第2讲等差数列及其前n项和 (1)
高考数学第一轮知识点 第2课时 等差数列及其前n项和课时复习课件 理
∴数列的中间项为 11,项数为 7.
【变式训练】 3.在等差数列{an}中,Sn 表示其 前 n 项和. (1)若 a3+a17=10,求 S19 的值; (2)若 S4=124,Sn-4=54,Sn=210,求项数 n; (3)若 S4=1,S8=4,求 a17+a18+a19+a20 的值.
解析: (1)S19=a1+a219×19=a3+a217×19
=95.
(2)SS4n=-aS1n+-4=a2+an+a3+ana-41=+1a2n-42,+an-3=156,
由两式相加得 a1+an=70. ∴Sn=a1+a2n×n=70×2 n=210. ∴n=6. (3)S4=1,S8-S4=3,S12-S8,S16-S12,S20 -S16 成等差数列,首项为 1,公差为 2,
解得ad1==21. 2,
所以 an=2n+10.
(2)由 Sn=na1+nn2-1d,Sn=242, 得 12n+nn2-1×2=242.解得 n=11 或 n= -22(舍去).
等差数列的性质
1.等差数列的单调性 等差数列公差为 d,若 d>0,则数列递增; 若 d<0,则数列递减;若 d=0,则数列为常数 列. 2.等差数列的最值 若{an}是等差数列,求前 n 项和的最值时, (1)若 a1>0,d<0,且满足aann≥ +1≤0,0, 前 n 项和 Sn 最大;
等差数列的判断与证明
判断或证明数列{an}为等差数列,常见的方法 有以下几种: (1)利用定义:an+1-an=d(常数)(n∈N*); (2)利用等差中项:2an+1=an+an+2;
(3)利用通项公式:an=dn+c(d、c 为常数),d 为公差.当 d≠0 时,通项公式 an 是关于 n 的 一次函数;d=0 时为常函数,也是等差数列; (4)利用前 n 项和公式:Sn=an2+bn(a、b 为常 数).若一个数列的前 n 项和为关于 n 的二次
第二章 数列 2.3 等差数列的前n项和(一)
第二章 数列 2.3 等差数列的前n 项和(一)明目标、知重点 1. 掌握等差数列前n 项和公式及其获取思路.2. 经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思.3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个. 知识梳理1. 数列前n 项和的概念把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做S n .a 1+a 2+a 3+…+a n -1=S n -1(n ≥2). 2. 等差数列前n 项和公式(1)若{a n }是等差数列,则S n 能够用首项a 1和末项a n 表示为S n =n (a 1+a n )2;(2)若首项为a 1,公差为d ,则S n 能够表示为S n =na 1+12n (n -1)d .3. 等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .(3)设两个等差数列{a n }、{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.[情境导学]“数学王子”高斯是德国数学家.在高斯10岁时,老师出一道数学题为1到100的所有整数的和为多少?很快高斯即得出答案为5 050.老师大吃一惊,而更使人吃惊的是高斯的算法,高斯的算法是老师未曾教过的方法,那么这是一个什么样的方法呢?它用于解决什么类型的问题呢?这种方法叫倒序相加法,是等差数列求和的一种重要方法,本节我们就来研究它. 探究点一 等差数列前n 项和公式思考1 高斯是用怎样的方法快速求出1+2+3+…+100=? .思考2 人们从“高斯的算法”受到启示,创造了“倒序相加法”,即设S =1+2+3+…99+100,把加数倒序写一遍:S =100+99+98+…+2+1.两式相加有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101,∴S =50×101=5050.你能利用此种方法1+2+3+…+n 等于多少吗? 答思考3 如何用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢?答小结 (1)我们称a 1+a 2+a 3+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+a 3+…+a n . (2)等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .例1 2000年11月14日教育部下发了《关于在中小学实施“校校通”的工程通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?解依题意得,反思与感悟建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.本题是根据首项和公差选择前n项和公式实行求解.易错方面:把前n项和与最后一项混淆,忘记答或写单位.跟踪训练1 甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?解例2 已知一个等差数列{a n}前10项的和是310,前20项的和是1 220,由这些条件能确定这个等差数列的前n项和的公式吗?解方法一;方法二:反思与感悟(1)在解决与等差数列前n项和相关的问题中,要注意方程思想和整体思想的使用;(2)构成等差数列前n项和公式的元素有a1,d,n,a n,S n,知其三能求其二.跟踪训练2 在等差数列{a n}中,已知d=2,a n=11,S n=35,求a1和n.探究点二等差数列前n项和的性质思考1 设{a n }是等差数列,公差为d ,S n 是前n 项和,那么S m ,S 2m -S m ,S 3m -S 2m 也成等差数列吗?如果是,它们的公差是多少? 答思考2 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,那么a n b n 与S 2n -1T 2n -1有怎样的关系?请证明之.答例3 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.(3)解 (1)方法一 方法二反思与感悟 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练3 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n . 解当堂检测1. 在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( )解析 由S 10=10(a 1+a 10)2,得a 1+a 10=S 105=1205=24.2. 记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( )A .2B .3C .6D .7答案 B解析 方法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4S 4=4a 1+6d =20,解得d =3.方法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 3. 在一个等差数列中,已知a 10=10,则S 19=________.答案 190解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190.4. 已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)∵S n =n ·32+(-12)×n (n -1)2=-15,整理得n 2-7n -60=0,解之得n =12或n =-5(舍去), a 12=32+(12-1)×(-12)=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解之得d =-171. [呈重点、现规律]1. 求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2. 等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量,在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *);若m +n =2p ,则a n +a m =2a p . 3. 本节基本思想:方程思想,函数思想,整体思想,分类讨论思想.一、基础过关1. 已知等差数列{a n }中,a 2+a 8=8,则该数列的前9项和S 9等于( )解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.2. 等差数列{a n }中,S 10=4S 5,则a 1d等于( )A.12 B .2C.14D .4答案 A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.3. 已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15答案 D解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.4. 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27答案 B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45. ∴a 7+a 8+a 9=S 9-S 6=45.5. 在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .663答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.6. 含2n +1项的等差数列,其奇数项的和与偶数项的和之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n答案 B解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2,∵a 1+a 2n +1=a 2+a 2n , ∴S 奇S 偶=n +1n .7. 设S n 为等差数列{a n }前n 项和,若S 3=3,S 6=24,求a 9.解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8.由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15. 二、能力提升8. 等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B .20C .10D .9答案 C解析 因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得:2a m -a 2m =0,由S 2m-1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m=10,故选C.9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29答案 B解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴n =19时,剩余钢管根数最少,为10根.10.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310 B.13C.18D.19答案 A 解析 方法一 S 3S 6=3a 1+3d 6a 1+15d =13, ∴a 1=2d ,S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.11. 已知等差数列{a n }的前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k .解 设等差数列{a n }的公差为d ,则由题意得 ⎩⎪⎨⎪⎧a +3a =2×4d =4-a ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2d =2k =50.(注:k =-51舍)∴a =2,k =50.12.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n , 则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110.故此数列的前110项之和为-110.方法二 设S n =an 2+bn .∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.三、探究与拓展13.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117, ∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧ a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3. (2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n ,∴b n =S nn +c =2n 2-n n +c.∴b 1=11+c ,b 2=62+c ,b 3=153+c .∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12 (c =0舍去).经检验,c =-12符合题意,∴c =-12.。
2013高考数学(理)一轮复习教案:第六篇_数列第2讲_等差数列及其前n项和
第2讲 等差数列及其前n 项和泊头一中韩俊华 【2013年高考会这样考】1.考查运用基本量法求解等差数列的基本量问题(知三求二问题,知三求一问题).2.考查等差数列的性质、前n 项和公式及综合应用. 【复习指导】1.掌握等差数列的定义与性质、通项公式、前n 项和公式等.2.掌握等差数列的判断方法,等差数列求和的方法.基础梳理1.等差数列的定义(1)文字定义:如果一个数列从第 项起,每一项与它的前一项的差都等于 ,那么这个数列就叫做等差数列,这个叫做 等差数列的 ,通常用字母d 表示(2)符号定义: ①. ② 2.等差数列的通项公式:n a = ,变式:d = ()1n ≠或n a = ,变式:d = ()n m ≠(其中*,m n N ∈)或n a = 。
(函数的一次式) 3.等差中项如果A =a +b2A 叫做a 与b 的等差中项.4 等差数列的判定方法 ①定义法:②等差中项法: ③通项公式法: 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则 (m ,n ,p ,q ∈N *).特别的若:m +n =2p ,则(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为 的等差数列(4)在有穷等差数列中与首末两项等距离的任意两项的和相等:即: (5)等差数列的单调性:若d >0,则数列{a n }为 若d=0,则数列{a n }为 若d <0,则数列{a n }为(6)等差数列中公差d= = (7)等差数列中a n =m ,a m =n 则a m+n =(8)若数列{a n } {b n }均为等差数列,则若{c a n +kb n }仍为 ,另外数列 (9)若项数为2n ,则 ①S S -=奇偶; ②S S =偶奇; ③2n S =(用1,n n a a +表示,1,n n a a +为中间两项) (10)若项数为21n +,则 ①S S -=奇偶; ②S S =奇偶; ③21n S +=(用1n a +表示,1n a +为中间项)(11)若等差数列{n a },{n b }的前n 项和分别为n n S T ,,则2121n n nn a S b T --=(12).23243m m m m m m m S S S S S S S --- ,,,,为等差数列。
数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析
第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。
第六章 第2讲 等差数列及其前n项和
第2讲等差数列及其前n项和基础知识整合1.等差数列的有关概念(1)定义:如果一个数列从□01第2项起,每一项与它的前一项的□02差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为□03a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是□04A=a+b2,其中A 叫做a,b的□05等差中项.2.等差数列的有关公式(1)通项公式:a n=□06a1+(n-1)d.(2)前n项和公式:S n=□07na1+n(n-1)2d=□08n(a1+a n)2.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.若m+n=2p(m,n,p∈N*),则a m+a n=2a p.(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{a n},{b n}是等差数列,则{pa n+qb n}也是等差数列.(5)若{a n}是等差数列,公差为d, 则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(6)等差数列{a n}的前n项和为S n, 则S n,S2n-S n,S3n-S2n仍成等差数列,其公差为n2d.(7)若等差数列的项数为2n(n∈N*),则S偶-S奇=nd,S奇S偶=a na n+1.(8)若等差数列的项数为2n -1(n ∈N *),则S 奇-S 偶=a n ,S 奇S 偶=nn -1(S 奇=na n ,S 偶=(n -1)a n ).(9)由公式S n =na 1+n (n -1)d 2得S n n =a 1+n -12d =d 2n +a 1-d2,因此数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,首项为a 1,公差为等差数列{a n }公差的一半.1.(2019·河北邯郸模拟)在等差数列{a n }中,a 3+a 4=12,公差d =2,则a 9=( )A .14B .15C .16D .17答案 D解析 ⎩⎪⎨⎪⎧a 3+a 4=12⇒2a 1+5d =12,d =2⇒a 1=1,∴a 9=a 1+8d =1+16=17.故选D.2.(2018·全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12 答案 B解析 设该等差数列的公差为d ,根据题中的条件可得3×⎝ ⎛⎭⎪⎫3×2+3×22·d =2×2+d +4×2+4×32·d ,整理解得d =-3,所以a 5=a 1+4d =2-12=-10.故选B.3.(2019·湖北武汉调研)若等差数列{a n }的前n 项和S n 满足S 4=4,S 6=12,则S 2=( )A .-1B .0C .1D .3 答案 B解析 根据等差数列的性质,可得S 2,S 4-S 2,S 6-S 4成等差数列,即2(S 4-S 2)=S 2+S 6-S 4,因此S 2=0.4.(2019·宁夏银川模拟)在等差数列{a n }中,S 5=25,a 2=3,则a 7=( ) A .13 B .12 C .15 D .14答案 A解析 ∵S 5=5(a 1+a 5)2=5a 3=25,∴a 3=5,又a 2=3,∴d =a 3-a 2=2,∴a 7=a 3+4d =5+8=13.故选A.5.(2019·辽宁模拟)在等差数列{a n }中,S n 为其前n 项和,若a 3+a 4+a 8=25,则S 9=( )A .60B .75C .90D .105 答案 B解析 由等差数列的性质知a 3+a 4+a 8=3a 5=25. ∴a 5=253,∴S 9=9(a 1+a 9)2=9a 5=75.故选B.6.(2019·长春市模拟)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时的n 的值为( )A .6B .7C .8D .9 答案 C解析 ∵|a 6|=|a 11|且公差d >0,∴a 6=-a 11, ∴a 6+a 11=a 8+a 9=0,且a 8<0,a 9>0, ∴a 1<a 2<…<a 8<0<a 9<a 10<…∴使S n 取最小值的n 的值为8.故选C.核心考向突破考向一 等差数列的基本运算例1 (1)(2019·西安八校联考)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1答案 B解析 设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎪⎨⎪⎧ a 1+d =-6,a 1+5d =6,解得⎩⎪⎨⎪⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1.故选B.(2)(2019·潍坊模拟)在等差数列{a n }中,公差d ≠0,若lg a 1,lg a 2,lg a 4也成等差数列,且a 5=10,则{a n }的前5项和S 5=( )A .40B .35C .30D .25答案 C解析 因为lg a 1,lg a 2,lg a 4成等差数列,所以2lg a 2=lg a 1+lg a 4⇒lg a 22=lg a 1a 4⇒a 22=a 1a 4⇒d 2=a 1d ,因为d ≠0,所以a 1=d ,又a 5=a 1+4d =10,所以a 1=2,d =2,S 5=5a 1+5×42d =30.选C.(3)(2018·上海高考)记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7=________.答案 14解析 设数列{a n }的公差为d ,则a 6+a 7=2a 3+7d =14,又∵a 3=0,∴d =2,∴a 4=a 3+d =2.∴S 7=a 1+a 2+a 3+a 4+a 5+a 6+a 7=7a 4=14.触类旁通等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量转换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.即时训练 1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8答案 C解析 设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎨⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.故选C.2.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.答案 20解析 设等差数列{a n }的公差为d ,则a 1+a 22=a 1+(a 1+d )2=-3,S 5=5a 1+10d =10,解得a 1=-4,d =3,则a 9=a 1+8d =-4+24=20.3.已知数列{a n }中,a 3=7,a 7=3,且⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1是等差数列,则a 10=________.答案 73解析 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d , 则1a 3-1=16,1a 7-1=12. ∵⎩⎨⎧⎭⎬⎫1a n -1是等差数列, ∴1a 7-1=1a 3-1+4d ,即12=16+4d ,解得d =112, 故1a 10-1=1a 3-1+7d =16+7×112=34,解得a 10=73. 考向二 等差数列的性质角度1 等差数列项的性质例2 (1)(2019·温州模拟)等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值是( )A .14B .15C .16D .17答案 C解析 因为{a n }是等差数列,所以a 4+a 6+a 8+a 10+a 12=5a 8=120,所以a 8=24.所以a 9-13a 11=a 8+d -13(a 8+3d )=23a 8=16.故选C.(2)设等差数列{a n }的前n 项和为S n ,若a 2+a 5+a 8=30,则下列一定为定值的是( )A .S 6B .S 7C .S 8D .S 9 答案 D解析 由a 2+a 5+a 8=30可得3a 5=30,所以a 5=10,S 6=3(a 1+a 6)不一定是定值;S 7=72(a 1+a 7)不一定是定值;S 8=4(a 1+a 8)不一定是定值;S 9=(a 1+a 9)×92=2a 5×92=90.选D.触类旁通等差数列项的性质:利用等差数列项的性质解决基本量的运算体现了整体求值思想,应用时常将a n +a m =2a k (n +m =2k ,n ,m ,k ∈N *)与a m +a n =a p +a q (m +n =p +q ,m ,n ,p ,q ∈N *)相结合,可减少运算量.即时训练 4.(2019·河南豫南、豫北联考)等差数列{a n }中,a 4+a 10+a 16=30,则a 18-2a 14的值为( )A .20B .-20C .10D .-10 答案 D解析 ∵a 4+a 10+a 16=3a 10=30,∴a 10=10,又2a 14=a 18+a 10,∴a 18-2a 14=-a 10=-10,故选D.5.(2019·福建漳州模拟)在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n 的值为( )A .14B .15C .16D .17答案 B解析 由等差数列的性质知S 9=9(a 1+a 9)2=9a 5=18,∴a 5=2,又a n -4=30.∴S n =n (a 1+a n )2=n (a n -4+a 5)2=16n =240,∴n =15.故选B.角度2 等差数列和的性质例3 (1)(2019·四川双流中学模拟)已知等差数列{a n }的前n 项和为S n ,若S 10=1,S 30=5,则S 40=( )A .7B .8C .9D .10 答案 B解析 由等差数列的性质知S 10,S 20-S 10,S 30-S 20,S 40-S 30成等差数列,∴2(S 20-S 10)=S 10+(S 30-S 20),∴S 20=S 10+S 303=1+53=83.∴d =(S 20-S 10)-S 10=23,∴S 40-5=1+3×23=3,∴S 40=8.故选B.(2)一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.答案 5解析 设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.触类旁通等差数列和的性质:在等差数列{a n }中,S n 为其前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列,且有S 2n =n (a 1+a 2n )=…=n (a n +a n +1);S 2n -1=(2n -1)a n ;若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项).即时训练 6.(2019·大同模拟)在等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 50=( )A .-22.5B .-21.5C .28.5D .20答案 C解析 由(a 51+a 52+…+a 100)-(a 1+a 2+…+a 50)=50×50d =2700-200,得d =1.由a 1+a 100+a 2+a 99+…+a 50+a 51=50(a 50+a 51)=2700+200,得a 50+a 51=58,即2a 50+d =58,所以a 50=58-12=572=28.5.故选C.7.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( )A.310B.13C.18D.19答案 A解析 令S 3=1,则S 6=3,∴S 9=1+2+3=6.S 12=S 9+4=10,∴S 6S 12=310.故选A.考向三 等差数列的判定与证明例4 (1)(2019·辽宁模拟)数列{a n }满足a 1=2,a 2=1并且1a n -1=2a n -1a n +1(n ≥2),则数列{a n }的第100项为( )A.1100B.150 C.12100 D.1250答案 B解析 ∵1a n -1=2a n -1a n +1(n ≥2),∴1a n +1+1a n -1=2a n ,∴⎩⎨⎧⎭⎬⎫1a n 为等差数列,首项为1a1=12,第二项为1a 2=1,∴d =12,∴1a 100=1a 1+99d =50,∴a 100=150.(2)(2019·昆明模拟)在数列{a n }中,a 1=35,a n +1=2-1a n ,设b n =1a n -1,数列{b n }的前n 项和是S n .①证明数列{b n }是等差数列,并求S n ; ②比较a n 与S n +7的大小. 解 ①证明:∵b n =1a n -1,a n +1=2-1a n ,∴b n +1=1a n +1-1=1a n -1+1=b n +1,∴b n +1-b n =1,∴数列{b n }是公差为1的等差数列. 由a 1=35,b n =1a n -1,得b 1=-52,∴S n =-5n 2+n (n -1)2=n 22-3n . ②由①知,b n =-52+n -1=n -72. 由b n =1a n -1,得a n =1+1b n =1+1n -72.∴a n -S n -7=-n 22+3n -6+1n -72. ∵当n ≥4时,y =-n 22+3n -6是减函数,y =1n -72也是减函数,∴当n ≥4时,a n -S n -7≤a 4-S 4-7=0.又∵a 1-S 1-7=-3910<0,a 2-S 2-7=-83<0, a 3-S 3-7=-72<0,∴∀n ∈N *,a n -S n -7≤0, ∴a n ≤S n +7.触类旁通等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立. (3)通项公式法:验证a n =pn +q . (4)前n 项和公式法:验证S n =An 2+Bn .提醒:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.即时训练 8.(2019·河南郑州模拟)已知数列{a n }中,a 1=1,a 2=4,2a n =a n -1+a n +1(n ≥2,n ∈N *),当a n =298时,项数n =( )A .100B .99C .96D .101答案 A解析 因为2a n =a n -1+a n +1(n ≥2,n ∈N *),所以a n -a n -1=a n +1-a n .由a 1=1,a 2=4得d =a 2-a 1=3,所以数列{a n }是首项为1,公差为3的等差数列,所以a n =a 1+(n -1)d =1+(n -1)×3=3n -2.由3n -2=298,解得n =100.故选A.9.已知数列{a n }的前n 项和S n =2a n -2n +1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(2)若不等式2n 2-n -3<(5-λ)a n 对任意的n ∈N *恒成立,求λ的取值范围. 解 (1)证明:当n =1时,S 1=2a 1-22,得a 1=4. S n =2a n -2n +1,当n ≥2时,S n -1=2a n -1-2n ,两式相减得 a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=1,又a 121=2,所以数列⎩⎨⎧⎭⎬⎫a n 2n 是以2为首项,1为公差的等差数列.(2)由(1)知a n2n =n +1,即a n =n ·2n +2n .因为a n >0,所以不等式2n 2-n -3<(5-λ)a n 等价于5-λ>2n -32n .即λ<5-⎝ ⎛⎭⎪⎫2n -32n . 记b n =2n -32n ,b 1=-12,b 2=14,当n ≥2时,b n +1b n =2n -12n +12n -32n =2n -14n -6,则b 3b 2=32,即b 3>b 2,又显然当n ≥3时,b n +1b n<1,所以(b n )max =b 3=38,所以λ<378.1.(2019·长沙模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9答案 A解析 由a 4+a 6=2a 5=-6得a 5=-3,则公差为-3+115-1=2,所以由a n =-11+(n -1)×2=2n -13≤0得n ≤132,所以前6项和最小.选A.2.(2019·北京海淀模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 解法一:由S 3=S 11,得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1.又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知d =-213a 1.要使S n 最大, 则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. 解法四:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. 答题启示求等差数列前n 项和最值的常用方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值. (3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a n ≥0,a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小.若有零项,则使S n 取最值的n 有两个.对点训练1.(2019·广东佛山模拟)设等差数列{a n }满足3a 8=5a 15,且a 1>0,S n 为其前n 项和,则数列{S n }的最大项为( )A .S 23B .S 24C .S 25D .S 26答案 C解析 设等差数列的公差为d ,∵3a 8=5a 15, ∴3a 1+21d =5a 1+70d ,∴a 1+2412d =0. ∵a 1>0,∴d <0,∴a 1+24d =a 25>0,a 1+25d =a 26<0,∴数列{S n }最大项为S 25.故选C.2.(2019·黑龙江模拟)已知数列{a n }为等差数列,若a 11a 10<-1,且其前n 项和S n 有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21答案 B解析 ∵S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 有最大值,∴d <0,又a 11a 10<-1,∴a 10>0,a 11<0,∴a 10+a 11<0,即a 1+a 20<0,∴S 20=10(a 1+a 20)<0,又S 19=19(a 1+a 19)2=19a 10>0,∴使S n >0的n 的最大值为19.故选B.。
高考数学复习等差数列及其前n项和
第2讲 等差数列及其前n 项和最新考纲考向预测1.通过生活中的实例,理解等差数列的概念和通项公式的意义.2.探索并掌握等差数列的前n 项和公式,理解等差数列的通项公式与前n 项和公式的关系.3.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.4.体会等差数列与一元一次函数的关系.命题趋势等差数列的基本运算、基本性质,等差数列的证明是考查的热点.本讲内容在高考中既可以以选择、填空的形式进行考查,也可以以解答题的形式进行考查.解答题往往与数列的计算、证明、等比数列、数列求和、不等式等问题综合考查,难度中低档.核心素养数学抽象、逻辑推理1.等差数列与等差中项 (1)等差数列的定义:①文字语言:一个数列从第2项起,每一项与它的前一项的差都等于同一个常数;②符号语言:a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:若三个数a ,A ,b 组成等差数列,则A 叫做a ,b 的等差中项. 2.等差数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 常用结论1.等差数列与函数的关系(1)通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.(2)前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 是关于n 的二次函数且常数项为0.2.两个常用结论(1)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.(2)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a nb n .常见误区1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数.2.注意利用“a n -a n -1=d ”时加上条件“n ≥2”.1.判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(5)等差数列{a n }的单调性是由公差d 决定的.( )(6)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)×2.已知S n 为等差数列{a n }的前n 项和,a 2=2,S 4=14,则S 6等于( ) A .32 B .39 C .42D .45解析:选B.设公差为d ,由题意得⎩⎨⎧a 1+d =2,4a 1+4×32d =14,解得⎩⎨⎧a 1=-1,d =3,所以S 6=6a 1+5×62d =39.3.已知{a n }为等差数列,其前n 项和为S n ,若a 1=1,a 3=5,S n =64,则n =( )A .6B .7C .8D .9解析:选C.因为d =a 3-a 12=2,S n =na 1+n (n -1)2d =n +n (n -1)=64,解得n =8(负值舍去).故选C.4.(易错题)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的通项公式为__________.解析:当n ≥2时,a n =a n -1+12,所以{a n }是首项为1,公差为12的等差数列,则a n =1+(n -1)×12=12n +12.答案:a n =12n +125.(2020·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=____________.解析:通解:设等差数列{a n }的公差为d ,则由a 2+a 6=2,得a 1+d +a 1+5d =2,即-4+6d =2,解得d =1,所以S 10=10×(-2)+10×92×1=25.优解:设等差数列{a n }的公差为d ,因为a 2+a 6=2a 4=2,所以a 4=1,所以d =a 4-a 14-1=1-(-2)3=1,所以S 10=10×(-2)+10×92×1=25.答案:25等差数列的基本运算(1)(一题多解)(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n(2)(2020·河南部分重点高中联考)记等差数列{a n }的前n 项和为S n ,若3S 5-5S 3=135,则数列{a n }的公差d =________.【解析】 (1)方法一:设等差数列{a n }的公差为d ,因为⎩⎨⎧S 4=0,a 5=5,所以⎩⎨⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎨⎧a 1=-3,d =2,所以a n =a 1+(n -1)d=-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d ,因为⎩⎨⎧S 4=0,a 5=5,所以⎩⎨⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎨⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ; 选项C ,S 1=2-8=-6,排除C ; 选项D ,S 1=12-2=-32,排除D.故选A.(2)因为3S 5-5S 3=135,所以3⎝ ⎛⎭⎪⎫5a 1+5×42d - 5⎝⎛⎭⎪⎫3a 1+3×22d =135,所以15d =135,解得d =9. 【答案】 (1)A (2)9等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.1.(2020·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( )A .18B .16C .14D .12解析:选 C.设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 1+3d +5a 1+5×42d =2,7a 1+7×62d =14可得⎩⎨⎧6a 1+13d =2,a 1+3d =2,解得⎩⎨⎧a 1=-4,d =2,所以a 10=-4+9×2=14,选C. 2.(2020·合肥第一次教学检测)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 4=4S 2.(1)求数列{a n }的通项公式;(2)若a m +a m +1+a m +2+…+a m +9=180(m ∈N *),求m 的值. 解:(1)设等差数列{a n }的公差为d ,由S 4=4S 2得,4a 1+6d =8a 1+4d ,整理得d =2a 1, 又a 1=1,所以d =2,所以a n =a 1+(n -1)d =2n -1(n ∈N *).(2)a m +a m +1+a m +2+…+a m +9=180可化为10a m +45d =20m +80=180.解得m =5.等差数列的判定与证明已知数列{a n }中,a 1=14,其前n 项和为S n ,且满足a n =2S 2n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.【解】 (1)证明:当n ≥2时,S n -S n -1=2S 2n2S n -1.整理,得S n -1-S n =2S n S n -1. 两边同时除以S n S n -1,得1S n -1S n -1=2.又1S 1=1a 1=4,所以⎩⎨⎧⎭⎬⎫1S n 是以4为首项,以2为公差的等差数列.(2)由(1)可得数列⎩⎨⎧⎭⎬⎫1S n 的通项公式为1S n=4+(n -1)×2=2n +2,所以S n =12(n +1).当n ≥2时,a n =S n -S n -1=12(n +1)-12n =-12n (n +1).当n =1时,a 1=14,不适合上式. 所以a n =⎩⎪⎨⎪⎧14,n =1,-12n (n +1),n ≥2.【引申探究】 (变条件)本例的条件变为:a 1=14,S n =S n -12S n -1+1(n ≥2),证明⎩⎨⎧⎭⎬⎫1S n 是等差数列. 证明:因为S n =S n -12S n -1+1,所以2S n -1S n +S n =S n -1,即S n -1-S n =2S n S n -1,故1S n -1S n -1=2(n ≥2),又1S 1=1a 1=4,因此数列⎩⎨⎧⎭⎬⎫1S n 是首项为4,公差为2的等差数列.等差数列的判定与证明方法[注意]在解答题中证明一个数列为等差数列时,只能用定义法.1.已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B.由S n =an 2+bn (a ,b ∈R )可知数列{a n }是等差数列,依题意得,d =a 6-a 26-2=11-34=2,则a n =a 2+(n -2)d =2n -1,即a 1=1,a 7=13,所以S 7=a 1+a 72×7=1+132×7=49.2.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1解析:选B.数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列, 设等差数列{a n }的公差为d . 因为a 2=-6,a 6=6, 所以4d =a 6-a 2=12,即d =3.所以a n=-6+3(n-2)=3n-12,所以S1=a1=-9,S3=a1+a2+a3=-9-6-3=-18,S4=a1+a2+a3+a4=-9-6-3+0=-18,所以S4<S1,S3=S4.故选B.等差数列的性质及应用角度一等差数列项的性质(1)在等差数列{a n}中,a2,a14是方程x2+6x+2=0的两个实数根,则a8a2a14=()A.-32B.-3C.-6 D.2(2)(多选)设{a n}是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论正确的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值【解析】(1)因为a2,a14是方程x2+6x+2=0的两个实数根,所以a2+a14=-6,a2a14=2,由等差数列的性质可知,a2+a14=2a8=-6,所以a8=-3,则a8a2a14=-32,故选A.(2)S6=S5+a6>S5,则a6>0,S7=S6+a7=S6,则a7=0,则d=a7-a6<0,S8=S7+a8<S7,a8<0.则a7+a8<0,所以S9=S5+a6+a7+a8+a9=S5+2(a7+a8)<S5,由a7=0,a6>0知S6,S7是S n中的最大值.从而ABD均正确.【答案】(1)A(2)ABD如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.角度二等差数列前n项和的性质(1)已知等差数列{a n}的前10项和为30,它的前30项和为210,则前20项和为()A.100 B.120C.390 D.540(2)(2020·山东菏泽一中月考)已知等差数列{a n}的公差为4,其项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为() A.10 B.20C.30 D.40【解析】(1)设S n为等差数列{a n}的前n项和,则S10,S20-S10,S30-S20成等差数列,所以2(S20-S10)=S10+(S30-S20),又等差数列{a n}的前10项和为30,前30项和为210,所以2(S20-30)=30+(210-S20),解得S20=100.(2)设等差数列{a n}的公差为d,项数为n,前n项和为S n,因为d=4,S奇=15,S偶=55,所以S偶-S奇=n2d=2n=40,所以n=20,即这个数列的项数为20.故选B.【答案】(1)A(2)B等差数列前n项和的性质在等差数列{a n}中,S n为其前n项和,则(1)S2n=n(a1+a2n)=…=n(a n+a n+1);(2)S2n-1=(2n-1)a n;(3)当项数为偶数2n时,S偶-S奇=nd;项数为奇数2n-1时,S奇-S偶=a中,S奇∶S偶=n∶(n-1).角度三等差数列的前n项和的最值(一题多解)(2020·广东省七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8【解析】 方法一:设数列{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D.方法二:设数列{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2,则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D.【答案】 D求等差数列{a n }的前n 项和S n 的最值的方法1.等差数列{a n }的前n 项和为S n ,若a 1+a 3+a 5+a 7+a 9=20,则S 9=( ) A .27 B .36 C .45D .54解析:选B.依题意a 1+a 3+a 5+a 7+a 9=5a 5=20,a 5=4,所以S 9=a 1+a 92×9=9a 5=36.2.(2020·成都市诊断性检测)设公差不为0的等差数列{a n }的前n 项和为S n ,若a 5=3a 3,则S 9S 5=( )A.95B.59C.53D.275解析:选D.S 9S 5=9(a 1+a 9)25(a 1+a 5)2=9(a 1+a 9)5(a 1+a 5)=9a 55a 3=95×3=275.3.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C.因为在等差数列{a n }中a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.[A 级 基础练]1.若等差数列{a n }的公差为d ,则数列{a 2n -1}是( ) A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为nd 的等差数列 D .非等差数列解析:选B.数列{a 2n -1}其实就是a 1,a 3,a 5,a 7,…,奇数项组成的数列,它们之间相差2d .2.已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7=( ) A .2 B .7 C .14D .28解析:选C.因为2+a 5=a 6+a 3,所以2+a 4+d =a 4+2d +a 4-d .解得a 4=2,所以S 7=7(a 1+a 7)2=7a 4=14.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2,若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C.3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .因为a k ·a k +1<0,所以⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,所以452<k <472,所以k =23.4.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0解析:选AC.根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8,即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d ,又由a n =a 1+(n -1)d =(n -10)d ,则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确;又由S n =na 1+n (n -1)d 2=-9nd +n (n -1)d 2=d 2×(n 2-19n ),则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,因为d ≠0,所以S 20≠0,则D 不正确.5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=18C .S 9=81D .S 10=90解析:选B.因为对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), 所以S n +1-S n =S n -S n -1+2,所以a n +1-a n =2.所以数列{a n }在n ≥2时是等差数列,公差为2.又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选B.6.已知数列{a n }(n ∈N +)是等差数列,S n 是其前n 项和,若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )·(a 1+4d )+a 1+7d=a 21+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.答案:167.(应用型)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为________.解析:设第n 排的座位数为a n (n ∈N *),数列{a n }为等差数列,其公差d =2,则a n =a 1+(n -1)d =a 1+2(n -1).由已知a 20=60,得60=a 1+2×(20-1),解得a 1=22,则剧场总共的座位数为20(a 1+a 20)2=20×(22+60)2=820.答案:8208.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2nn 均为等差数列(n ∈N +),且a 1=2,则a 20=________.解析:设a n =2+(n -1)d ,所以a 2nn =[2+(n -1)d ]2n=d 2n 2+(4d -2d 2)n +(d -2)2n ,由于⎩⎨⎧⎭⎬⎫a 2n n 为等差数列,所以其通项是一个关于n 的一次函数,所以(d -2)2=0,所以d =2.所以a 20=2+(20-1)×2=40.答案:409.在①数列{S n -n 2}是公差为-3的等差数列,②S n =n 2+a n -5n +4,③数列{a n }是公差不为0的等差数列,且a 3a 6=a 24这三个条件中任意选择一个,添加到下面的题目中,然后解答补充完整的题目.已知数列{a n }中,a 1=-2,{a n }的前n 项和为S n ,且________. 求a n .解:若选择①,因为a 1=-2,所以S 1-12=a 1-1=-3.因为{S n-n2}是公差为-3的等差数列,所以S n-n2=-3-3(n-1)=-3n.所以S n=n2-3n.当n≥2时,a n=S n-S n-1=(n2-3n)-[(n-1)2-3(n-1)]=2n-4.当n=1时,a1=-2,符合上式.所以a n=2n-4.若选择②.因为S n=n2+a n-5n+4,所以当n≥2时,S n-1=(n-1)2+a n-1-5(n-1)+4,两式相减,得a n=n2-(n-1)2+a n-a n-1-5n+5(n-1),即a n-1=2n-6.所以a n=2n-4(n∈N*).若选择③,设等差数列{a n}的公差为d,由a3a6=a24可得(a1+2d)·(a1+5d)=(a1+3d)2.又a1=-2,d≠0,所以d=2,所以数列{a n}的通项公式为a n=2n-4.10.若数列{a n}的各项均为正数,对任意n∈N*,a2n+1=a n a n+2+t,t为常数,且2a3=a2+a4.(1)求a1+a3a2的值;(2)求证:数列{a n}为等差数列.解:(1)因为对任意n∈N*,a2n+1=a n a n+2+t,令n=2,得a23=a2a4+t.①令n=1,得a22=a1a3+t.②①-②得a23-a22=a2a4-a1a3,即a3(a3+a1)=a2(a2+a4),所以a1+a3a2=a2+a4a3=2.(2)证明:a2n+1=a n a n+2+t,a2n+2=a n+1a n+3+t,两式相减得a n+1+a n+3a n+2=a n+a n+2a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +a n +2a n +1为常数列,所以a n +a n +2a n +1=a 1+a 3a 2=2,所以a n +a n +2=2a n +1, 所以数列{a n }为等差数列.[B 级 综合练]11.(多选)设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .-247<d <-3C .当S n <0时,n 的最小值为13D .数列⎩⎨⎧⎭⎬⎫S n a n 中的最小项为第7项解析:选ABCD.由题意,得S 12=(a 1+a 12)2×12=6(a 6+a 7)>0.又a 7<0,所以a 6>0,所以A 正确.根据题意得⎩⎨⎧a 7=a 3+4d =12+4d <0,a 6=a 3+3d =12+3d >0,a 6+a 7=2a 3+7d =24+7d >0,解得-247<d <-3,所以B 正确.因为S 13=a 1+a 132×13=13a 7<0,又S 12>0,所以当S n <0时,n 的最小值为13,所以C 正确.由上述分析可知,当n ∈[1,6]时,a n >0,当n ∈[7,+∞)时,a n <0,当n ∈[1,12]时,S n >0,当n ∈[13,+∞)时,S n <0,所以当n ∈[1,6]时,S n a n >0,当n ∈[13,+∞)时,S na n >0,当n ∈[7,12]时,S na n<0,且当n ∈[7,12]时,{a n }为单调递减数列(a n <0),S n 为单调递减数列(S n >0),所以⎩⎨⎧⎭⎬⎫S n a n 中的最小项为第7项,所以D 正确.故选ABCD.12.若数列{a n }为等差数列,a n >0,前n 项和为S n ,且S 2n -1=2n -12n +1a 2n ,则a 9的值是________.解析:因为S 2n -1=2n -12n +1a 2n ,所以(a 1+a 2n -1)×(2n -1)2=2n -12n +1a 2n,即2a n ×(2n -1)2=2n -12n +1a 2n ,所以a n=12n +1a 2n ,又a n >0,所以a n =2n +1,所以a 9=19.答案:1913.(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d , 由S 9=-a 5得a 1+4d =0, 由a 3=4得a 1+2d =4, 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10. 所以n 的取值范围是{n |1≤n ≤10,n ∈N }.14.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解:(1)设公差为d ,因为{a n }为等差数列,所以a 1+a 5=a 2+a 4=18,又a 2a 4=65,所以a 2,a 4是方程x 2-18x +65=0的两个实数根,又公差d >0,所以a 2<a 4,所以a 2=5,a 4=13.所以⎩⎨⎧a 1+d =5,a 1+3d =13,所以⎩⎨⎧a 1=1,d =4,所以a n =4n -3.(2)存在.由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k ,得1+k+15+3k=26+2k,解得k=1.所以S n+kn=2n2=2n,当n≥2时,2n-2(n-1)=2,为常数,所以数列{S n+kn}为等差数列.故存在常数k=1,使得数列{S n+kn}为等差数列.[C级创新练]15.多环芳香烃化合物中有不少是致癌物质,学生钟爱的快餐油炸食品中会产生苯并芘,它是由苯和芘稠合而成的一类多环芳香烃,长期食用会致癌.下面是一组多环芳香烃的结构简式和分子式:名称萘蒽并四苯…并n苯结构简式……分子式C10H8C14H10C18H12……解析:因为多环芳香烃的分子式中C的下标分别是10,14,18,…,H的下标分别是8,10,12,…,所以多环芳香烃的分子式中C的下标是公差为4的等差数列,设C的下标构成的等差数列为{a n},其公差为d1,则a4=18,d1=4,故a n=4n+2,所以a10=42.多环芳香烃的分子式中H的下标是公差为2的等差数列,设H的下标构成的等差数列为{b n},其公差为d2,则b4=12,d2=2,故b n=2n+4.所以b10=24,所以并十苯的分子式为C42H24.答案:C42H2416.已知定义:在数列{a n}中,若a2n-a2n-1=p(n≥2,n∈N*,p为常数),则称{a n}为等方差数列.下列命题正确的是()A.若{a n}是等方差数列,则{a2n}是等差数列B.{(-1)n}是等方差数列C.若{a n}是等方差数列,则{a kn}(k∈N*,k为常数)不可能还是等方差数列D.若{a n}既是等方差数列,又是等差数列,则该数列为常数列解析:选ABD.若{a n}是等方差数列,则a2n-a2n-1=p,故{a2n}是等差数列,故A正确;a n=(-1)n时,a2n-a2n-1=(-1)2n-(-1)2(n-1)=0,故B正确;若{a n}是等方差数列,则由A 知{a 2n }是等差数列,从而{a 2kn }(k ∈N *,k 为常数)是等差数列,设其公差为d ,则有a 2kn -a 2k (n -1)=d ,由定义知{a kn }是等方差数列,故C 不正确;若{a n }既是等方差数列,又是等差数列,则a 2n -a 2n -1=p ,a n -a n -1=d ,所以a 2n -a 2n -1=(a n -a n -1)(a n +a n -1)=d (a n +a n -1)=p ,若d ≠0,则a n +a n -1=p d .又a n -a n -1=d ,解得a n =12⎝ ⎛⎭⎪⎫p d +d ,{a n }为常数列;若d =0,该数列也为常数列,故D 正确.第2讲 等差数列及其前n 项和最新考纲考向预测1.通过生活中的实例,理解等差数列的概念和通项公式的意义.2.探索并掌握等差数列的前n 项和公式,理解等差数列的通项公式与前n 项和公式的关系.3.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.4.体会等差数列与一元一次函数的关系.命题趋势等差数列的基本运算、基本性质,等差数列的证明是考查的热点.本讲内容在高考中既可以以选择、填空的形式进行考查,也可以以解答题的形式进行考查.解答题往往与数列的计算、证明、等比数列、数列求和、不等式等问题综合考查,难度中低档.核心素养数学抽象、逻辑推理1.等差数列与等差中项 (1)等差数列的定义:①文字语言:一个数列从第2项起,每一项与它的前一项的差都等于同一个常数;②符号语言:a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:若三个数a ,A ,b 组成等差数列,则A 叫做a ,b 的等差中项. 2.等差数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 常用结论1.等差数列与函数的关系(1)通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.(2)前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 是关于n 的二次函数且常数项为0.2.两个常用结论(1)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.(2)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a nb n .常见误区1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数.2.注意利用“a n -a n -1=d ”时加上条件“n ≥2”.1.判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(5)等差数列{a n }的单调性是由公差d 决定的.( )(6)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)×2.已知S n 为等差数列{a n }的前n 项和,a 2=2,S 4=14,则S 6等于( ) A .32 B .39 C .42D .45解析:选B.设公差为d ,由题意得⎩⎨⎧a 1+d =2,4a 1+4×32d =14,解得⎩⎨⎧a 1=-1,d =3,所以S 6=6a 1+5×62d =39.3.已知{a n }为等差数列,其前n 项和为S n ,若a 1=1,a 3=5,S n =64,则n =( )A .6B .7C .8D .9解析:选C.因为d =a 3-a 12=2,S n =na 1+n (n -1)2d =n +n (n -1)=64,解得n =8(负值舍去).故选C.4.(易错题)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的通项公式为__________.解析:当n ≥2时,a n =a n -1+12,所以{a n }是首项为1,公差为12的等差数列,则a n =1+(n -1)×12=12n +12.答案:a n =12n +125.(2020·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=____________.解析:通解:设等差数列{a n }的公差为d ,则由a 2+a 6=2,得a 1+d +a 1+5d =2,即-4+6d =2,解得d =1,所以S 10=10×(-2)+10×92×1=25.优解:设等差数列{a n }的公差为d ,因为a 2+a 6=2a 4=2,所以a 4=1,所以d =a 4-a 14-1=1-(-2)3=1,所以S 10=10×(-2)+10×92×1=25.答案:25等差数列的基本运算(1)(一题多解)(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n(2)(2020·河南部分重点高中联考)记等差数列{a n }的前n 项和为S n ,若3S 5-5S 3=135,则数列{a n }的公差d =________.【解析】 (1)方法一:设等差数列{a n }的公差为d ,因为⎩⎨⎧S 4=0,a 5=5,所以⎩⎨⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎨⎧a 1=-3,d =2,所以a n =a 1+(n -1)d=-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d ,因为⎩⎨⎧S 4=0,a 5=5,所以⎩⎨⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎨⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ; 选项C ,S 1=2-8=-6,排除C ; 选项D ,S 1=12-2=-32,排除D.故选A.(2)因为3S 5-5S 3=135,所以3⎝ ⎛⎭⎪⎫5a 1+5×42d - 5⎝⎛⎭⎪⎫3a 1+3×22d =135,所以15d =135,解得d =9. 【答案】 (1)A (2)9等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.1.(2020·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( )A .18B .16C .14D .12解析:选 C.设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 1+3d +5a 1+5×42d =2,7a 1+7×62d =14可得⎩⎨⎧6a 1+13d =2,a 1+3d =2,解得⎩⎨⎧a 1=-4,d =2,所以a 10=-4+9×2=14,选C. 2.(2020·合肥第一次教学检测)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 4=4S 2.(1)求数列{a n }的通项公式;(2)若a m +a m +1+a m +2+…+a m +9=180(m ∈N *),求m 的值. 解:(1)设等差数列{a n }的公差为d ,由S 4=4S 2得,4a 1+6d =8a 1+4d ,整理得d =2a 1, 又a 1=1,所以d =2,所以a n =a 1+(n -1)d =2n -1(n ∈N *).(2)a m +a m +1+a m +2+…+a m +9=180可化为10a m +45d =20m +80=180.解得m =5.等差数列的判定与证明已知数列{a n }中,a 1=14,其前n 项和为S n ,且满足a n =2S 2n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.【解】 (1)证明:当n ≥2时,S n -S n -1=2S 2n2S n -1.整理,得S n -1-S n =2S n S n -1. 两边同时除以S n S n -1,得1S n -1S n -1=2.又1S 1=1a 1=4,所以⎩⎨⎧⎭⎬⎫1S n 是以4为首项,以2为公差的等差数列.(2)由(1)可得数列⎩⎨⎧⎭⎬⎫1S n 的通项公式为1S n=4+(n -1)×2=2n +2,所以S n =12(n +1).当n ≥2时,a n =S n -S n -1=12(n +1)-12n =-12n (n +1).当n =1时,a 1=14,不适合上式. 所以a n =⎩⎪⎨⎪⎧14,n =1,-12n (n +1),n ≥2.【引申探究】 (变条件)本例的条件变为:a 1=14,S n =S n -12S n -1+1(n ≥2),证明⎩⎨⎧⎭⎬⎫1S n 是等差数列. 证明:因为S n =S n -12S n -1+1,所以2S n -1S n +S n =S n -1,即S n -1-S n =2S n S n -1,故1S n -1S n -1=2(n ≥2),又1S 1=1a 1=4,因此数列⎩⎨⎧⎭⎬⎫1S n 是首项为4,公差为2的等差数列.等差数列的判定与证明方法[注意]在解答题中证明一个数列为等差数列时,只能用定义法.1.已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B.由S n =an 2+bn (a ,b ∈R )可知数列{a n }是等差数列,依题意得,d =a 6-a 26-2=11-34=2,则a n =a 2+(n -2)d =2n -1,即a 1=1,a 7=13,所以S 7=a 1+a 72×7=1+132×7=49.2.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1解析:选B.数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列, 设等差数列{a n }的公差为d . 因为a 2=-6,a 6=6, 所以4d =a 6-a 2=12,即d =3.所以a n=-6+3(n-2)=3n-12,所以S1=a1=-9,S3=a1+a2+a3=-9-6-3=-18,S4=a1+a2+a3+a4=-9-6-3+0=-18,所以S4<S1,S3=S4.故选B.等差数列的性质及应用角度一等差数列项的性质(1)在等差数列{a n}中,a2,a14是方程x2+6x+2=0的两个实数根,则a8a2a14=()A.-32B.-3C.-6 D.2(2)(多选)设{a n}是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论正确的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值【解析】(1)因为a2,a14是方程x2+6x+2=0的两个实数根,所以a2+a14=-6,a2a14=2,由等差数列的性质可知,a2+a14=2a8=-6,所以a8=-3,则a8a2a14=-32,故选A.(2)S6=S5+a6>S5,则a6>0,S7=S6+a7=S6,则a7=0,则d=a7-a6<0,S8=S7+a8<S7,a8<0.则a7+a8<0,所以S9=S5+a6+a7+a8+a9=S5+2(a7+a8)<S5,由a7=0,a6>0知S6,S7是S n中的最大值.从而ABD均正确.【答案】(1)A(2)ABD如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.角度二等差数列前n项和的性质(1)已知等差数列{a n}的前10项和为30,它的前30项和为210,则前20项和为()A.100 B.120C.390 D.540(2)(2020·山东菏泽一中月考)已知等差数列{a n}的公差为4,其项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为() A.10 B.20C.30 D.40【解析】(1)设S n为等差数列{a n}的前n项和,则S10,S20-S10,S30-S20成等差数列,所以2(S20-S10)=S10+(S30-S20),又等差数列{a n}的前10项和为30,前30项和为210,所以2(S20-30)=30+(210-S20),解得S20=100.(2)设等差数列{a n}的公差为d,项数为n,前n项和为S n,因为d=4,S奇=15,S偶=55,所以S偶-S奇=n2d=2n=40,所以n=20,即这个数列的项数为20.故选B.【答案】(1)A(2)B等差数列前n项和的性质在等差数列{a n}中,S n为其前n项和,则(1)S2n=n(a1+a2n)=…=n(a n+a n+1);(2)S2n-1=(2n-1)a n;(3)当项数为偶数2n时,S偶-S奇=nd;项数为奇数2n-1时,S奇-S偶=a中,S奇∶S偶=n∶(n-1).角度三等差数列的前n项和的最值(一题多解)(2020·广东省七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8【解析】 方法一:设数列{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D.方法二:设数列{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2,则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D.【答案】 D求等差数列{a n }的前n 项和S n 的最值的方法1.等差数列{a n }的前n 项和为S n ,若a 1+a 3+a 5+a 7+a 9=20,则S 9=( ) A .27 B .36 C .45D .54解析:选B.依题意a 1+a 3+a 5+a 7+a 9=5a 5=20,a 5=4,所以S 9=a 1+a 92×9=9a 5=36.2.(2020·成都市诊断性检测)设公差不为0的等差数列{a n }的前n 项和为S n ,若a 5=3a 3,则S 9S 5=( )A.95B.59C.53D.275解析:选D.S 9S 5=9(a 1+a 9)25(a 1+a 5)2=9(a 1+a 9)5(a 1+a 5)=9a 55a 3=95×3=275.3.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C.因为在等差数列{a n }中a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.[A 级 基础练]1.若等差数列{a n }的公差为d ,则数列{a 2n -1}是( ) A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为nd 的等差数列 D .非等差数列解析:选B.数列{a 2n -1}其实就是a 1,a 3,a 5,a 7,…,奇数项组成的数列,它们之间相差2d .2.已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7=( ) A .2 B .7 C .14D .28解析:选C.因为2+a 5=a 6+a 3,所以2+a 4+d =a 4+2d +a 4-d .解得a 4=2,所以S 7=7(a 1+a 7)2=7a 4=14.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2,若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C.3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .因为a k ·a k +1<0,所以⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,所以452<k <472,所以k =23.4.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0解析:选AC.根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8,即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d ,又由a n =a 1+(n -1)d =(n -10)d ,则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确;又由S n =na 1+n (n -1)d 2=-9nd +n (n -1)d 2=d 2×(n 2-19n ),则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,因为d ≠0,所以S 20≠0,则D 不正确.5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=18C .S 9=81D .S 10=90解析:选B.因为对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), 所以S n +1-S n =S n -S n -1+2,所以a n +1-a n =2.所以数列{a n }在n ≥2时是等差数列,公差为2.又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选B.6.已知数列{a n }(n ∈N +)是等差数列,S n 是其前n 项和,若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )·(a 1+4d )+a 1+7d=a 21+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.答案:167.(应用型)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为________.解析:设第n 排的座位数为a n (n ∈N *),数列{a n }为等差数列,其公差d =2,则a n =a 1+(n -1)d =a 1+2(n -1).由已知a 20=60,得60=a 1+2×(20-1),解得a 1=22,则剧场总共的座位数为20(a 1+a 20)2=20×(22+60)2=820.答案:8208.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2nn 均为等差数列(n ∈N +),且a 1=2,则a 20=________.解析:设a n =2+(n -1)d ,所以a 2nn =[2+(n -1)d ]2n=d 2n 2+(4d -2d 2)n +(d -2)2n ,由于⎩⎨⎧⎭⎬⎫a 2n n 为等差数列,所以其通项是一个关于n 的一次函数,所以(d -2)2=0,所以d =2.所以a 20=2+(20-1)×2=40.答案:409.在①数列{S n -n 2}是公差为-3的等差数列,②S n =n 2+a n -5n +4,③数列{a n }是公差不为0的等差数列,且a 3a 6=a 24这三个条件中任意选择一个,添加到下面的题目中,然后解答补充完整的题目.已知数列{a n }中,a 1=-2,{a n }的前n 项和为S n ,且________. 求a n .解:若选择①,因为a 1=-2,所以S 1-12=a 1-1=-3.因为{S n-n2}是公差为-3的等差数列,所以S n-n2=-3-3(n-1)=-3n.所以S n=n2-3n.当n≥2时,a n=S n-S n-1=(n2-3n)-[(n-1)2-3(n-1)]=2n-4.当n=1时,a1=-2,符合上式.所以a n=2n-4.若选择②.因为S n=n2+a n-5n+4,所以当n≥2时,S n-1=(n-1)2+a n-1-5(n-1)+4,两式相减,得a n=n2-(n-1)2+a n-a n-1-5n+5(n-1),即a n-1=2n-6.所以a n=2n-4(n∈N*).若选择③,设等差数列{a n}的公差为d,由a3a6=a24可得(a1+2d)·(a1+5d)=(a1+3d)2.又a1=-2,d≠0,所以d=2,所以数列{a n}的通项公式为a n=2n-4.10.若数列{a n}的各项均为正数,对任意n∈N*,a2n+1=a n a n+2+t,t为常数,且2a3=a2+a4.(1)求a1+a3a2的值;(2)求证:数列{a n}为等差数列.解:(1)因为对任意n∈N*,a2n+1=a n a n+2+t,令n=2,得a23=a2a4+t.①令n=1,得a22=a1a3+t.②①-②得a23-a22=a2a4-a1a3,即a3(a3+a1)=a2(a2+a4),所以a1+a3a2=a2+a4a3=2.(2)证明:a2n+1=a n a n+2+t,a2n+2=a n+1a n+3+t,两式相减得a n+1+a n+3a n+2=a n+a n+2a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +a n +2a n +1为常数列,所以a n +a n +2a n +1=a 1+a 3a 2=2,所以a n +a n +2=2a n +1, 所以数列{a n }为等差数列.[B 级 综合练]11.(多选)设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .-247<d <-3C .当S n <0时,n 的最小值为13D .数列⎩⎨⎧⎭⎬⎫S n a n 中的最小项为第7项解析:选ABCD.由题意,得S 12=(a 1+a 12)2×12=6(a 6+a 7)>0.又a 7<0,所以a 6>0,所以A 正确.根据题意得⎩⎨⎧a 7=a 3+4d =12+4d <0,a 6=a 3+3d =12+3d >0,a 6+a 7=2a 3+7d =24+7d >0,解得-247<d <-3,所以B 正确.因为S 13=a 1+a 132×13=13a 7<0,又S 12>0,所以当S n <0时,n 的最小值为13,所以C 正确.由上述分析可知,当n ∈[1,6]时,a n >0,当n ∈[7,+∞)时,a n <0,当n ∈[1,12]时,S n >0,当n ∈[13,+∞)时,S n <0,所以当n ∈[1,6]时,S n a n >0,当n ∈[13,+∞)时,S na n >0,当n ∈[7,12]时,S na n<0,且当n ∈[7,12]时,{a n }为单调递减数列(a n <0),S n 为单调递减数列(S n >0),所以⎩⎨⎧⎭⎬⎫S n a n 中的最小项为第7项,所以D 正确.故选ABCD.12.若数列{a n }为等差数列,a n >0,前n 项和为S n ,且S 2n -1=2n -12n +1a 2n ,则a 9的值是________.解析:因为S 2n -1=2n -12n +1a 2n ,所以(a 1+a 2n -1)×(2n -1)2=2n -12n +1a 2n,即2a n ×(2n -1)2=2n -12n +1a 2n ,所以a n=12n +1a 2n ,又a n >0,所以a n =2n +1,所以a 9=19.答案:1913.(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d , 由S 9=-a 5得a 1+4d =0, 由a 3=4得a 1+2d =4, 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10. 所以n 的取值范围是{n |1≤n ≤10,n ∈N }.14.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解:(1)设公差为d ,因为{a n }为等差数列,所以a 1+a 5=a 2+a 4=18,又a 2a 4=65,所以a 2,a 4是方程x 2-18x +65=0的两个实数根,又公差d >0,所以a 2<a 4,所以a 2=5,a 4=13.所以⎩⎨⎧a 1+d =5,a 1+3d =13,所以⎩⎨⎧a 1=1,d =4,所以a n =4n -3.(2)存在.由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k ,。
第二讲:等差数列及其前n项和
第二讲:等差数列及其前n 项和知识体系:一、等差数列1、等差数列的概念:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
定义的表达式为1,n n a a d d +-=为常数。
2、等差中项:若a 、A 、b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
3、等差数列的通项公式及其变形: 通项公式:,其中1a 是首项,d 是公差。
通项公式的变形:(),n m a a n m d n m =+-≠注意:等差数列通项公式的应用:(1)由等差数列的通项公式1(1)n a a n d =+-,可知: ① 已知等差数列的首项和公差,可以求得这个数列的任何一项; ② 已知1,,,n a d n a ,这四个量中的任意三个,可以求得另一个量;(2)由等差数列通项公式变形可知,已知等差数列中的任意两项就可以确定等差数列中的任何一项。
4、等差数列和一次函数的关系由等差数列的通项公式1(1)n a a n d =+-可得1()n a dn a d =+-,如果设1,p d q a d ==-那么n a pn q =+,其中p ,q 是常数。
当p ≠0时,(n ,a )在一次函数y=px+q 的图像上,即公差不为零的等差数列的图像是直线y=px+q 上的均匀排开的一群孤立的点。
当p=0时,n a q =,等差数列为常数列,此时数列的图像是平行于x 轴的直线(或x 轴)上的均匀排开的一群孤立的点。
等差数列的单调性:当d >0时,数列{}n a 为递增数列;当d <0时,数列{}n a 为递减数列;当d =0时,数列{}n a 为常数列; 二、等差数列的前n 和:1、等差数列的前n 项和:等差数列的前n 项和公式11()(1)22n n n a a n n S na d +-==+; 等差数列前n 项和公式与函数的关系:由1(1)2n n n S na d -=+可得21()22n d dS n a n =+-,设1,22d da b a ==-,则有2n S an bn =+。
2020届浙江高考数学总复习讲义: 等差数列及其前n项和
第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(2018·温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________.答案:-n +8 283.(2018·温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______. 答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(2018·湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n 取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d =a 6-a 36-3=-2,所以a n =-2n +22,要使S n 能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2017·嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(2019·绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d =________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14.答案:-14 4[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想. 考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](2019·温州模拟)已知数列{a n }中,a 1=12,a n +1=1+a n a n +12(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1是等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为对于n ∈N *,a n +1=1+a n a n +12, 所以a n +1=12-a n, 所以1a n +1-1-1a n -1=112-a n-1-1a n -1=2-a n -1a n -1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差为-1的等差数列.(2)由(1)知1a n -1=-2+(n -1)(-1)=-(n +1), 所以a n -1=-1n +1, 即a n =n n +1. [由题悟法]等差数列的判定与证明方法已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n , ∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,∴a n =1b n=12n -1.∴数列{a n }的通项公式为a n =12n -1. 考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(2019·宁波模拟)在等差数列{a n }中,若a 9a 8<-1,且其前n 项和S n 有最小值,则当S n >0时,n 的最小值为( )A .14B .15C .16D .17解析:选C ∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n } 为递增数列,∵a 9a 8<-1,∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =(a 1+a n )n2,∴当S n >0时,n 的最小值为16. 2.(2018·嘉兴一中模拟)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足a n >0的最大n 的值为______,满足S k S k +1<0的正整数k =______.解析:由题可得a 6=S 6-S 5>0,a 7=S 7-S 6<0,所以使得a n >0的最大n 的值为6.又a 6+a 7=S 7-S 5>0,则S 11=11(a 1+a 11)2=11a 6>0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,S 13=13(a 1+a 13)2=13a 7<0,因为{a n }是递减的等差数列,所以满足S k S k +1<0的正整数k =12. 答案:6 12[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(2018·浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310 B.37 C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15.3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( ) A .2 2 B .4 C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( )A .22B .23C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7,即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114B.32C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A nB n=7n +45n +3,则使得a nb n 为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n 为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个. 5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n >0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n .解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2. 10.(2018·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min =4. 答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n .解:(1)法一:∵数列{a n }是等差数列,∴a n =a 1+(n -1)d ,a n +1=a 1+nd .由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3,∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3,得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n )=4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1,∴a 1=-12. (2)由题意,①当n 为奇数时,S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12 =2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7)=2n 2-3n 2.。
2020版高考数学一轮复习 第六章 数列 第2讲 理(含解析)新人教A版
第2讲 等差数列及其前n 项和配套课时作业1.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14答案 C解析 设等差数列{a n }的公差为d ,由等差数列的前n 项和公式,得S 3=3×2+3×22d=12,解得d =2,则a 6=a 1+(6-1)d =2+5×2=12.故选C.2.(2019·宁德模拟)等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( ) A .20 B .22 C .24 D .-8 答案 C解析 因为a 1+3a 8+a 15=5a 8=120,所以a 8=24,所以2a 9-a 10=a 10+a 8-a 10=a 8=24.故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 S 3,S 6-S 3,S 9-S 6成等差数列,即9,27,a 7+a 8+a 9成等差数列,∴a 7+a 8+a 9=54-9=45.故选B.4.(2019·山东济南调研)已知数列{a n }为等差数列,且满足a 2+a 8=8,a 6=5,则其前10项和S 10的值为( )A .50B .45C .55D .40 答案 B解析 因为数列{a n }为等差数列,且a 2+a 8=8,所以根据等差数列的性质得2a 5=8,所以a 5=4,又因为a 6=5,所以S 10=10a 1+a 102=10a 5+a 62=45.故选B.5.(2019·陕西咸阳模拟)设等差数列{a n }的前n 项和为S n ,若S 9=54,则a 2+a 4+a 9=( )A .9B .15C .18D .36答案 C解析 由等差数列的通项公式及性质,可得S 9=9a 1+a 92=9a 5=54,a 5=6,则a 2+a 4+a 9=a 1+a 5+a 9=3a 5=18.故选C.6.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( ) A .30B .45C .90D .186答案 C解析 因为a 2=6,a 5=15,所以a 5-a 2=3d ,d =3,所以{b n }是公差为6的等差数列,其前5项和为5a 2+10×6=90.故选C.7.(2019·福建模拟)设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )A .2B .3C .4D .6答案 A解析 由a 5=2b 5,得a 5b 5=2,所以S 9T 9=9a 1+a 929b 1+b 92=a 5b 5=2,故选A.8.(2019·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.故选C.9.(2019·广雅中学模拟)已知等差数列{a n }中,a 2=2,a 4=8,若a b n =3n -1,则b 2019=( )A .2017B .2018C .2019D .2020答案 D解析 由a 2=2,a 4=8,得公差d =8-22=3,所以a n =2+(n -2)×3=3n -4,所以a n+1=3n -1.又由数列{a n }的公差不为0,知数列{a n }为单调数列,所以结合a b n =3n -1,可得b n =n +1,故b 2019=2020.故选D.10.已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 6D .S 6,S 7均为S n 的最大值 答案 C解析 因为S 5<S 6,所以S 5<S 5+a 6,所以a 6>0,因为S 6=S 7,所以S 6=S 6+a 7,所以a 7=0,因为S 7>S 8,所以S 7>S 7+a 8,所以a 8<0,所以d <0且S 6,S 7均为S n 的最大值,所以S 9<S 6.故选C.11.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m =( )A .3B .4C .5D .6答案 C解析 ∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.又S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1. 又S m =m a 1+a m2=m a 1+22=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5. 12.(2019·苏州模拟)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n=d (n ∈N *,d 为常数),则称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2019a 2017=( ) A .4×20192-1 B .4×20182-1 C .4×20172-1 D .4×20172答案 C解析 由题意知{a n }为等差比数列,a 2a 1=1,a 3a 2=3,a 3a 2-a 2a 1=2,所以⎩⎨⎧⎭⎬⎫a n +1a n 是以1为首项,2为公差的等差数列,所以a n +1a n =1+(n -1)×2=2n -1,则a 2019a 2017=a 2019a 2018×a 2018a 2017=(2×2018-1)×(2×2017-1)=4×20172-1.故选C.13.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N *),则a 1+a 2+…+a 51=________.答案 676解析 ∵a n +2-a n =⎩⎪⎨⎪⎧0,n 为奇数,2,n 为偶数,∴数列{a n }的奇数项为常数1,偶数项构成以2为首项,2为公差的等差数列,∴a 1+a 2+…+a 51 =(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26+⎝ ⎛⎭⎪⎫25×2+25×242×2=676. 14.(2019·武汉模拟)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78解析 由题意,当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.所以⎩⎪⎨⎪⎧7+7d >0,7+8d <0.所以-1<d <-78.15.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.答案 10解析 ∵2a n =a n -1+a n +1,又a n -1+a n +1-a 2n =0, ∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38, 解得n =10.16.若两个等差数列{a n },{b n }的前n 项和分别为A n 与B n ,且满足A n B n =7n +14n +27(n ∈N +),则a 11b 11的值是________. 答案 43解析 根据等差数列的性质得:a 11b 11=2a 112b 11=a 1+a 21b 1+b 21=21a 1+a 21221b 1+b 212=A 21B 21=148111=43. 17.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解 (1)设{a n }的公差为d ,由题意,得3a 1+3d =-15. 由a 1=-7,得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1),得S n =n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16.18.(2019·广东惠州调研)已知数列{a n }满足a 1=1,a n +1=a n2a n +1,n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n2n +1,数列{b n }的前n 项和为S n ,求使不等式S n <k 对一切n ∈N *恒成立的实数k 的取值范围.解 (1)证明:因为a n +1=a n 2a n +1,所以1a n +1=1a n+2. 因为a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列,所以1a n=2n -1,所以a n =12n -1. (2)由b n =a n2n +1,得b n =12n +12n -1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12,所以要使不等式S n <k 对一切n ∈N *恒成立,则k 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞.19.(2019·洛阳市统考)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n-3(n ∈N *).(1)求a 2的值并证明a n +2-a n =2; (2)求数列{a n }的通项公式. 解 (1)令n =1得2a 1a 2=4S 1-3, 又a 1=1,所以a 2=12.2a n a n +1=4S n -3,① 2a n +1a n +2=4S n +1-3.②②-①得,2a n +1(a n +2-a n )=4a n +1. 因为a n ≠0,所以a n +2-a n =2.(2)由(1)可知,数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1, 所以a 2k -1=1+2(k -1)=2k -1, 即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2, 首项为12,所以a 2k =12+2(k -1)=2k -32,即n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.20.(2019·唐山模拟)已知{a n }是公差为正数的等差数列,且a 3a 6=55,a 2+a 7=16.(1)求数列{a n }的通项公式;(2)若a n =b 1+b 23+b 35+…+b n2n -1,求数列{b n }的前n 项和S n . 解 (1)∵{a n }是公差d >0的等差数列, ∴由a 3a 6=55,a 2+a 7=16=a 3+a 6, 解得a 3=5,a 6=11,∴⎩⎪⎨⎪⎧a 1+2d =5,a 1+5d =11,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1.(2)∵a n =b 1+b 23+b 35+…+b n2n -1,∴a n -1=b 1+b 23+b 35+…+b n -12n -3(n ≥2,n ∈N *),两式相减,得b n2n -1=2(n ≥2,n ∈N *), 则b n =4n -2(n ≥2,n ∈N *), 当n =1时,b 1=1,∴b n =⎩⎪⎨⎪⎧1,n =1,4n -2,n ≥2,∴当n ≥2时,S n =1+n -16+4n -22=2n 2-1.又n =1时,S 1=1,适合上式, 所以S n =2n 2-1.。
第2讲 等差数列及其前n项和 讲义
1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.3.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.4.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 60解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.(2)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20解析 (1)∵a 1+a 7=a 2+a 6=3+11=14, ∴S 7=7(a 1+a 7)2=49.(2)设等差数列{a n }的公差为d ,由题意可得 ⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑nk =1 (a k +1-a k )=∑nk =1(2k -1),所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( )A .-2 018B .-2 016C .-2 019D .-2 017答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727 B.3828 C.3929D.4030答案 (1)B (2)A解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.(2)方法一 设数列{a n }的首项为a 1,公差为d , 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或n =13时,S n 取得最大值, 且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱 B.53钱 C.32钱 D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ 2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧ a 1=43,d =-16,故选D.3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10. 4.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于( ) A .24B .48C .66D .132 答案 D解析 方法一 由a 1+8d =12(a 1+11d )+6, 得a 1+5d =12,∴a 1=12-5d .又S 11=11a 1+11×102d =11a 1+55d =11(12-5d )+55d =132.方法二 由a 9=12a 12+6,得2a 9-a 12=12. 由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9 答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C.*6.设数列{a n }的前n 项和为S n ,若S n S 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1 DD .b n =2n +1答案 B解析 设等差数列{b n }的公差为d (d ≠0),S n S 2n=k ,因为b 1=1, 则n +12n (n -1)d =k [2n +12×2n (2n -1)d ], 即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,又公差d ≠0,解得d =2,k =14. 所以数列{b n }的通项公式为b n =2n -1.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 9.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 10.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212, 解得k =13.11.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2. 由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.12.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.解 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8, 解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3. 所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3. 记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10. 当n =2时,满足此式,当n =1时,不满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2. *13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *). (1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.。
第六章 第2讲 等差数列及其前n项和
抓住3个考点
突破4个考向
揭秘3年高考
即当 n≤12 时,an>0,n≥14 时,an<0. ∴当 n=12 或 13 时, Sn 取得最大值, 且最大值为 S12=S13 12×11 5 =12×20+ ×-3=130. 2 5 法二 同法一求得 d=- . 3
nn-1 5 5 2 125 - =- n + n ∴Sn=20n+ · 2 6 6 3 252 3 125 5 =- n- 2 + . 6 24 ∵n∈N*,∴当 n=12 或 13 时,Sn 有最大值, 且最大值为 S12=S13=130.
抓住3个考点
突破4个考向
揭秘3年高考
解
(1)当 n=1 时,8a1=a2 1+4a1+3,a1=1 或 a1=3.
当 n≥2 时,8Sn-1=a2 n-1+4an-1+3, 1 2 则 an=Sn-Sn-1= (an+4an-a2 n-1-4an-1), 8 从而(an+an-1)(an-an-1-4)=0.
抓住3个考点 突破4个考向 揭秘3年高考
(2)假设存在符合条件的 a. 由(1)知,an=4n-3,bn=5n-1, 从而 an-logabn=4n-3-loga5n
-1
=4n-3-(n-1)loga5=(4-loga5)n-3+loga5. 由题意,得 4-loga5=0,所以 a= 5. 所以满足条件的 a 存在,即 a= 5. 4 4
+78⇒(a1+a20)+(a2+a19)+(a3+a18)=54⇒a1+a20=18⇒ a1+a20 18 S20= ×20= ×20=180. 2 2
抓住3个考点 突破4个考向 揭秘3年高考
(2)令 Sn=7n2+45n,则 an=14n+38,Tn=n2+3n, 则 bn=2n+2, an 14n+38 7n+19 7 1 31 则 = = = + × ,由 2n+1∈N*, b2n 4n+2 2n+1 2 2 2n+1 则 2n+1=31,n=15.
高考数学(理)总复习讲义: 等差数列及其前n项和
第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d ❶(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d ❷.(2)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (3)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2❸. ,d >0⇔{a n }为递增数列, d =0⇔{a n }为常数列, d <0⇔{a n }为递减数列.当d ≠0时,等差数列{an }的通项公式a n =dn +(a 1-d )是关于d 的一次函数. 当d ≠0时,等差数列{an }的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 是关于n 的二次函数. [熟记常用结论]1.若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . 2.若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . 3.若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.4.若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. 6.若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.7.关于等差数列奇数项和与偶数项和的性质.(1)若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (2)若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.8.两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n =S 2n -1T 2n -1.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( ) 答案:(1)× (2)√ (3)× (4)√ 二、选填题1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4 解析:选B 设公差为d .∵a 1+a 5=2a 3=10,∴a 3=5, 又∵a 4=7,∴d =2.故选B.3.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( ) A .1 B.53 C .-2D .3解析:选C ∵S 3=6=32(a 1+a 3),且a 3=a 1+2d ,a 1=4,∴d =-2,故选C.4.已知等差数列-8,-3,2,7,…,则该数列的第100项为________. 解析:依题意得,该数列的首项为-8,公差为5,所以a 100=-8+99×5=487. 答案:4875.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________.解析:∵a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37, ∴m =37. 答案:37考点一等差数列基本量的运算[基础自学过关][题组练透]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.(2019·西安质检)已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )A .420B .340C .-420D .-340解析:选D 设数列{a n }的公差为d ,则a 3=a 2+d =d ,a 5=a 2+3d =3d ,由a 3·a 5=12,得d =±2,由a 1>0,a 2=0,可知d <0,所以d =-2,所以a 1=2,故S 20=20×2+20×192×(-2)=-340.4.(2019·西安八校联考)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1解析:选B 设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎪⎨⎪⎧ a 1+d =-6,a 1+5d =6,解得⎩⎪⎨⎪⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B.[名师微点]等差数列基本运算的常见类型及解题策略(1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解或利用等差中项间接求解. [提醒] 在求解数列基本量问题中主要使用的是方程思想,要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.考点二等差数列的判定与证明[师生共研过关][典例精析]若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.[解] (1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1, 因为S n ≠0,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,所以S n =12n .当n ≥2时, a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.[变式发散]1.(变设问)本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解:因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1).又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ·⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1),所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.2.(变条件)将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”变为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.解:(1)证明:当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0, 所以S n [S n -(S n -S n -1)]+2(S n -S n -1)=0, 即S n S n -1+2(S n -S n -1)=0, 因为S n ≠0,所以1S n-1S n -1=12.又1S 1=1a 1=12,故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列. (2)由(1)知1S n =n 2,所以S n =2n ,当n ≥2时,a n =S n -S n -1=-2n (n -1).当n =1时,a 1=2不适合上式,故a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. [解题技法]等差数列的判定与证明方法[提醒] 如果要证明一个数列是等差数列,则必须用定义法或等差中项法.判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[过关训练]1.已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n,设b n =a n -2n3n ,求证:数列{b n }为等差数列,并求{a n }的通项公式.证明:因为b n +1-b n =a n +1-2n +13n +1-a n -2n3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n 3n +1=1, 所以{b n }为等差数列, 又b 1=a 1-23=0,所以b n =n -1, 所以a n =(n -1)·3n +2n .2.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1. (1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)证明:因为1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,所以b n +1-b n =13,所以数列{b n }是等差数列. (2)由(1)及b 1=1a 1-1=12-1=1, 知b n =13n +23,所以a n -1=3n +2,所以a n =n +5n +2.考点三等差数列的性质与应用[师生共研过关][典例精析](1)(2018·咸阳二模)等差数列{a n }的前n 项和为S n ,若a 4,a 10是方程x 2-8x +1=0的两根,则S 13=( )A .58B .54C .56D .52(2)已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( ) A .100 B .120 C .390D .540(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.[解析] (1)∵a 4,a 10是方程x 2-8x +1=0的两根, ∴a 4+a 10=8,∴a 1+a 13=8, ∴S 13=13×(a 1+a 13)2=13×82=52.(2)设S n 为等差数列{a n }的前n 项和, 则S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+(S 30-S 20),又等差数列{a n }的前10项和为30,前30项和为210, ∴2(S 20-30)=30+(210-S 20),解得S 20=100.(3)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1. 故S 2 0192 019=S 11+2 018d =-2 014+2 018=4, ∴S 2 019=4×2 019=8 076.[答案] (1)D (2)A (3)8 076[解题技法]一般地,运用等差数列性质可以优化解题过程,但要注意性质运用的条件,如m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *);数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列;⎩⎨⎧⎭⎬⎫S n n 也成等差数列.等差数列的性质是解题的重要工具. [过关训练]1.(2019·聊城模拟)设等差数列{a n }的前n 项和为S n ,若S 13=104,a 6=5,则数列{a n }的公差为( )A .2B .3C .4D .5解析:选B 设等差数列{a n }的公差为d . 因为S 13=104,所以13(a 1+a 13)2=104,所以13a 7=104,解得a 7=8.因为a 6=5,所以d =a 7-a 6=8-5=3.2.(2018·宁德二检)已知等差数列{a n }满足a 3+a 5=14,a 2a 6=33,则a 1a 7=( ) A .33 B .16 C .13D .12解析:选C 设等差数列{a n }的公差为d , 因为a 3+a 5=14,所以a 2+a 6=14,又a 2a 6=33,所以⎩⎪⎨⎪⎧ a 2=3,a 6=11或⎩⎪⎨⎪⎧a 2=11,a 6=3.当⎩⎪⎨⎪⎧a 2=3,a 6=11时,d =11-36-2=2,所以a 1a 7=(a 2-d )(a 6+d )=13;当⎩⎪⎨⎪⎧a 2=11,a 6=3时,d =3-116-2=-2,所以a 1a 7=(a 2-d )(a 6+d )=13. 综上,a 1a 7=13,故选C.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a 11b 11=________.解析:由等差数列前n 项和的性质, 得a 11b 11=S 21T 21=2×213×21+1=2132.答案:2132考点四等差数列前n 项和的最值问题[师生共研过关][典例精析]在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] 法一 通项法 设等差数列{a n }的公差为d .由3a 2=11a 6,得3×(13+d )=11×(13+5d ),解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得132≤n ≤152.因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7×(13-2×7+15)2=49.法二 二次函数法 设等差数列{a n }的公差为d .由3a 2=11a 6,得3×(13+d )=11×(13+5d ),解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] 49[解题技法]求数列前n 项和的最值的方法(1)通项法:①若a 1>0,d <0,则S n 必有最大值,其n 的值可用不等式组⎩⎪⎨⎪⎧a n ≥0,a n +1≤0来确定;②若a 1<0,d >0,则S n 必有最小值,其n 的值可用不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0来确定.(2)二次函数法:等差数列{a n }中,由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,可用求函数最值的方法来求前n 项和的最值,这里应由n ∈N *及二次函数图象的对称性来确定n 的值.(3)不等式组法:借助S n 最大时,有⎩⎪⎨⎪⎧S n ≥S n -1,S n ≥S n +1(n ≥2,n ∈N *),解此不等式组确定n的范围,进而确定n 的值和对应S n 的值(即S n 的最值).[过关训练]1.已知等差数列{a n }的前n 项和是S n ,若S 15>0,S 16<0,则S n 的最大值是( ) A .S 1 B .S 7 C .S 8D .S 15解析:选C 由等差数列的前n 项和公式可得S 15=15a 8>0,S 16=8(a 8+a 9)<0,所以a 8>0,a 9<0,则d =a 9-a 8<0,所以在数列{a n }中,当n <9时,a n >0,当n ≥9时,a n <0, 所以当n =8时,S n 最大,故选C.2.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. 解:(1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16, 所以当n =4时,S n 取得最小值,最小值为-16.[课时跟踪检测]一、题点全面练1.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A.14 B.12 C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14.2.(2019·沈阳质量监测)在等差数列{a n }中,若S n 为{a n }的前n 项和,2a 7=a 8+5,则S 11的值是( )A .55B .11C .50D .60解析:选A 设等差数列{a n }的公差为d ,由题意可得2(a 1+6d )=a 1+7d +5,得a 1+5d =5,则S 11=11a 1+11×102d =11(a 1+5d )=11×5=55,故选A. 3.(2018·泉州期末)等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }的前9项和S 9等于( )A .99B .66C .144D .297解析:选A 由等差数列的性质可得a 1+a 7=2a 4,a 3+a 9=2a 6,又∵a 1+a 4+a 7=39,a 3+a 6+a 9=27,∴3a 4=39,3a 6=27,解得a 4=13,a 6=9,∴a 4+a 6=22,∴数列{a n }的前9项和S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×222=99. 4.(2019·广州五校联考)设等差数列{a n }的前n 项和为S n ,若a m =4,S m =0,S m +2=14(m ≥2,且m ∈N *),则a 2 019的值为( )A .2 020B .4 032C .5 041D .3 019 解析:选B 由题意得⎩⎪⎨⎪⎧ a m =a 1+(m -1)d =4,S m =ma 1+m (m -1)2d =0,S m +2-S m =a m +1+a m +2=2a 1+(m +m +1)d =14,解得⎩⎪⎨⎪⎧ a 1=-4,m =5,d =2,∴a n =-4+(n -1)×2=2n -6,∴a 2 019=2×2 019-6=4 032.故选B.5.(2019·长春质检)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9解析:选C 由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d 2>0,所以前8项和为前n 项和的最小值,故选C.6.设等差数列{a n }的前n 项和为S n ,若a 6=2a 3,则S 11S 5=______. 解析:S 11S 5=112(a 1+a 11)52(a 1+a 5)=11a 65a 3=225. 答案:225 7.等差数列{a n }中,已知S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10=________.解析:设公差为d ,∵S 99-S 77=2,∴9-12d -7-12d =2, ∴d =2,∵a 1=-9,∴S 10=10×(-9)+10×92×2=0. 答案:08.(2018·广元统考)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+n ,则a 1+a 22+…+a n n =________.解析:当n =1时,a 1=2⇒a 1=4, 又a 1+a 2+…+a n =n 2+n ,①所以当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+(n -1)=n 2-n ,② ①-②得a n =2n ,即a n =4n 2,所以a n n =4n 2n =4n , 则⎩⎨⎧⎭⎬⎫a n n 构成以4为首项,4为公差的等差数列. 所以a 1+a 22+…+a n n =(4+4n )n 2=2n 2+2n . 答案:2n 2+2n9.(2018·大连模拟)已知数列{a n }的各项均为正数,其前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.解:(1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,所以a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,所以两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数矛盾,所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为等差数列.(2)由(1)知a 1=3,数列{a n }的公差d =1,所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2.10.已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.解:(1)由题意知(2a 1+d )(3a 1+3d )=36,将a 1=1代入上式,解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4. 即所求m 的值为5,k 的值为4.二、专项培优练(一)易错专练——不丢怨枉分1.若{a n }是等差数列,首项a 1>0,a 2 018+a 2 019>0,a 2 018·a 2 019<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 018B .2 019C .4 036D .4 037解析:选C 因为a 1>0,a 2 018+a 2 019>0,a 2 018·a 2 019<0,所以d <0,a 2 018>0,a 2 019<0,所以S 4 036=4 036(a 1+a 4 036)2=4 036(a 2 018+a 2 019)2>0,S 4 037=4 037(a 1+a 4 037)2=4 037·a 2 019<0,所以使前n 项和S n >0成立的最大正整数n 是4 036. 2.(2019·武汉模拟)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为( )A .-10B .-12C .-9D .-13解析:选B 设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧ a 4=11,a 6=25或⎩⎪⎨⎪⎧ a 4=25,a 6=11,当⎩⎪⎨⎪⎧ a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,∴a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,∴a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12.3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析:由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n-10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案:130(二)交汇专练——融会巧迁移4.[与方程交汇]若等差数列{a n }中的a 3,a 2 019是3x 2-12x +4=0的两根,则log 14a 1 011=________.解析:因为a 3和a 2 019是3x 2-12x +4=0的两根,所以a 3+a 2 019=4.又a 3,a 1 011,a 2 019成等差数列,所以2a 1 011=a 3+a 2 019,即a 1 011=2,所以log 14a 1 011=-12. 答案:-125.[与不等式恒成立交汇]设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25.(1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)n k (a n +4)对所有的正整数n 都成立,求实数k 的取值范围.解:(1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25, ∴a 1=-1,d =3.∴{a n }的通项公式a n =3n -4.(2)由题意知S n =-n +3n (n -1)2,2S n +8n +27=3n 2+3n +27,a n +4=3n ,则原不等式等价于(-1)n k <n +1+9n对所有的正整数n 都成立. ∴当n 为奇数时,k >-⎝⎛⎭⎫n +1+9n 恒成立; 当n 为偶数时,k <n +1+9n恒成立. 又∵n +1+9n ≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n在n =3上取最小值7, 当n 为偶数时,n +1+9n 在n =4上取最小值294, ∴不等式对所有的正整数n 都成立时,实数k 的取值范围是⎝⎛⎭⎫-7,294.。
高考数学一轮复习第7章数列第2讲等差数列及其前n项和课件(1)
设等差数列{an}的前 n 项和为 Sn,若 S3=9,S6=36,则 a7
第七页,编辑于星期六:四点 九分。
(4)若Sn为等差数列{an}的前n项和,则数列Sm,S2m-Sm,S3m- S2m,…也是等差数列.
(5)若 Sn 为等差数列{an}的前 n 项和,则数列Snn也为等差数列.
第八页,编辑于星期六:四点 九分。
【特别提醒】 用等差数列的定义判断数列是否为等差数列,要注意定义中的三个 关 键 词 : “ 从 第 2 项 起 ”“ 每 一 项 与 它 的 前 一 项 的 差 ”“ 同 一 个 常 数”.
=
()
A.- 3
B. 3
C.± 3
D.-
3 3
【答案】A
第三十五页,编辑于星期六:四点 九分。
【解析】因为数列{an}为等差数列,a1+a7+a13=2π,所以 3a7=2π, 即 a7=23π.则 tan a7=tan23π=-tanπ3=- 3.
第三十六页,编辑于星期六:四点 九分。
考向 2 等差数列和的性质
个数列是等差数列.
()
(2)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an
+an+2.
()
第十九页,编辑于星期六:四点 九分。
(3)等差数列{an}的单调性是由公差d决定的.
()
(4)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.
()
(5)等差数列的前n项和公式是常数项为0的二次函数.
第十七页,编辑于星期六:四点 九分。
(4)若等差数列{an}的项数为奇数 2n+1,则 ①S2n+1=(2n+1)an+1; ②SS奇 偶=n+n 1; ③S 奇-S 偶=an+1.
数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析
第2讲等差数列及其前n项和[考纲解读]1。
理解等差数列的概念及等差数列与一次函数的关系.(重点)2.掌握等差数列的通项公式与前n项和公式,并熟练掌握其推导方法,能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.(重点、难点)[考向预测]从近三年高考情况来看,本讲一直是高考的热点.预测2021年高考将会以等差数列的通项公式及其性质、等差数列的前n项和为考查重点,也可能将等差数列的通项、前n项和及性质综合考查,题型以客观题或解答题的形式呈现,试题难度一般不大,属中档题型.1.等差数列的有关概念(1)定义:一般地,如果一个数列从错误!第2项起,每一项与它前一项的错误!差都等于错误!同一个常数,那么这个数列就叫做等错误!公差,通常用字母d表示.数学语言表示为错误!a n+1-a n=d(n∈N*),d为常数.(2)等差中项:若a,A,b成等差数列,则A叫做a和b的等差中项,且A=错误!错误!.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=错误!a1+(n-1)d,可推广为a n=a m+错误!(n-m)d(n,m∈N*).(2)等差数列的前n项和公式S n=n a1+a n2=错误!na1+错误!d(其中n∈N*).3.等差数列的相关性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)等差数列{a n}中,当m+n=p+q时,错误!a m+a n=a p+a q (m,n,p,q∈N*).特别地,若m+n=2p,则错误!2a p=a m+a n(m,n,p∈N*).(2)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为错误!md(k,m∈N*).(3)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为错误!n2d。
(4)错误!也成等差数列,其首项与{a n}首项相同,公差为错误!错误! d。
2024届高考数学一轮总复习第四章数列第二讲等差数列及其前n项和课件
(2)解:由已知有 a72=a4·a9,设等差数列{an}的首项为 x,由(1) 知其公差为 1,
证明:由题意可知,数列{ Sn}的首项为 a1,设等差数列{ Sn} 的公差为 d,
则 d= S2- S1= a1+a2- a1= a1, 所以 Sn= S1+( S2- S1)+( S3- S2)+…+( Sn- Sn-1) = a1+(n-1) a1=n a1, 即 Sn=a1·n2,
所以 an=aS1n,-nS= n-11=,(2n-1)a1,n≥2, 当 n=1 时,(2×1-1)a1=a1, 所以 an=(2n-1)a1, 所以 an+1-an=2a1,所以数列{an}是以 a1 为首项,2a1 为公差 的等差数列.
①当
a1>0,d<0
am≥0, 时,满足am+1≤0
的项数 m 使得 Sn 取得最
大值为 Sm(当 am+1=0 时,Sm+1 也为最大值);
a8+a10=80,则 a7-12a8=(
)
A.4
B.6
C.8
D.10
解析:∵a2+a4+a6+a8+a10=5a6=80, ∴a6=16,又 a6+a8=2a7,∴a7=21a6+12a8,即 a7-12a8=
12a6=8,故选 C. 答案:C
【题后反思】等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*), 则ak+al=am+an. (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列, 公差为2d.
第2讲 等差数列及其前n项和
第2讲 等差数列及其前n 项和一、选择题1.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9等于( ).A .66B .99C .144D .297解析 ∵a 1+a 4+a 7=39,a 3+a 6+a 9=27, ∴3a 4=39,3a 6=27, ∴a 4=13,a 6=9.∴a 6-a 4=2d =9-13=-4, ∴d =-2,∴a 5=a 4+d =13-2=11, ∴S 9=9a 1+a 92=9a 5=99.答案 B2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ). A .6B .7C .8D .9解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( ). A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C.答案 C5.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为( ). A .12 3B .15 3C .12D .15解析 不妨设角A =120°,c <b ,则a =b +4,c =b -4,于是cos 120°=b 2+b -42-b +422b b -4=-12,解得b =10,所以S =12bc sin 120°=15 3.答案 B6.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( )A.7B.15C.20D.25 解析15242451,5551522a a a aa a S ++==⇒=⨯=⨯=.答案 B 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 69.两个等差数列的前n 项和之比为5n +102n -1,则它们的第7项之比为________.解析 设两个数列{a n },{b n }的前n 项和为S n ,T n ,则S n T n =5n +102n -1,而a 7b 7=a 1+a 13b 1+b 13=S 13T 13=5×13+102×13-1=31.答案 3∶110.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.已知数列{a n }的前n 项和S n =10n -n 2,(n ∈N *).(1)求a 1和a n ;(2)记b n =|a n |,求数列{b n }的前n 项和. 解 (1)∵S n =10n -n 2,∴a 1=S 1=10-1=9. ∵S n =10n -n 2,当n ≥2,n ∈N *时,S n -1=10(n -1)-(n -1)2=10n -n 2+2n -11, ∴a n =S n -S n -1=(10n -n 2)-(10n -n 2+2n -11) =-2n +11.又n =1时,a 1=9=-2×1+11,符合上式. 则数列{a n }的通项公式为a n =-2n +11(n ∈N *). (2)∵a n =-2n +11,∴b n =|a n |=⎩⎨⎧-2n +11n ≤5,2n -11n >5,设数列{b n }的前n 项和为T n ,n ≤5时,T n =n 9-2n +112=10n -n 2;n >5时T n =T 5+n -5b 6+b n2=25+n -51+2n -112=25+(n -5)2=n 2-10n +50,∴数列{b n }的前n 项和T n =⎩⎨⎧10n -n 2n ≤5,n ∈N *,n 2-10n +50n >5,n ∈N *.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S nn +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2. ∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45)=n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值; (2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。
高考数学总复习 第5章 第2讲 等差数列及其前n项和课件 理 新人教A版
第五页,共53页。
3. 利用Sn的图象(túxiànɡ)确定其最值时,最高点不一定是最 大值,最低点不一定是最小值.
[解析] (1)本题考查等差数列的基础量运算. 设{an}的公差为 d,由 S2=a3 可得 d=a1=12,故 a2=a1 +d=1,Sn=na1+nn-2 1d=14n(n+1). (2)设等差数列的公差为 d,由于数列是递增数列,所以 d>0,a3=a1+2d=1+2d,a2=a1+d=1+d,代入已知条件: a3=a22-4 得:1+2d=(1+d)2-4,解得 d2=4,所以 d=2(d =-2 舍去),所以 an=1+(n-1)×2=2n-1. [答案] (1)1 14n(n+1) (2)2n-1
第十二页,共53页。
(3)d>0⇔{an}是递增数列,Sn 有最小值;d<0⇔{an}是递 减数列,Sn 有最大值;d=0⇔{an}是常数数列.
(4)am,am+k,am+2k,am+3k,…仍是等差数列,公差为 kd. (5)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (6)S2n-1=(2n-1)an. (7)若 n 为偶数,则 S 偶-S 奇=n2d. 若 n 为奇数,则 S 奇-S 偶=a 中(中间项).
常数. [解]
证明:由题设知 an+1= aan+2n+bbnn2=
1+bann = 1+bann2
bn+1 ,所以bn+1=
1+abnn2
an+1
1+bann2,从而abnn++112-bann2=1(n
第2学时 等差数列的判定与其前n项和的性质及等比数列初步 (1)
第2学时 等差数列的判定与其前n 项和的性质及等比数列初步【学习目标】学会判定等差数列并熟练运用其前n 项和的性质.熟记等比数列的通项公式、前n 项和公式.【学习重点】等差数列的判定与其前n 项和的性质【学习难点】等差数列的判定与等比数列和等比数列前n 项和公式的推导一、引入新知课前预习:(1)在等差数列{}n a 中,4996,63n a a S ===,,求n .(2)在等差数列{}n a 中,61024120S S ==,,求15S .二、例题讲解互动探究一:等差数列前n 项和的性质例1.在等差数列{}n a 中,535a a =,求95S S .例2.已知数列{}n a 满足:22n n a a S S =+.(1)求12a a +;*(2)设10a >,数列110lgn a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求当n 为何值时,n T 最大.归纳:等差数列前n 项和的转化:互动探究二:等差数列的判定例3.已知各项均为正数的两个数列{}n a 和{}n b满足:1n a +=11n n nb b a +=+. 求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列.例4.已知数列{}n a 中,11a =,0n a >,满足:1121n n n a S S ++=+- 求证:数列212n S ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,并求出公差.互动探究三:等比数列的通项公式、前n 项和公式等比数列的定义:一般地,一个数列从第2项起,每一项比上它的前一项的商都为同一个常数,则称该数列为等比数列,其中该常数称为公比,一般用符号q 表示.由定义可知:等差数列的通项公式为11n n a a q -=.例5.推导等比数列前n 项和的公式.例6.在各项均为正数的等比数列{}n a 中,1321,,22a a a 成等差数列,求91078a a a a ++.例7.在等比数列{}n a 中,357911243a a a a a =,求2911a a .*例8.在等比数列{}n a 中,11a =,51m i i a a ==∏,求m .(注:1231nn i i a a a a a =∙∙∙∙=∏.)三、课后作业背出等比数列的通项公式和前n 项和公式.。
高中数学 第二章 数列 2.2.2 等差数列的前n项和(一)课
以用这三个基本量来表示,五个量a1,d,n,an,Sn中可知三
求二,注意利用等差数列的性质以简化计算过程,同时在具体
求解过程中还应注意已知与未知的联系及整体思想的运用.
2.2.2 等差数列的前n项和(一)
11
预课当跟习堂踪导讲检演学义测练1 在等差数列{a栏n}中目.索引 CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
CONTENTS PAGE
[学习目标]
1.体会等差数列前n项和公式的推导过程.
2.掌握等差数列前n项和公式.
3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由
其中三个求另外两个.
2.2.2 等差数列的前n项和(一)
2
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
(1)a1=65,an=-32,Sn=-5,求 n 和 d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由题意,得 Sn=na1+ 2 an=n56- 2 23=-5,
解得n=15.
又 a15=56+(15-1)d=-32,∴d=-61.
2.2.2 等差数列的前n项和(一)
12
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
(2)a1=4,S8=172,求a8和d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由已知,得 S8=8a1+2 a8=84+2 a8=172,解得 a8=39,
又∵a8=4+(8-1)d=39,∴d=5.
2.2.2 等差数列的前n项和(一)
13
第2讲-等差数列及其前n项和
第2讲-等差数列学习提纲与学习目标1、掌握等差数列的定义、通项公式和前n项和公式的求法2、熟练掌握等差数列的性质,并能利用这些性质解决相应问题1.等差数列的定义对于数列{}n a ,如果对任意的*1()n n N ≥∈,都有1n n a a d +-=(常数),则称{}n a 为等差数列,常数d 叫这个等差数列的公差。
如,,a b c 三个数成等差数列,则称b 为,a c 的等差中项。
2.等差数列的通项公式若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为1(1)n a a n d =+-。
3.等差数列的前n 项和公式2111()(1)()2222n n n a a n n d d d S na n a n +-==+=+-;4. 数列{}n a 是等差数列2n S An Bn ⇔=+(,A B 为常数)nS n⇔为等差数列。
5.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).(3)a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(4)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)a n.例1(1)(2018全国I )设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .12(2)(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是465"+2"S S S >的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【解析】(1)32433343332133233()S S S S S a a S S d S d a d a d d =+⇒=-++=+⇒=⇒=⇒+=, 因12a =,故3d =-,故51410a a d =+=-,选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 等差数列及其前n 项和一、选择题1.(2016·武汉调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( )A.-1B.-2C.-3D.-4解析 法一 由题意可得⎩⎪⎨⎪⎧a 1+(a 1+6d )=-8,a 1+d =2,解得a 1=5,d =-3.法二 a 1+a 7=2a 4=-8,∴a 4=-4,∴a 4-a 2=-4-2=2d ,∴d =-3.答案 C2.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A.10B.20C.30D.40解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n ,解得n =5,故这个数列的项数为10.答案 A3.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( )A.a 1+a 101>0B.a 2+a 100<0C.a 3+a 99=0D.a 51=51解析 由题意,得a 1+a 2+a 3+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2+a 100=a 3+a 99=0.答案 C4.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A.0B.37C.100D.-37解析 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100,∴{a n +b n }为常数列,∴a 37+b 37=100.答案 C5.(2017·泰安模拟)设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =( )A.9B.8C.7D.6解析 设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2=-11,a 5+a 9=-2,得⎩⎪⎨⎪⎧a 1+d =-11,2a 1+12d =-2,解得⎩⎪⎨⎪⎧a 1=-13,d =2.∴a n =-15+2n . 由a n =-15+2n ≤0,解得n ≤152.又n 为正整数,∴当S n 取最小值时,n =7.故选C.答案 C二、填空题6.(2016·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设数列{a n }的公差为d ,由题设得⎩⎨⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 因此a 9=a 1+8d =20.答案 207.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________.解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),可得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19. 答案 198.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________.解析 法一 由已知得,a m =S m -S m -1=2,a m +1=S m +1-S m =3,因为数列{a n }为等差数列,所以d =a m +1-a m =1,又因为S m =m (a 1+a m )2=0,所以m (a 1+2)=0,因为m ≠0,所以a 1=-2,又a m =a 1+(m -1)d =2,解得m =5. 法二 因为S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以公差d =a m +1-a m =1,由S n =na 1+n (n -1)2d =na 1+n (n -1)2, 得⎩⎨⎧ma 1+m (m -1)2=0, ①(m -1)a 1+(m -1)(m -2)2=-2. ② 由①得a 1=1-m 2,代入②可得m =5.法三 因为数列{a n }为等差数列,且前n 项和为S n ,所以数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 所以S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.答案 5三、解答题9.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意有⎩⎨⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25. 所以{a n }的通项公式为a n =2n +35.(2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.(1)证明 由题设知,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1.由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.11.(2017·东北三省四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( )A.53B.103C.56D.116解析 依题意,设这100份面包所分成的五份由小到大依次为a -2m ,a -m ,a ,a +m ,a +2m ,则有⎩⎪⎨⎪⎧5a =100,a +(a +m )+(a +2m )=7(a -2m +a -m ),解得a =20,m =11a 24,a -2m =a 12=53,即其中最小一份为53,故选A.答案 A12.(2017·郑州模拟)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为( )A.36B.6C.4D.2解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4,故选C.答案 C13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941. 答案 194114.在数列{a n }中,a 1=-5,a 2=-2,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2(n ∈N *),若对于任意n ∈N *,A (n ),B (n ),C (n )成等差数列.(1)求数列{a n }的通项公式;(2)求数列{|a n |}的前n 项和.解 (1)根据题意A (n ),B (n ),C (n )成等差数列.∴A (n )+C (n )=2B (n ),整理得a n +2-a n +1=a 2-a 1=-2+5=3,∴数列{a n }是首项为-5,公差为3的等差数列,∴a n =-5+3(n -1)=3n -8.(2)|a n |=⎩⎨⎧-3n +8,n ≤2,3n -8,n ≥3, 记数列{|a n |}的前n 项和为S n .当n ≤2时,S n =n (5+8-3n )2=-3n 22+132n ; 当n ≥3时,S n =7+(n -2)(1+3n -8)2=3n 22-132n +14, 综上,S n =⎩⎪⎨⎪⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.。