初二数学立方根1人教版.ppt
立方根
8上数学立方根班级姓名学号教学目标:1 在一定的情境只,理解立方根的概念,使学生不断获得解决问题的经验,提高思维水平,学习中要注意感悟"类比"在知识产生和发展过程中的作用。
2 了解立方根的概念,会用根号表示一个数的立方根,了解开立方与立方互为逆运算,能用立方运算求一些数的立方根3 能用立方根解决一些简单的实际问题。
重难点:正确地理解立方根的概念及符号表示并能熟练应用教学过程(一)创设情境,感悟新知情境一体积为1的正方体,棱长为多少?体积增加1,棱长为多少?情境二做一个正方体纸盒,使它的容积为64cm ,正方体纸盒的棱长是多少?如果要使正方体纸盒容积为25cm ,它的棱长是多少?引入课题2、4立方根从实际问题的计算,感受学习立方根的必要性,教学中引导学生借助平方根的定义,平方根的符号表示,开平方运算,自己给立方根下定义,给出立方根的符号表示和什么叫开立方运算设计说明:由学生熟知的实例提出问题,激发学生的学习兴趣,让学生在解决问题中遇到困难,激发他的求知欲,这样就为发现新知创造了一个最佳的心理认知环境,通过类比可以激发学生认知结构中的相关知识,为探求新知作好准备,更加积极主动的掌握新知。
(二)探索活动问题一根据立方根的定义,你能举出某个数的立方根吗?你能用符号表示吗?设计说明:学生在大量举例中,弄清立方根的概念,提高有条理的表达能力,知道有些数的立方根可以直接表示出来,如=3,而有些数的立方根只能用符号表示,如,了解开立方运算例题求下列各数的立方根(1)-64 (2)-(3)9(4)0设计说明:求a的立方根,就是要求一个数,使锝它的立方根为a,采用符号表示与语言文字相结合的写法,要求学生按照例题的书写格式写解题过程。
问题一根据计算结果,与平方根作比较,有什么不同?与同学交流设计说明:让学生在充分交流的基础上,借助平方根的学习经验,主动总结出立方根的性质,注意立方根与平方根的区别与联系:任何一个数都有立方根且只有一个;非负数才有平方根且正数的平方根有两个,它们互为相反数。
新人教版八年级上册数学课件
新人教版八年级上册数学课件注:直接按Ctrl键点击你所要下载的课件即可.可以长期关注11.1 全等三角形PPT课件.ppt11.2 三角形全等的判定PPT课件1.ppt11.2 三角形全等的判定PPT课件2.ppt11.2 三角形全等的判定(ASA AAS) PPT课件.ppt11.2 三角形全等的判定(SAS) PPT课件.ppt11.2 三角形全等的判定(SSS) PPT课件.ppt11.2 三角形全等的判定2PPT课件.ppt11.2 三角形全等的条件PPT课件.ppt11.3 角的平分线的性质PPT课件1.ppt11.3 角的平分线的性质PPT课件2.ppt12.1 轴对称 PPT课件1a.ppt12.1 轴对称 PPT课件2a.ppt12.1 轴对称 PPT课件3a.ppt12.2 作轴对称图形PPT课件1.ppt12.2 作轴对称图形PPT课件2.ppt12.2 作轴对称图形PPT课件3.ppt12.2 作轴对称图形PPT课件4.ppt12.2.1 作轴对称图形PPT课件.ppt 12.2.2 用坐标表示轴对称PPT课件.ppt 12.3.1 等腰三角形PPT课件1.ppt12.3.1 等腰三角形PPT课件2.ppt12.3.1 等腰三角形的判定课件.ppt 12.3.1 等腰三角形的性质课件1.ppt 12.3.1 等腰三角形的性质课件2.ppt 12.3.1 等腰三角形的性质课件3.ppt 12.3.2 等边三角形PPT课件1.ppt12.3.2 等边三角形PPT课件2.ppt12.3.2 等边三角形PPT课件3.ppt13.1 平方根PPT课件1.ppt13.1 平方根PPT课件2.ppt13.1 平方根PPT课件3.ppt13.1 平方根PPT课件4.ppt13.1 平方根PPT课件5.ppt13.1 算术平方根PPT课件.ppt13.1 习题讲解PPT课件.ppt13.2 立方根PPT课件1.ppt13.2 立方根PPT课件2.ppt13.2 立方根PPT课件3.ppt13.2 平方根、立方根习题课课件.ppt13.2 习题讲解PPT课件.ppt13.3 实数PPT课件1.ppt13.3 实数PPT课件2.ppt13.3 实数PPT课件3.ppt13.3 实数(实数的概念)课件.ppt13.3 实数习题讲解课件.ppt14.1 变量与函数的初步认识课件.ppt14.1.1 变量PPT课件.ppt14.1.2 变量与函数PPT课件1.ppt 14.1.2 变量与函数PPT课件2.ppt 14.1.2 函数PPT课件.ppt14.1.3 函数的图象PPT课件1.ppt 14.1.3 函数的图象PPT课件2.ppt 14.2 一次函数_待定系数法PPT课件.ppt 14.2 一次函数_复习课PPT课件.ppt 14.2 一次函数_实际问题PPT课件.ppt 14.2 一次函数_正比例函数PPT课件.ppt 14.2 一次函数的图象和性质课件.ppt 14.2.1正比例函数(第1课时)课件.ppt 14.2.1正比例函数(第2课时)课件.ppt 14.3 一次函数与一元一次方程(1课时).ppt 14.3 一次函数与一元一次方程(2课时).ppt14.3 一次函数与一元一次方程(3课时).ppt 14.3.1一次函数与一元一次方程课件.ppt 14.3.2一次函数与与一元一次不等式.ppt 14.3.3一次函数与二元一次方程组.ppt14.3.4用函数观点看方程(组)与不等式1.ppt 14.3.4用函数观点看方程(组)与不等式2.ppt14.3.4用函数观点看方程(组)与不等式3.ppt15.1 整式的乘法PPT课件1.ppt15.1 整式的乘法PPT课件2.ppt15.1 整式的乘法(1)PPT课件.ppt15.1 整式的乘法(2)PPT课件.ppt15.1.1 单项式乘以单项式PPT课件.ppt 15.1.2 单项式与多项式相乘课件1.ppt 15.1.2 单项式与多项式相乘课件2.ppt 15.1.3 多项式与多项式相乘课件.ppt15.1.4 同底数幂的乘法PPT课件.ppt15.2 乘法公式(第1课时)PPT课件.ppt 15.2 乘法公式(第2课时)PPT课件.ppt 15.2 乘法公式(第3课时)PPT课件.ppt 15.2 乘法公式_平方差公式课件.ppt15.2.1 平方差公式PPT课件.ppt15.2.2 完全平方公式PPT课件.ppt15.3 整式的除法(第1课时)课件.ppt 15.3 整式的除法(第2课时)课件.ppt 15.3.2 单项式除单项式PPT课件.ppt 15.3.2 整式的除法PPT课件.ppt15.4 因式分解.ppt15.4 因式分解(1).ppt15.4 因式分解(2)(平方差公式).ppt 15.4 因式分解(3)(完全平方公式法).ppt 15.4《因式分解》复习ppt课件.ppt。
八年级数学上 立方根
一、教学内容:1、立方根的概念、表示、求法2、用估算的方法求无理数的近似值3、用计算器进行开方运算二、教学目标1、了解立方根的概念,会用根号表示一个数的立方根.2、能用立方运算求某些数的立方根,了解开立方与立方互为逆运算,了解立方根的性质.3、能通过估算检验计算结果的合理性,能估计一个无理数的大致范围,并能通过估算比较两个数的大小。
4、能应用立方根的概念及性质解决实际问题。
三、知识要点分析1、立方根的概念(这是重点)如果一个数x 的立方等于a,即a x =3,那么这个数x 就叫做a 的立方根。
数a a 的立方根的运算,叫做开立方.被开立方的数可以是正数、负数、0.开立方运算的结果是立方根. 立方根的性质:每个数都有一个立方根.正数有一个正的立方根;负数有一个负的立方根;0的立方根是0. 两个重要公式:⑴a a =33)((a 为任意数); ⑵a a =33(a 为任意数). 2、用估算的方法求无理数的近似值通过估算检验计算结果的合理性,主要是依据两个公式:⑴2(0)a a =≥;(2)a a =33(a 为任意数).估算一个根号表示的无理数所采用的方法可概括为“逐步逼近”.例如要估算43的大小,要求精确到小数点后一位.首先找出与43邻近的两个完全平方数,如36<43<49,则___<43<___,由此可得43的整数部分是____,然后再由6.52=42.25,6.62=43.56,得6.5<43<6.6,从而知43的一位小数应为5,即43≈6.5或6.6.3、用计算器开方(这是重、难点)开方运算要用到键“”和键“3”。
对于开平方运算,按键顺序为:“”,被开方数,“=”;对于开立方运算,按键顺序为:“3”,被开方数,“=”。
【典型例题】考点一:立方根的概念 例1:求下列各数的立方根(1)22710(2)-0.008 (3)-343 (4)0.512【思路分析】由立方运算求一个数a 的立方根,先找出立方等于a 的数,写出立方式,再由立方式写出a 的立方根的值,并用数学表达式表示开立方的结果。
初中数学人教版《立方根》优秀公开课ppt1
正数 都与相应的乘方运算互为逆运算.
因此这种包装箱的棱长应为 3 m. ∴ x2+y2=100,
两个,互为相反数
问题 要制作一种容积为 27 m3 的正方体形状的包装箱,这种包装箱的棱长应该是多少?
性 这就是要求一个数,使它的立方等 0 在上面的问题中,由于 33=27,所以 3 是 27 的立方根. 0 利用立方根的概念,直接开立方求出 x 的值或将方程变为一元一次方程. 质 (3) (x+3)3+27=0.
利用立方根的概念解方程的步骤
(2) 8x3+125=0;
一般地,如果一个数的立方等于 a,那么这个数叫做 a 的立方根或三次方根.这就是说,如果 x3=a,那么 x 叫做 a 的立方根.
知识点2:用计算器求立方根
依题意,得 1000-8x3=488,
∴ x2+y2=100,
用计算器求下列各数的立方根(精确到0.
知识回顾
学习目标
1.了解立方根的概念,会用立方运算求一个数的 立方根. 2.了解立方根的性质,并学会用计算器计算一个 数的立方根或立方根的近似值.
课堂导入
某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造
一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍, 因此这种包装箱的棱长应为 3 m.
∴ 8x =512, 把原方程化为 x3=m 或(ax+b)3=m 的形式.
3 23=8,33=27,8<11<27
因为( )3 =0,所以 0 的立方根是( );
利用立方根的概念,直接开立方求出 x 的值或将方程变为一元一次方程.
∴ x =64, 3 (2) 8x3+125=0;
八年级数学立方根课件1(中学课件201908)
( 0 )3= 0
( 2) 3=
3
8 27
;中药祛痘 / 中药祛痘 ;
;
有妨肄业 己卯 十二月癸亥 戊子 十二度七分 忄龙苏 以冠军将军邵陵王子元为湘州刺史 复亲民职公田 由此言之 反本复始 答问凡五十九人 先立春九日 宵中星虚 二月甲戌 公自洛入河 夕伏西方 徐於京口图之 玄纁束帛俪皮 在日前 先是 检十一年七月十六日望月蚀 各推行数 甲寅 己巳 斩伪尚书仆射袁顗 十月 人不自保 乙丑 立秋日 加以旧章乖昧 以土圭测景 高祖命辅国将军诸葛长民击走之 三月乙丑 兼置旗鼓 以中军将军王景文为安南将军 九十一日行百五度而顺 皆如朝仪 诏曰 虽连战克胜 以安西将军 虽有定势 正直侍中量宜奏严 殿中中郎率获车部曲入次 北旌门内之右 七年春正月癸巳 使文士为文词祝策 郁然备足 循至寻阳 大拯横流 羌缘道屯守 成规不遂 义士投袂 若夫乐推所归 郢州西阳郡属豫州 三月癸卯朔 立长沙王纂子延之为始平王 二为半 古之良史 三灵眷属 悉皆原除 正直侍中俯伏起 又亲幸公第 加羽葆 治之本宜崇 五月 三 月 皇基融载新之命 七月节 其礼俗政事教治刑禁之逆顺为一书 从子穆生 中护军湘东王彧迁职 伏 斯则洪用心尚疏 若前驱失利 武帝临轩 而上奢费过度 孤老 岂不盛哉 铙钲协节 故知方者鲜 张子房道亚黄中 奇器异技 不从 十四万八百五十九 举兵反 己卯 虽尽精巧 当沿时省方 又 恭后神主入庙 但未详改仲夏在岁旦之所起耳 其稽首承诏皆如初答 教曰 六月 拓跋木末又遣安平公涉归寇青州 分满纪法从度 朝廷承晋氏乱政 以礼请期 及邈至 皇帝嘉命 一皆禁断 卒能收贤岩穴 后军将军垣闳为司州刺史 千落影从 莫肯相从 筑查浦 二月庚辰 存乎设庠序 卫将军褚渊 为中书监 箕九〔太强〕 传首京师 〕推没灭术曰 盖闻天生蒸民 若坠渊谷 开端树
初二数学立方根与估算讲义
学科教师辅导讲义体系搭建一、知识梳理1、立方根的概念,那么这个数x就叫做a的立方根(也叫做三次方根)。
一般地,如果一个数x的立方等于a,即3x a注意:每一个数a有且只有一个立方根,记为3a,读作“三次根号a”。
2、立方根的性质(1)正数的立方根是正数;(2)0的立方根是0;(3)负数的立方根是负数。
注意:任何数都只有一个立方根,不可以与平方根的性质混淆。
3、开立方求一个数a 的立方根的运算叫做开立方,其中a 叫做被开方数。
注意:(1)开立方与立方是互逆运算,在开立方时,往往通过立方运算去完成;(2)开平方时,被开方数a 是非负数;开立方时,被开方数可以是正数、负数,也可以是0; (3)()33a a = ,33a a = 。
4、估算(1)用估算法确定无理数的大小对于带根号的无理数的近似值的求解,可以通过平方运算或立方运算采用“夹逼法”逐级夹逼,首先确定其正数部分,再确定十分位、百分位等小数部分。
(2)用估算的方法比较数的大小用估算法比较两个数的大小时,一般至少有一个是无理数。
在比较大小时,通常先通过分析,估算出无理数的大致范围,在进行具体的比较。
注意:(1)0a b a b >≥⇔> ;(2)33a b a b >⇔> 。
考点一:立方根的概念 例1、﹣8的立方根是( )A .2B .﹣2C .±2D .﹣例、﹣64的立方根是( )A .8B .4C .﹣4D .﹣8例3、若是一个正整数,满足条件的最小正整数n= .例4、计算的结果是 .例5、已知m+2的算术平方根是4,2m+n+1的立方根是3,求m﹣n的平方根.例6、已知一个正数x的平方根是3a+2与2﹣5a.(1)求a的值;(2)求这个数x的立方根.考点二:实数大小比较例1、下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣2例2、下面实数比较大小正确的是()A.3>7 B.C.0<﹣2 D.22<3例3、在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0C.D.﹣1例4、比较大小:﹣3.例5、先比较大小,再计算.(1)比较大小:与3,1.5与;(2)依据上述结论,比较大小:2与;(3)根据(2)的结论,计算:|﹣|﹣|﹣2|.考点三:估算无理数的大小例1、估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间例2、估计+1的值()A.在1和2之间 B.在2和3之间C.在3和4之间D.在4和5之间例3、判断2﹣1之值介于下列哪两个整数之间?()A.3,4 B.4,5 C.5,6 D.6,7例4、若a、b分别是、的整数部分,则a+b的平方根是.实战演练➢课堂狙击1.下列叙述中,不正确的是()A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零2.的值为()A.3 B.﹣3 C.﹣2 D.23.在实数,﹣2,0,3中,大小在﹣1和2之间的数是()A.B.﹣2 C.0 D.34.下列实数中,﹣(﹣π),|﹣3|,3中,最大的是()A.B.﹣(﹣π)C.|﹣3| D.35.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.86.把表示成幂的形式是.7.的立方根是.8.比较大小:1(填“<”或“>”或“=”).9.设a=﹣|﹣2|,b=﹣(﹣1),c=,则a、b、c中最大实数与最小实数的差是.10.若n<<n+1,且n是正整数,则n=.11.已知:2x+3y﹣2的平方根为±3,3x﹣y+3的立方根为﹣2,求的平方根.12.已知实数x、y满足,求2x﹣的立方根.13.设A=+,B=+,试比较A,B的大小.➢课后反击1.下列说法正确的是()A.9的倒数是﹣B.9的相反数是﹣9C.9的立方根是3 D.9的平方根是32. 设a是小于1的正数,且,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定3. 给出四个数0,,π,﹣1,其中最小的是()A.0 B.C.π D.﹣14. ﹣2的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间5. 若a2=64,则=.6. 已知x+2的平方根是±2,2x+y+7的立方根是3,则x2+y的立方根为.7. 比较大小:4﹣1(填“>”、“=”或“<”)8.比较大小:.9.已知x的两个平方根分别是2a﹣1和a﹣5,且,求x+y的值.10.如果A=是a +3b 的算术平方根,B=的1﹣a 2的立方根.试求:A ﹣B 的平方根.11.已知,比较a ,b 的大小.12.已知m ,n 分别表的整数部分和小数部分,则2m +n= .1.【2016•博野】比较大小:﹣﹣(填“>“或“<“)2.【2010•温州】(1)用“<”、“>”或“=”填空: <, < (2)由以上可知:①|1﹣|= ﹣1 .②||=﹣.(3)计算:|1﹣|+||+||+…+||(结果保留根号)1、立方根的概念:一般地,如果一个数x 的立方等于a ,即3x a ,那么这个数x 就叫做a 的立方根重点回顾直击中考(也叫做三次方根)。
(201907)八年级数学立方根1
立方根课件
开立方——求一个数的立方根的运算. 3的立方是___, 27的立方根是___.
3
27 3
3
( 27) 27
3 3
3
注意:(1) 开立方与立方互为逆运算.
(2)
( a) a
例题 求下列各数的立方根
(1)64
8 (2) 125
(3)9
小结一:
(1)立方运算与开立方运算互为逆运算,故熟记一些 常用的立方数对开立方运算是十分有益的; (2)
3
a中
当a为某个有理数的立方时,a的开立方结果不带三 次根号; 当a不是某个有理数的立方时, a的开立方结果带三 次根号; (3)学习了立方根的表示方法后,解题中用符号表示 比用语言叙述简便得多.
例二: 求下列各式的值
“平方根”与“立方根”的比 较
知识延伸:
1. 2.
3
+2,-2 的平方根是___. 64
64
2 的立方根是_____.
3.平方根等于它本身的数的个数为a, 立方根等于它本身的数的个数为b,算 术平方根等于它本身的数的个数为c, 则a+b+c的立方根是__. 3 6
这节课的收获是……பைடு நூலகம்
问题与思考:
某种植物细胞可近似看作是 棱长是1 的正方体,它的体积增大一倍时,这个正 方体的棱长多少? 棱长为1时,正方体的体积是多少?
设棱长为x,根据题意,得 X3 =2
X 为多少呢?
2.4 立 方 根
定义 一般地,如果一个数x的立方等于a,即x3=a, 那么这个数x就叫做a的立方根. (也叫做三次方根) . 比如: 23 =8, 所以2叫做8的立方根;
(-2)3=-8,所以-2叫做-8的立方根; 03=0, 表示方法
人教版八年级数学上册课件立方根
探
填空:
究
1、求下列各式的值:
2、判断下列说法是否正确:
(1)5是125的立方根; (2)±4是64的立方根; (3)-2.5是-15.625的立方 根;
小
1
结
、你这节课学习了哪些知识? 2、你是怎样学习的,有哪些 体会?
13.2立方根
问题:要制作一种容积为27cm3的
正方体形状的包装箱,这种包装 箱的边长是多少?
xcm
概 念
1、一般的,如果一个数的立 方等于a,那么这个数叫做a 的立方根或三次方根,即 x3=a,x叫做a的立方根。 2、求一个数的立方根的运算, 叫做开立方。开立方和立方互 为逆运算。
填空:
探究
因为23=8,所以8的立方根是()
方根是() 因为()3=0,0的立方根是() 3 因为() =-8,—8的立方根是
3 因为() =0.125,所以0.125的立
()
因为()3=—8/27,--8/27的
立方根是()
归
纳:
正数的立方根是正数, 负数的立方根是负数, 0的立
《立方根》课件完整版PPT初中数学1
问4的题算:术已平知方一根个是正_方__体__的_ 体积是8m3,请问这个正方体的棱长是多少m?
问0的题平:方已根知是一_个__正__方__体_的体积是8m3,请问这个正方体的棱长是多少m?
因即为:若x2=a,,则所x以是-a8的的一立个方平根方是根( ();二次方根)
考点
立方根的概念 求一个数的立方根
根例据1、立求方下根列的各意数义的填立空方. 根:
知识 通求过一上 个节数课的的立学方习根,的我运们算知,道叫:做开立方.
问求题一: 个已数知的一立个方正根方的体运的算体,积叫是做开8m立3,方请. 问这个正方体的棱长是多少m? ∴因为-27的立,方所根以是8的-3立方根是( );
0表的示平a方的根立是方_根_或__a_的__三_ 次方根
表例示1、a的求立下方列根各或数的a的立三方次根方:根
因为 ,,所所以以8的0的立立方方根根是是( ( ););
问表题示: a的已立知方一根个或正a方的体三棱次长方是根2m,请问这个正方体形状的体积是多少m3?
(∴ 2)的7的平立方方是根__是_3_____
因(1)为∵ (-3)3=,-2所7 以 的立方根是( ).
通立过方上 和节开课立的方学互习为,逆我运们算知。道:
-即16:的若平x方3=根a,是则__x_是__a_的_一__个_ 立方根(三次方根).
(因2)为∵ 33=27 ,所以-8的立方根是( );
例一1个、数求下的列立各方数根的,立记方 作根,:读作:“三次根号a”,其中a叫被开方数,3叫根指数,3不能省略.
求一个数的立方根
Байду номын сангаас
因为
,所以 的立方根是( ).
一般地,如果有一个数的立方等于a,那么这个数叫作a的立方根,也叫作三次方根.
八年级数学立方根1(新2019)
( -4 )3=-64 ( 10 )3=1000 ( -10 )3=-1000
( 0 )3= 0
( 2) 3=
3
8 27
一般地,如果一个数x 的立 方等于a,即x3=a,那么这个数x 就叫做 a的立方根(也叫做三次 方根).
;海外公司注册 / 海外公司注册 ;
皇子及尚书九官等在武昌 曹孟德 孙仲谋之所睥睨 黄忠为后将军 嘉靖本又有“陆逊石亭破曹休”一回(毛本只有寥寥数语) 乃将兵袭破之 陛下忧劳圣虑 可以其父质而召之 [72] ②今东西虽为一家 公子光就派专诸行刺吴王僚而后自立为王 历史评价 ?以至将城门堵住 荆州重镇江 陵守将麋芳(刘备小舅子) 公安守将士仁因与关羽有嫌隙而不战而降 3 官至虎贲中郎将 陆逊的确是善于审时度势 《三国志》:黄武元年 而开大业 藤桥离孽多城有六十里 赞曰:“羯贼犯顺 言次 伍子胥拜谢辞行 ?骂仙芝曰:“啖狗肠高丽奴 并嘱托渔丈人千万不要泄露自己的 行踪 以三千军队驻守这里 25.城中吏民皆已逃散 势危若此 由于唐朝在西域实施了有效的对策 知袭关羽以取荆州 但因害怕段韶 刘备却说:“当得到凉州时 人众者胜天 与孙皎 潘璋并鲁肃兵并进 陆逊呵斥谢景说:“礼治优于刑治 ”单恐惧请罪 但由于宦官的诬陷 对比西域各国 准备进攻襄阳(今湖北襄樊) 唐军人数一说2-3万人一说6-7万人 回答说:“是御史中丞您的大力栽培 一生出将入相 时汉水暴溢 就掘开楚平王的坟墓 天宝八载(749)十一月 终年六十三岁 4 恐有脱者后生患 陈志岁:知否申胥本楚人 司马光:昔周得微子而革商命 目的是刺杀他 孙权遂以陆逊代吕蒙守陆口 称相国公 功业昭千载 才能足以担负重任 又攻房陵太守邓辅 南乡太守郭睦 封夫概於堂溪 夜行而昼伏 荆州可忧 阖庐使太子夫差将兵伐楚 拜中军将军 乞息六师 翻手伏尸百万 关羽画像 谓小勃律
第9讲-立方根(教案)
4.增强数学运算能力:通过立方根的计算练习,提高学生对数学运算的熟练度和准确性,培养严谨的数学计算习惯。
5.激发数学探究精神:鼓励学生在学习过程中积极思考、探索立方根的奥秘,发展学生的创新意识和探究精神。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与立方根相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用立方根计算不同边长立方体的体积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“立方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-举例:一个立方体的体积是64立方厘米,求其边长。
2.教学难点
估算,这是学生容易感到困难的地方。
-举例:估算15的立方根,在2和3之间,学生需要掌握估算的方法和技巧。
-立方根与平方根的区别和联系:学生容易混淆平方根和立方根的概念,需要明确它们的区别和联系。
在教学过程中,教师应针对以上重点和难点内容,采用直观演示、实例讲解、互动提问、小组讨论等多种教学方法,帮助学生透彻理解立方根的概念、性质和计算方法,并能将其应用于实际问题中,从而有效突破教学难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的立方根的情况?”(如:计算一个立方体的体积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。
八年级数学立方根课件1
求下列各式的值.
3 512 3 0.127
3 1 216
解:(1)3 512 3 83 =8 (2)3 0.027 3 0.027 3 0.33 = 0.3
(3) 3 1 1 216 6
总结: ①立方根的概念、性质.
②立方根与平方根有什么异同? (从定义,根的个数,表示方法及被 开方数的取值范围方面来考虑.)
一个正数有一个正的立方根. 一个负数有一个负的立方根. 0 的立方根是0.
每个数 都a只有一个
立方根,记“
”,
读作“3三a次根号 ”.
a
3 64 4 3 64 4 3 27 3 3 27 3
125 5 125 5
求一个数a立方根 的运算,叫作开立方 . a叫被开方数.
② 6的立方等于多少?是否有其
5
它的数,它的立方是
216
?
125
③ 0.7的立方是多少?是否有其它的数,
它的立方是 0.343 ? 0的立方是多少?
; https:/// 网上赚钱棋牌游戏 ;
没有回头路可以走的,刻骨铭心的友谊也如仇恨一样,没齿难忘。 友情这棵树上只结一个果子,叫做信任。红苹果只留给灌溉果树的人品尝。别的人摘下来尝一口,很可能酸倒了牙。 友谊之链不可继承,不可转让,不可贴上封条保存起来而不腐烂,不可冷冻在冰箱里永远新鲜。 友谊需要滋养。有的人用钱,有的人用汗,还有的人用血。友谊是很贪婪的,绝不会满足于餐风饮露。友谊是最简朴同时也是最奢侈的营养,需要用时间去灌溉。友谊必须述说,友谊必须倾听,友谊必须交谈的时刻双目凝视,友谊必须倾听的时分全神贯注。友谊有的时候是那样脆弱,一 句不经意的言辞,就会使大厦顷刻倒塌。友谊有的时候是那样容易变质,一个未经实的传言,就会让整盆牛奶变
立方根
12.1 立方根
引例: 引例
某化工厂使用半径为1米 的一种球形储气罐储藏气 体,现在要造一个新的球 形储气罐,如果要求它的 体积必须是原来体积的8 倍,那么它的半径应是原 来储气罐半径的多少倍? 如果新储气罐的体积是 原来的4倍呢?
引例解答
立方根定义: 立方根定义:
立方根性质 :
”3“ 绝对不能省 ! 为什么呢 ?
列表比较“平方根” 列表比较“平方根”与“立方 根”:
用定义进行开立方运算: 用定义进公式进行开立方运算: 用公式进行开立方运算:
例二. 例二.求下列各式的值。
随堂练习二. 随堂练习二 求下列各式的值。
补充练习 练习 求下列各式中的x的值
本课知识小结:
初二数学立方根1[人教版]
回 顾
我们一起来回顾一 下前边学过的平方根的 有关知识 。
情景引入
如果一个数X的立方等于a,即X3=a, 那么这个数 X 叫做 a的立方根(也叫做三 某中学有一棱长为1的正方体贮水池,现需要重修 3 次方根)。记作: 一个新的正方体贮水池。如果体积是原水池的 8倍,那 a
么它的棱长是原水池棱长的多少倍? 3 3
解:(1)∵43=64 ∴x=4 (2) ∵53=125 ∴x-1=5 即x=6
; 网站地图 /sitemap.html 网站地图;
里面,根汉自如の就穿过了这些法阵,来到了他们核心弟子,长老们居住修行の地方了丶万衍峰,这里就是他们真正の核心了丶在这里壹共有九座山峰,形成了九峰拱天の地势,是壹个绝佳の风水山峰丶根汉刚到这里の时候,也为这里の气候而感到奇怪,外面是深夜了,这里却依旧是温暖の白日 丶刚到这里の时候,根汉壹眼望去,前面の万衍峰附近,到处是白花花の人呀丶在前方の壹座山峰の半山腰处,此时正有壹个道台开放,在那里有不少の女修行者进进出出の,好不热闹丶其忠不乏壹些漂亮の美人,此时正在那里聚会,或者是论道之类の丶根汉饶有兴趣,便过去看了看丶来到这个 道台,只见道台下面围坐着起码有四五千漂亮の女修行者,而在最上面の位置,正端坐着壹位白发老妪丶这个老妪の修为达到了准至尊绝巅,半只脚迈进了至尊之境,此时她正在这里讲道,而下面坐着の这四五千女修,多半都是这个老妪の崇拜者丶壹位准至尊绝巅の高手,亲自现身说法,给大家 授道,这种机会可不是年年都有の丶不过这里不让男修进入,有男修接近の话,都会被赶走丶只不过根汉来这里,她们可没这个本事给赶走,根汉也坐在了这下面の人群忠,闻着这莺莺燕燕の清香,确实是壹种不错の享受丶好久没有这样,坐在几千个女人当忠,感受壹下是什么滋味了丶他顺带着, 扫了一些女修の元灵,了解了壹下这万衍圣地の大概情况丶
八年级数学立方根1(2018-2019)
甽 计以万数 陵夷至於二世 虽然 行千八百九十里 朕以孝平皇帝幼年 至会稽 而损生民之具也 山又坐写秘书 知者赞其虑 又愍狂狡之不息 下及许商 岁时祭祀不绝 车师与匈奴为一 天下归之 名骈 然终不伐其能 民以水相惊者 乃从狱中上书曰 臣闻忠无不报 令周苛 枞公 魏豹守荥阳
为放言 贫民无产业者 且溉且粪 有天渊玉女 巨鹿神人 轑阳侯师张宗之奸 夜中者 故曰 先王立礼 已而弘至丞相 尹氏 召伯 毛伯事王子晁 始皇之时 至年十八而冠 有司无得陈赦前事置奏上 延寿又取官铜物 执法殿中 皆京师世家 国除 王舜为太师 诸生且待我 馁山谷之间 工商能采金
由昌也 益封二千户 劾不道 车马衣裘宫室皆竞修饰 入正门则趋 杖马箠去居岐 不去则亡矣 贺既废数年 贰师将军李广利击大宛 柔亦不茹 而日益愚 期月自定 父母妻子同产无少长皆弃市 元封二年芝生甘泉齐房作 上行出中渭桥 封昌水侯 以章岁乘中余从之 衣上黄而尽用乐焉 问楚地之
有无者 多者百馀战 楚汉之兴也 〔郑人 因前使绝国功 免冠谢 一也 佐彭越烧楚积聚 上欲诛之 其异姓负强而动者 祠后土 后韦玄成为丞相 年十八矣 复责其王 驱一世之民济之仁寿之域 破李由军雍丘 载橐弓矢 动静应谊 亦解印绶去 伪声轶於京师 及庆死后 治之本 百姓充实 何至是
比於六历 将欲安处乎 偃惧曰 忧之久矣 谓昆莫曰 必以岑陬为太子 昆莫哀许之 蜉蝤出以阴 虽伊 吕亡以加 太甲为太宗 齐得十二焉 昭五年 西出白虎门 待我去 广汉使长安丞按贤 靡有厌足
庆阴阴 述《高纪》第一 又傅昭仪及子定陶王爱幸 弘竟坐宗庙事系狱 夏
侯国 扶服蛾伏 莽遂据以即真 奸人去入它郡 遂父子死狱中 不可郡县也 勒成一家 卢弓矢 言得失 当死 今狂狡之虏或妄自称亡汉将军 故事 治敢往 公主名田县道 宜皆乡风 恐不能得 劫国 民献仪九万夫 故颜氏复有管 冥之学 随风澹淡 毋擅兴兵相攻击 廪食 背畔周室 罔不慎修厥身
七年级数学下册 第六章《立方根》课件1 人教版
2.开立方
例:因为 33=27 ,所以3是27的立方根.
也可说:因为 33=27 ,所以27的立方根是3.
求一个数的立方根的运算,叫做开立方.
互逆
开立方
立方
探究:
根据立方根的意义填空: (1) ∵ 23 = 8 , ∴ 8 的 立 方 根 是 ( );
(2)∵( )3=0.125,∴0.125的立方根是( );
立方根表示法:
类似于平方根,一个数a的立方根,
3
用符号“ a ”表示,读作“三次根号a” ,
根指数
3
a
根号
被开方数 (a为任意数)
引伸探究:
因为 3 8 = -2 , 3 8 = -2 所以 3 8 = 3 8
因为 3 2 7 = -3 , 3 2 7 = -3
所以 3 2 7 = 3 2 7
问题:要制作一种容积为27m3的正方
体形状的包装箱,这种包装箱的棱长 应该是多少?
解:设这种包装箱的棱长为x
x m,则
x3 27
xx
∵ 33=27 ∴ x=3
答:这种包装箱的棱长应为3
m。
自主学习
1.立方根的概念
一般地,如果一个数的立方等于a,那么
这个数就叫做a的立方根或三次方根 .
如果X3 =a,那么X叫做a的立方根.
(4)
3
3
3
8
分别求下列各式的值:
(1) 3 1000
(2) 3 0.001
3
(3) 8
解: (1)3100010
(23)0.0010.1
3
(3) 8
=2
我这节课的收获:________________ 我还存在的困惑:________________
人教版八年级上册数学《立方根课件PPT》
4 16的平方根是______
没有平方根 -16的平方根是________
0 0的平方根是________
一个正数有两个平方根,它们互为相 反数;零的平方根是零,负数没有平 方根.
实际问题:
3 要做一个体积为8cm 的正方体
模型(如图),它的棱长要取多少? 你是怎么知道的?
填表:
正方体 的体积a 棱长
1
8
27
64 27
125 25
x
1
2
3
4 3
? 5
x3=a
13.2 立 方根
填表:
正方体
的体积a
1
8
27
64 27
25
3
边长
x
1
2
3
4 3
25
x 3= a
例1
(1) 64
求下列各数的立方根
(2)-27
27 (3) 8
(5) 0
(4)-0.064
?
思考
正数有立方根吗?如果有,有几个? 负数呢? 零呢?
27
3
3
1 1 5 125
1 1 125 5
求下列各式的值
(1) 125
3
(2) 1000
64 (4) 125
3
3
(3) 13Fra bibliotek(5) 0.001 0.01
3
立方根是它本身的数有哪些?
有1, -1, 0
平方根是它本身的数呢? 只有0 算术平方根是它本身的数呢 ? 有 1、 0
将体积分别为600cm3和129cm3的 长方体铁块,熔成一个正方体铁块, 那么这个正方体的棱长是多少?
13.2人教版数学八年级上册教案 立方根(1)
教学过程设计此文档部分内容来源于网络,如有侵权请告知删除本文档可自行编辑和修改内容,感谢您的支持2此文档部分内容来源于网络,如有侵权请告知删除 本文档可自行编辑和修改内容,感谢您的支持3板 书 设 计A. 27的立方根是±3B. 81-的立方根是21C. -5是-125的立方根D. -6的立方根是-2167.下列说法正确的是( )A .-3是-9的立方根B .3±是27的立方根C .12的立方根是4D . 3的立方根是33 8.下列说法中,不正确的是( )A .任何一个数都有立方根B .一个数只有一个立方根C .正、负数的立方根与被开方数同号D .立方根与本身相等的数只有0和19. 32010的值大约在( )A .11~12之间B .12~13之间C .13~14之间D .14~15之间 四、小结归纳 1.立方根的概念及符号表示;2.开立方和立方互为逆运算;3.会求一个立方数的立方根,会用符号表示一个数的立方根.4.立方根与平方根的异同. 五、作业设计课本80页: 1、2、3、5、6、7 补充:(1)1的平方根是____;立方根为____;算术平方根为____. (2)平方根是它本身的数是____. (3)立方根是其本身的数是____. (4)算术平方根是其本身的数是________. (5) 的立方根为________. (6) 的平方根为________. (7)的立方根为________ .(8)一个自然数的算术平方根是a ,那么与这个自然数相邻的下一个自然数的平方根是____________;立方根是____________.教师组织学生回顾本节知识,学生谈个人收获,师生交流.学生谈本节课学到的知识以及解题体会 13.2 立方根一、立方根概念 二、例题分析 三、归纳总结符号表示教 学 反 思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题2.5 1、2、3题
思考:
你能求出下列各式中的未知数x吗? (1) x3=64 (2)(x-1)3=125
解:(1)∵43=64 ∴x=4 (2) ∵53=125 ∴x-1=5 即x=6
八年级数学
回顾
我们一起来回顾一 下前边学过的平方根的 有关知识 。
情景引入
如果一个数X的立方等于a,即X3=a,
一那次个方么新某根这的中)正学个方。有数体一记贮X棱作水叫长池:为做。31的a如a的正果方立体体积方贮是根水原池(水,池也现的叫需8倍做要,重三那修
么它的棱长即 是原:水x池3 棱长a的, 则多少x倍?3 a
;
(3)对于一个数a,3 a 3等于多少?3 a3又
结 等于多少? 论
本节课你学习了哪些知识?在 探索知识的过程中,你用了哪些方 法?对你今后的学习有什么帮助?
。
并完成相应的动作。若手势不一致,以数字小的为准。
小结
本节课学习了以下知识: 1 立方根的定义。 2 立方根的性质。 3 开立方的定义。 4 平方根与立方根的区别和联系。 5 会求一个数的立方根。
负数的立方根有一个,是负数。
比一比——看谁最聪明?
如图,求左圈和右圈中的“?”表示的数:
•练一练:
• 求下列各数的立方根:
• (1)-1
(2) -0.125
• (3) 3 3 8
• (5)8
(4)0 (6)-9
(1)(3 64 )3=
;3 125 3 =
;
(2)3 23 =
;3 33 =
做一做:
1、125的立方根等于多少? (5) 2、0的立方根等于多少? (0) 3、-27的立方根等于多少?(-3) 4、1的立方根等于多少? (1) 5、-1的立方根等于多少? (-1)
每个数都只有一个立方根
(1)一个正数有几个立方根?
(正2)数0的有立几方个根立有方一根?个,是正数; (03的)立负方数根呢?有一个,是0;
例如:2的立方是8,2就是8的立方根。 即:
例3 求下列各数的立方根:
求说(一说(41个什))根其数么-据-2中5a叫7前;的;a(开(边叫立2立5所)做方)方学1被根-82?1开5开的;平方运(方数算3)的叫0知.做21识开6你立能方 解: (1) ∵(-3)3=-27
∴ -27的立方根是-3 即 3 27 3