次级匝数Ns = Np / n,当然得到的数值不一定是整数,一般都是要四舍五入取整数匝,因为小数匝在绕线的时候工艺不好控制;此时又会带来一个问题,要想保持匝比不变,那么势必要根据四舍五入之后的次级匝数,反过来计算初级的最终匝数,否则占空比就会发生改变, Np= Ns n计算的NP如果不是整数的话,也需要近似的取值,当然会带来匝比与占空比的轻微变化,但由于影响较小,所以一般都不需要再次去反推占空比;同样的,确定最终的初级匝数之后,可以反过来推算变压器磁芯的磁感应强度变化范围,验证ΔB 是否在合理的范围之内,ΔB=Vinmin ×Dmax×Ts / Np×Ae得到Np之后,就可以计算出复位绕组匝数Nr,并计算出励磁电流以及复位绕组的线径,考虑到MOSFET的电压应力与变压器的可靠复位,一般都是设Np=Nr,然后根据所选磁芯的AL值,计算出复位绕组的电感量Lr=ALN^2,继而计算出复位绕组的复位电流Ir=Vinmin ×tonmax/Lr,相应的绕组线径也就能计算出来了;接下来的工作就是计算初次级绕组的线径;有一点需要大家注意的就是,计算线径要以电流有效值来计算,而非电流峰值或平均值要计算初级绕组的线径,首先要计算初级的峰值电流Ip = Pi / VL = Po / η×Dmax×Vin ,然后再计算峰值电流Iprms= Ip×√D ,最后在根据电流密度来计算需要的绕组线的横截面积,最后要根据频率,趋肤深度与临近效应,变压器骨架宽度跟深度等因素来计算单根线径的外径;同理次级绕组的计算方法一样的,不同点就是用电流平均值来计算,Isrms=Io×√D,然后要考虑单根线径的值,考虑因素同上;。

正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。

根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。

下面就分别对这三种电源的高频变压器设计进行详解。

1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。

其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。

正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。

(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。

(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。

(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。

(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。

(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。

2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。

其基本结构包括主磁线圈、副磁线圈和反馈元件等。

反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。

(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。

(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。

(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。

(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。

(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。

(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。

正激变压器设计要点

正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。

首先说说初次级匝数的选择:以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。

其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。

无论是单管正激还是双管正激,都存在磁复位的问题。

且,都可以看成是被动方式的复位。

复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。

复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。

但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠,大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik.正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关Vo=Vin*DVo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的.加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心.复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好?如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。

1200W双管正激变换器设计之一——变压器设计

1200W双管正激变换器设计之一——变压器设计

1200W双管正激变换器设计之一——变压器设计正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法:规格:输入电压Vin=400V(一般在输入端会有CCM A PFC将输入电压升压在稳定的DC400V左右)输出电压Vout=12V输出功率Pout=1200W效率η=85%开关频率Fs=68KHz最大占空比Dmax=0.35第一,第一,选择磁芯的材质选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下:因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB<Bs-Br,得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB 的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T第二,确定磁芯规格根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku)其中:Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数对正激变换器,视在功率Ps=Pout/η+Pout电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2铜窗口占用系数Ku取0.2ΔB=0.20T,J=600A/cm2,Ku=0.2代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4查磁芯规格书,选用磁芯ETD49,其相关参数如下:第三,计算匝比、匝数1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf)其中Vf为输出二极管正向压降,取0.8V得匝比N=(400*0.35)/(12+0.8)=10.9375,取匝比N=11验算最大占空比Dmax,最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.3522. 根据公式Np=Vin*Ton/(ΔB*Ae)导通时间Ton=Dmax*Ts,周期Ts=1/Fs*106得初级匝数NP=[Vin*Dmax*(1/Fs*106)]/(ΔB*Ae)={400*0.352*[1/(68*103)*106]}/(0.201*213)=48.36Ts,取49Ts3. 次级匝数Ns=Np/N=49/11=4.45Ts4. 取次级匝数Ns=5Ts验算初级匝数Np,初级匝数Np=Ns*N=5*11=55Ts考虑到输入电压较高,采用双管正激比采用单管正激可以大幅减小MOS的电压应力,无需消磁绕组。

正激、反激式、双端开关电源高频变压器设计详解

正激、反激式、双端开关电源高频变压器设计详解

一、正激式开关电源高频变压器:No待求参数项 详细公式1 副边电压Vs Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。

2、0.5是考虑输出整流二极管压降的调整值,以下同。

3 临界输出电感Lso Lso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax2/(2*f*Po)1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Lso]}dt = Po2、Ton=θon/f4 实际工作占空比θon 如果输出电感Ls≥Lso:θon=θonmax否则: θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls]}dt = Po2、Ton=θon/f5 导通时间Ton Ton =θon /f6 最小副边电流Ismin Ismin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon2/(2*f*Ls)]/[(Vs-0.5)*θon]1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po2、Ton=θon/f7 副边电流增量ΔIs ΔIs = (Vs-0.5-Vo)* Ton/ Ls8 副边电流峰值Ismax Ismax = Ismin+ΔIs9 副边有效电流Is Is = √[(Ismin2+ Ismin*ΔIs+ΔIs2/3)*θon]1、Is=√[(1/T)*∫0ton(Ismin+ΔIs*t/Ton)2dt]2、θon= Ton/T10 副边电流直流分量Isdc Isdc = (Ismin+ΔIs/2) *θon11 副边电流交流分量Isac Isac = √(Is2- Isdc2)12 副边绕组需用线径Ds Ds = 0.5*√Is电流密度取5A/mm213 原边励磁电流Ic Ic = Vp*Ton / Lp14 最小原边电流Ipmin Ipmin = Ismin*Ns/Np15 原边电流增量ΔIp ΔIp = (ΔIs* Ns/Np+Ic)/η16 原边电流峰值Ipmax Ipmax = Ipmin+ΔIp17 原边有效电流Ip Ip = √[(Ipmin2+ Ipmin*ΔIp+ΔIp2/3)*θon]1、Ip=√[(1/T)*∫0ton(Ipmin+ΔIp*t/Ton)2dt]2、θon= Ton/T18 原边电流直流分量Ipdc Ipdc = (Ipmin+ΔIp/2) *θon19 原边电流交流分量Ipac Ipac = √(Ip2- Ipdc2)20 原边绕组需用线径Dp Dp = 0.55*√Ip电流密度取4.2A/mm221 最大励磁释放圈数Np′ Np′=η*Np*(1-θon) /θon22 磁感应强度增量ΔB ΔB = Vp*θon / (Np*f*Sc)23 剩磁Br Br = 0.1T24 最大磁感应强度Bm Bm = ΔB+Br25标称磁芯材质损耗P Fe(100KHz 100℃ KW/m3)磁芯材质PC30:P Fe = 600磁芯材质PC40:P Fe = 45026 选用磁芯的损耗系数ωω= 1.08* P Fe / (0.22.4*1001.2)1.08为调节系数27 磁芯损耗Pc Pc = ω*Vc*(ΔB/2)2.4*f1.228 气隙导磁截面积Sg 方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc 圆形中心柱:Sg= {π*(d/2+δ′/2)2/[π*(d/2)2]} *Sc29 有效磁芯气隙δ′ δ′=μo*(Np2*Sc/Lp-Sc/AL)1、根据磁路欧姆定律:H*l = I*Np 有空气隙时:Hc*lc + Ho*lo = Ip*Np又有:H = B/μ Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp 式中:lc为磁路长度,δ为空气隙长度,Np为初级圈数,Lp为初级电感量,ΔB为工作磁感应强度增量;μo为空气中的磁导率,其值为4π×10-7H/m;2、ΔB=Vp*Ton/Np*Sc3、μc为磁芯的磁导率,μc=μe*μo4、μe为闭合磁路(无气隙)的有效磁导率,μe的推导过程如下:由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo又根据:Bc=Vp*Ton/Np*Sc 代入上式化简 得:μe = Lpo*lc/μo*Np2*Sc5、Lpo为对应Np下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤5代入4,4代入3,3、2 代入1得:Lp =Np2*Sc/(Sc/AL +δ/μo)30 实际磁芯气隙δ如果δ′/lc≤0.005: δ=δ′如果δ′/lc>0.03: δ=μo*Np2*Sc/Lp 否则 δ=δ′*Sg/Sc31 穿透直径ΔD ΔD = 132.2/√f32 开关管反压Uceo Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′33 输出整流管反压Ud Ud = Vo+√2 *Vinmax*Ns/Np′34 副边续流二极管反压Ud′ Ud′=√2 *Vinmax*Ns/Np二、双端开关电源高频变压器设计步骤:No待求参数项 详细公式1 副边电压Vs 如果为半桥:Vs = Vp*Ns/(2*Np) 否则: Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计设计一个单管正激式开关电源变压器的主要目标是将输入电压转换为所需的输出电压,并提供适当的电流输出。

这种类型的电源变压器由一个开关管、一个变压器、一个整流电路和一个滤波电路组成。

以下是一个设计单管正激式开关电源变压器的基本步骤:1.确定功率需求:首先,确定所需的输出功率,这将指导变压器的尺寸和开关管的容量选择。

输出功率通常以所需的输出电压和电流来计算,即P=V*I。

2.选择变压器参数:根据所需的输出功率和输入电压范围,选择适当的变压器参数。

变压器一般由工作频率、变比(输出电压与输入电压之比)和功率容量来定义。

变压器的变比可以通过变压器的匝数比来实现,即N2/N1,其中N2是次级(输出)匝数,N1是主级(输入)匝数。

3.选择开关管:选择能够承受所需输出功率的开关管。

开关管的选择与其导通电阻、封装、耐压和工作频率相关。

常用的开关管有晶体管和功率MOSFET。

4.设计整流电路:整流电路用于将开关管的高频交流输出转换为直流输出。

常见的整流电路包括单相桥式整流器和满桥式整流器。

整流电路的设计需要考虑所需的输出电压、电流和纹波功率因素。

5.设计滤波电路:滤波电路用于去除整流电路输出的高频纹波,并提供平滑的直流输出。

常见的滤波电路包括电容滤波器和电感滤波器。

滤波电路的设计需要考虑所需的输出电压纹波和效率。

6.进行模拟和数字仿真:使用计算机软件进行电路的模拟和数字仿真,以验证设计的正确性和性能。

7.制作原型并测试:根据设计的电路图和布局,制作原型并进行测试。

测试包括输出电压和电流的测量、纹波和效率的评估。

8.进行优化:根据测试结果进行设计的优化。

优化的目标包括提高效率、减小纹波和噪声,以及改进稳定性和可靠性。

上述步骤提供了一个基本的单管正激式开关电源变压器设计的框架。

具体的设计细节和参数将取决于所需的输出功率和输出电压等要求。

为了确保电路的稳定性和可靠性,建议在设计过程中仔细考虑电源的保护和故障检测机制。

正激变压器的设计

正激变压器的设计

正激变压器的设计正激变压器的设计本文以一个13.8V 20A的汽车铅酸电池充电器变压器计算过程为例,来说明正激变压器的计算过程1、相關規格参数(SPEC):INPUT: AC 180V~260V 50HzOUTPUT: DC 13.8V (Uomax=14.7V) 20APout: 274W (Pomax=294W)η≧80%, fs: 60KHZ;主电路拓扑采用单管正激自冷散热2、選擇core材質.決定△B选择PC40材质Core,考虑到是自冷散热的方式,取ΔB=0.20T3、確定core AP值.決定core規格型號.AP=AW×Ae=(Ps×104)/(2×ΔB×fs×J×Ku)Ps : 變壓器傳遞視在功率( W) Ps=Po/η+Po (正激式)Ps=294/0.8+294=661.5WJ : 電流密度( A) .取400 A/cm2Ku: 銅窗占用系數. 取0.2AP=(661.5×104)/(2×0.20×60×103×400×0.2)≈3.4453 cm2 選用CORE ER42/15 PC40.其參數為:AP=4.3262cm4 Ae=194 mm2 Aw=223mm2 Ve=19163mm3AL=4690±25% Pt=433W (100KHz 25℃) 4、計算Np Ns.(1). 計算匝比n = Np /Ns 設Dmax= 0.4n = Np / Ns = Vi / Vo = [Vin(min) ×Dmax]/(Vo+Vf)Vf :二极管正向壓降取1VVin(min)=180×0.9×√2-20=209 VDCVin(max)=260×√2=370VDCn=(209*0.4)/(13.8+0.7)=5.766 取5.5CHECK DmaxDmax=n(Vo+Vf)/Vin(min)= 5.5(13.8+1)/209=0.3868≈0.387Dmin=n(Vo+Vf)/Vin(max)= 5.5(13.8+1) /370=0.218(2). 計算NpNp=Vin(min) ×ton/(ΔB×Ae)Ton:MOS管导通时间ton= Dmax/ fs=0.387/60×103=6.33uSNp = (209×6.33)/( 0.20×194)=34.1 取34TS (3). 計算NsNs = Np / n = 34÷5.5=6.18 取整为6 TS (4). CHECK Np (以Ns驗算Np)Np = Ns×n = 6×5 .5=33TS 取Np = 33TS (5).確定NRNR = Np= 33TS(6). CHECK ΔB之選擇合理性.ΔB=[Vin(min) ×Dmax×Ts]/ (Np×Ae)=(209×6.33)/ (33×194)=0.2067T5、計算线径:(1). 求初級線徑dwp:Ip = Pi / VL = Po / (η×Dmax×VIN) =294/(0.80×0.38×209) = 4.63 AIprms= Ip×√D =4.63 ×√0.38 = 2.854AAwp = I/J = 2.854/5 = 0.571mm2dwp=√(4Awp/π)=√(4×0.571/3.14)=0.853mmΦ0.9mm orΦ0.55mm×4(2). 求NR繞組線徑dwR.NR =33TS L = N2×ALL = 332×4690×0.75 = 3.83mHIm = Vin(min) ×ton / L = (209×6.33) / (3.83×103) ≈ 0.345AAWN = 0.345 / 5 = 0.0691mm2dwN=√(4×0.0691/3.14) =0.235mm 取Φ0.28mm(3). 求繞組Ns之線徑dwsIsrms=16×√0.35=9.47A (设计输出电流最大为16A)Aws= I / J=9.47÷5=1.9 mm2查ER42/15 BOBBIN幅寬27.5mm±0.3mm.考虑扣除挡墙約6mm,則有27.5 - 6=21.5mm之可繞寬度,預留適當空間(1.5mm) ,W =20mm則:dws=√(4Aws/π)=√(4×1.9/3.14)= 1.56mm选用Φ0.40mm×166、计算副边输出储能电感的感量Lo=Vo×(1-Dmin)÷(0.2×Io×Fs)=13.7×(1-0.218)÷(0.2×20×60×103)=10.7134÷(240×103)=45μH。

正激式开关电源变压器参数的计算

正激式开关电源变压器参数的计算

正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算线路板(PCB)级的电磁兼容设计内置片内电阻的双路差动放大器实现精密ADC驱动器基于TPS759XX多片信号处理系统的电源设计深度解读:城市景观照明存在问题及设计要求LED 电视市场规模扩大企业呼唤统一标准LED与OLED齐头并进潜力同样巨大LED照明优势显而易见名副其实的“未来之光”
 1-6-3-2.正激式开关电源变压器参数的计算
 正激式开关电源变压器参数的计算主要从这几个方面来考虑。

一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。

关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。

 1-6-3-2-1.正激式开关电源变压器初级线圈匝数的计算
 图1-17中,当输入电压Ui加于开关电源变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。

当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。

根据电磁感应定理:
 e1 = L1di/dt = N1dф/dt = Ui —— K接通期间(1-92)
 式中E1为变压器初级线圈产生的电动势,L1为变压器初级线圈的电感量,ф为变压器铁心中的磁通量,Ui为变压器初级线圈的输入电压。

其中磁通量ф还可以表示为:。

正激变换器中变压器的设计

正激变换器中变压器的设计

正激变换器中变压器的设计1引言电力电子技术中,高频开关电源的设计主要分为两部分,一是电路部分的设计,二是磁路部分的设计。

相对电路部分的设计而言,磁路部分的设计要复杂得多。

磁路部分的设计,不但要求设计者拥有全面的理论知识,而且要有丰富的实践经验。

在磁路部分设计完毕后,还必须放到实际电路中验证其性能。

由此可见,在高频开关电源的设计中,真正难以把握的是磁路部分的设计。

高频开关电源的磁性元件主要包括变压器、电感器。

为此,本文将对高频开关电源变压器的设计,特别是正激变换器中变压器的设计,给出详细的分析,并设计出一个用于输入48V(36~72V),输出、20A的正激变换器的高频开关电源变压器。

2正激变换器中变压器的设计方法正激变换器是最简单的隔离降压式DC/DC变换器,其输出端的LC滤波器非常适合输出大电流,可以有效抑制输出电压纹波。

所以,在所有的隔离DC/DC变换器中,正激变换器成为低电压大电流功率变换器的首选拓扑结构。

但是,正激变换器必须进行磁复位,以确保励磁磁通在每一个开关周期开始时处于初始值。

正激变换器的复位方式很多,包括第三绕组复位、RCD复位[1,2]、有源箝位复位[3]、LCD无损复位[4,5]以及谐振复位[6]等,其中最常见的磁复位方式是第三绕组复位。

本文设计的高频开关电源变压器采用第三绕组复位,拓扑结构如图1所示。

开关电源变压器是高频开关电源的核心元件,其作用有三:磁能转换、电压变换和绝缘隔离。

在开关管的作用下,将直流电转变成方波施加于开关电源变压器上,经开关电源变压器的电磁转换,输出所需要的电压,将输入功率传递到负载。

开关变压器的性能好坏,不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。

所以在设计和制作时,对磁芯材料的选择,磁芯与线圈的结构,绕制工艺等都要有周密考虑。

开关电源变压器工作于高频状态,分布参数的影响不能忽略,这些分布参数有漏感、分布电容和电流在导线中流动的趋肤效应。

正激变压器设计

正激变压器设计

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。

首先说说初次级匝数的选择:以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。

其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。

无论是单管正激还是双管正激,都存在磁复位的问题。

且,都可以看成是被动方式的复位。

复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。

复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。

但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠,大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik.正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关Vo=Vin*DVo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的.加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心.复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好?如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。

关于正激变压器设计的9个经典问题

关于正激变压器设计的9个经典问题

关于正激变压器设计的9个经典问题
正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那幺复杂,其作用主要是电压、电流变换,电气隔离,能量传递等。

所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。

 Q1:初次级匝数的选择
 以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。

 其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致deltB变大,不加气隙来平衡的话,变压器容易饱和。

 Q2:无论是单管正激还是双管正激,都存在磁复位的问题
 且都可以看成是被动方式的复位。

复位的电流很重要,如果太小了复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。

复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。

 但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小。

正激变压器的设计流程

正激变压器的设计流程

順向式變壓器設計原理(Forward Transformer Design Theory)第一節. 概述.順向式(Forward)轉換器又稱單端正激式或"buck"式轉換器.因其在原邊繞組接通電源V IN的同時繞組把能量傳遞到輸出端故而得名. Forward變換器中的變壓器是一個純粹的隔離變壓器. 因此,在副邊輸出端須附加儲能電感器L,用以儲存及傳送能量.Forward變壓器之轉換功率通常在50~500W之間.其優點有:1. 正激式變壓器通常使用無氣隙的CORE,電感值L較高,原副邊繞組之峰值電流較小( Φ=LI).因而銅損較小.2. 開關管Tr的峰值電流較低.開關損耗小.3. 适用于低壓.大電流.功率較大的場合.第二節. 工作原理正激變換器的主回路如圖 1.當開關管Tr導通時原邊繞組N p有電流I p流過.,因副邊繞組N s与N p有相同的同銘端.故副邊繞組通過D2把能量傳遞到輸出端.當Tr關斷時續流二极管D3導通釋放電感L中的能量給負載.在T r t on時,變壓器原邊電流I p=I m+I load.其中磁化電流I m是無法傳送到副邊的能量. 在T r t off期間此磁能無法被泄放,磁化能量將引起較高的反壓加在Tr之C . E极間而損壞Tr.另一方面磁化能量的存在將使變壓器CORE趨于飽和, 產生很大的集電极電流I c, 使T r損壞.為解決上述問題,通常在變壓器中設置一消磁繞組N R, 將磁化能量反饋到電源輸入端.當Tr t on時,儲能電感L內的電流將直線增加,如下式所示:d iL / d t=V s-V o / L而Tr集電极電流I c=I p可用下式表示:I c = I p= I load+I m = I L / n+[(T S* D max*V IN) / L]式中 n: 初級與次級之匝數比(N p/N s)I L: 輸出電感電流,即輸出負載電流.(A)I m: 磁化電流.(A)T s: 工作周期. T s=1/f s (μs)D max: 最大導通占空比 (D max = t on/T s)L: 輸出電感器之電感值 (uH)V IN: 輸入直流電壓 (V)變壓器磁化電流可由下式求得:I m = V IN*t on / L m = V IN*T S*D max / L m因為 V out = D max*V IN / n ( ∵U=-e=N*dψ/dt= N*Ae dB / dt=dφ/dt=Ldi/dt)而 V IN = n*V out / D max所以 I m = ∫0→t V IN*d t / L = n*T S*V out / L m則Ic之關系式可改寫為:I c= I p = I L / n+n*Ts*V out / L m若忽略磁化電流部分,原邊峰值電流Ic為:I c = I p = I L / n = 2P out / (η*V IN*D max)式中 I L=I o :負截電流 (A) ; P out: 輸出功率 P out=V o*I o (W)設η= 80%. D max=0.4. 則 I c = 6.2P out / V IN當Tr導通時間結束時,副邊峰值電流 Is 為:Is = I L+〔ton*(Vs-Vo+Vf) / 2L〕 V f: 二极管正向壓降.在能量轉換過程中,次級電流對磁芯起去磁作用,初級電流僅有很小一部分用來磁化磁芯.依據變壓器原理,次級在初級有反射電流I's.I's = Ns*Is / N p = Is/ n則 N p* I's= -Ns*Is如果激磁電感L m為常數,激磁電流I m線性增長,并等于原邊電流與反射電流之差:I m = V IN*ton / L m = I p-I's = (I p-Is*Ns) / N p磁化電流在導通時間結束時達到最大,當T r t off時,副邊感應電勢反向,二級體D2截止.Is=0, ton期間存儲在磁場中的激磁能量E R=(LI2m/ 2)在t off時應有釋放通路,且須保持與儲能時間相同.因為當正.負伏秒值相同時I m方才等于零,如此,复位時間t r為t r ≧ V IN*t on / E R ≒ N R*t on / N p式中N R為消磁繞組圈數.因為 N R=N p. 則 t r≒t on, 所以D max需低于50%第三節. Forward 變壓器設計方法.一. Forward Transfotmer 設計時之考慮因素:1. 鐵芯飽和問題.選用飽和磁通密度B s盡量高,剩余磁通B r盡量低的CORE,使其能承受大的磁場也就是大的電流,實現小體積大功率.2. 電壓的準位性.在多路輸出變壓器中,各繞組的伏特秒盡量保證一致,各繞組之電流密度應保持一致,使損耗有相同值.3. 傳輸功率.應考量在額定輸出功率下應留有一定余量,通常功率余量不應小于10%.4. 電流容量.有足夠的電流容量,以減小耗損.5. 工作頻率.將決定CORE的△B和導線直徑.6. 磁化電流Im .應使磁化電流盡可能低,激磁電感盡量大.所以需用高磁導率的CORE.7. 損耗PΣ . (PΣ=P fe+P cu)a. 銅損P cu包括低頻損耗和高頻損耗,低頻損耗很容易計算,也比較容易解決,通過增大導體截面積減小R DC即可降低損耗.線圈的高頻損耗因涉及渦流損耗.趨膚效應,鄰近效應等問題很難精確確定. P cu=I2rms*R HF (R HF: 高頻時導體的有效阻抗)從上式可見有效電流I rms正比于P cu,而I rms=I pp√D.即P cu正比于D,反比于V IN .在V IN最低時P cu最大.b. 鐵損P Fe 又包括磁滯損和渦流損.磁滯損正比于頻率和磁感應擺幅△B.渦流損與每匝伏特數和占空度D有關,而与頻率無關.V IN=Np dΦ / d t 即 V IN/Np=dΦ/d t .可見渦流損耗与磁通變化率成正比.8. 溫升. 變壓器損耗使得線圈與磁芯溫度升高,溫升又使損耗盡一步增加,.如此惡性循環將導致變壓器損壞.因此,設計時必須限制溫升在一個可接受的範圍.變壓器溫升循環圖如圖 2.溫升對CORE之功率損失特性圖參照各廠商之DATA BOOK.9. 漏電感.在實際變壓器中.因磁通的不完全耦合而產生漏磁通.轉換成漏電感形式存在變壓器中,漏電感Lk之關係式L K= u o*u r*A*N2 /ι*10-2上式中: L K:漏電感 ι:銅窗之排線寬度(cm)A: 兩繞組間之剖面積(cm)u r=1相對磁導率. u o= 4π*10-7 N: 匝數因漏感是一個限制電流Ip通過的阻抗.所以它將影響變壓器的電壓準位特性.同時漏電感所存能量在Tr off時將釋放,產生尖峰電壓,造成元件損壞和電磁干擾,采用吸收電路後將使效率降低,因此在設計變壓器時,應於CORE選擇.繞組結構,工藝工法上設法減小漏感.10. 分布電容.或稱雜散電容.分布電容的存在在電源轉換過程中,會傳輸繞組間的共模雜訊,增加原副邊的漏電流.在通信變壓器中,雜散電容影響信號的頻率響應.高頻變壓器中的雜散電容包括a. C W to CORE.b. C W to W.c. C Laye to Layed. C匝間等.因降低雜散電容与減小漏感相互矛盾.故設計時須根據用途權衡利弊做取舍.22484875.xls 10 / 10Lisc Oct.。

正激变压器设计(内容清晰)

正激变压器设计(内容清晰)

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。

首先说说初次级匝数的选择:以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。

其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。

无论是单管正激还是双管正激,都存在磁复位的问题。

且,都可以看成是被动方式的复位。

复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。

复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。

但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠,大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik.正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关Vo=Vin*DVo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的.加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心.复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好?如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。

正激式开关电源变压器参数的计算

正激式开关电源变压器参数的计算

1-6-3-2.正激式开关电源变压器参数的计算正激式开关电源变压器参数的计算主要从这几个方面来考虑。

一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。

关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。

1-6-3-2-1.正激式开关电源变压器初级线圈匝数的计算图1-17中,当输入电压Ui加于开关电源变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。

当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。

根据电磁感应定理:e1 = L1di/dt = N1dф/dt = Ui —— K接通期间(1-92)式中E1为变压器初级线圈产生的电动势,L1为变压器初级线圈的电感量,ф为变压器铁心中的磁通量,Ui为变压器初级线圈的输入电压。

其中磁通量ф还可以表示为:ф= S×B (1-93)上式中,S为变压器铁心的导磁面积(单位:平方厘米),B为磁感应强度,也称磁感应密度(单位:高斯),即:单位面积的磁通量。

把(1-93)式代入(1-92)式并进行积分:(1-95)式就是计算单激式开关电源变压器初级线圈N1绕组匝数的公式。

式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯),Br为变压器铁心的剩余磁感应强度(单位:高斯),Br一般简称剩磁,τ= Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒),一般τ取值时要预留20%以上的余量,Ui为工电压,单位为伏。

式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。

正激式直流变换器的设计

正激式直流变换器的设计

计算变压器、扼流圈
2. 技术指标
• • • • • • 输入电压 单相交流100V
输入电压变动范围 交流85~132V 输入频率 输出电压 50/60Hz V0=5V
输出电压变动范围 4.5~5.5V 输出电流 I0=20A
3.工作频率的确定
工作频率对电源体积以及特性影响很大,必须很好选择。 选用较高工作频率较高时 •优点: 可使输出滤波器小型化; 可使输出变压器可小型化; 1 1 暂态响应速度快。 T s 3 f 0 20010 •缺点: 主开关元件的热损耗增大; 噪声增多; 所使用的元器件(控制IC、主开关元件、输出二极 管、输出电容以及输出变压器的铁心等)受到限制。 零部件及配置型式,都受到限制。 输出变压器绕组要格外注意。 还有电路设计等都受到限制。另外还要注意输出变压 器绕组匝数。因此这里基本工作频率选为200KHz。
p
2
V
I
p
V
2
D
V
V
1
1
3
D
3
Q
b) a) (1)复位电路如上图a)所示,开关Q导通期间,变压器T1的 磁通增加,磁能就储存在变压器T1中;又当开关Q关断期间, 即释放出已励磁的磁能,以使磁通恢复为剩余磁通。T1上绕有
复位专用的绕组,在关断期间可使磁能通过D3向输入端回馈。
_
_
Q
2
变压器初级绕组N1上的电压为:
1950 2200 2390 1630 2070 2350
8200
10000
0.022
0.018
0.055
0.045
2550
2900
6800
8200
0.022
0.018

正激变压器的设计

正激变压器的设计

正激变压器的设计本文以一个13.8V 20A的汽车铅酸电池充电器变压器计算过程为例,来说明正激变压器的计算过程1、相關規格参数(SPEC):INPUT: AC 180V~260V 50HzOUTPUT: DC 13.8V (Uomax=14.7V) 20APout: 274W (Pomax=294W)η≧80%, fs: 60KHZ;主电路拓扑采用单管正激自冷散热2、選擇core材質.決定△B选择PC40材质Core,考虑到是自冷散热的方式,取ΔB=0.20T3、確定core AP值.決定core規格型號.AP=AW×Ae=(Ps×104)/(2×ΔB×fs×J×Ku)Ps : 變壓器傳遞視在功率 ( W) Ps=Po/η+Po (正激式)Ps=294/0.8+294=661.5WJ : 電流密度 ( A) .取400 A/cm2Ku: 銅窗占用系數. 取0.2AP=(661.5×104)/(2×0.20×60×103×400×0.2)≈3.4453 cm2選用CORE ER42/15 PC40.其參數為:AP=4.3262cm4 Ae=194 mm2 Aw=223mm2Ve=19163mm3AL=4690±25% Pt=433W (100KHz 25℃)4、計算Np Ns.(1). 計算匝比 n = Np /Ns 設 Dmax= 0.4n = Np / Ns = Vi / Vo = [Vin(min) ×Dmax]/ (Vo+Vf)Vf :二极管正向壓降取1VVin(min)=180×0.9×√2-20=209 VDCVin(max)=260×√2=370VDCn=(209*0.4)/(13.8+0.7)=5.766 取5.5CHECK DmaxDmax=n(Vo+Vf)/Vin(min)= 5.5(13.8+1)/209=0.3868≈0.387Dmin=n(Vo+Vf)/Vin(max)= 5.5(13.8+1) /370=0.218(2). 計算NpNp=Vin(min) ×ton/(ΔB×Ae)Ton:MOS管导通时间ton= Dmax/ fs=0.387/60×103=6.33uSNp = (209×6.33)/( 0.20×194)=34.1 取34TS(3). 計算NsNs = Np / n = 34÷5.5=6.18 取整为6 TS(4). CHECK Np (以Ns驗算Np)Np = Ns×n = 6×5 .5=33TS 取 Np = 33TS(5).確定N RN R = Np= 33TS(6). CHECK ΔB之選擇合理性.ΔB=[Vin(min) ×Dmax×Ts]/ (Np×Ae)=(209×6.33)/ (33×194)=0.2067T5、計算线径:(1). 求初級線徑dwp:Ip = Pi / VL = Po / (η×Dmax×VIN) =294/(0.80×0.38×209) = 4.63 AIprms= Ip×√D =4.63 ×√0.38 = 2.854AAwp = I/J = 2.854/5 = 0.571mm2dwp=√(4Awp/π)=√(4×0.571/3.14)=0.853mmΦ0.9mm orΦ0.55mm×4(2). 求N R繞組線徑dw R.N R =33TS L = N2×ALL = 332×4690×0.75 = 3.83mHIm = Vin(min)×ton / L = (209×6.33) / (3.83×103) ≈0.345AAWN = 0.345 / 5 = 0.0691mm2dwN=√(4×0.0691/3.14)=0.235mm 取Φ0.28mm(3). 求繞組Ns之線徑dwsIsrms=16×√0.35=9.47A (设计输出电流最大为16A)Aws= I / J=9.47÷5=1.9mm2查ER42/15 BOBBIN幅寬27.5mm±0.3mm.考虑扣除挡墙約6mm,則有27.5 - 6=21.5mm之可繞寬度,預留適當空間(1.5mm) ,W=20mm則:dws=√(4Aws/π)=√(4×1.9/3.14)= 1.56mm 选用Φ0.40mm×166、计算副边输出储能电感的感量Lo=Vo×(1-Dmin)÷(0.2×Io×Fs)=13.7×(1-0.218)÷(0.2×20×60×103)=10.7134÷(240×103)=45μH正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback 变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等。

正激式变压器开关电源电路参数的计算

正激式变压器开关电源电路参数的计算

正激式变压器开关电源电路参数的计算
1.输入滤波电路
输入滤波电路用于消除输入交流电信号中的高频噪声和其他不稳定因素。

一般采用电感和电容元件组成的LC滤波电路。

在计算数值时,可以
先确定所需的电感和电容数值范围,然后通过计算公式得出具体数值。

2.整流电路
整流电路用于将输入交流电信号转换为直流电信号。

正激式变压器开
关电源电路中,常采用二极管整流电路,其中包括半波整流和全波整流。

计算整流电路参数时,需要考虑到输入电压的峰值和负载电流等因素。

3.电容滤波电路
电容滤波电路用于对整流后的直流电信号进行滤波平滑处理,去除波
动和纹波。

计算电容滤波电路参数时,需要考虑到输出纹波电压的要求、
电容的最小阻抗频率等因素。

4.开关电路
开关电路用于控制输入交流电信号的通断,将其转换为开关信号供给
变压器主电路。

常用的开关电路包括MOSFET开关电路和IGBT开关电路。

在计算开关电路参数时,需要考虑到开关的电流和电压要求、开关频率等
因素。

5.变压器
变压器用于将输入的交流电信号变换为输出的直流电信号,它是整个
正激式变压器开关电源电路中最核心的部分。

在计算变压器参数时,需要
考虑到输入输出电压的变化范围、输出电流的要求、变压器的效率等因素。

以上是正激式变压器开关电源电路参数的计算方法和要点。

在实际设计中,还需要综合考虑安全性、可靠性和成本等因素,选择合适的元件和参数。

此外,也可以借助专业的电源设计软件进行参数计算和模拟分析,以提高设计的准确性和效率。

正激电路设计

正激电路设计

时磊5说-正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。

1-6-1 .正激式变压器开关电源工作原理所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流脉冲电压激励时,变压器的次级线圈正好有功率输出。

图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。

在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。

如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。

我们从(1-76 )和(1-77 )两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua,而输出电压的幅值Up不变。

因此, 正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。

图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。

其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。

关于电压平均值输出滤波电路的详细工作原理,请参看“1-2 •串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。

正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。

因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3, 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对布磊5『彳 电源进行充电;另一方面,流过反馈线圈 N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场 强度恢复到初始状态。

正激式变压器设计

正激式变压器设计

正激式高频变压器的设计成都立新由于高频变压器在开关电源中已被广泛的使用,所以,高频变压器的设计是一重要课题。

按照高频变压器的工作方式,可分为正激式和反激式两种。

高频变压器工作时是利用一电子开关的高速通断,从而使变压器进行能量传输。

当电子开关导通时,变压器进行能量传输,称为正激式;反之,即电子开关截止时,变压器进行能量传输,称为反激式。

这里,笔者介绍正激式高频变压器的设计方法.如图1所示。

该变压器一般设计的使用功率为50~500W。

图1中已标明变压器T各绕组安装时规定的同名端,以便以下分析。

当功率开关管M1接通时(给M1栅极上外加脉冲开关信号。

在变压器T的主绕组N1中有电流通过),其自感电动势a点为+,b点为-,这样在变压器的Nl中就储存了磁能。

该能量传输到次级绕组N2上(e点为+,f点为-),使二极管D2正向偏置,有电流通过D2、电感L和负载RL。

而此时D3是处于反向偏置,所以无电流通过D3。

当功率开关M1截止时(M1栅极开关信号为"0"电平),变压器T所有绕组以及L的感应电压都反向。

D2也处于反向偏置状态。

由于电感器L的电流不能突变,D3(是续流管)导通,负载RL仍有电流通过。

此时。

次级绕组中无电流通过。

由此可见,变压器T 从初级到次级的能量传输是在开关M1导通时完成的.这一过程通常称为正激式变换(反之,若上述的能量传输是在M1截止时完成,称为反激式变换,这里不讨论)。

在上述的变压器T正激式变换中,为了避免变压器T或电感器L产生饱和,要求开关管M1导通时的电压与时间的乘积(UxT)应等于Ml截止时的反向电压与时间的乘积。

为此,设定Ml时间为Ton,T初级绕组电压设为Uin(初级绕组电流由N1的a流到b),由此时的电压×时间:UinxTon……(1)。

然而,当电子开关M1截止时,没有电流流过变压器T,结果是电压与时间的乘积就会不平衡,这种不平衡将导致变压器T饱和。

为了解决变压器可能饱和的问题,在变压器T中增加了第三绕组N3和一只快恢复二极管D1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使Pfe略小於Pcu. ΔB選得過小會使匝數增加,Pcu增大,產品体積變大,但ΔB選得過高,則Pfe將增加.且易飽 和.PC40材最高可取ΔB=300MT. 此時Pfe稍高,可調節電路導通比ton/Ts (D)來解決鐵損問題.
本例選擇75%Bm: ΔB=(390-55)*0.75≒251mT≒0.25T.
Step1 選擇core材質.決定△B.
功率變壓器所用功率鐵芯應選擇高μi.低損. 高Bs材料.目前因軟磁鐵氧體具備以上要求而被得以
廣泛應用.在此選用TDK之 PC40 材質.其相關參數:
Pcv: 410 kw/m3 @ 100KHZ 正弦波
μi : 2300±25% Bs : 390mT
Br : 55mT
fs : 變壓器工作頻率 ( HZ ) J : 電流密度 ( A ) .根據散熱方式不同可取300~600 A/cm2
Ku: 銅窗占用系數. 取0.2.
正激式变压器的设计.xls 6 / 10
Lisc Oct.
三 .設計舉例: Step0 取得相關規格(SPEC)
例: 155W PC Power MAIN X'FMR. SPEC: INPUT: AC 180~265V 50HZ
OUTPUT:ห้องสมุดไป่ตู้DC +5V-15A +3.3V-12A +12V-4.2A
100W MAX TOALT 155W
η≧68%, fs: 100KHZ; 電路接線圖如圖 3. 風冷散熱.
Step2 確定core AP值.決定core規格型號. AP=AW*Ae=(Ps*104)/(2ΔB*fs*J*Ku)
式中 AW: core之銅窗面積. ( cm2) Ae: core有效截面積 . ( cm2)
Ps : 變壓器傳遞視在功率 ( W ) Ps=Po/η+Po (正激式)
ΔB: 磁感應增量 ( T )
@ 100℃
因Forward電路之磁芯為單向磁化,要使core不飽和,磁芯中磁通密度最大變化量為:ΔB<Bs-Br.故
PC40材之ΔB=390-55=335mT.但實際應用中由於有高溫效應,瞬變情況等引起Bs, Br的變化,使ΔB動態
範圍變小而出現飽和,因此,設計時必須留一些安全空間,通常選擇75%(Bs-Br),用以限制飽和,此方法可
相关文档
最新文档