七年级数学下册一元一次方程测试题精选

合集下载

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。

问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。

变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。

请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。

2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。

变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。

变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。

如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。

人教版七年级数学第三章《一元一次方程》单元测试带答案解析

人教版七年级数学第三章《一元一次方程》单元测试带答案解析
根据题意得: ( ) .
故选:A.
【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.
10.C
【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元,第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.
7.D
【分析】根据等式的基本性质可判断出选项正确与否;等式的基本性质:①等式两边同时加上(或减去)同一个整式,等式仍然成立;②等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
【详解】解:A.根据等式性质,a=b两边都加c,即可得到a+c=b+c,故选项错误,不符合题意;
B.如果 ,那么a+c−c=b−c-c,即a=b-2c,故选项错误,不符合题意;
C.如果 ,那么 成立的条件是c≠0,原变形错误,故选项错误,不符合题意;
D.如果 ,那么a=b,故选项正确,符合题意;
故选:D.
【点睛】此题考查了等式的基本性质,解题的关键是熟练运用等式的基本性质.
8.C
【分析】设十字框最中间的数为x,表示出其余数字,根据之和为选项中的数字求出x的值,x的值符合题意即可.
人教版七年级数学第三章《一元一次方程》单元测试
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若关于x的方程 的解是 ,则a的值为()
A. B.9C. D.1
2.如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()

(完整版)初一数学一元一次方程练习题(含答案)

(完整版)初一数学一元一次方程练习题(含答案)

初一数学一元一次方程练习题(含答案)一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是( )A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20?5%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。

A、B、C、D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.56千米1小时还有3一条山路,某人从山下往山顶走7.才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为( )A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m= 。

12.若与是同类项,则m= ,n= 。

的代数y用含,y=得y的代数式表示x用含方程13.式表示x得x=。

七年级数学第三单元解一元一次方程单元测试精选题目含答案

七年级数学第三单元解一元一次方程单元测试精选题目含答案

七年级数学第三单元解一元一次方程单元测试精选题目含答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、方程4x-1=3的解是()(A)x=-1 (B)x=1 (C)x=-2 (D)x=22、已知是关于的一元一次方程,则( )A.=2 B.= C.=±3 D.=l3、某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为( )A.0.92aB.1.12aC.D.4、5、若x2-x-m=(x-m)(x+1)且x≠0,则m等于().A.-1 B. 0 C. 1 D. 2 6、用代数式表示“2m与5的差”为( )A.2m﹣5 B.5﹣2m C.2(m﹣5) D.2(5﹣m)7、已知,下列等式错误的是( )A. B. C. D.8、一台电视机成本价为a元,销售价比成本价增加25%.因库存积压,所以就按销售价的70%出售。

那么每台实际售价为( )A.(1+25%)(1+70%)a元 B.70%(1+25%)a元C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元9、若方程:与的解互为相反数,则a的值为()A.- B. C. D.-110、阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程•a= ﹣(x﹣6)无解,则a的值是()A.1B.﹣1C.±1D.a≠1二、填空题(共6题)1、用代数式表示“a与b的和”,式子为.2、孔明同学买铅笔支,每支0.4元,买练习本本,每本2元.那么他买铅笔和练习本一共花了元.3、一筐苹果总重千克,筐本身重千克,若将苹果平均分成份,则每份重______千克.4、已知关于的方程的解是,则的值是______________。

5、如图,用一根质地均匀长30厘米的直尺和一些相同棋子做实验。

人教版七年级数学下册 第3章 一元一次方程单元同步检测试题(附答案)

人教版七年级数学下册 第3章 一元一次方程单元同步检测试题(附答案)

第三章《一元一次方程》单元练习题一、选择题1.小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了()A. 1个B. 2个C. 3个D. 4个2.解方程3-=1,在下列去分母运算中,正确的是()A. 3-(x+2)=3B. 9-x-2=1C. 9-(x+2)=3D. 9-x+2=33.若a、b互为相反数,则关于x的方程ax+b=0(a≠0)的解是()A.x=1B.x= 1C.x=1或x= 1D.不能确定4.方程3x=-6的解是()A.x=-2B.x=-6C.x=2D.x=-125.如果用“a=b”表示一个等式,c表示一个整式,d表示一个数,那么等式的第一条性质就可以表示为“a±c=b±c”,以下借助符号正确的表示出等式的第二条性质的是()A.a•c=b•d,a÷c=b÷dB.a•d=b÷d,a÷d=b•dC.a•d=b•d,a÷d=b÷dD.a•d=b•d,a÷d=b÷d(d≠0)6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.B.C.D.7.希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A. 2(x-1)+x=49B. 2(x+1)+x=49C.x-1+2x=49D.x+1+2x=498.方程去分母后可得()A. 3x-3=1+2xB. 3x-9=1+2xC. 3x-3=2+2xD. 3x-12=2+4x二、填空题9.当m=时,关于x的方程(m3)x22mx+1=0是一元一次方程.10.一通信商场今年2月份销售国产手机--努比亚Z5Mini的价格为每台1880元,共售出600台.3月份,由于该型号手机价格上涨10%,使销售量下降了30%.3月底,国家主席夫人彭丽媛在德国访问时使用该型号手机的照片在新闻中播出后,极大地影响了4月份国货的销售,进入4月份,商场也开展促销活动支持国货,在3月份销售价格的基础上实行九折优惠,使该型号手机销售量增加,预计4月份,该商场此型号手机的销售额比2月份增加15.5%,则预计4月份该型号手机销售量比3月销售量增加台.11.古代有个寓言故事,驴子和骡子一起走路,它们驮着不同袋数的货物,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨什么?如果你给我一袋,那我负担的就是你的2倍;如果我给你一袋.我们才恰好驮的一样多.”试问驴子原来所驮的货物是多少袋?设驴子原来所驮的货物为x袋,可列出方程为.12.方程2x=10的解是.13.一个两位数,十位数字比个位数字大2,如果把十位数字和个位数子对调得到的新两位数比原两位数小13,设原数的个位数为x,则列方程为.14.甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好比乙仓库的一半多1吨,设乙仓库原有x吨,则可列方程为.15.若与互为相反数,则a=.16.在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了分.三、解答题17.2015-2016赛季中国男子篮球职业联赛(即CBA)激战正酣,浙江广厦队表现不俗,暂居榜首,马布里领衔的卫冕冠军北京首钢队战绩不佳,截止12月23日,在前21轮比赛中,积35分位列第七位,按比赛规则,胜一场得2分,负一场得1分,那么截止12月23日北京首钢队共胜了多少场?18.已知x=1是关于x的方程3x33x2+kx+5=0的解,求2k3+k25k8的值.19.甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x(x>4000)元.(1)分别用含有x的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x=6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x为何值时,在甲、乙两家商场购买所付的费用相同?20.当x为何值时,2x-5与-3x的值相等.21.已知方程(m3)4=m2是关于x的一元一次方程.求:(1)m的值;(2)写出这个一元一次方程.第三章《一元一次方程》单元练习题答案解析1.【答案】B【解析】设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.故选B.2.【答案】C【解析】方程两边同乘以3,得9-(x+2)=3,故选择C.3.【答案】A【解析】因为a、b互为相反数,所以a+b=0,在关于x的方程ax+b=0(a≠0)中,当x=1时,ax+b=a+b=0,则方程的解是:x=1.故选A.4.【答案】A【解析】3x=-6两边同时除以3,得x=-2故选A.5.【答案】D【解析】等式的第二条性质的是:等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.其符号表达式:a•d=b•d,a÷d=b÷d(d≠0).故选D.6.【答案】D【解析】设完成此项工程共用x天,根据题意得:,故选D.7.【答案】A【解析】设男生人数为x人,则女生为2(x-1),根据题意得:2(x-1)+x=49,故选A.8.【答案】B【解析】方程两边同时乘以6,得3x-9=1+2x,所以B选项正确.9.【答案】3【解析】由关于x的方程(m3)x22mx+1=0是一元一次方程,得m3=0.解得m=3.故答案为:3.10.【答案】280【解析】设4月份该型号手机销售量比3月销售量增加的百分率为x,依题意有[1880×(1+10%)×0.9]×[600×(1-30%)(1+x)]=1880×600×(1+15.5%),解得x=,600×(1-30%)×=600×0.7×=280(台).答:4月份该型号手机销售量比3月销售量增加280台.故答案为:280.11.【答案】x+1=2(x1) 2【解析】设驴子原来所驮的货物为x袋,由题意,得x+1=2(x1) 2.12.【答案】x=5【解析】方程2x=10,解得:x=5,故答案为:x=513.【答案】10(x+2)+x-[10x+(x+2)]=13【解析】设原数的个位数为x,则十位数为(x+2),根据题意得:10(x+2)+x-[10x+(x+2)]=13,14.【答案】2x-5=(x+5)+1【解析】首先设乙仓库原有x吨,则甲仓库的货物有2x吨,从甲仓库调5吨到乙仓库后甲仓库有(2x-5)吨,乙仓库有(x+5)吨,根据关键语句“甲仓库剩余的货物恰好比乙仓库的一半多1吨,”可得方程2x-5=(x+5)+1.15.【答案】【解析】根据题意列出方程+=0,直接解出a的值,即可解题.解:根据相反数和为0得:+=0,去分母得:a+3+2a-7=0,合并同类项得:3a-4=0,移项得:3a=4,系数化为1得a=.故答案为.16.【答案】2a+3b+9【解析】2×a+3×b+9=2a+3b+9(分).答:他一共得了(2a+3b+9)分.故答案为:2a+3b+9.17.【答案】解:设截止12月23日北京首钢队共胜了x场,则负了(21-x)场,由题意得2x+(21-x)=35,解得x=14.答:截止12月23日北京首钢队共胜了14场.【解析】设截止12月23日北京首钢队共胜了x场,则负了(21-x)场,再根据共得35分列出方程求解即可.18.【答案】解:把x=1代入方程3x33x2+kx+5=0,得,解得k=.则2k3+k25k8==16.【解析】19.【答案】解:(1)甲商场的费用为:4000+(x-4000)80%=0.8x+800(元);乙商场的费用为:3000+(x-3000)90%=0.9x+300(元).(2)当x=6000时,甲商场的费用为:0.8+800=5600(元);当x=6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x+800=0.9x+300,解得x=5000.答:当x为5000元时,在甲、乙两家商场购买所付的费用相同.【解析】(1)甲商场的费用为:4000+超过4000元部分80%;乙商场的费用为:3000+超过3000元部分90%.(2)当x=6000时,分别计算出在甲、乙两商场的费用进行比较即可;(3)根据两商场的费用相等列出方程求解即可.20.【答案】解:∵2x-5与-3x的值相等,∴2x-5=-3x,移项得,2x+3x=5,合并同类项得,5x=5,把x的系数化为1得,x=1.【解析】根据题意列出关于x的一元一次方程,求出x的值即可.21.【答案】解:(1)由方程(m3)4=m2是关于x的一元一次方程,得,m30,解得m=.(2)当m=时,方程为.【解析】。

七年级数学下册一元一次方程测试题精选

七年级数学下册一元一次方程测试题精选

一元一次方程测试题-- 1一、选择题1、方程413x -=的解是………………………………………………( )A 、1x =-B 、1x =C 、2x =-D 、2x =2、如果2x =是方程112x a +=-的根,那么a 的值是………………( )A 、0B 、2C 、2-D 、6-3、若3-=b a ,则a b -的值是…………………………………….( )A 、3B 、3-C 、0D 、64、已知下列方程中①x x 22=-、②=1、③152-=x x 、④34=-x x⑤x=6、⑥x+2y=0、⑦x x x x 3222+=+-,是一元一次方程的有( )A 、2个B 、3个C 、4个D 、5个5、方程2(x-7)=x+4的解是………………………………………( )A 、x=-5B 、x=5C 、x=14D 、x=186、对于等式x x 2131=-,下列变形正确的是……………………..( )A 、1231=+x xB 、1312-=-x xC 、135=xD 、x x 23=-7、下列等式变形错误的是……………………………………….( )A 、由a=b,得a+5=b+5B 、由a=b,得33-=-b aC 、由x+2=y+2,得x=yD 、由-3x=-3y, 得x=-y8、方程x x 73374-=的解是……………………………………….( )A 、x=3B 、21=xC 、21-=xD 、x=-39、将方程11)14(3)12(7=---x x 去括号后正确的是………….….( )A 、1112714=+--x xB 、11312714=+--x xC 、11312114=---x xD 、14x-1-12x+3=1110、方程16531=-+x x 的解是………………………………………( )A 、31-B 、34C 、31D 、34- 11、某工人计划每生产a 个零件,现在实际每天生产b 个零件,则生产m个零件提前的天数为……………………………………..( )A 、b a m +B 、a m b a m -+C 、b m a m -D 、b a m a m +-12、甲比乙大15岁,五年前甲年龄是乙年龄的两倍,乙现在年龄是…………………………………………………………………( )A 、10岁B 、15岁C 、20岁D 、30岁13、某牧场放养的鸵鸟和奶牛一共70只, 已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟的头数比奶牛多………………………….( )A 、12只B 、13只C 、14只D 、15只14、某品牌的书包按相同折数打折销售,如果原价200元的书包,现价160元,那么原价150元的书包,现价是…………………( )A 、100元B 、110元C 、120元D 、130元15、某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为………………………………………..( )A 、26元B 、27元C 、28元D 、29元16、A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是……………………………………….( )A 、2(1)313x x -+=B 、2(1)313x x ++=C 、23(1)13x x ++=D 、23(1)13x x +-=二、填空题1、方程260x -=的解为2、当x= 时,代数式23+x 的值为0.3、7与x 的差的43比x 的3倍小6的方程是4、若方程 46312=+-k x k 是关于x 的一元一次方程,则k=5、当X= 时,代数式3(x-2)与2(2+x)的值相等6、已知长方形的周长为40cm 、长为xcm 、宽为8cm ,由题意列方程为7、要将方程 3523352=-+-t t 的分母去掉,在方程的两边最好同时乘以8、某商店老板将一件进价为800元的商品先提价50%;再打8折出销,则出销这件商品所获利润是 元。

华师大版七年级数学下册第6章一元一次方程单元达标测试题(Word版含答案)

华师大版七年级数学下册第6章一元一次方程单元达标测试题(Word版含答案)

华师大版七年级数学下册《第6章一元一次方程》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.已知x=﹣1是关于x的方程2x+3a=7的解,则a的值为()A.﹣5B.﹣3C.3D.52.已知方程,则式子11+2()的值为()A.B.C.D.3.在解关于x的方程=﹣2时,小冉在去分母的过程中,右边的“﹣2”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A.x=﹣12B.x=﹣8C.x=8D.x=124.小明在某月的日历中圈出相邻的四个数,算出这4个数的和是42,那么这4个数在日历上的位置可能是()A.B.C.D.5.某车间有22名工人,每人每天可以生产600个螺钉或1000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,可列方程为()A.2×600x=1000(22﹣x)B.2×1000x=600(22﹣x)C.600x=2×1000(22﹣x)D.1000x=2×600(22﹣x)6.妞妞和馨月都有一个比自己大3岁的姐姐,若妞妞姐姐的年龄是馨月姐姐的3倍,且妞妞的年龄是磬月年龄的m倍,则所有满足要求的正整数m的值的和为()A.11B.15C.20D.247.整理一批图书,由一个人做要30小时完成,现在计划由一部分人先做2小时,再增加3人和他们一起做4小时,完成这项工作,假设每个人的工作效率相同,具体先安排x人工作,则可列方程为()A.B.C.D.8.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二.填空题(共8小题,满分40分)9.若x=2是关于x的方程3x﹣4=﹣a的解,则a2021的值为.10.|x﹣3|=5,则x=.11.在一本挂历上用正方形圈住四个数,这四个数的和为52,则这四个数中,最小的数为.12.两村相距35千米,甲、乙两人从两村出发,相向而行,甲每小时行5千米,乙每小时4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行驶了小时.13.如图,长方形ABCD是由4块小长方形拼成,其中②③两长方形的形状与大小完全相同,且长与宽的差为,则小长方形④与小长方形①的周长的差是.14.已知数轴上三点A、O、B对应的数分别为﹣6、0、10,点P、C、Q分别从点A、O、B 出发沿数轴向右运动,速度分别是每秒4个单位长度,每秒3个单位长度,每秒1个单位长度,设t秒时点C到点P,点Q的距离相等,则t的值为.15.在有理数范围内定义一个新的运算法则“*”;当a≥b时,a*b=a b;当a<b时,a*b=ab.根据这个法则,方程4*(4*x)=256的解是x=.16.某种商品每件的进价为80元,标价为120元,然后在广告上写“优惠酬宾,打折促销”,结果仍赚了20%,则该商品打了折.三.解答题(共6小题,满分40分)17.解方程:(1)4(x﹣1)﹣1=3(x﹣2)(2)﹣=1.18.已知关于y的方程﹣m=5(y﹣m)与方程4y﹣7=1+2y的解相同,求2m+1的解.19.定义一种新运算:m*n=mn+n,如4*3=4×3+3=15.请解决下列问题:(1)直接写出结果:2*(﹣3)=;1*(2*3)=.(2)若a<2,比较(a﹣3)*2与(a﹣3)*1的大小,并说明理由.(3)若关于x的方程2*(x﹣a)=x*5的解与方程x+3=b的解相同,求6a+4b的值.20.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?21.某校七年级学生准备观看电影《长津湖》.由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员打8折;方案二:打9折,有5人可以免票.(1)若一班有a(a>40)人,则方案一需付元钱,方案二需付元钱;(用含a的代数式表示)(2)若二班有41名学生,则他选择哪个方案更优惠?(3)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?22.某商店为迎接新年举行促销活动,促销活动有以下两种优惠方案:方案一:购买一件商品打八折,购买两件以上在商品总价打八折的基础上再打九折;方案二:购买一件商品打八五折,折后价格每满100元再送30元抵用券,可以用于抵扣其他商品的价格.(注:两种优惠只能选择其中一种参加)(1)小明想购买一件标价270元的衣服和一双标价450元的鞋子,请你帮助小明算一算选择哪种优惠方案更合算.(2)如果衣服和鞋子的标价都是在进价的基础上加价了50%,那么这两种优惠方案商店是赚了还是亏了?为什么?(3)如果小明已决定要购买标价为450元的鞋子,又想两种方案的优惠额相同,那么小明想购买的衣服的标价(低于450元)应调整为多少元?参考答案一.选择题(共8小题,满分40分)1.解:由题意将x=﹣1代入方程得:﹣2+3a=7,解得:a=3.故选:C.2.解:,去分母得:2﹣18(x﹣)=5,移项得:﹣18(x﹣)=3,系数化为1得:x﹣=﹣,∴11+2()=11+2×=.故选:B.3.解:把x=2代入2(2x﹣1)=3(x+a)﹣2得,2×(4﹣1)=3×(2+a)﹣2,6=6+3a﹣2,6﹣6+2=3a,a=,∴原方程为:=﹣2,去分母,得2(2x﹣1)=3(x+)﹣2×6,去括号,得4x﹣2=3x+2﹣12,移项,得4x﹣3x=2﹣12+2,把系数化为1,得x=﹣8.故选:B.4.解:设第一个数为x,根据已知:A、由题意得x+x+7+x+6+x+8=42,则x=5.25不是整数,故本选项不合题意.B、由题意得x+x+1+x+2+x+8=42,则x=7.75不是整数,故本选项不合题意.C、由题意得x+x+1+x+7+x+8=42,则x=6.5是整数,故本选项符合题意.D、由题意得x+x+1+x+6+x+7=42,则x=7是正整数,故本选项符合题意.故选:D.5.解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得:2×600x=1000(22﹣x),故选:A.6.解:设磬月的年龄是x岁,则妞妞的年龄是mx岁,根据题意得:mx+3=3(x+3),整理得:(m﹣3)x=6,则x=,∵m、x均为正整数,∴m﹣3=1,2,3,6,∴m=4,5,6,9,∴4+5+6+9=24.故选:D.7.解:假设每个人的工作效率相同,具体先安排x人工作,则:一个人做要30小时完成,现在计划由一部分人先做2小时,工作量为x,再增加3人和他们一起做4小时的工作量为(x+3),故可列式,故选:D.8.解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=90;当100≤x<350时,0.9x=90,解得:x=100;∵0.9y=270,∴y=300.∴0.8(x+y)=312或320.所以至少需要付312元.故选:C.二.填空题(共8小题,满分40分)9.解:把x=2代入方程3x﹣4=﹣a得:3×2﹣4=﹣a,解得:a=﹣1,所以a2021=(﹣1)2021=﹣1,故答案为:﹣1.10.解;根据|x﹣3|=5,∴x﹣3=5或x﹣3=﹣5,当x﹣3=5时,x=8;当x﹣3=﹣5时,x=﹣2.故答案为:8,﹣2.11.解:设这四个数中最小的数为x,则其他三个数分别为:x+1,x+7,x+8,由题意得x+x+1+x+7+x+8=52,解得x=9,答:这四个数中,最小的数为9.故答案为:9.12.解:设乙行了x小时.有两种情况:①两人没有相遇相距9千米,根据题意得到:5+(5+4)x=35﹣9,∴x=;②两人相遇后相距9千米,根据题意得到:5+x(5+4)x=35+9,∴x=;答:乙行了或小时.13.解:设BC的长为x,AB的长为y,长方形②的长为a,宽为(a﹣),由题意可得,④与①两块长方形的周长之差是:[2(a﹣)+2(x﹣a)]﹣{[x﹣(a﹣)]×2+2a]}=10.故答案是:10.14.解:t秒时,点P表示的数是﹣6+4t,点C表示的数是3t,点Q表示的数是10+t,∴PC=|(﹣6+4t)﹣3t|=|t﹣6|,QC=|10+t﹣3t|=|10﹣2t|,∵点C到点P,点Q的距离相等,∴|t﹣6|=|10﹣2t|,解得t=或4.故答案为:或4.15.解:由题意得①当x≤4时,4*(4*x)=4*(4x),当4≥4x时,4*(4x)=4=256,解得x=1.当4<4x时,4*(4x)=4x+1=256,解得x=3.②当x>4时,4*(4*x)=4*(4x)=16x=256,解得x=16.故答案为:1,3,16.16.解:设该商品打了x折,根据题意,得:120×﹣80=80×20%,解得x=8,答:该商品打了8折,故答案为:8.三.解答题(共6小题,满分40分)17.解:(1)去括号得:4x﹣4﹣1=3x﹣6,移项合并得:x=﹣1;(2)去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.18.解:由4y﹣7=1+2y解得y=4,再由﹣m=5(y﹣m)与方程4y﹣7=1+2y的解相同,得2﹣m=5(4﹣m),解得m=,代入2m+1=10.19.解:(1)2*(﹣3)=2×(﹣3)+(﹣3)=﹣6+(﹣3)=﹣9;2*3=6+3=9,1*9=9+9=18;故答案为:﹣9;18;(2)(a﹣3)*2<(a﹣3)*1,理由如下:(a﹣3)*2=2a﹣6+2=2a﹣4,(a﹣3)*1=a﹣3+1=a﹣2,2a﹣4﹣(a﹣2)=2a﹣4﹣a+2=a﹣2,∵a<2,∴a﹣2<0,∴(a﹣3)*2<(a﹣3)*1;(3)方程2*(x﹣a)=x*5可变形为2x﹣2a+x﹣a=5x+5,解得x=,方程x+3=b的解为x=b﹣3,∵这两个方程的解相同,∴=b﹣3,∴3a+2b=1,∴6a+4b=2(3a+2b)=2.20.解:设应调至甲地段x人,则调至乙地段(29﹣x)人,根据题意得:28+x=2(15+29﹣x),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.21.解:(1)若一班有a(a>40)人,则方案一需付30a×0.8=24a元钱,方案二需付30(a﹣5)×0.9=27(a﹣5)元钱.故答案是:24a;27(a﹣5);(2)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(3)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.22.解:(1)方案一:(270+450)×80%×90%=518.4(元),方案二:买鞋子费用为450×85%=382.5(元),买衣服除去抵用券后费用为270﹣3×30=180(元),一共应付款:382.5+180=562.5(元),∵518.4<562.5,∴选择方案一更合算;(2)∵衣服和鞋子的标价都是在进价的基础上加价了50%,∴衣服和鞋子的进价是(270+450)÷(1+50%)=480(元),而518.4>480,562.5>480,∴这两种优惠方案商店都是赚了;(3)设小明想购买的衣服的标价(低于450元)应调整为x元,根据题意得:(450+x)×80%×90%=450×85%+x﹣3×30,解得x=112.5,答:小明想购买的衣服的标价(低于450元)应调整为112.5元.。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

华东师大版 七年级数学下册 第6章 一元一次方程 单元测试题 (有答案)

华东师大版 七年级数学下册 第6章 一元一次方程 单元测试题 (有答案)

华师大版七年级数学下册第6章一元一次方程单元测试题一.选择题(共10小题)1.下列所给条件,不能列出方程的是()A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的的差D.某数的3倍与7的和等于292.有下列结论:①若a+b+c=0,则abc≠0;②若a(x﹣1)=b(x﹣1)有唯一的解,则a≠b;③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣;④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;其中结论正确的个数有()A.4个B.3个C.2个D.1个3.已知等式a=b,则下列式子中不成立的是()A.a﹣1=b﹣1B.C.3a=3b D.a﹣1=b+14.下列方程中,属于一元一次方程的是()A.2x﹣1=0B.1﹣x=y C.=4D.1﹣x2=05.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=﹣,然后小明很快补好了这个常数,这个常数应是()A.﹣B.C.D.26.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)7.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元8.下列解方程变形正确的是()A.由方程1﹣2x=3x+2,得3x﹣2x=2﹣1B.由方程1﹣2(3x﹣1)=3(1﹣x),得1﹣6x﹣2=3﹣3xC.由方程﹣1=,得3x﹣1=2xD.由方程4(x﹣1)﹣3=2x,得4x﹣2x=4+39.若关于x的方程mx+2=2(m﹣x)的解满足方程,则m的值是()A.10B.C.10 或D.﹣10 或10.已知方程2﹣﹣3与方程=3k的解相同,则k的值为()A.B.C.D.二.填空题(共8小题)11.若x|m|=3是关于x的一元一次方程,则m的值是.12.下列等式变形:①a=b,则=;②若=,则a=b;③若4a=7b,则=;④若=,则4a=7b,其中一定正确的有(填序号)13.兰山某初中学校七年级举行“数学知识应用能力竞技”活动,测试卷由20道题组成,答对一题得5分,不答或答错一题扣1分,某考生的成绩为76分,则他答对了道题.14.超市某商品标价200元,开业期间按标价的八折出售,这时仍然可以获利25%,设这种商品进价为x元,由题意列出方程为.15.已知关于x的方程|x﹣2|﹣|x﹣5|=a,那么(1)当方程有唯一解时,a应满足的条件为;(2)当方程有无数多个解时,a应满足的条件为;(3)当方程无解时,a应满足的条件为(请直接写出答案)16.关于x的方程与x+m=1的解相同,则m的值为.17.若2x﹣5与﹣互为倒数,则x=.18.已知x=1是方程ax﹣2b=3的解,那么2a﹣4b﹣3的值为.三.解答题(共8小题)19.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=20.若关于x的方程(m﹣4)x|m﹣1|﹣2+2=0是一元一次方程,求m的值.21.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?22.一般情况下﹣=不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得﹣=成立的一对数m,n为“相伴数对”,记为(m,n)(1)若(m,1)是“相伴数对”,则m=;(2)若(m,n)是“相伴数对”,请写出m、n满足的关系式;(3)在(2)的条件下,求代数式n+m﹣(6+12m﹣5n)的值.23.若有理数a,b满足条件:(m是整数),则称有理数a,b为一对“共享数”,其中整数m是a,b的“共享因子”.(1)下列两对数中:①3和5,②6和8,是一对“共享数”的是;(填序号)(2)若7和x是一对“共享数”,且“共享因子”为2,求x的值;(3)探究:当有理数a,b满足什么条件时,a,b是一对“共享数”.24.我们定义一种新运算:a*b=2a+ab(等号右边为统筹意义的运算):(1)若,求x的值;(2)若(﹣3)*(2*x)=x+24,求x的值.25.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s 的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?26.如图,已知点A在数轴上对应的数为a,点B对应的数为b,A与B之间的距离记作AB.(1)已知a=﹣2,b比a大12,则B点表示的数是;(2)设点P在数轴上对应的数为x,当PA﹣PB=4时,求x的值;(3)若点M以每秒1个单位的速度从A点出发向右运动,同时点N以每秒2个单位的速度从B 点向左运动.设运动时间是t秒,则运动t秒后,用含t的代数式表示M点到达的位置表示的数为,N点到达的位置表示的数为;当t为多少秒时,M与N之间的距离是9?参考答案与试题解析一.选择题(共10小题)1.解:设某数为x,A、x2﹣x=6,是方程,故本选项错误;B、2(x+3)=14,是方程,故本选项错误;C、x﹣x,不是方程,故本选项正确;D、3x+7=29,是方程,故本选项错误.故选:C.2.解:①错误,当a=0,b=1,c=﹣1时,a+b+c=0+1﹣1=0,但是abc=0;②正确,方程整理得:(a﹣b)x=a﹣b,由方程有唯一解,得到a﹣b≠0,即a≠b,此时解为x=1;③错误,由a≠0,b=2a,方程解得:x=﹣=﹣2;④正确,把x=1,a+b+c=1代入方程左边得:a+b+c=1,右边=1,故若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解,故选:C.3.解:A、若a=b,则a﹣1=b﹣1,故原题说法正确;B、若a=b,则=,故原题说法正确;C、若a=b,则3a=3b,故原题说法正确;D、若a=b,则a﹣1=b﹣1,故原题说法错误;故选:D.4.解:A、该方程符合一元一次方程的定义,故本选项符合题意.B、该方程中含有两个未知数,不是一元一次方程,故本选项不符合题意.C、该方程是分式方程不是一元一次方程,故本选项不符合题意.D、该方程的未知数的最高此时是2,不是一元一次方程,故本选项不符合题意.故选:A.5.解:设□表示的数是a,把y=﹣代入方程2y+1=y﹣a得:﹣+1=﹣﹣a,解得:a=,即这个常数是,故选:B.6.解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.7.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:135﹣x=25%x,135﹣y=﹣25%y,解得:x=108,y=180.∵135﹣108+(135﹣180)=﹣18,∴该商贩赔18元.故选:C.8.解:A、由方程1﹣2x=3x+2,得3x+2x=1﹣2,不符合题意;B、由方程1﹣2(3x﹣1)=3(1﹣x),得1﹣6x+2=3﹣3x,不符合题意;C、由方程﹣1=,得3x﹣6=2x,不符合题意;D、由方程4(x﹣1)﹣3=2x,得4x﹣2x=4+3,符合题意,故选:D.9.解:由|x﹣|=1,可得:x=或x=﹣,①当x=时,m+2=2(m﹣),解得m=10,②当x=﹣时,﹣m+2=2(m+),解得m=,故m的值为10或.故选:C.10.解:解方程2﹣=﹣3,得x=25,由方程2﹣=﹣3与方程=3k的解相同,得=3k,解得k=.故选:B.二.填空题(共8小题)11.解:由题意,得|m|=1.解得m=±1.故答案是:±1.12.解:①a=b,x不能等于0,则=,错误;②若=,则a=b,正确;③若4a=7b,b≠0,则=,错误;④若=,则4a=7b,正确;故答案为:②④13.解:设该考生答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣(20﹣x)=76,解得:x=16.故答案为:16.14.解:设这种商品进价为x元,依题意,得:200×0.8﹣x=25%x.故答案为:200×0.8﹣x=25%x.15.解:当x>5时,|x﹣2|﹣|x﹣5|=x﹣2﹣x+5=3=a,当2≤x≤5时,|x﹣2|﹣|x﹣5|=x﹣2﹣5+x=2x﹣7=a,当x<2时,|x﹣2|﹣|x﹣5|=2﹣x﹣5+x=﹣3=a,(1)当方程有唯一解时,﹣3<a<3;故答案为﹣3<a<3;(2)当方程有无数多个解时,a=3或a=﹣3;故答案为a=3或a=﹣3;(3)当方程无解时,a>3或a<﹣3;故答案为a>3或a<﹣3.16.解:解关于x的方程+=x﹣4,3x+2m=6x﹣24,2m+24=3x,x=;解方程x+m=1,x=1﹣m,∵关于x的方程+=x﹣4与方程x+m=1的解相同,∴=1﹣m,解得:m=﹣.故答案为:﹣.17.解:根据题意得:﹣(2x﹣5)=1,去分母得:﹣(2x﹣5)=5,去括号得:﹣2x+5=5,解得:x=0,故答案为:018.解:把x=1代入方程得:a﹣2b=3,则原式=2(a﹣2b)﹣3=6﹣3=3.故答案为:3三.解答题(共8小题)19.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.20.解:∵关于x的方程(m﹣4)x|m﹣1|﹣2+2=0是一元一次方程,∴m﹣4≠0,|m﹣1|﹣2=1,解得:m=﹣2.21.解:设还需x天能完成任务,根据题意可得方程:×2+=1.解得x=10.答:还需10天能完成任务.22.解:(1)由题意可知:﹣=,解得:m=;(2)由题意可知:﹣=,∴m=n;(3)原式=+n﹣3﹣+=﹣3;故答案为:(1);(2)m=n;23.解:(1)根据题中的新定义得:+=+2,即3和5是一对“共享数”;+=+,即6和8不是一对“共享数”,故答案为:①;(2)根据题中的新定义得:+=+2,去分母得:14+2x=7+x+8,解得:x=1.24.解:(1)3*x=2×3+3x=6+3x*x=2×+x=1+x,∴6+3x=1+x,∴x=2;(2)∵2*x=2×2+2x=4+2x,∴﹣3*(2*x)=2(﹣3)+(﹣3)(4+2x)=﹣6﹣12﹣6x=﹣18﹣6x,∴﹣18﹣6x=x+24,∴x=﹣625.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.26.解:(1)﹣2+12=10.故B点表示的数是10;(2)依题意有[x﹣(﹣2)]﹣(10﹣x)=4,解得x=6.(3)M点到达的位置表示的数为﹣2+t,N点到达的位置表示的数为10﹣2t;①相遇前:(10﹣2t)﹣(﹣2+t)=9,解得t=1;②相遇后:(﹣2+t)﹣(10﹣2t)=9,解得t=7.综上,当t值为1或7秒时M与N之间的距离是9.故答案为:10;﹣2+t,10﹣2t.。

难点解析华东师大版七年级数学下册第6章一元一次方程定向测评练习题(精选含解析)

难点解析华东师大版七年级数学下册第6章一元一次方程定向测评练习题(精选含解析)

七年级数学下册第6章一元一次方程定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、《孙子算经》中有一道题,原文是:今有四人共车,一车空;三人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余1辆车;若每3人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .9143xx -+= B .1943x x +=- C .9143xx +-= D .9143xx ++= 2、已知一元一次方程()3124522x x --=-,则下列解方程的过程正确的是( ) A .去分母,得()()3124252x x --=-B .去分母,得()312852x x --=-C .去分母,去括号,得368104x x --=-D .去分母,去括号,得36852x x --=-3、如图,E 在线段BA 的延长线上,∠EAD =∠D ,∠B =∠D ,EF ∥HC ,连FH 交AD 于G ,∠FGA 的余角比∠DGH 大16°,K 为线段BC 上一点,连CG ,使∠CKG =∠CGK ,在∠AGK 内部有射线GM ,GM 平分∠FGC ,则下列结论:①AD ∥BC ;②GK 平分∠AGC ;③∠DGH =37°;④∠MGK 的角度为定值且定值为16°,其中正确结论的个数有( )A .4个B .3个C .2个D .1个4、方程4x x -=-与方程()522x x k x -+=的解相同,则代数式21k -的值为( )A .1B .1-C .0D .25、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )A .4003B .133C .200D .4006、幻方最早起源于中国,在《自然科学大事年表》中,对幻方做了特别的述说:“公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图、洛书、纵横图,即为九宫算,被认为是现代组合数学最古老的发现”.请将4-,3-,2-,1-,0,1,2,3,4分别填入如图所示的幻方中,要求同一横行、同一竖行以及同一条斜对角线上的3个数相加都得0,则x +y 的值为( )A .5B .5-C .3-D .07、一套仪器由一个A 部件和三个B 部件构成,用31m 钢材可做30个A 部件或150个B 部件,现要用36m 钢材制作这种仪器,设应用3m x 钢材做A 部件,剩余钢材做B 部件,恰好配套,则可列方程为( )A .()3301506x x ⨯=-B .()3150306x x ⨯=-C .()3031506x x =⨯-D .()1503306x x =⨯-8、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x 名快递,则可列方程为( )A .7681x x -=+B .7681x x +=-C .6178x x -+=D .6178x x +-= 9、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).A .28B .54C .65D .7510、下列选项是一元一次方程的是( )A .20x y +=B .31x +C .2310x +=D .21x =第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将方程36x -2y =56变形为用含x 的式子表示y 的形式是_______.2、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:a=+++++=;步骤1:计算前12位数字中偶数位数字的和a,即91357934b=+++++=;步骤2:计算前12位数字中奇数位数字的和b,即60246826c=⨯+=;步骤3:计算3a与b的和c,即33426128d=;步骤4:取大于或等于c且为10的整数倍的最小数d,即中130=-=.步骤5:计算d与c的差就是校验码X,即X1301282如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是______.3、粮食安全与能源安全、金融安全并称三大战略安全.粮食储备是我国大战略方针中的一环,充足的粮食生产和存储是确保我国粮食安全的物质基础,是决定因素.胜利储粮库甲仓库有粮食120吨,,则可乙仓库有粮食90吨,从甲仓库调运x吨到乙仓库,调剂后甲仓库的存粮食是乙仓库存粮的12列方程为______.4、某班学生分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了两组,这个班共有多少名学生?若设共有x名学生,可列方程为________.5、若一列火车匀速行驶,经过一条长310米的隧道需要18秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯照在火车上的时间是8秒,则这列火车长 _____米.三、解答题(5小题,每小题10分,共计50分)1、随着互联网的普及和城市通的多样化,人们出行的时间与方式有了更多的选择.某市有出租车、滴滴快车和神州专车三种网约年,收费标准见下图(该市规定网约车行驶的平均速度为40公里/时)(1)如果里程为10公里,出租车的费用为__________元;(2)己知甲,乙两地的路程超过3公里,从甲地到乙地,乘坐出租车比滴滴快车节省17.8元,求甲、乙两地间的里程数;(3)神州专车和滴滴快车对第一次下单的乘客有如下优惠活动:神州专车收费打八折,另外加5.3元的空车费:滴滴快车超过10公里总费用立减9.1元.如果两位顾容,都是第一次下单且乘车里程数相同,他们分别乘坐神州专车、滴滴快车且收费相同,求这两位顾客乘车的里程数.2、解方程:(1)3(23)1-=+x x ;(2)2113136+-=+x x 3、已知232A x mx m =+-,222B x mx m =-+.(1)求A B -; (2)如果230A B C ,那么C 的表达式是什么?(3)在(2)的条件下,若2x =-是方程148C x m =+的解,求m 的值.4、解关于x 的方程357x x x ++=0,我们也可以这样来解: (111357++)x =0, 因为111357++≠0. 所以方程的解:x =0.请按这种方法解下列方程:(1)11113579x x x x----+++=0;(2)231915117 246810x x x x x-----++++=10.5、在数轴上,表示数m与n的点之间的距离可以表示为|m﹣n|.例如:在数轴上,表示数﹣3与2的点之间的距离是5=|﹣3﹣2|,表示数﹣4与﹣1的点之间的距离是3=|﹣4﹣(﹣1)|.利用上述结论解决如下问题:(1)若|x﹣5|=3,求x的值;(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a﹣b|=6(b>a),点C表示的数为﹣2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值.-参考答案-一、单选题1、A【解析】【分析】根据车的量数相等列方程即可.【详解】解:设共有x人,可列方程9143x x-+=,故选:A.【点睛】此题考查了一元一次方程的实际问题,正确理解车的量数关系是解题的关键.2、C【解析】根据去分母、去括号得步骤分析即可.【详解】解:()3124522xx--=-,去分母,得()3128104x x--=-,去括号,得368104x x--=-,A.去分母时4没乘以2,故错误;B. 去分母时等号右边的代数式没乘以2,故错误;C.正确;D. 去分母,去括号时等号右边的代数式没乘以2,故错误;故选C.【点睛】本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键.去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号;去分母时,一是注意不要漏乘没有分母的项,二是去掉分母后把分子加括号.3、B【解析】【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°-∠FGA-∠DGH=16°,∵∠FGA=∠DGH,∴90°-2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK =18.5°,故④错误,故选:B .【点睛】本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.4、C【解析】【分析】先对方程4x x -=-求解,由于两个方程的解相同,将第一个方程的解代入()522x x k x -+=,求出k 的值,然后代入求解即可得.【详解】解:4x x -=-,24x =,2x =;∵两个方程的解相同,∴将2x =代入()522x x k x -+=,得()522222k ⨯-+=⨯,解得:1k =,当1k =时,221110k -=-=,故选:C .【点睛】题目主要考查解一元一次方程及求代数式的值,理解题意,熟练掌握解一元一次方程的方法是解题关键.5、C【解析】【分析】设火车的车长是x 米,根据经过一条长400m 的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.【详解】解:设火车的长度是x 米,根据题意得出:40030x +=10x , 解得:x =200,答:火车的长为200米;故选择C .【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.6、B【解析】【分析】设如图所示的幻方中y 右边的方格中的数为z ,根据“同一横行、同一竖行以及同一条斜对角线上的3个数相加都得0”可得()410x ++-=,00x z ++=,10y z -++=,求出x 和y 的值,然后代入即可求出x +y 的值.【详解】解:设如图所示的幻方中y 右边的方格中的数为z ,∵同一横行、同一竖行以及同一条斜对角线上的3个数相加都得0,∴()410x ++-=,解得:3x =-,又∵00x z ++=,将3x =-代入得:3z =,又∵10y z -++=,将3z =代入得:2y =-,∴()325x y +=-+-=-.故选:B .【点睛】此题考查了幻方的性质,代数式求值问题,解一元一次方程等知识,解题的关键是根据幻方中的规律列方程求出x 和y 的值.7、A【解析】【分析】根据恰好配套时B 部件个数是A 部件个数的3倍列方程即可.【详解】解:设应用3m x 钢材做A 部件,由题意得()3301506x x ⨯=-,故选A .【点睛】本题考查了一元一次方程的应用-配套问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.8、B【解析】【分析】设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.【详解】解:设该分派站有x名快递员,则可列方程为:7x+6=8x-1.故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.9、B【解析】【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可【详解】设中间的数是x,则上面的数是x-7,下面的数是x+7,则这三个数的和是(x-7)+x+(x+7)=3x,∴3x=28,解得:283x 不是整数,故选项A不是;∴3x=54,解得:18x=,中间的数是18,则上面的数是11,下面的数是28,故选项B是;∴3x=65,解得:653x=不是整数,故选项C不是;∴3x=75,解得:25x=,中间的数是25,则上面的数是18,下面的数是32,日历中没有32,故选项D不是;所以这三个数的和可能为54,故选B.【点睛】本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.10、D【解析】【分析】根据一元一次方程的定义判断即可.解:A 选项,方程中含有2个未知数,故该选项不符合题意;B 选项,不是等式,不是方程,故该选项不符合题意;C 选项,方程中最高次数是2,故该选项不符合题意;D 选项,是一元一次方程,故该选项符合题意;故选:D .【点睛】本题考查了一元一次方程的定义,掌握只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程是解题的关键.二、填空题1、1828y x =-【解析】【分析】根据减数=被减数−差得到2y 的表达式,然后等式两边都除以2即可得到y 的表达式.【详解】解:∵36x −2y =56,∴2y =36x −56,∴y =18x −28,故答案为:y =18x −28.【点睛】本题考查了等式的基本性质,掌握等式的基本性质是解题的关键,即:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.2、4【分析】设被污染的两个数字中左边的数字为x ,则右边的数为5-x ,然后根据题中所给算法可进行求解.【详解】解:设被污染的两个数字中左边的数字为x ,则右边的数为5-x ,由题意得:99253533a x x =+++-++=-,6112414b x x =+++++=+,()333141132c x x x =⨯-++=-,∵d 为10的整数倍,且05x ≤≤,∴120d =或110,∵由图可知校验码为9,∴当120d =时,则有()X 12011329x =--=,解得:1x =,则有右边的数为5-1=4;当110d =时,则有()X 11011329x =--=,解得:6x =,不符合题意,舍去;∴被污染的两个数字中右边的数字是4;故答案为4.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.3、()1120902x x -=+ 【解析】【分析】从甲仓库调运x 吨到乙仓库,调剂后甲仓库的存粮食是()120x -吨,乙仓库存粮()90x +吨,根据调剂后甲仓库的存粮食是乙仓库存粮的12,列方程即可【详解】解:设从甲仓库调运x 吨到乙仓库,根据题意得:()1120902x x -=+ 故答案为:()1120902x x -=+ 【点睛】本题考查了列一元一次方程,找到等量关系是解题的关键.4、286x x += 【解析】【分析】设这个班学生共有x 人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了2组,根据此列方程即可.【详解】解:设这个班学生共有x 人, 根据题意得:286x x += 故答案为:286x x +=. 【点睛】此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少组. 5、248【解析】【分析】设这列火车长x米,然后根据题意列一元一次方程解答即可.【详解】解:设这列火车长x米,由题意可得:310188x x+=,解得x=248.答:这列火车长248米.故答案为:248.【点睛】本题主要考查了一元一次方程的应用,设出合适的未知数、正确列出一元一次方程是解答本题的关键.三、解答题1、 (1)30.8;(2)18;(3)5或40【解析】【分析】(1)根据题意直接列式计算即可;(2)解:设甲乙两地的路程为x公里,由题意列方程6014 2.4(3)17.812 2.50.440xx x+⨯-+=++⨯,求解即可;(3)设这两位顾客乘车的里程数为y公里,分两种情况:当10y≤时,当y>10时,分别列方程解答.(1)解:里程为10公里,出租车的费用为14 2.4(103)30.8+⨯-=(元),故答案为:30.8;(2)解:设甲乙两地的路程为x 公里,由题意得6014 2.4(3)17.812 2.50.440x x x +⨯-+=++⨯, 解得x =18,∴甲乙两地的路程为18公里;(3)解:设这两位顾客乘车的里程数为y 公里,当10y ≤时,60600.8(10 2.80.5) 5.312 2.50.44040y y y y ++⨯+=++⨯, 解得y =5;当y >10时,60600.8(10 2.80.5) 5.312 2.50.49.14040y y y y ++⨯+=++⨯-, 解得y =40,答:这两位顾客乘车的里程数为5公里或40公里.【点睛】此题考查了有理数的混合运算,一元一次方程的实际应用,正确理解题中三种出租车的收费标准列得方程是解题的关键.2、 (1)x = 12;(2)x = 57【解析】【分析】(1)根据解一元一次方程的方法求解即可;(2)根据解一元一次方程的方法求解即可.(1)解:去括号,得:6-9x=x+1,移项、合并同类项,得:-10x=-5,化系数为1,得:x= 12;(2)解:去分母,得:2(2x+1)=6+(1-3x),去括号,得:4x+2=6+1-3x,移项、合并同类项,得:7x=5,化系数为1,得:x= 57;【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.3、 (1)233x mx m+-(2)78mx m-+(3)2m=-【解析】【分析】(1)先列式,去括号,合并同类项计算;(2)根据230A B C++=,求出23C A B=-+,然后代入A、B,去括号,合并同类项即可;(3)先列出方程,根据方程的解,代入方程解关于m的方程即可.(1)解:()()223222A B x mx m x mx m -=+---+,223222x mx m x mx m =+--+-,233x mx m =+-;(2)解:∵230A B C -+=,∴23C A B =-+,()()22232322x mx m x mx m =-+-+-+,22642636x mx m x mx m =--++-+,78mx m =-+;(3)解:把C 代入得,78148mx m x m -+=+,∵2x =-是方程148C x m =+的解,∴148288m m m +=-+,解得2m =-.【点睛】本题考查整式的加减法则,一元一次方程,一元一次方程的解,掌握整式的加减法则实质是去括号,合并同类项,一元一次方程,一元一次方程的解是解题关键.4、 (1)x =1(2)x =27【解析】【分析】(1)利用乘法的分配律得到(x﹣1)11113579⎛⎫+++⎪⎝⎭=0,然后根据等式的性质解方程;(2)先变形为2727272727246810x x x x x-----++++=0,然后与(1)一样解方程.(1)解:∵(x﹣1)11113579⎛⎫+++⎪⎝⎭=0,∴x﹣1=0,∴x=1;(2)解:∵231915117 246810x x x x x-----++++=10,∴231915117 246810x x x x x-----++++-10=0,∴23191511722222 246810x x x x x------+-+-+-+-=0,即2727272727 246810x x x x x-----++++=0,∴(x﹣27)11111 246810⎛⎫++++⎪⎝⎭=0,∴x﹣27=0,∴x=27.【点睛】此题考查了一元一次方程的特殊解法,解题的关键是正确理解例题中所给的形式,仿照例题解答问题.5、 (1)x=8或x=2(2)a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8【解析】【分析】(1)根据两点间的距离公式和绝对值的意义,可得答案;(2)分类讨论:①C是AB的中点,②当点A为线段BC的中点,③当点B为线段AC的中点,根据线段中点的性质,可得答案.(1)解:因为|x﹣5|=3,所以x﹣5=3或x﹣5=﹣3,解得x=8或x=2;(2)因为|a﹣b|=6(b>a),所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧.①当点C为线段AB的中点时,如图1所示,132AC BC AB===.∵点C表示的数为﹣2,∴a=﹣2﹣3=﹣5,b=﹣2+3=1.②当点A为线段BC的中点时,如图2所示,AC=AB=6.∵点C表示的数为﹣2,∴a=﹣2+6=4,b=a+6=10.③当点B为线段AC的中点时,如图3所示,BC=AB=6.∵点C表示的数为﹣2,∴b=﹣2﹣6=﹣8,a=b﹣6=﹣14.综上,a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8.【点睛】本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键.。

难点解析华东师大版七年级数学下册第6章一元一次方程专题测评试题(含解析)

难点解析华东师大版七年级数学下册第6章一元一次方程专题测评试题(含解析)

七年级数学下册第6章一元一次方程专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在解方程123123x x -+-=时,去分母正确的是( ) A .()()312231x x --+=B .()()312231x x --+=C .()()312236x x -++=D .()()312236x x --+=2、下列选项是一元一次方程的是( )A .20x y +=B .31x +C .2310x +=D .21x =3、下列方程变形不正确的是( )A .4332x x -=+变形得:4323x x -=+B .方程110.20.5x x --=变形得:1010212x x --= C .()()23231x x -=+变形得:6433x x -=+D .211332x x -=+变形得:41318x x -=+4、购买一本书,打八折比打九折少花2元钱,那么这本书的原价( )A .16元B .18元C .20元D .25元5、学校组织植树活动,已知在甲处植树的有37人,在乙处植树的有32人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x 人去甲处,则( )A .()37232x =-B .37232x +=⨯C .()37232x x -=+D .()37232x x +=-6、《孙子算经》中有一道题,原文是:今有四人共车,一车空;三人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余1辆车;若每3人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .9143xx -+= B .1943x x +=- C .9143xx +-= D .9143xx ++= 7、下列运用等式的基本性质进行的变形中,正确的是( ).A .若a b =,则11a b +=-B .若a b =,则33a b =C .若a b =,则23a b =D .若a b =,则a b c c= 8、整式mx n -的值随x 取值的变化而变化,下表是当x 取不同值时对应的整式的值:则关于x 的方程8mx n -+=的解为( )A .1x =-B .0x =C .1x =D .3x =9、《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发齐先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙从齐国先出发2日,甲才从长安出发,问甲经过多少日与乙相逢?设甲经过x 日与乙相逢,可列方程( )A .2175x x ++=B .7512x x +=+C .7512x x -=+D .275x x += 10、已知x =1是关于x 的一元一次方程x +2a =0的解,则a 的值是( )A.-2 B.2 C.12D.-12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、2022年元旦节期间,重庆某超市推出“虎年招福”活动,具体活动如下表:小王当天在该超市一共购物两次,两次所购买物品原价之和为1600元,其中第二次所购物品的原价高于第一次所购物品的原价,第二次付款后店员告知当天实付金额超过1200元,所以立即返还67.8元,则第一次购买物品原价为______元.2、代数式38x-与3互为相反数,则x=______.3、已知关于x的方程5x﹣2=3x+16的解与方程4a+1=4(x+a)﹣5a的解相同,则a=_____.4、我们知道在9点整时,时钟的分针与时针恰好互相垂直,那么从9点开始,到10点之前,经过__________分钟后,时钟的时针与分针的夹角为105°.5、某商场对一件衬衫以标价的八折出售后仍可获得20%的利润,若这件衬衫的进价是100元,则这件衬衫的标价是__________________元.三、解答题(5小题,每小题10分,共计50分)1、小丽从家到学校有公路和小路两种路径,已知公路比小路远320米.早上小丽以61米/分钟的速度从公路去上学,10分钟后,爸爸发现她的作业忘带了,就以90米/分钟的速度沿小路去追赶,结果恰好在学校门口追上小丽.问小丽从家到学校的公路有多少米?2、解方程:(1)()8436x x --=; (2)232126x x +--=. 3、解方程:(1)3(2x -3)=18-(3-2x ) (2)21162x x -+-= 4、某百货商场经销甲、乙两种服装,甲种服装每件进价500元,乙种服装每件进价800元.(1)若该商场同时购进甲、乙两种服装共30件,总进价为21000元,求商场购进甲、乙两种服装各多少件?(2)若该商场对(1)中所购进的甲、乙两种服装进行销售,其中甲种服装每件售价800元,乙种服装每件盈利50%,则该商场销售完这批服装一共能盈利_______元;(3)该商场元旦当天对所有商品实行“满1000元减400元的优惠”(比如:某顾客购物3200元,满三个1000元,则可优惠1200元,只需付款2000元).到了晚上八点后,又推出“先打折”,再参与“满1000元减400元”的活动.张先生元旦购买甲、乙两种服装各一件,标价合计2000元.后来他发现按照晚上八点后的优惠方式付款,竟然比不打折直接参与“满1000元减400元”的活动多付200元钱.问该商场晚上八点后推出的活动是先打几折?5、列方程解应用题迎接2022年北京冬奥会,响应“三亿人上冰雪”的号召,全民参与冰雪运动的积极性不断提升.我国2019年总滑雪人次比2016年总滑雪人次多了约680.5万,2019年旱雪人次约占本年总滑雪人次的1.5%,比2016年总滑雪人次的2%多2.6万.2019年总滑雪人次是多少万?-参考答案-一、单选题1、D【解析】【分析】方程两边乘以6去分母得到结果,即可作出判断.【详解】解:方程的两边同时乘以6,得3(x-1)-2(2+3x)=6.故选:D【点睛】此题考查了解一元一次方程中的去分母,熟练掌握去分母的方法是解题的关键.2、D【分析】根据一元一次方程的定义判断即可.【详解】解:A选项,方程中含有2个未知数,故该选项不符合题意;B选项,不是等式,不是方程,故该选项不符合题意;C选项,方程中最高次数是2,故该选项不符合题意;D选项,是一元一次方程,故该选项符合题意;故选:D.【点睛】本题考查了一元一次方程的定义,掌握只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程是解题的关键.3、D【解析】【分析】根据等式的性质解答.【详解】解:A. 4332x x-=+变形得:4323x x-=+,故该项不符合题意;B. 方程110.20.5x x--=变形得:1010212xx--=,故该项不符合题意;C. ()()23231x x-=+变形得:6433x x-=+,故该项不符合题意;D. 211332x x-=+变形得:46318x x-=+,故该项符合题意;故选:D.此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.4、C【解析】【分析】等量关系为:打九折的售价-打八折的售价=2.根据这个等量关系,可列出方程,再求解.【详解】解:设原价为x 元,由题意得:0.9x -0.8x =2,解得x =20.故选:C .【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.5、D【解析】【分析】设从乙处调配x 人去甲处,根据”调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍“列方程即可得到结论.【详解】解:设从乙处调配x 人去甲处,根据题意得,()37232x x +=-,故选:D .本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6、A【解析】【分析】根据车的量数相等列方程即可.【详解】解:设共有x 人,可列方程9143x x -+=, 故选:A .【点睛】此题考查了一元一次方程的实际问题,正确理解车的量数关系是解题的关键.7、B【解析】【分析】根据等式的基本性质解决此题.【详解】解:A .根据等式两边加上或减去同一个数,等式仍然成立,那么由a b =,得11a b +=+或11a b -=-,故A 不符合题意.B .根据等式两边乘以同一个数,等式仍然成立,那么由a b =,得33a b =,故B 符合题意.C .若a b =,则22a b =或33a b =,故C 不符合题意.D .当0c 时不成立,故D 不符合题意.故选:B .本题主要考查等式的基本性质,解题的关键是熟练掌握等式的基本性质.8、A【解析】【分析】根据等式的性质把8mx n -+=变形为8mx n -=-;再根据表格中的数据求解即可.【详解】解:关于x 的方程8mx n -+=变形为8mx n -=-,由表格中的数据可知,当8mx n -=-时,1x =-;故选:A .【点睛】本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.9、A【解析】【分析】设甲经过x 日与乙相逢,则乙出发()2x + 日,根据题意列出方程,即可求解.【详解】解:设甲经过x 日与乙相逢,则乙出发()2x + 日,根据题意得:2175x x ++=. 故选:A【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.10、D【解析】【分析】将1x =代入原方程求解即可得.【详解】解:将1x =代入方程20x a +=可得:120a +=, 解得:12a =-,故选:D .【点睛】此题主要考查方程的解,一元一次方程的解法,熟练掌握解一元一次方程是解题关键.二、填空题1、720【解析】【分析】根据题意得:当天的付款为67.85%1356÷= 元,第一次原价低于800元,第二次高于800元,然后分两种情况:当第一次购物原价低于300元时和当第一次购物原价高于300元时,但不高于800元时,列出方程,即可求解.【详解】解:根据题意得:当天的付款为67.85%1356÷= 元,∵两次所购买物品原价之和为1600元,其中第二次所购物品的原价高于第一次所购物品的原价, ∴第一次原价低于800元,第二次高于800元,当第一次购物原价低于300元时,设第一次购物原价为a元,则第二次购物原价为(1600-a)元,根据题意得:()0.98000.8516008000.81356a a+⨯+--⨯=,解得:360300a=>(不合题意,舍去),当第一次购物原价高于300元时,但不高于800元时,设第一次购物原价为b元,则第二次购物原价为(1600-b)元,根据题意得:()0.858000.8516008000.81356b b+⨯+--⨯=,解得:720b=,∴第一次购买物品原价为720元.故答案为:720【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系,并利用分类讨论思想解答是解题的关键.2、5 3【解析】【分析】根据相反数的定义得到38x-+3=0,通过解一元一次方程计算即可.【详解】解:由题意得38x-+3=0,解得x=53,故答案为:53.此题考查了解一元一次方程,相反数的定义:只有符号不同的两个数是互为相反数,熟记定义是解题的关键.3、7【解析】【分析】先解方程5x-2=3x+16,得x=9,将x=9代入4a+1=4(x+a)-5a,求出a的值可得结果.【详解】解:解方程5x-2=3x+16,得x=9,将x=9代入4a+1=4(x+a)-5a,得a=7,故答案为:7.【点睛】本题考查了同解方程,本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4、3011或30【解析】【分析】利用分针的旋转速度是6度/分钟,时针的旋转速度是0.5度/分钟,分两种情况讨论即可.【详解】解:分针的旋转速度是6度/分钟,时针的旋转速度是0.5度/分钟,设经过x分钟后,时钟的时针与分针的夹角为105°,分两种情况:此时,∠AOC=0.5x,∠BOD=6x,则∠COD=∠AOB+∠BOD-∠AOC= 90°+6x-0.5x=105°,解得x=30 11;如图:此时,∠AOC=0.5x,∠BOD=360°-6x,则∠COD=∠BOD-∠AOB+∠AOC=360°-6x -90°+0.5x=105°,解得x=30;综上,经过3011或30分钟后,时钟的时针与分针的夹角为105°,故答案为:3011或30【点睛】本题考查了钟表问题,解题时经常用到每两个数字之间的度数是30°,分钟每分钟转过的角度为6度,时钟每分钟转过的角度为0.5度.借助图形,更容易解决.同时考查一元一次方程的应用,得到时针所走路程和分针所走路程的等量关系是解决本题的关键.5、150【解析】【分析】首先设该商店对这件衣服的标价应为x元,由题意得等量关系:标价×打折−成本=利润,根据等量关系列出方程,再解方程即可.【详解】解:设该商店对这件衣服的标价应为x元,由题意得:80%x−100=10020%,解得:x=150,故答案为:150.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.三、解答题1、1220米【解析】【分析】设小丽从家到学校的时间为x分钟,根据小丽所走路程比爸爸所走路程多320米列方程即可.【详解】解:设小丽从家到学校的时间为x分钟根据题意,得:61x-90(x-10)=320解这个方程得:x=2020×61=1220(米)答:小丽从家到学校的公路有1220米【点睛】本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.2、 (1)x=2;(2)x=-1【解析】【分析】(1)根据一元一次方程的解法解答即可;(2)根据一元一次方程的解法解答即可.(1)解:去括号,得:8-4x+12=6x,移项、合并同类项,得:-10x=-20,化系数为1,得:x=2;(2)解:去分母,得:3(2x+3)-(x-2)=6,去括号,得:6x+9-x+2=6,移项、合并同类项,得:5x=-5,化系数为1,得:x=-1;本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.3、(1)6:(2)12【解析】【分析】(1)按去括号、移项、合并同类项、系数化为1的步骤解答即可;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤解答即可. 【详解】解:(1)3(2x-3)=18-(3-2x)去括号得:6x-9=18-3+2x移项得:4x=24系数化为1得:x=6;(2)21 162x x-+ -=去分母得:6-(2-x)=3(x+1)去括号得:6-2+x=3x+3移项得:-2x=-1系数化为1得:x=12.【点睛】本题主要考查了解一元一次方程,解一元一次方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1.4、 (1)商场购进甲、乙两种服装各10、20件.(3)该商场晚上八点后推出的活动是先打九折.【解析】【分析】(1)由题意设购进甲服装x 件,乙服装(30-x )件,建立方程求解即可得出答案;(2)根据题意将甲、乙两种服装各自盈利相加即可得到答案;(3)由题意先得出晚上八点后的优惠方式付款的价钱,进而设该商场晚上八点后推出的活动是先打y 折建立方程求解即可得出答案.(1)解:设购进甲服装x 件,乙服装(30-x )件,由题意可得:500800(30)21000x x +-=,解得:10x =,30301020x -=-=(件),答:商场购进甲、乙两种服装各10、20件.(2)由题意得:该商场销售完这批服装一共能盈利0(800500)1080050%201100+⨯=-⨯⨯元.故答案为:11000.(3)由题意得:不打折直接参与“满1000元减400元” 付款2000200010004001200-÷⨯=元,晚上八点后的优惠方式付款12002001400+=元,设该商场晚上八点后推出的活动是先打y 折,可得:20004001400y -=,解得:0.9y =,即打九折.答:该商场晚上八点后推出的活动是先打九折.【点睛】本题考查一元一次方程的实际应用,读懂题意并根据题意建立方程求解是解题的关键.5、2202万【解析】【分析】设2016年总滑雪人次为x 万,则2019年总滑雪人次为:680.5x 万,再用两种方法表示2019年旱雪人次,从而建立方程,再解方程即可.【详解】解:设2016年总滑雪人次为x 万,则2019年总滑雪人次为:680.5x 万,2019年旱雪人次为:680.5 1.5%x 万,则680.5 1.5%=2% 2.6x x ,整理得:1.5680.5 1.52260x x解得:1521.5,x所以2019年总滑雪人次为:1521.5680.52202万,答2019年总滑雪人次为:2202万.【点睛】本题考查的是一元一次方程的应用,确定“2019年旱雪人次为:680.51.5%x 万或2%2.6x 万”是解本题的关键.。

华东师大版数学七年级下册第六章《一元一次方程》单元测试题(含答案)

华东师大版数学七年级下册第六章《一元一次方程》单元测试题(含答案)

华师大版数学七年级下册第六章《一元一次方程》单元测试题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的)1.下列方程:①x =3;②x +2y =1;③1x +2=0;④x2-1=x ;⑤x 2-4=3x .其中是一元一次方程的有( )A .2个B .3个C .4个D .5个 2.下列解方程移项正确的是( )A .由3x -2=2x -1,得3x +2x =1+2B .由x -1=2x +2,得x -2x =2-1C .由2x -1=3x -2,得2x -3x =1-2D .由2x +1=3-x ,得2x +x =3+1 3.解方程2x +13-10x +16=1时,去分母正确的是( )A .2x +1-(10x +1)=1B .4x +1-10x +1=6C .4x +2-10x -1=6D .2(2x +1)-(10x +1)=1 4.下列解方程变形正确的是( )A .由3x =2,得x =32B .由4x +8=0,得x =2C .由x -2(x -1)=2,得x -2x +1=2D .由0.1x -0.030.02=1,得10x -32=15.若关于x 的方程2x -(2a -1)x +3=0的解为x =3,则a 的值是( ) A .1 B .0 C .2 D .-26.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A .25台B .50台C .75台D .100台 7.(2016·淮安)若a -b =2,则代数式2a -2b -3的值是( ) A .1 B .2 C .5 D .7 8.已知M =x +22,N =x -13,若M -N =2,则x 的值为( )A .2B .4C .6D .89.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( ) A .350元 B .400元 C .450元 D .500元10.小明问老师的年龄,老师笑着说:“我们两人现在的年龄和为50岁,5年后,我的年龄比你的年龄的2倍还大3岁.”小明听后笑着说:“老师,我知道自己的年龄,也就知道了您的年龄.”同学们,你们知道老师今年年龄是多少吗?( ) A .36岁 B .38岁 C .40岁 D .42岁 二、填空题(每小题3分,共24分)11.当x =__ __时,代数式4x -3与9-x 的值互为相反数.12.下列说法:①若a =b ,则a -b =0;②若ax =ay ,则x =y ;③若3x -1=2x +1,则x=0;④若a c =bc ,则a =b ;⑤若2x -1=2y -1,则x =y ;⑥若3a +b =4b ,则a =b .其中正确的有__ __.(填序号)13.若x =a 是方程x -a -12=3a -2(x -1)的解,则a 的值为__ _.14.已知甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了__ _张.15.小明在做家庭作业时发现练习册上的一道解方程的题目中有一个数字被墨水污染了:x +12-5x -■3=-12,其中“■”是被污染的内容,翻开书后面的答案,这道题的解是x =2,那么“■”处的数字为__ _.16.若a ,b ,c ,d 均为有理数,现规定一种新的运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,例:⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4.已知⎪⎪⎪⎪⎪⎪⎪⎪x +122x -31=2,则⎪⎪⎪⎪⎪⎪2x 1-x 3 -2的值为__ __. 17.某市为提倡节约用水,采取分段收费,若每户每月用水不超过20 m 3,每立方米收费2元;若用水超过20 m 3,超过部分每立方米加收1元,小明家5月份交水费64元,则他家该月用水__ _m 3.18.用一个正方形圈出日历(如图)上的4个数,若这4个数的和是76,则这四个数分别是______________.三、解答题(共66分) 19.(12分)解下列方程:(1)2x -5=4x +1; (2)2(x -2)-3(4x -1)=9(1-x );(3)2x +13-5x -16=1; (4)0.1+0.2x 0.3-1=4.8-x 0.4.20.(6分)已知代数式4k +35的值比k +12的值大1,求k 的值.21.(8分)已知方程x +22=1-x -53的解与方程3x -(3a +2)=(2a +5)x -1的解互为相反数,求a 的值.22.(9分)当x =2时,代数式mx 2-(m -2)x +2m 的值是20,求当x =-2时,这个代数式的值.23.(9分)七年级某班学生参加体育活动,原来每组8人,后来根据需要重新分组,每组14人,结果比原来减少3组,问这个班共有学生多少人?24.(10分)甲、乙两地的铁路比公路长40千米,汽车从甲地先开出,速度为60千米/时,开出0.5小时后,火车也从甲地开出,速度为80千米/时,结果汽车反比火车晚1小时到达乙地,求甲、乙两地铁路、公路各长多少千米?25.(12分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人是否能履行该合同?为什么?(2)现两人合做这项工程的75%,因别处另外有工程,必须调走1人,问调走谁更合适?为什么?参考答案一、选择题(每小题3分,共30分)(每小题都给出A、B、C、D四个选项,其中只有一个是正确的)1.下列方程:①x =3;②x +2y =1;③1x +2=0;④x2-1=x ;⑤x 2-4=3x .其中是一元一次方程的有( A )A .2个B .3个C .4个D .5个 2.下列解方程移项正确的是( C )A .由3x -2=2x -1,得3x +2x =1+2B .由x -1=2x +2,得x -2x =2-1C .由2x -1=3x -2,得2x -3x =1-2D .由2x +1=3-x ,得2x +x =3+1 3.解方程2x +13-10x +16=1时,去分母正确的是( C )A .2x +1-(10x +1)=1B .4x +1-10x +1=6C .4x +2-10x -1=6D .2(2x +1)-(10x +1)=1 4.下列解方程变形正确的是( D )A .由3x =2,得x =32B .由4x +8=0,得x =2C .由x -2(x -1)=2,得x -2x +1=2D .由0.1x -0.030.02=1,得10x -32=15.若关于x 的方程2x -(2a -1)x +3=0的解为x =3,则a 的值是( C ) A .1 B .0 C .2 D .-26.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( C )A .25台B .50台C .75台D .100台 7.(2016·淮安)若a -b =2,则代数式2a -2b -3的值是( A )A .1B .2C .5D .7 8.已知M =x +22,N =x -13,若M -N =2,则x 的值为( B )A .2B .4C .6D .89.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( B ) A .350元 B .400元 C .450元 D .500元10.小明问老师的年龄,老师笑着说:“我们两人现在的年龄和为50岁,5年后,我的年龄比你的年龄的2倍还大3岁.”小明听后笑着说:“老师,我知道自己的年龄,也就知道了您的年龄.”同学们,你们知道老师今年年龄是多少吗?( A ) A .36岁 B .38岁 C .40岁 D .42岁 二、填空题(每小题3分,共24分)11.当x =__-2__时,代数式4x -3与9-x 的值互为相反数.12.下列说法:①若a =b ,则a -b =0;②若ax =ay ,则x =y ;③若3x -1=2x +1,则x=0;④若a c =bc ,则a =b ;⑤若2x -1=2y -1,则x =y ;⑥若3a +b =4b ,则a =b .其中正确的有__①④⑤⑥__.(填序号)13.若x =a 是方程x -a -12=3a -2(x -1)的解,则a 的值为__-3__.14.已知甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了__20__张.15.小明在做家庭作业时发现练习册上的一道解方程的题目中有一个数字被墨水污染了:x +12-5x -■3=-12,其中“■”是被污染的内容,翻开书后面的答案,这道题的解是x =2,那么“■”处的数字为__4__.16.若a ,b ,c ,d 均为有理数,现规定一种新的运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,例:⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4.已知⎪⎪⎪⎪⎪⎪⎪⎪x +122x -31=2,则⎪⎪⎪⎪⎪⎪2x 1-x 3 -2的值为__-6__.17.某市为提倡节约用水,采取分段收费,若每户每月用水不超过20 m 3,每立方米收费2元;若用水超过20 m 3,超过部分每立方米加收1元,小明家5月份交水费64元,则他家该月用水__28__m 3.18.用一个正方形圈出日历(如图)上的4个数,若这4个数的和是76,则这四个数分别是__15,16,22,23__.三、解答题(共66分) 19.(12分)解下列方程:(1)2x -5=4x +1; (2)2(x -2)-3(4x -1)=9(1-x ); 解:x =-3 解:x =-10(3)2x +13-5x -16=1; (4)0.1+0.2x 0.3-1=4.8-x 0.4.解:x =-3 解:x =420.(6分)已知代数式4k +35的值比k +12的值大1,求k 的值.解:根据题意,得4k +35-k +12=1,解得k =321.(8分)已知方程x +22=1-x -53的解与方程3x -(3a +2)=(2a +5)x -1的解互为相反数,求a 的值.解:解方程x +22=1-x -53得x =2,所以方程3x -(3a +2)=(2a +5)x -1的解为x =-2,把x =-2代入方程,得3×(-2)-(3a +2)=-2(2a +5)-1,解得a =-322.(9分)当x =2时,代数式mx 2-(m -2)x +2m 的值是20,求当x =-2时,这个代数式的值.解:根据题意,得4m -2(m -2)+2m =20,解得m =4,所以当x =-2时,代数式的值为4×(-2)2-(4-2)×(-2)+2×4=2823.(9分)七年级某班学生参加体育活动,原来每组8人,后来根据需要重新分组,每组14人,结果比原来减少3组,问这个班共有学生多少人?解:设这个班共有学生x 人,根据题意,得x 8=x 14+3,解得x =56.答:这个班共有学生56人24.(10分)甲、乙两地的铁路比公路长40千米,汽车从甲地先开出,速度为60千米/时,开出0.5小时后,火车也从甲地开出,速度为80千米/时,结果汽车反比火车晚1小时到达乙地,求甲、乙两地铁路、公路各长多少千米?解:设甲、乙两地的公路长为x 千米,则甲、乙两地的铁路长为(x +40)千米,根据题意得x 60-0.5-1=x +4080,解得x =480,所以x +40=520.答:甲、乙两地铁路、公路的长分别为520千米,480千米25.(12分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人是否能履行该合同?为什么?(2)现两人合做这项工程的75%,因别处另外有工程,必须调走1人,问调走谁更合适?为什么?解:(1)能履行合同.理由如下:设甲、乙两人合做x 天完成,根据题意,得x 30+x 20=1,解得x =12,而12<15,所以两人能履行合同 (2)调走甲.理由如下:两人合做完成这项工程的75%所用时间为:75%÷112=9(天),若剩下的工程由甲完成,则所需时间为(1-75%)÷130=7.5(天),而9+7.5=16.5>15,不能履行合同;若剩下的工程由乙完成,则所需时间为:1(1-75%)÷20=5(天),而9+5=14<15,能履行合同.所以调走甲更合适。

华师大版七年级下册数学第6章一元一次方程 测试题及答案

华师大版七年级下册数学第6章一元一次方程 测试题及答案

华师大版七年级下册数学第6章一元一次方程一、单选题1.下列利用等式的性质,错误的是( ) A .由a=b ,得到3-7a=3-7b ; B .由22a b c c =++,得到a=b ; C .由a=b ,得到ac=bc ,D .由a=b ,得到a bc c=;2.下列方程中,是一元一次方程的是( ) A .5x-9y=0B .x 2-5x=6C .129x =+ D .12123x x ---=3.若关于x 的方程mx 3m-2-m+3=0是一元一次方程,则这个方程的解是( ) A .-2 B .2 C .-1 D .14.若a=4时,关于x 的方程ax+b=0的解是x=2,那么ax-b=0的解是( ) A .x=2B .x =−12C .x=-2D .x =125.已知(m-3)x |m|-2+4=18是关于x 的一元一次方程,则( ) A .m=-3 B .m=3 C .m=1 D .m=±36.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板( )A .赚了5元B .亏了25元C .赚了25元D .亏了5元7.(3分)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为( )A .880元B .800元C .720元D .1080元8.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1 B .(9+7)x=1C .11()179x -=D .11()179x +=9.(2016云南省曲靖市)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44 10.如图,甲、乙两动点分别从正方形ABCD 的顶点A、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3 倍,则它们第2018 次相遇在边()上.A.CD B.AD C.AB D.BC11.关于x的方程(m2-1)x2+(m-1)x+7m2=0是一元一次方程,则m的取值是()A.m=0 B.m=±1 C.m=-1 D.m≠-112.对于ax+b=0(a,b为常数),表述正确的是()A.当a≠0时,方程的解是x=b aB.当a=0,b≠0时,方程有无数解C.当a=0,b=0,方程无解D.以上都不正确.二、填空题13.若关于x的方程(a+2b)x2+ax+b=0是一元一次方程,且ab≠0,则方程的解是_______;14.一个角的余角比它的补角的一半小10°,这个角的度数是_____________;15.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省________________ 元.16.甲、乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度的3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度的4倍,则甲运动43周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转________周,时针和分针第一次相遇.17.小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人。

(完整版)七年级数学一元一次方程测试题及答案

(完整版)七年级数学一元一次方程测试题及答案
gs ________,利润为______; in th 7.小明跑步每秒钟跑 4 米,则他 15 秒钟跑_____米,2 分钟跑
eir _____米,1 小时跑____公里;. be 8. 笼子里鸡和兔总共有 56 个头,160 只脚,设鸡有 x 只,则兔
ing 有___________只,列方程__________________可求出鸡兔的只数; are 9.小明今年 6 岁,他的祖父 72 岁,__________年后,小明的年龄
o 2
2
r somethin 合并同类项,得 2m=2, 化系数为 1,得 m=1.
去括号,得 6x+2400-4x=3000. 移项,得 6x-4x=3000-2400. 合并同类项,得 2x=600. 化系数为 1,得 x=300,6x=6×300=1800.
thing a 精心整理 t a 答:王强以 6 米/秒的速度跑了 1800 米.
(2)由于(1+20%)m,2(m-10)都表示甲班捐款数,便得
All 去括号,得 x-3+x-2+x-1+x+x+1+x+2+x+3=84.
方程(1+20%)m=2(m-10).
thin 移项合并,得 7x=84.
(3)把 m=25 分别代入方程的左边和右边,得
gs 化系数为 1,得 x=12,则 x-3=12-2=9.
8.C 9.D [点拔] 两位数=十位数字×10+个位数字.
10.D
11.x=-6
12.a= 16
3
13.k=-4
14.x=-1 [点拔]列方程 1 x =1 x 1
2
3

华东师大版七年级数学下册第6章《一元一次方程》单元检测卷((附答案))

华东师大版七年级数学下册第6章《一元一次方程》单元检测卷((附答案))

华东师大版七年级数学下册第6章《一元一次方程》单元检测卷考试时间:100分钟满分:120分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知a=b,下列等式不一定成立的是()A.a+c=b+c B.c﹣a=c﹣b C.ac=bc D.2.(3分)在下面的式子里,()是方程.A.5x+4B.3x﹣5<7C.D.3×2﹣1=5 3.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()A.﹣1B.﹣2C.﹣3D.14.(3分)运用等式性质进行的变形,正确的是()A.若x=y,则=B.若=,则x=yC.由4x﹣5=3x+2,得到4x﹣3x=﹣5+2D.若a2=3a,则a=35.(3分)解方程2x+=2﹣,去分母,得()A.12x+2(x﹣1)=12+3(3x﹣1)B.12x+2(x﹣1)=12﹣3(3x﹣1)C.6x+(x﹣1)=4﹣(3x﹣1)D.12x﹣2(x﹣1)=12﹣3(3x﹣1)6.(3分)若x=0是方程的解,则k值为()A.0B.2C.3D.47.(3分)若方程2x+1=﹣2与关于x的方程1﹣2(x﹣a)=2的解相同,则a的值是()A.1B.﹣1C.﹣2D.﹣8.(3分)若|x﹣3|=|x|+3,则x的取值范围是()A.x≥0B.x≤0C.x>0D.x<09.(3分)某超市华山牌水杯原价每个x元,国庆节期间搞促销活动,第一次降价每个减5元,售卖一天后销量不佳,第二天继续降价每个打“八折”出售,打折后的水杯每个售价是60元.根据以上信息,列出方程是()A.(x﹣5)=60B.0.8(x﹣5)=60C.0.8x﹣5=60D.(x﹣5)﹣0.8x=6010.(3分)在排成每行七天的日历表中取下一个3×3的方块(如图),若方块中所有日期之和为207,则n的值为()A.23B.21C.15D.12二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知x=1是方程x+2m=7的解,则m=.12.(4分)如果方程(k﹣2)x|2k﹣3|﹣3=0是一个关于x的一元一次方程,那么k的值是.13.(4分)由3x=2x﹣1得3x﹣2x=﹣1,在此变形中,方程两边同时.14.(4分)当x=时,代数式与1﹣的值相等.15.(4分)已知关于x的方程ax+3=7与方程2x﹣1=5的解相同,则a=.16.(4分)若|x﹣1|=3,则x=.17.(4分)甲、乙两人在一条笔直的跑道上练习跑步,已知甲跑完全程需要4分钟,乙跑完全程需要6分钟,如果两人分别从跑道的两端同时出发,相向而行,求两人相遇所需的时间.设两人相遇所需的时间是x分钟,根据题意,可列方程为.18.(4分)已知关于x的一元一次方程2020x+3a=4x+2019的解为x=4,那么关于y的一元一次方程2020(y﹣1)+3a=4(y﹣1)+2019的解为y=.三.解答题(共7小题,满分58分)19.(6分)解方程:2(3y﹣1)﹣3(2﹣4y)=1020.(6分)已知(m+1)x|m|+2=0是关于x的一元一次方程,求m的值;21.(8分)解下列方程:(1)6﹣5x=3(4﹣x);(2)﹣=1.22.(8分)列方程解应用题:2019年年底某高铁即将开通.以前小红回老家只能坐绿皮车,车速才60km/h,但某高铁开通之后,车速可以达到240km/h.这样就能早到4.5小时.请问提速后小红回老家需要多长时间?23.(8分)我国明代《算法统宗》里有这样一道题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?即100个和尚吃100个馒头.大和尚一人吃3个,小和尚3个人吃1个.你能算出大小、小和尚各有多少人?请你用本学期所学一元一次方程的知识解决这道数学趣题.24.(10分)我们规定,若关于x的一元一次方程mx=n(m≠0)的解为n﹣m,则称该方程为差解方程,例如:5x=的解为x=﹣5,则该方程5x=就是差解方程.请根据上边规定解答下列问题(1)若关于x的一元一次方程3x=a+1是差解方程,则a=.(2)若关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,求代数式4a2b﹣[2a2﹣2(ab2﹣2a2b)]的值(提示:若m+n+1=m,移项合并同类项可以把含有m的项抵消掉,得到关于n的一元一次方程,求得n=﹣1)25.(12分)如图,已知点A,B是数轴上原点O两侧的两点,其中点A在负半轴上,点B 在正半轴上,AO=2,OB=10.动点P从点A出发以每秒2个单位长度的速度向右运动,到达点B后立即返回,速度不变;动点Q从点O出发以每秒1个单位长度的速度向右运动,当点Q到达点B时,动点P,Q停止运动.设P,Q两点同时出发,运动时间为t 秒.(1)当点P从点A向点B运动时,点P在数轴上对应的数为.当点P从点B返回向点O运动时,点P在数轴上对应的数为(以用含t的代数式表示)(2)当t为何值时,点P,Q第一次重合?(3)当t为何值时,点P,Q之间的距离为3个单位?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知a=b,下列等式不一定成立的是()A.a+c=b+c B.c﹣a=c﹣b C.ac=bc D.【分析】根据等式的基本性质逐一判断可得.【解答】解:A、由a=b知a+c=b+c,此选项一定成立;B、由a=b知c﹣a=c﹣b,此选项一定成立;C、由a=b知ac=bc,此选项一定成立;D、由a=b知当c=0时无意义,此选项不一定成立;故选:D.2.(3分)在下面的式子里,()是方程.A.5x+4B.3x﹣5<7C.D.3×2﹣1=5【分析】根据方程的定义逐个判断即可.【解答】解:A、不是方程,故本选项不符合题意;B、不是方程,故本选项不符合题意;C、是方程,故本选项符合题意;D、不是方程,故本选项不符合题意;故选:C.3.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为()A.﹣1B.﹣2C.﹣3D.1【分析】根据方程的解为x=3,将x=3代入方程即可求出a的值.【解答】解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故选:A.4.(3分)运用等式性质进行的变形,正确的是()A.若x=y,则=B.若=,则x=yC.由4x﹣5=3x+2,得到4x﹣3x=﹣5+2D.若a2=3a,则a=3【分析】根据等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式进行分析即可.【解答】解:A、若x=y,c≠0,则=,故原题说法错误;B、若=,则x=y,故原题说法正确;C、由4x﹣5=3x+2,得到4x﹣3x=5+2,故原题说法错误;D、若a2=3a,a≠0,则a=3,故原题说法错误;故选:B.5.(3分)解方程2x+=2﹣,去分母,得()A.12x+2(x﹣1)=12+3(3x﹣1)B.12x+2(x﹣1)=12﹣3(3x﹣1)C.6x+(x﹣1)=4﹣(3x﹣1)D.12x﹣2(x﹣1)=12﹣3(3x﹣1)【分析】根据去分母的方法:方程两边的每一项都乘以6即可.【解答】解:方程2x+=2﹣,去分母,得12x+2(x﹣1)=12﹣3(3x﹣1)故选:B.6.(3分)若x=0是方程的解,则k值为()A.0B.2C.3D.4【分析】将x=0代入方程即可求得k的值.【解答】解:把x=0代入方程,得1﹣=解得k=3.故选:C.7.(3分)若方程2x+1=﹣2与关于x的方程1﹣2(x﹣a)=2的解相同,则a的值是()A.1B.﹣1C.﹣2D.﹣【分析】根据解方程,可得x的值,根据同解方程,可得关于a的方程,根据解方程,可得答案.【解答】解:解2x+1=﹣2,得x=﹣.把x=﹣代入1﹣2(x﹣a)=2,得1﹣2(﹣﹣a)=2.解得a=﹣1,故选:B.8.(3分)若|x﹣3|=|x|+3,则x的取值范围是()A.x≥0B.x≤0C.x>0D.x<0【分析】根据绝对值的性质,要化简绝对值,可以就x>3,0≤x≤3,x<0三种情况进行分析.【解答】解:①当x>3时,原式可化为:x+3=x﹣3,无解;②当0≤x≤3时,原式可化为:x+3=3﹣x,此时x=0;③当x<0时,原式可化为:﹣x+3=3﹣x,等式恒成立.综上所述,则x≤0.故选:B.9.(3分)某超市华山牌水杯原价每个x元,国庆节期间搞促销活动,第一次降价每个减5元,售卖一天后销量不佳,第二天继续降价每个打“八折”出售,打折后的水杯每个售价是60元.根据以上信息,列出方程是()A.(x﹣5)=60B.0.8(x﹣5)=60C.0.8x﹣5=60D.(x﹣5)﹣0.8x=60【分析】设华山牌水杯原价为每个x元,根据售价=折扣率×(原价﹣5),即可得出关于x的一元一次方程,此题得解.【解答】解:设华山牌水杯原价为每个x元,依题意,得:0.8(x﹣5)=60.故选:B.10.(3分)在排成每行七天的日历表中取下一个3×3的方块(如图),若方块中所有日期之和为207,则n的值为()A.23B.21C.15D.12【分析】先求出这九个日期之和,列出方程可求解.【解答】解:这九个日期分别为:n﹣8,n﹣7,n﹣6,n﹣1,n,n+1,n+6,n+7,n+8,∴所有日期之和=9n,由题意可得9n=207,∴n=23,故选:A.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知x=1是方程x+2m=7的解,则m=3.【分析】把x=1代入已知方程,列出关于m的新方程,通过解新方程来求m的值.【解答】解:∵x=1是方程x+2m=7的解,∴1+2m=7,解得,m=3.故答案是:3.12.(4分)如果方程(k﹣2)x|2k﹣3|﹣3=0是一个关于x的一元一次方程,那么k的值是1.【分析】根据一元一次方程的定义得出|2k﹣3|=1,且k﹣2≠0,进而得出答案.【解答】解:由题意得:|2k﹣3|=1,且k﹣2≠0,解得:k=1,故答案为:1.13.(4分)由3x=2x﹣1得3x﹣2x=﹣1,在此变形中,方程两边同时减去2x.【分析】根据等式的性质,由3x=2x﹣1得3x﹣2x=﹣1,在此变形中,方程两边同时减去2x.【解答】解:由3x=2x﹣1得3x﹣2x=﹣1,在此变形中,方程两边同时减去2x.故答案为:减去2x.14.(4分)当x=﹣1时,代数式与1﹣的值相等.【分析】根据题意可得方程=1﹣,根据一元一次方程的求解方法即可求得结果.【解答】解:根据题意得:=1﹣,去分母得:3(1﹣x)=6﹣2(x+1),去括号得:3﹣3x=6﹣2x﹣2,移项合并同类项得:﹣x=1,系数化1,得:x=﹣1.故答案为:﹣1.15.(4分)已知关于x的方程ax+3=7与方程2x﹣1=5的解相同,则a=.【分析】分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.【解答】解:解第一个方程得:x=,解第二个方程得:x=3,∴=3,解得:m=.故答案是:.16.(4分)若|x﹣1|=3,则x=4或﹣2.【分析】根据绝对值的性质有两种情况:①当x≥1时得到方程x﹣1=3,②当x<1时得到方程﹣(x﹣1)=3,求出方程的解即可.【解答】解:①当x≥1时,方程化为:x﹣1=3,解得:x=4,②当x<1时,﹣(x﹣1)=3,解得:x=﹣2,故答案为:4或﹣2.17.(4分)甲、乙两人在一条笔直的跑道上练习跑步,已知甲跑完全程需要4分钟,乙跑完全程需要6分钟,如果两人分别从跑道的两端同时出发,相向而行,求两人相遇所需的时间.设两人相遇所需的时间是x分钟,根据题意,可列方程为x+x=1.【分析】直接利用甲跑完全程需要4分钟,乙跑完全程需要6分钟,可得出两人每分钟所跑路程与总路程关系,进而得出等式即可.【解答】解:设两人相遇所需的时间是x分钟,根据题意,可列方程为:x+x=1.故答案为:x+x=1.18.(4分)已知关于x的一元一次方程2020x+3a=4x+2019的解为x=4,那么关于y的一元一次方程2020(y﹣1)+3a=4(y﹣1)+2019的解为y=5.【分析】由关于x的方程的解得出关于y的方程中y﹣1=4,解之可得.【解答】解:∵方程2020x+3a=4x+2019的解为x=4,∴2020(y﹣1)+3a=4(y﹣1)+2019中y﹣1=4,解得y=5.故答案为:5.三.解答题(共7小题,满分58分)19.(6分)解方程:2(3y﹣1)﹣3(2﹣4y)=10【分析】方程去括号,移项合并,把y系数化为1,即可求出解.【解答】解:去括号得:6y﹣2﹣6+12y=10,移项合并得:18y=18,解得:y=1.20.(6分)已知(m+1)x|m|+2=0是关于x的一元一次方程,求m的值;【分析】根据一元一次方程的定义列出关于m的方程,求出方程的解即可得到m的值.【解答】解:由题意知:m+1≠0,|m|=1则m≠﹣1,m=1或m=﹣1所以m=1.21.(8分)解下列方程:(1)6﹣5x=3(4﹣x);(2)﹣=1.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得,6﹣5x=12﹣3x,移项合并得:﹣2x=6,解得:x=﹣3;(2)去分母得,3(x+1)﹣2(1﹣x)=6,去括号得:3x+3﹣2+2x=6,移项合并得:5x=5,解得:x=1.22.(8分)列方程解应用题:2019年年底某高铁即将开通.以前小红回老家只能坐绿皮车,车速才60km/h,但某高铁开通之后,车速可以达到240km/h.这样就能早到4.5小时.请问提速后小红回老家需要多长时间?【分析】设提速后小红回老家需x小时,则提速前小红回老家需(x+4.5)小时,根据路程=速度×时间结合小红回老家的路程不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设提速后小红回老家需x小时,则提速前小红回老家需(x+4.5)小时,依题意,得:60(x+4.5)=240x,解得:x=.答:提速后小红回老家需小时.23.(8分)我国明代《算法统宗》里有这样一道题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?即100个和尚吃100个馒头.大和尚一人吃3个,小和尚3个人吃1个.你能算出大小、小和尚各有多少人?请你用本学期所学一元一次方程的知识解决这道数学趣题.【分析】设大和尚有x人,则小和尚有(100﹣x)人,根据“有100个和尚分100只馒头正好分完,大和尚一人分3只小和尚3人分一只”列出方程,解方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得3x+(100﹣x)=100,解得x=25,100﹣x=75.答:大和尚有25人,则小和尚有75人.24.(10分)我们规定,若关于x的一元一次方程mx=n(m≠0)的解为n﹣m,则称该方程为差解方程,例如:5x=的解为x=﹣5,则该方程5x=就是差解方程.请根据上边规定解答下列问题(1)若关于x的一元一次方程3x=a+1是差解方程,则a=.(2)若关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,求代数式4a2b﹣[2a2﹣2(ab2﹣2a2b)]的值(提示:若m+n+1=m,移项合并同类项可以把含有m的项抵消掉,得到关于n的一元一次方程,求得n=﹣1)【分析】(1)根据差解方程的定义,得到关于a的新方程,求解即可;(2)根据差解方程的定义,先求出a、b的值,再化简代数式,把a、b的值代入计算即可.【解答】解:(1)∵关于x的一元一次方程3x=a+1是差解方程,∴=a+1﹣3解,得故答案为:(2)∵关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,∴a==a+b﹣3解,得,b=3.4a2b﹣[2a2﹣2(ab2﹣2a2b)]=4a2b﹣(2a2﹣2ab2+4a2b)=4a2b﹣2a2+2ab2﹣4a2b=﹣2a2+2ab2当,b=3时,原式=﹣2×+2××9=25.(12分)如图,已知点A,B是数轴上原点O两侧的两点,其中点A在负半轴上,点B 在正半轴上,AO=2,OB=10.动点P从点A出发以每秒2个单位长度的速度向右运动,到达点B后立即返回,速度不变;动点Q从点O出发以每秒1个单位长度的速度向右运动,当点Q到达点B时,动点P,Q停止运动.设P,Q两点同时出发,运动时间为t 秒.(1)当点P从点A向点B运动时,点P在数轴上对应的数为2t﹣2.当点P从点B 返回向点O运动时,点P在数轴上对应的数为22﹣2t(以用含t的代数式表示)(2)当t为何值时,点P,Q第一次重合?(3)当t为何值时,点P,Q之间的距离为3个单位?【分析】(1)利用两点间的距离公式填空.(2)先分两种情况(P返回前和返回后)用t表示P、Q表示的数:①P、Q第一次相遇即P返回前P、Q表示的数相同,列方程即求出t的值;(3)先求出P、Q第二次相遇的时间,得到t的取值范围.分两种情况写出PQ的长度(用t表示),由PQ=3列方程,求出满足的条件t的值.【解答】解:(1)由题意知,点P在数轴上对应的数为:2t﹣2.当点P从点B返回向点O运动时,点P在数轴上对应的数为:22﹣2t.故答案是:2t﹣2;22﹣2t;(2)由题意,得2t=2+t,解得t=2;(3)①当点P追上点Q后(点P未返回前),2t=2+t+3.解得t=5;②当点P从点B返回,未与点Q相遇前,2+t+3+2t﹣12=3解得,t=;③点点P从B返回,并且与点Q相遇后,2+t﹣3+2t﹣12=12解得t=综上所述,当t的值是5或或时,点P、Q间的距离是3个单位.。

第6章 一元一次方程 单元测试 2022-2023学年华东师大版七年级数学下册

第6章 一元一次方程 单元测试  2022-2023学年华东师大版七年级数学下册

第6章 一元一次方程测试题(一)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列选项中,是一元一次方程的是() A. -x=5B. 3x-5C.3+7=10D. x 2+2x+1=02. 根据“x 比它的12少4”可得方程() A. 142x x -= B. 142x x += C. 1-42x = D. 142x x -= 3. 如果x =y ,那么根据等式的性质,下列变形正确的是( ) A. x +y =0B.55x y= C. 3-x =3-y D. x +6=y -64. 已知x =3是关于x 的方程x +2a =1的解,则a 的值是( ) A. -5 B. 5C. 1D. -15. 在解方程213123x x--=-时,去分母后正确的是( ) A. 3(2x -1)=1-2(3-x ) B. 3(2x -1)=1-(3-x ) C. 3(2x -1)=6-2(3-x )D. 3(2x -1)=6-3(3-x )6. 下列方程中解为x =2的方程是() A. 2x +1=3x-1B. 2(x -3)=-x +1C.11?-62x x-= D. 3(1-2x )-2(x +2)=0 7. 小明同学在解方程5x -1=mx +3时,把数字m 看错了,解得x =4-3,则小明把m 看成了( ) A.3 B. 8 C.128-9D.-8 8. 新型冠状肺炎疫情正在全球蔓延,口罩成了人们生活中必不可少的物品.某口罩厂有26名工人,每人每 天可以生产800个口罩面或1000个口罩耳绳. 1个口罩面需要配2个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( )A. 2×1000(26-x )=800xB. 1000(13-x )=800xC. 1000(26-x )=2×800xD. 1000(26-x )=800x 9. 已知关于x 的一元一次方程133x +1=2x +a 的解为x =-1,那么关于y 的一元一次方程133(y +2)+1=2(y +2) +a 的解为( )A. y =-1B. y =1C. y =3D. y =-310.如图1,用十字形方框从日历表中框出5个数,已知这5个数的和为5a +5,a 是方框①,②,③,④中 的一个数,则数a 所在的方框是( )A. ①B. ②C. ③D. ④图1二、填空题(本大题共6小题,每小题3分,共18分)11. 写出一个解为x =-2,且未知数的系数为2的一元一次方程 .12.如图2所示,左边的天平保持平衡,若将天平左盘上的两个物品取下一个,则右盘需取下个砝码才能使天平仍然平衡.图213. 已知2x +1=2y ,利用等式的性质判断x 和y 的大小关系是 .14. 几个人一起种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树 苗,则这批树苗共有棵.15. 若关于x 的方程x-2019k=0的解也是方程x-2020k=2019的解,则k=.16.有一列方程,第1个方程是x +x 2=3,解为x =2;第2个方程是x 2+x 3=5,解为x =6;第3个方程是x 3+x 4=7, 解为x =12;……根据规律第10个方程是,解为________.三、解答题(本大题共6小题,共52分) 17.(每小题4分,共8分)解下列方程: (1)2x +3(5-x )=4; (2)2x +13x -=3-312x -.18.(6分)已知关于x 的一元一次方程2x+m =6mx m-,当m 为何值时,该方程的解为x =4?19.(8分)已知关于x 的方程(m +3)x m -1+5=0是一元一次方程. (1)求m 的值;(2)若方程(m +3)x m -1+5=0的解也是关于x 的方程523132x n nx +--=的解,求n 的值.20.(8分)某市第八中学为给学生营造良好舒适的休息环境,决定改造校园内的一个小花园,图3是该花 园的平面示意图,它是由6个正方形拼成的长方形用来种植六种不同的植物.已知中间最小的正方形A 的边长是2米,正方形C ,D 的边长相等,请根据图形求出该花园的总面积.图321.(10分)先阅读下列解题过程,然后解答问题. 解方程:|x +3|=2.解:当x +3≥0时,原方程可化为:x +3=2,解得x =-1; 当x +3<0时,原方程可化为:x +3=-2,解得x =-5. 所以原方程的解是x =-1或x =-5. 仿照上述解法解方程:|3x -2|-4=0.22.(12分)光华中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独 完成任务需要12天,乙修理组单独完成任务需要24天.(1)若由甲、乙两修理组同时修理,则需多少天可以修好这些桌椅?(2)若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与 乙又合作3天,恰好完成任务.问:甲修理组离开几天?(3)学校需要每天支付甲、乙修理组的修理费分别为80元,120元.任务完成后,两修理组收到的总费用为1920元,求甲修理组修理了几天.附加题(共20分,不计入总分) 1.(6分)若关于x 的方程4+4=166ax x x ---的解是正整数,则符合条件的所有整数a 的和是. 2.(14分)小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元;(2)小明一家来到火锅店后,发现现场还有一个优惠方式:除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问:小明一家实际付了多少元?参考答案一、1.A2. D 3.C 4. D 5. C 6. A 7. B 8. C9. D10.B 提示:若中间位置的数为A ,则①位置的数为A −7,④位置的数为A +7,②位置的数为A −1,③ 位置的数为A +1,其和为5A =5a +5,所以a =A −1,即a 为②位置的数.二、11. 答案不唯一,如2x +4=0 12.3 13.x <y 14. 124 15. -2019 16.211011x x +=x =110提示:由所给方程及其解可以发现,第n 个方程为()211x x n n n +=++,解为 x =n (n +1),所以第10个方程是211011x x+=,解为x =10×(10+1)=110. 三、17.解:(1)去括号,得2x +15-3x =4. 移项、合并同类项,得-x =-11. 系数化为1,得x =11.(2)去分母,得12x+2(x-1)=18-3(3x-1). 去括号,得12x+2x-2=18-9x+3. 移项、合并同类项,得23x =23. 系数化为1,得x =1.18. 解:将x =4代入方程2x +m =6mx m -中,得2+m =4-6m m. 移项、合并同类项,得12m =-2. 系数化为1,得m =-4.所以当m =-4时,该方程的解为x =4.19. 解:(1)因为关于x 的方程(m +3)x m -1+5=0是一元一次方程,所以m -1=1,m+3≠0,解得m =2. (2)将m =2代入(m +3)x m -1+5=0中,得5x +5=0,解得x =-1. 将x =-1代入方程523132x n nx +--=中,得-52-3132n n +--=. 解得n =1.20.解:设图中最大正方形B 的边长是x 米,则正方形F 的边长为(x -2)米,正方形E 的边长为(x -4)米, 正方形C ,D 的边长为+22x 米. 由MQ =PN ,得x -2+x -4=x ++22x ,解得x =14. 则MQ =12+10=22(米),PQ =12+14=26(米). 该花园的总面积为:22×26=572(平方米). 答:该花园的总面积是572平方米. 21.解:原方程可化为|3x -2|=4.当3x -2≥0时,原方程可化为:3x -2=4,解得x =2; 当3x -2<0时,原方程可化为:-3x +2=4,解得x =2-3. 所以原方程的解是x =2或x =2-3.22. 解:(1)设需要x 天可以修好这些桌椅.根据题意,得11+11224x⎛⎫=⎪⎝⎭,解得x=8.答:需8天可以修好这些桌椅. (2)设甲修理组离开y天.根据题意,得111+6+1122424y⎛⎫⨯=⎪⎝⎭,解得y=6.答:甲修理组离开6天.(3)设甲修理组修理了a天,则乙修理的天数为:111-2421224a a ⎛⎫÷=-⎪⎝⎭.根据题意,得80a+120(24-2a)=1920,解得a=6.答:甲修理组修理了6天.附加题1.-7 提示:化简原方程,得(5+a)x=2,所以x=25+a.因为x是正整数,所以x=1或x=2,此时a=-3或a=-4.所以符合条件的所有整数a的和是-7.2. 解:(1)因为145<150,最多购买并使用2张代金券,所以最多优惠50元.(2)设小明一家应付总金额为x元.当50≤x<100时,根据题意,得x-25-[50+(x-50)×0.6]=15,解得x=150(舍去).当100≤x<150时,根据题意,得x-50-[50+(x-50)×0.6]=15,解得x=212.5(舍去).当x≥150时,根据题意,得x-75-[50+(x-50)×0.6]=15,解得x=275.275-75-15=185(元).答:小明一家实际付了185元.。

【精选】七年级数学一元一次方程单元测试卷附答案

【精选】七年级数学一元一次方程单元测试卷附答案

一、初一数学一元一次方程解答题压轴题精选(难)1.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。

(2)根据(1)中的表达式等于8400,列方程并求解。

(3)根据(1)中的表达式等于7800,列方程并求解,若方程的解符合实际意义,则有可能,否则就不可能。

2.已知有理数,定义一种新运算:⊙ =(a+1).如:⊙ =(2+1)(1)计算(-3)⊙的值;(2)若⊙(-4)=6,求的值.【答案】(1)解:∵⊙ =(a+1),∴(-3)⊙ = ,= ,= ,= ;(2)解:∵⊙(-4)=6,∴,即,解得 .【解析】【分析】(1)根据⊙ =(a+1),直接代入计算即可;(2)根据新定义可得方程,解方程即可.3.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。

【答案】(1)解:当a=3时,=2a×5a-3×4=10a2-12=10×32-12=90-12=78(2)解:∵ =1∴4(x+2)-3(2x-1)=1去括号,可得:4x+8-6x+3=1移项,合并同类项,可得:2x=10,解得x=5【解析】【分析】(1)根据规定先求出的表达式,再化简,然后把a=3代入求值即可;(2)根据新定义的规定把=1的右式化成整式,然后去括号、移项、合并同类项,x项系数化为1即可解出x.4.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:稿费不高于800元的不纳税;稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的的税;稿费为4000元或高于4000元的应缴纳全部稿费的的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2000元,则应纳税________元,若王老师获得的稿费为5000元,则应纳税________元(2)若王老师获稿费后纳税280元,求这笔稿费是多少元?【答案】(1)168;550(2)解:因为当稿费为4000元时,纳税=4000×11%=440(元),且280<440,所以王老师的这笔稿税高于800元,且低于4000元.设王老师的这笔稿税为x元,根据题意,14%(x-800)=280x=2800,答:王老师的这笔稿税为2800元.【解析】【解答】解:(1)①∵800<2400<4000,∴当王老师获得稿费为2000元时,应纳税:(2000-800)×14%=168(元);②当王老师获得稿费为5000元时,应纳税:5000×11%=550(元);【分析】(1)根据条件②计算即可;根据条件③计算即可;(2)设王老师所获得的这笔稿费为元,根据纳税金额,可判断稿费800<x<4000,属于第二种,利用稿费420元,列出方程,求出x值即可.5.小明和父母打算去某火锅店吃火锅,该店在网上出售“ 元抵元的全场通用代金券”(即面值元的代金券实付元就能获得),店家规定代金券等同现金使用,一次消费最多可用张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为元,那么用代金券方式买单,他们最多可以优惠多少元:(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部折.小明一家点了一份元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付元.问小明一家实际付了多少元?【答案】(1)解:∴最多购买并使用两张代金券,最多优惠元(2)解:设小明一家应付总金额为元,当时,由题意得, .解得: (舍去).当时,由题意得, .解得: (舍去).当时,由题意得, .解得: .∴ .答:小明一家实际付了元【解析】【分析】(1)根据,即最多购买并使用两张代金券,即可得到答案;(2)设小明一家应付总金额为元,则对应付金额进行分析,然后列式进行计算,即可得到答案.6.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.【答案】(1)解:设钢笔的单价为x元,则毛笔的单价为(x+6)元.由题意得:30x+20(x+6)=1070解得:x=19则x+6=25.答:钢笔的单价为19元,毛笔的单价为25元.(2)解:①设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支.根据题意,得19y+25(60-y)=1322解之得:y≈29.7(不符合题意).所以王老师肯定搞错了.②2或8.【解析】【解答】(2)②设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得19z+25(60-z)=1322-a.即:6z=178+a,因为a、z都是整数,且178+a应被6整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,6z=180,z=30,符合题意;当a=4时,6z=182,z≈30.3,不符合题意;当a=6时,6z=184,z≈30.7,不符合题意;当a=8时,6z=186,z=31,符合题意.所以签字笔的单价可能2元或8元.【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元.根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支,求出方程的解不是整数则说明算错了;②设单价为19元的钢笔为z支,单价为25元的毛笔则为(60-y)支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.7.已知,如图A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为80.(1)请写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,①你知道经过几秒两只电子蚂蚁相遇?②点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距15个单位长度?【答案】(1)解:M点的数值为:;(2)解:①设所用时间为t,依题意得:3t﹢2t=100,解得:t=20;②依题意得:点C位置为: 80-2t=80-2×20=40;③设所用时间为x,依题意得:3x+2x=100-15或3x+2x=100+15,解得:x=17或x=23;∴当x=17或x=23时,两个电子蚂蚁再数轴上相距15个单位长度.【解析】【分析】(1)由AM=BM,结合两点间的距离公式,即可求出AB的中点;(2)①根据时间=路程÷速度,即可求出相遇的时间;②结合相遇的时间,即可求出点C;③根据题意,两个电子蚂蚁在数轴上相距15,可分为:相遇前相距15和相遇后相距15,两种情况进行讨论.8.一般情况下不成立,但有些数可以使得它成立,例如:.我们称使得成立的一对数,为“相伴数对”,记为 .(1)若是“相伴数对”,求的值;(2)若是一个“相伴数对”,请将所满足的等式化为,其中均为整数的形式(如);(3)若是“相伴数对”,求代数式的值.【答案】(1)解:根据题意得:,解得b=;(2)解:根据题意得:,即,∴,∴;(3)解:∵是“相伴数对”,∴,∴,∴原式.【解析】【分析】(1)根据“相伴数对”的定义列出方程求解即可;(2)根据“相伴数对”的定义列出等式,然后去分母,化简即可;(3)由(2)可得,变形得,然后对所求式子进行化简,代入计算即可.9.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B 运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为________.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册一元一次方程测试题精选
Revised as of 23 November 2020
一元一次方程测试题--1
一、选择题
1、方程413x -=的解是………………………………………………( ) A 、1x =-
B 、1x =
C 、2x =-
D 、2x =
2、如果2x =是方程1
1
2x a +=-的根,那么a 的值是………………
( ) A 、0 B 、2 C 、2-
D 、6-
3、若3-=b a ,则a b -的值是…………………………………….( )
A 、3
B 、3-
C 、0
D 、6 4、已知下列方程中①
x x 22=
-、②=1、③1
52-=x x
、④34=-x x
⑤x=6、⑥x+2y=0、⑦x x x x 322
2+=+-,是一元一次方程的有
( )
A 、2个
B 、3个
C 、4个
D 、5个 5、方程2(x-7)=x+4的解是………………………………………( )
A 、x=-5
B 、x=5
C 、x=14
D 、x=18
6、对于等式x x 2131
=-,下列变形正确的是……………………..
( )
A 、1231=+x x
B 、1312-=-x x
C 、1
35=x D 、x x 23=-
7、下列等式变形错误的是……………………………………….( )
A 、由a=b,得a+5=b+5
B 、由a=b,得33-=
-b
a
C 、由x+2=y+2,得x=y
D 、由-3x=-3y, 得x=-y
8、方程x
x 7337
4-=的解是……………………………………….( )
A 、x=3
B 、
21=
x C 、21
-
=x D 、x=-3
9、将方程11)14(3)12(7=---x x 去括号后正确的是………….….( )
A 、1112714=+--x x
B 、11312714=+--x x
C 、11312114=---x x
D 、14x-1-12x+3=11
10、方程16531=-+x
x 的解是………………………………………
( )
A 、31-
B 、34
C 、31
D 、34
-
11、某工人计划每生产a 个零件,现在实际每天生产b 个零件,则生产m 个零件提前的天数为……………………………………..( )
A 、b a m +
B 、a m b a m -+
C 、b m a m -
D 、b a m
a m +-
12、甲比乙大15岁,五年前甲年龄是乙年龄的两倍,乙现在年龄 是…………………………………………………………………( )
A 、10岁
B 、15岁
C 、20岁
D 、30岁 13、某牧场放养的鸵鸟和奶牛一共70只, 已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟的头数比奶牛多………………………….( ) A 、12只 B 、13只 C 、14只 D 、15只 14、某品牌的书包按相同折数打折销售,如果原价200元的书包,现价160元,那么原价150元的书包,现价是…………………( )
A 、100元
B 、110元
C 、120元
D 、130元 15、某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为………………………………………..( ) A 、26元
B 、27元
C 、28元
D 、29元
16、A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,
那么下面所列方程正确的是……………………………………….( )
A 、2(1)313x x -+=
B 、2(1)313x x ++=
C 、23(1)13x x ++=
D 、23(1)13x x +-=
二、填空题
1、方程260x -=的解为
2、当x= 时,代数式23
+x 的值为0.
3、7与x 的差的43
比x 的3倍小6的方程是
4、若方程 4631
2=+-k x
k 是关于x 的一元一次方程,则k=
5、当X= 时,代数式3(x-2)与2(2+x)的值相等
6、已知长方形的周长为40cm 、长为xcm 、宽为8cm ,由题意列方程为
7、要将方程 3523352=-+-t
t 的分母去掉,在方程的两边最好同时
乘以
8、某商店老板将一件进价为800元的商品先提价50%;再打8折出销,则出销这件商品所获利润是 元。

9、某省今年高考招生17万人,比去年增加了18%,设该省去年招生x 万人,则可以列方程
10、某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x 元,则x 满足的方程是 .
11、某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是 万元. 12、已知关于m 的方程30m a +=的解比关于m 的方程50m a -=的解大2,则a=
13、甲食堂有面粉340千克,乙食堂有面粉200千克,现从乙食堂调给甲食堂x 千克面粉,恰好甲食堂的面粉为乙食堂面粉数的2倍,根据题意列出方程
14、今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7 倍,则今年女儿的年龄为 岁
15、某商店一套夏装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为 元.
三、解方程:
1、532+=+x x
2、x x 3.15.67.05.0-=-
3、+=
4、3(25)2(43)1x x +=++
5、181
3612=---x x 6、
345
x +=
7、x x -=-2)5(2 8、
432
5532x x x x ++--+=-
9、0.89 1.3351
1.20.20.3x x x --+-=
10、173)1(214181=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡++x
11、6.15.032.04-=--+x x 12、67
514
13-=--y y
四、解应用题
1、a取什么值时,代数式1
(3)
2
a-的值比3
2+
a的值大2
2、某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场
3、列方程解应用题:甲、乙两人从相距240千米的两地同时出发,相向而行,3小时相遇,已知甲每小时行50千米,乙每小时行多少千米
4、为了促进销售,某商场将一种商品按标价的9折出售,仍可获利
10%,若该商品的标价是33元,则该商品的进价是多少元
5、一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选一道扣1分,小兰得了85分,问小兰做对了多少道题
6、一件商品按成本价提高20%后标价,又以9折销售,售价为270元,则这件商品的成本价是多少
7、甲、乙两站间的路程为35千米,一辆慢车从甲站开往乙站,走
了一个半小时后,另一辆快车从乙站开往甲站,已知慢车每小时行46千米,快车每小时行68千米,问快车驶出后经过多少小时两辆车相遇。

相关文档
最新文档