函数与导数压轴题中零点问题

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

高考数学导数与三角函数压轴题综合归纳总结教师版

高考数学导数与三角函数压轴题综合归纳总结教师版

高考数学导数与三角函数压轴题综合归纳总结教师版导数与三角函数的问题在近几年的高考数学试题中频繁出现,主要包括函数零点个数的确定、根据函数零点个数求参数围、隐零点问题及零点存在性赋值理论。

这些问题的形式逐渐多样化、综合化。

一、零点存在定理例1.【2019全国Ⅰ理20】函数$f(x)=\sin x-\ln(1+x)$,$f'(x)$为$f(x)$的导数。

证明:1)$f'(x)$在区间$(-1,)$存在唯一极大值点;2)$f(x)$有且仅有2个零点。

解析】(1)设$g(x)=f'(x)$,则$g(x)=\cos x-\frac{1}{1+x}$,$g'(x)=-\sin x+\frac{1}{(1+x)^2}$。

当$x\in(-1,\frac{\pi}{2})$时,$g'(x)$单调递减,而$g'(0)>0$,$g'(\frac{\pi}{2})<0$,可得$g'(x)$在$(-1,\frac{\pi}{2})$有唯一零点,设为$\alpha$。

则当$x\in(-1,\alpha)$时,$g'(x)>0$;当$x\in(\alpha,\frac{\pi}{2})$时,$g'(x)<0$。

所以$g(x)$在$(-1,\alpha)$单调递增,在$(\alpha,\frac{\pi}{2})$单调递减,故$g(x)$在$(-1,\frac{\pi}{2})$存在唯一极大值点,即$f'(x)$在$(-1,\frac{\pi}{2})$存在唯一极大值点。

2)$f(x)$的定义域为$(-1,+\infty)$。

i) 由(1)知,$f'(x)$在$(-1,0)$单调递增,而$f'(0)=0$,所以当$x\in(-1,0)$时,$f'(x)<0$,故$f(x)$在$(-1,0)$单调递减,又$f(0)=0$,从而$x=0$是$f(x)$在$(-1,0]$的唯一零点。

高中数学题型归纳大全函数与导数题型归纳三.零点、隐零点问题

高中数学题型归纳大全函数与导数题型归纳三.零点、隐零点问题

高中数学题型归纳大全函数与导数3题型归纳三.零点、隐零点问题考点1.讨论零点个数1.已知函数f(x)=a2x 2−(a +1)x +lnx .(1)当a =1时,求y =f (x )在(e ,f (e ))处切线方程; (2)讨论f (x )的单调区间;(3)试判断a >1时f (x )=0的实根个数说明理由.考点2.证明存在零点2.已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.3.已知设函数f (x )=ln (x +2)﹣(x +1)e ax . (1)若a =0,求f (x )极值;(2)证明:当a >﹣1,a ≠0时,函数f (x )在(﹣1,+∞)上存在零点.考点3.已知零点个数求参4.已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.5.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.考点4.设而不求,虚设零点6.已知函数f(x)=e x﹣ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.7.设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.8.已知函数f(x)=e x﹣a﹣ln(x+a)(a>0).(1)证明:函数f′(x)在(0,+∞)上存在唯一的零点.(2)若函数f(x)在区间(0,+∞)上的最小值为1,求a的值.9.已知函数f(x)=lnx−x+1x−1.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.题型归纳三.零点、隐零点问题考点1.讨论零点个数1.已知函数f(x)=a2x2−(a+1)x+lnx.(1)当a=1时,求y=f(x)在(e,f(e))处切线方程;(2)讨论f(x)的单调区间;(3)试判断a >1时f (x )=0的实根个数说明理由.【分析】(1)求得f (x )的导数,可得切线的斜率和切点,可得所求切线方程; (2)求得f (x )的导数,讨论a =0,a >1,a =1,0<a <1,a <0,解不等式可得f (x )的单调区间;(3)由a >1可得f (x )的极值,判断符号,画出图象,可得实根的个数. 【解答】解:(1)函数f(x)=a2x 2−(a +1)x +lnx 的导数为f ′(x )=ax ﹣(a +1)+1x =(x−1)(ax−1)x, 当a =1时,y =f (x )在(e ,f (e ))处切线斜率为(e−1)2e,切点为(e ,12e 2﹣2e +1),可得切线方程为y ﹣(12e 2﹣2e +1)=(e−1)2e (x ﹣e ), 即为y =(e−1)2e x −12e 2;(2)f ′(x )=ax ﹣(a +1)+1x =(x−1)(ax−1)x,x >0,①当a =0时,f ′(x )=1−xx,可得f (x )的增区间为(0,1), 减区间为(1,+∞);②当a =1时,f ′(x )=(x−1)2x≥0,可得f (x )的增区间为(0,+∞); ③当a >1时,0<1a<1,可得f (x )的增区间为(0,1a),(1,+∞),减区间为(1a,1);④当0<a <1,1a>1,可得f (x )的增区间为(0,1),(1a,+∞),减区间为(1,1a);⑤当a <0时,f (x )的增区间为(0,1),减区间为(1,+∞); (3)a >1时f (x )=0的实根个数为1,a >1时,0<1a<1,可得f (x )的增区间为(0,1a),(1,+∞),减区间为(1a,1),可得f (x )的极小值为f (1)=﹣1−a 2<0,极大值为f (1a)=﹣1−12a−lna <0, 且x →+∞,f (x )→+∞, 可得f (x )=0的实根为1个.考点2.证明存在零点2.已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.【分析】(1)f (x )的定义域为(﹣1,+∞),求出原函数的导函数,进一步求导,得到f ″(x )在(﹣1,π2)上为减函数,结合f ″(0)=1,f ″(π2)=﹣1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数f ″(x )在(﹣1,π2)上存在唯一得零点x 0,结合单调性可得,f ′(x )在(﹣1,x 0)上单调递增,在(x 0,π2)上单调递减,可得f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(﹣1,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,x 0)时,f ′(x )>0,f (x )单调递增;由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)<0,可得函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知,当x ∈(x 0,x 1)时,f (x )单调递增;当x ∈(x 1,π2)时,f (x )单调递减.当x ∈(π2,π)时,f (x )单调递减,再由f (π2)>0,f (π)<0.然后列x ,f ′(x )与f (x )的变化情况表得答案.【解答】证明:(1)f (x )的定义域为(﹣1,+∞), f ′(x )=cos x −11+x ,f ″(x )=﹣sin x +1(1+x)2, 令g (x )=﹣sin x +1(1+x)2,则g ′(x )=﹣cos x −2(1+x)3<0在(﹣1,π2)恒成立,∴f ″(x )在(﹣1,π2)上为减函数, 又∵f ″(0)=1,f ″(π2)=﹣1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数f ″(x )在(﹣1,π2)上存在唯一的零点x 0,结合单调性可得,f ′(x )在(﹣1,x 0)上单调递增,在(x 0,π2)上单调递减,可得f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(﹣1,0)时,f ′(x )单调递增,f ′(x )<f ′(0)=0,f (x )单调递减;当x ∈(0,x 0)时,f ′(x )单调递增,f ′(x )>f ′(0)=0,f (x )单调递增; 由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)=−11+π2<0, 由零点存在定理可知,函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f ′(x )单调递减,f ′(x )>f ′(x 1)=0,f (x )单调递增; 当x ∈(x 1,π2)时,f ′(x )单调递减,f ′(x )<f ′(x 1)=0,f (x )单调递减. 当x ∈(π2,π)时,cos x <0,−11+x <0,于是f ′(x )=cos x −11+x <0,f (x )单调递减,其中f (π2)=1﹣ln (1+π2)>1﹣ln (1+3.22)=1﹣ln 2.6>1﹣lne =0,f (π)=﹣ln (1+π)<﹣ln 3<0. 于是可得下表:x(﹣1,0)(0,x 1)x 1(x 1,π2)π2(π2,π)πf ′(x ) ﹣ 0 +﹣﹣﹣ ﹣f (x )单调递减单调递增大于0 单调递减 大于0 单调递减 小于0 结合单调性可知,函数f (x )在(﹣1,π2]上有且只有一个零点0, 由函数零点存在性定理可知,f (x )在(π2,π)上有且只有一个零点x 2,当x ∈[π,+∞)时,sin x ≤1<ln (1+x ),则f (x )=sin x ﹣ln (1+x )<0恒成立, 因此函数f (x )在[π,+∞)上无零点. 综上,f (x )有且仅有2个零点.3.已知设函数f (x )=ln (x +2)﹣(x +1)e ax .(1)若a=0,求f(x)极值;(2)证明:当a>﹣1,a≠0时,函数f(x)在(﹣1,+∞)上存在零点.【分析】(1)将a=0代入函数,求函数的导数,利用函数的单调性可判断函数的极值,可求的f(x)极值;(2)当a>﹣1,a≠0时,求函数的导数,分类讨a的范围,利用函数的单调性结合极值的大小,可证明函数f(x)在(﹣1,+∞)上存在零点.【解答】解:(1)函数f(x)=ln(x+2)﹣(x+1)e ax.当a=0时,f(x)=ln(x+2)﹣(x+1),定义域为(﹣2,+∞),由f′(x)=−x+1x+2=0,得x=﹣1.当x变化时,f′(x),f(x)的变化情况如下表:x(﹣2,﹣1)﹣1 (﹣1,+∞)f′(x)+ 0 ﹣f(x)↗极大值↘故当x=﹣1时,f(x)取得极大值0,无极小值.(2)证明:f′(x)=1x+2−e ax[1+a(x+1)],x>﹣2.①当a>0时,因为x>﹣1,所以f″(x)=−1(x+2)2−ae ax[a(x+1)+2]<0,f'(x)在(﹣1,+∞)单调递减.因为f'(﹣1)=1﹣e﹣a>0,f′(0)=−12−a<0,所以存在x1∈(﹣1,0),使f'(x1)=0,当﹣1<x<x1时,f'(x)>0,当x>x1时,f'(x)<0,所以f(x)在(﹣1,x1)单调递增,在(x1,+∞)单调递减.所以f(x1)>f(﹣1)=0,而f(0)=ln2﹣1<0,所以f(x)在(﹣1,+∞)存在零点.②当﹣1<a<0时,由(1)可知e x≥x+1,x>﹣2.所以e﹣ax≥﹣ax+1>﹣a(x+1).所以f (x )=ln (x +2)﹣(x +1)e ax =e ax [e ﹣axln (x +2)﹣(x +1)]>﹣e ax (x +1)[aln (x +2)+1)].于是f(e −1a )>e −1(e −1a +1)[−aln(e −1a +2)−1)]>e −1(e −1a +1)[−aln(e −1a )−1)]=0. 因为f (0)=ln 2﹣1<0,所以所以f (x )在(e −1a ,+∞)存在零点. 综上,当a >﹣1,a ≠0时,函数f (x )在(﹣1,+∞)上存在零点.考点3.已知零点个数求参4.已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x )单调性; (2)由(1)可知:当a >0时才有两个零点,根据函数的单调性求得f (x )最小值,由f (x )min <0,g (a )=alna +a ﹣1,a >0,求导,由g (a )min =g (e ﹣2)=e ﹣2lne ﹣2+e﹣2﹣1=−1e 2−1,g (1)=0,即可求得a 的取值范围. (1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x )单调性; (2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a 的取值范围.【解答】解:(1)由f (x )=ae 2x +(a ﹣2)e x ﹣x ,求导f ′(x )=2ae 2x +(a ﹣2)e x ﹣1, 当a =0时,f ′(x )=﹣2e x ﹣1<0, ∴当x ∈R ,f (x )单调递减,当a >0时,f ′(x )=(2e x +1)(ae x ﹣1)=2a (e x +12)(e x −1a ), 令f ′(x )=0,解得:x =ln 1a ,当f ′(x )>0,解得:x >ln 1a , 当f ′(x )<0,解得:x <ln 1a ,∴x ∈(﹣∞,ln 1a)时,f (x )单调递减,x ∈(ln 1a,+∞)单调递增;当a <0时,f ′(x )=2a (e x +12)(e x −1a )<0,恒成立, ∴当x ∈R ,f (x )单调递减,综上可知:当a ≤0时,f (x )在R 单调减函数,当a>0时,f(x)在(﹣∞,ln 1a )是减函数,在(ln1a,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln 1a )是减函数,在(ln1a,+∞)是增函数,∴f(x)min=f(ln 1a )=a×(1a)+(a﹣2)×1a−ln1a<0,∴1−1a−ln1a<0,即ln1a+1a−1>0,设t=1a,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=1t+1,由g(1)=0,∴t=1a>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+12)(ex−1a),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+12)(ex−1a)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1−1a−ln1a,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1−1a−ln1a>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1−1a−ln1a<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(3a−1),则f(n0)=e n0(a e n0+a﹣2)﹣n0>e n0−n0>2n0−n0>0,由ln(3a−1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).5.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【分析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明,(2)方法一、分离参数可得a=e xx2在(0,+∞)只有一个根,即函数y=a与G(x)=e xx2的图象在(0,+∞)只有一个交点.结合图象即可求得a.方法二、:①当a≤0时,f(x)=e x﹣ax2>0,f(x)在(0,+∞)没有零点..②当a>0时,设函数h(x)=1﹣ax2e﹣x.f(x)在(0,+∞)只有一个零点⇔h(x)在(0,+∞)只有一个零点.利用h′(x)=ax(x﹣2)e﹣x,可得h(x))在(0,2)递减,在(2,+∞)递增,结合函数h(x)图象即可求得a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g ′(x )=0,得x =ln 2.当x ∈(0,ln 2)时,g ′(x )<0,当x ∈(ln 2,+∞)时,g ′(x )>0, ∴g (x )≥g (ln 2)=e ln 2﹣2•ln 2=2﹣2ln 2>0, ∴f (x )在[0,+∞)单调递增,∴f (x )≥f (0)=1,解:(2)方法一、,f (x )在(0,+∞)只有一个零点⇔方程e x ﹣ax 2=0在(0,+∞)只有一个根, ⇔a =e xx 2在(0,+∞)只有一个根, 即函数y =a 与G (x )=e xx 2的图象在(0,+∞)只有一个交点. G ′(x)=e x (x−2)x 3,当x ∈(0,2)时,G ′(x )<0,当∈(2,+∞)时,G ′(x )>0, ∴G (x )在(0,2)递减,在(2,+∞)递增, 当→0时,G (x )→+∞,当→+∞时,G (x )→+∞,∴f (x )在(0,+∞)只有一个零点时,a =G (2)=e 24.方法二:①当a ≤0时,f (x )=e x ﹣ax 2>0,f (x )在(0,+∞)没有零点.. ②当a >0时,设函数h (x )=1﹣ax 2e ﹣x .f (x )在(0,+∞)只有一个零点⇔h (x )在(0,+∞)只有一个零点.h ′(x )=ax (x ﹣2)e ﹣x ,当x ∈(0,2)时,h ′(x )<0,当x ∈(2,+∞)时,h ′(x )>0,∴h (x )在(0,2)递减,在(2,+∞)递增,∴ℎ(x)min =ℎ(2)=1−4ae 2,(x ≥0). 当h (2)<0时,即a >e 24,由于h (0)=1,当x >0时,e x >x 2,可得h (4a )=1−16a 3e 4a =1−16a 3(e 2a )2>1−16a 3(2a)4=1−1a >0.h (x )在(0,+∞)有2个零点 当h (2)>0时,即a <e 24,h (x )在(0,+∞)没有零点,当h (2)=0时,即a =e 24,h (x )在(0,+∞)只有一个零点,综上,f (x )在(0,+∞)只有一个零点时,a =e 24.考点4.设而不求,虚设零点6.已知函数f (x )=e x ﹣ln (x +m ).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵f′(x)=e x−1x+m,x=0是f(x)的极值点,∴f′(0)=1−1m=0,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵f′(x)=e x−1x+1=ex(x+1)−1x+1.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数f′(x)=e x−1x+2在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得e x0=1x0+2,ln(x0+2)=﹣x0.故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.7.设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f′(x)+x+1>0在x>0时成立转化为k<x+1 e x−1+x(x>0)成立,由此问题转化为求g(x)=x+1e x−1+x在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)方法一:由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<x+1e x−1+x(x>0)①令g(x)=x+1e x−1+x,则g′(x)=−xex−1(e x−1)2+1=ex(e x−x−2)(e x−1)2由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.方法二:由a=1,知(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1,设g(x)=(x﹣k)(e x﹣1)+x+1,则g′(x)=(x﹣k+1)e x,若k⩽1,则当x>0 时,g′(x)>0,此时g(x)上单调递增,而g(0)=1,故当x>0 时,g(x)>1,则有g(x)>0,即(x﹣k)f′(x)+x+1>0;若k>1,则当x∈(0,k﹣1)时,g′(x)<0,当x∈(k﹣1,+∞)时,g′(x)>0,所以g(x)在(0,+∞)内的最小值为g(k﹣1)=k﹣e k﹣1+1,令h(k)=k﹣e k﹣1+1,由(Ⅰ)知,函数e x﹣x﹣2 在(0,+∞)内单调递增,则h(k)在(1,+∞)内单调递减,而h(2)>0,h(3)<0,所以当1<k⩽2 时,h(k)>0,即g(k﹣1)>0,则当x>0 时,g(x)>0,即(x﹣k)f′(x)+x+1>0,当k⩾3 时,g(x)>0 在(0,+∞)内恒不成立.综上,整数k的最大值为2.8.已知函数f(x)=e x﹣a﹣ln(x+a)(a>0).(1)证明:函数f′(x)在(0,+∞)上存在唯一的零点.(2)若函数f(x)在区间(0,+∞)上的最小值为1,求a的值.【分析】(1)求出原函数的导函数f′(x)=e x−a−1x+a,可得f′(x)在(0,+∞)上单调递增,再利用导数证明f′(0)<0,f′(a+1)=e−12a+1>0,可得函数f′(x)在(0,+∞)上存在唯一的零点;(2)由(1)可知,存在唯一的零点x0∈(0,+∞),使得f′(x0)=e x0−a−1x0+a=0,即e x0−a=1x0+a,结合(1)求出f(x)的最小值,得1x0+a−ln(x0+a)=1,显然x0+a=1是方程的解,结合y=1x−lnx是单调递减函数,可知方程1x0+a−ln(x0+a)=1有且仅有唯一解x0+a=1,把x0=1﹣a代入e x0−a=1x0+a即可求得a的值.【解答】(1)证明:∵f(x)=e x﹣a﹣ln(x+a)(a>0),∴f′(x)=e x−a−1x+a,∵e x﹣a在区间(0,+∞)上单调递增,1x+a在区间(0,+∞)上单调递减,∴f′(x)=e x−a−1x+a在(0,+∞)上单调递增,又f′(0)=e−a−1a=a−eaae a,令g(a)=a﹣e a(a>0),g′(a)=1﹣e a<0.则g(a)在(0,+∞)上单调递减,g(a)<g(0)=﹣1,故f′(0)<0.令m =a +1,则f ′(m )=f ′(a +1)=e −12a+1>0. ∴函数f ′(x )在(0,+∞)上存在唯一的零点;(2)解:由(1)可知,存在唯一的零点x 0∈(0,+∞),使得f ′(x 0)=e x 0−a −1x 0+a =0,即e x 0−a =1x 0+a .而函数f ′(x )=e x−a −1x+a 在(0,+∞)上单调递增,∴当x ∈(0,x 0)时,f ′(x )<0,f (x )单调递减,当x ∈(x 0,+∞)时,f ′(x )>0,f (x )单调递增.∴f(x)min =f(x 0)=e x 0−a −ln(x 0+a)=1x 0+a −ln(x 0+a).∴1x 0+a−ln(x 0+a)=1,显然x 0+a =1是方程的解.又∵y =1x −lnx 是单调递减函数,方程1x 0+a−ln(x 0+a)=1有且仅有唯一解x 0+a =1,把x 0=1﹣a 代入e x 0−a =1x 0+a ,得e 1﹣2a=1,即a =12.∴所求a 的值为12.9.已知函数f (x )=lnx −x+1x−1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线.【分析】(1)讨论f (x )的单调性,求函数导数,在定义域内根据函数零点大致区间求零点个数,(2)运用曲线的切线方程定义可证明.【解答】解析:(1)函数f (x )=lnx −x+1x−1.定义域为:(0,1)∪(1,+∞); f ′(x )=1x +2(x−1)2>0,(x >0且x ≠1),∴f (x )在(0,1)和(1,+∞)上单调递增, ①在(0,1)区间取值有1e2,1e 代入函数,由函数零点的定义得, ∵f (1e)<0,f (1e)>0,f (1e)•f (1e)<0, ∴f (x )在(0,1)有且仅有一个零点,②在(1,+∞)区间,区间取值有e,e2代入函数,由函数零点的定义得,又∵f(e)<0,f(e2)>0,f(e)•f(e2)<0,∴f(x)在(1,+∞)上有且仅有一个零点,故f(x)在定义域内有且仅有两个零点;(2)x0是f(x)的一个零点,则有lnx0=x0+1 x0−1,曲线y=lnx,则有y′=1 x;由直线的点斜式可得曲线的切线方程,曲线y=lnx在点A(x0,lnx0)处的切线方程为:y﹣lnx0=1x0(x﹣x0),即:y=1x0x﹣1+lnx0,将lnx0=x0+1x0−1代入,即有:y=1x0x+2x0−1,而曲线y=e x的切线中,在点(ln 1x0,1x0)处的切线方程为:y−1x0=1x(x﹣ln1x0)=1x0x+1x0lnx0,将lnx0=x0+1x0−1代入化简,即:y=1x0x+2x0−1,故曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.故得证.。

例析隐零点问题的三类处理技巧

例析隐零点问题的三类处理技巧

数理化解题研究2021年第07期总第500期例析隐零点问题的三类处理技巧魏东升(江西省瑞金第一中学342500)摘 要:本文探究了高考函数隐零点问题的几类处理技巧,并分别从虚设零点、化隐为显和变换主元等三个视角进行呈现,同时对导数压轴题的教学给出了一点建议•关键词:高考;隐零点;解题;策略中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)07 -0056 -02函数与导数主要是考查学生逻辑推理、直观想象和 数学运算等核心素养的主要载体,其一直是高考考查的重点之一 •在处理函数与导数的压轴题时,对零点的处理 往往是一个关键环节,有些函数的零点确实存在,但无法 精确求解,此谓之“隐零点”;有些导数的零点虽然可求,但因含参而需要讨论•对于这类问题,常见的处理方式主 要有虚设零点、化隐为显和变换主元三大类.一、虚设零点所谓虚设零点,是指为了处理函数的隐零点问题,通过采取假设函数零点却不直接求解,通过谋求整体的转 化,将函数转化为易求的形式进行求解的一种处理技巧•例1 (2019年全国I 卷理)已知函数/(%) — In % -•设%0是f (%)的一个零点,证明曲线y - In %在点% - 14( %0,ln %0)处的切线也是曲线y — e %的切线•证明 因为丄-e —ln %0,故点B ( - ln %0,丄)在曲线y —%0%0e %上 由题设知/(%0) —0,即ln %0-%°^4,故直线4B 的斜%0 - 1曲线y — e %在点B ( -ln %0, 1 )处的切线的斜率是1 ,%0%0曲线y - ln %在点4 ( %0, ln %0 )处的切线的斜率也是丄,所%0以曲线y — ln %在点4(%0,ln %0 )处的切线也是曲线y — e % 的切线•评析本题涉及了超越函数(指数函数、对数函数和三角函数等函数结合的函数),在假设零点后,可以考虑把超越式(如ln %、e %等)分离出来再代入表达式求解,以 达到将超越函数转化为普通函数的目的,此谓之整体消“超”•除此之外,对于一类函数零点个数判断(或根据零点个数求参、或零点所在区间判断)的问题,可以考虑利用该零点附近的特殊点的函数值来确定符号,谓之特点 定号(如2019年全国I 卷文);对于含有参数的函数,还 可以考虑整体消参(如2019年天津卷文)和降次留参(如2019年江苏卷)等方式,二、化隐为显所谓化隐为显,指的是为了避免出现直接求导带来的隐零点问题,通过采取重新构造函数的方式,把隐零点 转化为显零点的一种处理技巧•例2 (2017年全国I 卷理)已知函数/ (% ) — a%2 -a% - %ln %,且/(% ) M0.求 a.解析 由题知/(%) — % (a% - a - ln %)(% >0),且/(%)M0,所以 a (% - 1 ) - ln % M0,即当 % e (0,1 )时,a W ln% ;% - 1当 % e (1, + ¥)时,a M ln % ;当 % — 1 时,a (% - 1 ) - ln %M 0% - 1成立.令 g (% ) — % - 1 - ln %, g ‘ (% ) — 1 一丄—%,当 % e%%(0,1)时,g ‘ (%) <0,g (%)单调递减,g (%) >g (1) —0,所以% - 1 > ln %,即 ln % > 1,所以 a W 1 ;当 % e (1, + ¥)时,% - 1g ; (%) >0,g (%)单调递增,g (%) > g (1) —0,所以 %-1 >ln %,即 ln% < 1,所以 a M1.综上,a — 1.% - 1评注分离是化隐为显的一种常见手段,其通常用于分离参数,或者是分离含有类如%ln %这样的超越式•本 题中除了分离参数,还由于/ ( % )含有%ln %而导致求导后出现了隐零点问题,故而采取了将%和ln %分离的处理方收稿日期:2020 -12 -05作者简介:魏东升(1985. 4 -),男,江西省安远人,本科,中学一级教师,从事高中数学教学研究.—56—2021年第07期总第500期数理化解题研究式•除了分离构造,常见化隐为显的方法还有合并构造 (如2018年全国I 卷理)、放缩构造(如2018年全国I 卷 文)和双雄构造(指把一个函数拆成两个函数,如2014年全国I 卷理)等.三、变换主元有些数学问题中常含变量,在某些情况下为了解决问题的需要,可人为地突出该变量的主体地位作用,将之 当作主元构造新的函数,以达到化难为易的目的.这种思 路还适用于多元变量函数的问题.例3 (2015年全国I 卷文)设函数/(%) - e 2% - a ln %.2证明:当 a > 0 时,/(%)^2a + a ln —.a2证明当 a > 0 时,令 g ( a ) - / (% ) - 2 a - a ln — - e 2%2-a ln % - 2a - a ln ——,贝卩 g ‘ (a ) - ln a - ln(2e%).a当 a < 2e% 时,g ‘ (a ) < 0 ;当 a > 2e% 时,g ‘ (a ) > 0,所 以 a -2e% 时,g (a )取最小值为 g (2e%) - e 2% -2e%.令 h (t ) - e 2t - 2et ,则 h' (t ) - 2e 2t - 21,当 t < 1 时,L (t ) <0;当 t >1 时 ’ h' (t ) >0,所以 h (t ) M h (1) -0,即2g ( a ) M0,即 f ( % ) M2 a + a l n —.评注 本题如果直接对/ ( % )进行求导,会出现隐零点问题以致给解题带来不便,故这里采用了重新构造关于变量a 的对数超越函数的处理方式.除了重构对数超 越函数,变换主元往往还会重构指数超越函数(如2016 年全国H 卷文)、重构双勾型函数(如2017年全国H 卷 文)和重构二次函数(如2019年浙江卷)•通过上述几个高考真题我们知道,通过结合已知条件和结论虚设零点、化隐为显和变换主元是解决隐零点问题的主要处理策略•在导数压轴题的教学过程中,像这 样以专题的形式介绍隐零点问题的处理策略,尽量一次 性彻底地解决与其有关的问题,对学生解题水平的提升、逻辑思维的训练和核心素养的培养,想来都是极好的.参考文献:[1 ]王洪军.处理多元问题的几种方法[J ].数理化学 习(高中版),2015(02) :3 -4.[责任编辑:李 璟]赋值法处理抽象函数问题李小蛟(四川省成都市树德中学610091)摘 要:不给出具体解析式,只给出函数的特殊条件或特征的函数即抽象函数.由于抽象函数可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域、值域、单调性、奇偶性、周期性和图象 集于一身,所以在高考中出现频率较高.关键词:赋值法;抽象函数;函数性质中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)07 -0057 -03解答抽象函数题目的基础是熟悉函数的基本知 识•抽象函数无具体表达式,要通过我们所学的一般初 等函数的性质来解决比较困难(小题可借用一些类似函数解决),但抽象函数问题的解决本质上是将抽象 问题具体化,所以解决抽象函数问题可以将函数中变量具体赋值,即解决抽象函数有一个万能的方法—— 赋值法•下面我们分类例析用赋值法解决抽象函数问题•一、赋值法处理抽象函数的函数值抽象函数求值问题是要解决具体函数值问题,因此 抽象函数求值问题的关键在于赋值,即赋要求解自变量, 代入求出相应函数值即可.例1已知f(%)的定义域为R ,对任意的%,y e R ,有/(% + y )二/(%) +/(y ),则/(0)二____•分析本题函数没有具体表达式,即抽象函数求值收稿日期:2020 -12 -05作者简介:李小蛟(1984. 10 -),男,本科,中学高级教师,从事高中数学教学研究.— 57—。

高考导数压轴题中导数零点不可求的三大妙招

高考导数压轴题中导数零点不可求的三大妙招

xlnx ≤1+e-2 <xe+x1(1+e-2).
点 评 第 (Ⅲ) 小 题 中,g(x) = (x2 +
x)f′(x)= xe+x 1(1-x-xlnx),若 求 其 导 数 一 方
面式子较烦,另一方面零 点 不 可 求,从 而 不 能 求 得
其单调区间.但将g(x)<1+e-2 变形为1-x- xlnx <xe+x1(1+e-2),则很容易求导得到两边函
而使问题得到 解 决.但 有 时 会 碰 到 导 数 式 是 超 越 式,导数的零点不可求,从 而 使 问 题 的 解 决 陷 入 困 境,本文通过 几 道 高 考 题 说 明 这 类 问 题 的 几 种 常
见解决办法. 一 、直 觉 求 根 ,二 次 求 导 验 证
例1 (2013年 陕 西 卷 文 科 第21题 )已 知 函 数 f(x)=ex,x ∈ R.
(1)求 f(x)的 反 函 数 的 图 象 上 点 (1,0)处 的 切线方程;
(2)证 明 :曲 线y
= f(x)与 曲 线y

1x2 2

x +1 有 唯 一 公 共 点 ;
(3)设a<b,比 较f(a2+b)与f(bb)--af(a)的
大 小 ,并 说 明 理 由 .
解 (1)f(x)的反函数 g(x)=lnx,则y =
所以,f(x)在 (- 1,0)上 单 调 递 减,在 (0, + ∞)上单调递增.
(Ⅱ)当m ≤2,x∈ (-m,+∞)时,ln(x+m) ≤ln(x+2).故只需证明:当 m =2时,f(x)>0.
当 m =2时,函数f′(x)=ex -x1+2在(-2,
+ ∞)上单调递增.
又f′(-1)<0,f′(0)> 0,故 f′(x)= 0 在 (-2,+ ∞)上有唯一实根x0,且x0 ∈ (-1,0).

高考数学专题一 微专题8 利用导数研究函数零点问题

高考数学专题一 微专题8 利用导数研究函数零点问题

④当x∈(π,+∞)时,ln(x+1)>1, 所以f(x)<0,从而f(x)在(π,+∞)上没有零点. 综上,f(x)有且仅有2个零点.
跟踪训练1 (2023·常德模拟)已知函数f(x)=x2+2-aln x(a∈R). x
(1)若f(x)在x=2处取得极值,求f(x)在点(1,f(1))处的切线方程;
因为 f(x)=x2+2x-aln x,x>0,
2x3-ax-2
所以 f′(x)= x2
(x>0),
令g(x)=2x3-ax-2,则g′(x)=6x2-a,
由 a>0,g′(x)=0,可得 x= a6,
所以 g(x)在0,
a6上单调递减,在
a6,+∞上单调递增,
由于 g(0)=-2<0,故当 x∈0,
a6时,g(x)<0,
又g(1)=-a<0,故g(x)在(1,+∞)上有唯一零点,设为x1,
从而可知f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,
由于f(x)有唯一零点x0,故x1=x0,且x0>1,
所以有 2x30-ax0-2=0,x20+x20-aln x0=0,
联立得 2ln x0-x30-3 1-1=0,
(*)
令 h(x)=2ln x-x3-3 1-1,可知 h(x)在(1,+∞)上单调递增,
由于 h(2)=2ln 2-170<2×0.7-170<0,h(3)=2ln 3-2296>2×1-2296>0, 故方程(*)的唯一解,即f(x)的唯一零点x0∈(2,3),故[x0]=2.
考点二 由零点个数求参数范围
③若a<-1, (ⅰ)当x∈(0,+∞)时, 则g′(x)=ex-2ax>0, 所以g(x)在(0,+∞)上单调递增, 又g(0)=1+a<0,g(1)=e>0, 所以存在m∈(0,1), 使得g(m)=0,即f′(m)=0, 当x∈(0,m)时,f′(x)<0,f(x)单调递减, 当x∈(m,+∞)时,f′(x)>0,f(x)单调递增, 所以当x∈(0,m)时,f(x)<f(0)=0,

导数压轴题中函数零点求参问题的分析思路和解题方法

导数压轴题中函数零点求参问题的分析思路和解题方法

导数压轴题中函数零点求参问题的分析思路和解题⽅法已知函数有零点(⽅程有根),求参数取值范围常⽤的⽅法
(1)直接法:直接根据题设条件构建关于参数的不等式(组),通过解不等式(组)确定参数范围;
(2)分离参数法:先将参数分离,化为a=g(x)的形式,进⽽转化成求函数最值问题加以解决;
(3)数形结合法:将函数解析式(⽅程)适当变形,转化为图象易得的函数与⼀个含参的函数的差,在同
⼀平⾯直⾓坐标系中画出这两个函数的图象,结合函数的单调性、周期性、奇偶性等性质及图象
求解.
经典例题:
的影响,所以多利⽤导数来研究函数的性质,从⽽较为准确地画出函数的草图,进⽽解决零点问题.。

导数压轴题之隐零点问题专辑含答案纯

导数压轴题之隐零点问题专辑含答案纯

导数压轴题之隐零点问题导数压轴题之隐零点问题共13题1.已知函数fx=ae x﹣a﹣xe x a≥0,e=…,e为自然对数的底数,若fx≥0对于x∈R恒成立.1求实数a的值;2证明:fx存在唯一极大值点x0,且.解答1解:fx=e x ae x﹣a﹣x≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立,即ae x﹣1≥x恒成立,x=0时,显然成立,x>0时,e x﹣1>0,故只需a≥在0,+∞恒成立,令hx=,x>0,h′x=<0,故hx在0,+∞递减,而==1,故a≥1,x<0时,e x﹣1<0,故只需a≤在﹣∞,0恒成立,令gx=,x<0,g′x=>0,故hx在﹣∞,0递增,而==1,故a≤1,综上:a=1;2证明:由1fx=e x e x﹣x﹣1,故f'x=e x2e x﹣x﹣2,令hx=2e x﹣x﹣2,h'x=2e x﹣1,所以hx在﹣∞,ln单调递减,在ln,+∞单调递增,h0=0,hln=2eln﹣ln﹣2=ln2﹣1<0,h﹣2=2e﹣2﹣﹣2﹣2=>0,∵h﹣2hln<0由零点存在定理及hx的单调性知,方程hx=0在﹣2,ln有唯一根,设为x0且2e x0﹣x0﹣2=0,从而hx有两个零点x0和0,所以fx在﹣∞,x0单调递增,在x0,0单调递减,在0,+∞单调递增,从而fx存在唯一的极大值点x0即证,由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1,∴fx0=e x0e x0﹣x0﹣1=﹣x0﹣1=﹣x02+x0≤2=,取等不成立,所以fx0<得证,又∵﹣2<x0<ln,fx在﹣∞,x0单调递增所以fx0>f﹣2=e﹣2e﹣2﹣﹣2﹣1=e﹣4+e﹣2>e﹣2>0得证,从而0<fx0<成立.2.已知函数fx=ax+xlnxa∈R1若函数fx在区间e,+∞上为增函数,求a的取值范围;2当a=1且k∈Z时,不等式kx﹣1<fx在x∈1,+∞上恒成立,求k的最大值.解答解:1∵函数fx在区间e,+∞上为增函数,∴f′x=a+lnx+1≥0在区间e,+∞上恒成立,∴a≥﹣lnx﹣1max=﹣2.∴a≥﹣2.∴a的取值范围是﹣2,+∞.2a=1时,fx=x+lnx,k∈Z时,不等式kx﹣1<fx在x∈1,+∞上恒成立,∴k<,令gx=,则g′x=,令hx=x﹣lnx﹣2x>1.则h′x=1﹣=>0,∴hx 在1,+∞上单增,∵h3=1﹣ln3<0,h4=2﹣2ln2>0,存在x0∈3,4,使hx0=0.即当1<x<x0时hx<0 即g′x<0x>x0时hx>0 即g′x>0gx在1,x0上单减,在x0+∞上单增.令hx0=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,gx min=gx0===x0∈3,4.k<gx min=x0∈3,4,且k∈Z,∴k max=3.3.函数fx=alnx﹣x2+x,gx=x﹣2e x﹣x2+m其中e=….1当a≤0时,讨论函数fx的单调性;2当a=﹣1,x∈0,1时,fx>gx恒成立,求正整数m的最大值.解答解:1函数fx定义域是0,+∞,,i当时,1+8a≤0,当x∈0,+∞时f'x≤0,函数fx的单调递减区间是0,+∞;ⅱ当,﹣2x2+x+a=0的两根分别是:,,当x∈0,x1时f'x<0.函数fx的单调递减.当x∈x1,x2时f'x>0,函数fx的单调速递增,当x∈x2,+∞时f'x<0,函数fx的单调递减;综上所述,i当时fx的单调递减区间是0,+∞,ⅱ当时,fx的单调递增区间是,单调递减区间是和2当a=﹣1,x∈0,1时,fx>gx,即m<﹣x+2e x﹣lnx+x,设hx=﹣x+2e x﹣lnx+x,x∈0,1,∴,∴当0<x≤1时,1﹣x≥0,设,则,∴ux在0,1递增,又∵ux在区间0,1上的图象是一条不间断的曲线,且,∴使得ux0=0,即,当x∈0,x0时,ux<0,h'x<0;当x∈x0,1时,ux>0,h'x>0;∴函数hx在0,x0单调递减,在x0,1单调递增,∴=,∵在x∈0,1递减,∵,∴,∴当m≤3时,不等式m<﹣x+2e x﹣lnx+x对任意x∈0,1恒成立,∴正整数m的最大值是3.4.已知函数fx=e x+a﹣lnx其中e=…,是自然对数的底数.Ⅰ当a=0时,求函数a=0的图象在1,f1处的切线方程;Ⅱ求证:当时,fx>e+1.解答Ⅰ解:∵a=0时,∴,∴f1=e,f′1=e﹣1,∴函数fx的图象在1,f1处的切线方程:y﹣e=e﹣1x﹣1,即e﹣1x﹣y+1=0;Ⅱ证明:∵,设gx=f′x,则,∴gx是增函数,∵e x+a>e a,∴由,∴当x>e﹣a时,f′x>0;若0<x<1e x+a<e a+1,由,∴当0<x<min{1,e﹣a﹣1}时,f′x<0,故f′x=0仅有一解,记为x0,则当0<x<x0时,f′x<0,fx递减;当x>x0时,f′x>0,fx递增;∴,而,记hx=lnx+x,则,﹣a<hx0<h,而hx显然是增函数,∴,∴.综上,当时,fx>e+1.5.已知函数fx=axe x﹣a+12x﹣1.1若a=1,求函数fx的图象在点0,f0处的切线方程;2当x>0时,函数fx≥0恒成立,求实数a的取值范围.解答解:1若a=1,则fx=xe x﹣22x﹣1,当x=0时,f0=2,f'x=xe x+e x﹣4,当x=0时,f'0=﹣3,所以所求切线方程为y=﹣3x+2.……3分2由条件可得,首先f1≥0,得,而f'x=ax+1e x﹣2a+1,令其为hx,h'x=ax+2e x恒为正数,所以hx即f'x单调递增,而f'0=﹣2﹣a<0,f'1=2ea﹣2a﹣2≥0,所以f'x存在唯一根x0∈0,1,且函数fx在0,x0上单调递减,在x0+∞上单调递增,所以函数fx的最小值为,只需fx0≥0即可,又x0满足,代入上式可得,∵x0∈0,1,∴,即:fx0≥0恒成立,所以.……13分6.函数fx=xe x﹣ax+b的图象在x=0处的切线方程为:y=﹣x+1.1求a和b的值;2若fx满足:当x>0时,fx≥lnx﹣x+m,求实数m的取值范围.解答解:1∵fx=xe x﹣ax+b,∴f′x=x+1e x﹣a,由函数fx的图象在x=0处的切线方程为:y=﹣x+1,知:,解得a=2,b=1.2∵fx满足:当x>0时,fx≥lnx﹣x+m,∴m≤xe x﹣x﹣lnx+1,①令gx=xe x﹣x﹣lnx+1,x>0,则=,设g′x0=0,x0>0,则=,从而lnx0=﹣x0,g′=3<0,g′1=2e﹣1>0,由g′﹣g′1<0,知:,当x∈0,x0时,g′x<0;当x∈x0,+∞时,g′x>0,∴函数gx在0,x0上单调递减,在x0,+∞上单调递增.∴gx min=gx0=﹣x0﹣lnx0=﹣x0﹣lnx0=x0﹣x0+x0=1.m≤xe x﹣x﹣lnx+1恒成立m≤gx min,∴实数m的取值范围是:﹣∞,1.7.已知函数fx=3e x+x2,gx=9x﹣1.1求函数φx=xe x+4x﹣fx的单调区间;2比较fx与gx的大小,并加以证明.解答解:1φ'x=x﹣2e x﹣2,令φ'x=0,得x1=ln2,x2=2;令φ'x>0,得x<ln2或x>2;令φ'x<0,得ln2<x<2.故φx在﹣∞,ln2上单调递增,在ln2,2上单调递减,在2,+∞上单调递增.2fx>gx.证明如下:设hx=fx﹣gx=3e x+x2﹣9x+1,∵h'x=3e x+2x﹣9为增函数,∴可设h'x0=0,∵h'0=﹣6<0,h'1=3e﹣7>0,∴x0∈0,1.当x>x0时,h'x>0;当x<x0时,h'x<0.∴hx min=hx0=,又,∴,∴==x0﹣1x0﹣10,∵x0∈0,1,∴x0﹣1x0﹣10>0,∴hx min>0,∴fx>gx.8.已知函数fx=lnx+ax﹣12a>0.1讨论fx的单调性;2若fx在区间0,1内有唯一的零点x0,证明:.解答解:1,①当0<a≤2时,f'x≥0,y=fx在0,+∞上单调递增,②当a>2时,设2ax2﹣2ax+1=0的两个根为,且,y=fx在0,x1,x2,+∞单调递増,在x1,x2单调递减.2证明:依题可知f1=0,若fx在区间0,1内有唯一的零点x0,由1可知a>2,且.于是:①②由①②得,设,则,因此gx在上单调递减,又,根据零点存在定理,故.9.已知函数fx=,其中a为常数.1若a=0,求函数fx的极值;2若函数fx在0,﹣a上单调递增,求实数a的取值范围;3若a=﹣1,设函数fx在0,1上的极值点为x0,求证:fx0<﹣2.解答解:1fx=的定义域是0,+∞,f′x=,令f′x>0,解得0<x<,令f′x<0,解得:x>,则fx在0,递增,在,+∞递减,=f=,无极小值;故fx极大值2函数fx的定义域为{x|x>0且x≠﹣a}.=,要使函数fx在0,﹣a上单调递增,则a<0,又x∈0,﹣a时,a<x+a<0,只需1+﹣2lnx≤0在0,﹣a上恒成立,即a≥2xlnx﹣x在0,﹣a上恒成立,由y=2xlnx﹣x的导数为y′=21+lnx﹣1=1+2lnx,当x>时,函数y递增,0<x<时,函数y递减,当﹣a≤即﹣<a<0时,函数递减,可得a≥0,矛盾不成立;当﹣a>即a<﹣时,函数y在0,递减,在,﹣a递增,可得y<﹣2aln﹣a+a,可得a≥﹣2aln﹣a+a,解得﹣1≤a<0,则a的范围是﹣1,0;3证明:a=﹣1,则fx=导数为f′x=,设函数fx在0,1上的极值点为x0,可得1﹣2lnx0﹣=0,即有2lnx0=1﹣,要证fx0<﹣2,即+2<0,由于+2=+2==,由于x0∈0,1,且x0=,2lnx0=1﹣不成立,则+2<0,故fx0<﹣2成立.10.已知函数fx=lnx﹣x+1,函数gx=axe x﹣4x,其中a为大于零的常数.Ⅰ求函数fx的单调区间;Ⅱ求证:gx﹣2fx≥2lna﹣ln2.解答解:Ⅰ…………………………………2分x∈0,1时,f'x>0,y=fx单增;x∈1,+∞时,f'x<0,y=fx单减 (4)Ⅱ证明:令hx=axe x﹣4x﹣2lnx+2x﹣2=axe x﹣2x﹣2lnx﹣2a>0,x>0 (5)故 (7)令h'x=0即,两边求对数得:lna+x0=ln2﹣lnx0即lnx0+x0=ln2﹣lna (9)∴,∴hx≥2lna﹣2ln2……………………………12分11.已知函数fx=x2﹣a﹣2x﹣alnxa∈R.Ⅰ求函数y=fx的单调区间;Ⅱ当a=1时,证明:对任意的x>0,fx+e x>x2+x+2.解答解:Ⅰ函数fx的定义域是0,+∞,f′x=2x﹣a﹣2﹣=…2分当a≤0时,f′x>0对任意x∈0,+∞恒成立,所以,函数fx在区间0,+∞单调递增;…4分当a>0时,由f′x>0得x>,由f′x<0,得0<x<,所以,函数在区间,+∞上单调递增,在区间0,上单调递减;Ⅱ当a=1时,fx=x2+x﹣lnx,要证明fx+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设gx=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,gx>0,令g′x=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′x和gx变化情况如下表x0,x0x0x0,∞g′x﹣0+gx递减递增gx min=gx0=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以gx min>2﹣2=0,因此不等式得证.12.已知函数.Ⅰ当a=2时,i求曲线y=fx在点1,f1处的切线方程;ii求函数fx的单调区间;Ⅱ若1<a<2,求证:fx<﹣1.解答解:Ⅰ当a=2时,,定义域为0,+∞,,f′1=﹣1﹣2=﹣3,f'1=2﹣2=0;所以切点坐标为1,﹣3,切线斜率为0所以切线方程为y=﹣3;ii令gx=2﹣lnx﹣2x2,所以gx在0,+∞上单调递减,且g1=0所以当x∈0,1时,gx>0即f'x>0所以当x∈1,+∞时,gx<0即f'x<0综上所述,fx的单调递增区间是0,1,单调递减区间是1,+∞.Ⅱ证明:fx<﹣1,即设,,设φx=﹣ax2﹣lnx+2所以φ'x在0,+∞小于零恒成立即h'x在0,+∞上单调递减因为1<a<2,所以h'1=2﹣a>0,h'e2=﹣a<0,所以在1,e2上必存在一个x0使得,即,所以当x∈0,x0时,h'x>0,hx单调递增,当x∈x0,+∞时,h'x<0,hx单调递减,所以,因为,所以,令hx0=0得,因为1<a<2,所以,,因为,所以hx0<0恒成立,即hx<0恒成立,综上所述,当1<a<2时,fx<﹣1.13.已知函数fx=x﹣alnx+x,其中a∈R1若曲线y=fx在点x0,fx0处的切线方程为y=x,求a的值;2若为自然对数的底数,求证:fx>0.解答解:1fx的定义域为0,+∞,,由题意知,则,解得x0=1,a=1或x0=a,a=1,所以a=1.2令,则,因为,所以,即gx在0,+∞上递增,以下证明在gx区间上有唯一的零点x0,事实上,,因为,所以,,由零点的存在定理可知,gx在上有唯一的零点x0,所以在区间0,x0上,gx=f'x<0,fx单调递减;在区间x0,+∞上,gx=f'x>0,fx单调递增,故当x=x0时,fx取得最小值,因为,即,所以,即>0.∴fx>0.。

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题专辑含答案纯word版本文介绍了导数压轴题中的隐零点问题,共有13道题目。

1.对于已知函数$f(x)=(aex-a-x)ex$,若$f(x)\geq 0$对于$x\in R$恒成立,求实数$a$的值,并证明$f(x)$存在唯一极大值点$x$,且$f(x)<f(x_0)$,其中$x_0$为$f(x)$的零点。

解答:1) 对于$f(x)=ex(aex-a-x)\geq 0$,因为$ex>0$,所以$aex-a-x\geq 0$恒成立,即$a(ex-1)\geq x$恒成立。

当$x=0$时,显然成立。

当$x>0$时,$ex-1>0$,故只需$a\geq 1$。

令$h(x)=aex-a-x$,则$h'(x)=aex-1$,在$(0,+\infty)$恒成立,故$h(x)$在$(0,+\infty)$递减。

又因为$h(0)=0$,故$a\geq1$。

当$x<0$时,$ex-1<0$,故只需$a\leq 1$。

令$g(x)=aex-a-x$,则$g'(x)=aex-1$,在$(-\infty,0)$恒成立,故$g(x)$在$(-\infty,0)$递增。

又因为$g(0)=0$,故$a\leq 1$。

综上,$a=1$。

2) 由(1)得$f(x)=ex(ex-x-1)$,故$f'(x)=ex(2ex-x-2)$。

令$h(x)=2ex-x-2$,则$h'(x)=2ex-1$,所以$h(x)$在$(-\infty,\ln)$单调递减,在$(\ln,+\infty)$单调递增,$h(0)=0$,$h(\ln)=2e^{\ln}-\ln-2=\ln2-10$,故$h(x)$在$(-2,\ln)$有唯一零点$x_0$。

设$x_0$为$f(x)$的零点,则$2ex_0-x_0-2=0$,从而$h(x)$有两个零点$x_0$和$-x_0-2$,所以$f(x)$在$(-\infty,x_0)$单调递增,在$(x_0,+\infty)$单调递减,在$(-2,x_0)$上单调递增,在$(-\infty,-2)$上单调递减,从而$f(x)$存在唯一的极大值点$x_0$。

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。

压轴题04 函数与导数常见经典压轴大题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04  函数与导数常见经典压轴大题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04函数与导数常见经典压轴大题函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.考向一:导数与数列不等式的综合问题考向二:双变量问题考向三:证明不等式考向四:零点问题考向五:不等式恒成立问题考向六:极值点偏移问题与拐点偏移问题考向七:导数中的同构问题考向八:导数与三角函数结合问题1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x >,则令02()()()x F x f x f x=-.(3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x x x x -+<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.1.(2023·全国·校联考二模)已知函数()()2ln R 2a f x x x x x a a =--+∈,()f x '为()f x 的导函数.(1)当12a =时,若()()g x f x ='在[[],1(0)t t t +>上的最大值为()h t ,求()h t ;(2)已知12,x x 是函数f (x )的两个极值点,且12x x <,若不等式112e mmx x +<恒成立,求正数m的取值范围.【解析】(1)当12a =时,()211ln 42f x x x x x =--+,其定义域为(0,+∞),且()1ln 112f x x x =+--'1ln 2x x =-,所以()1ln 2g x x x =-,所以()112(0)22xg x x x x'-=-=>,令()0g x '>,得02x <<;令()0g x '<,得2x >,所以()g x 在(0,2)上单调递增,在(2,)+∞上单调递减.①当12t +≤,即01t <≤时,()g x 在[t ,t +1]上单调递增,所以()()()()max 111ln 122h t g x g t t t ==+=+--;②当2,12t t ≤+>,即12t <≤时,()()()max 2ln21h t g x g ===-;③当2t >时,g (x )在[t ,t +1]上单调递减,所以()()()max 1ln 2h t g x g t t t ===-,综上所述11ln(1),01,22()ln 21,12,1ln , 2.2t t t h t t t t t ⎧+--<≤⎪⎪=-<≤⎨⎪⎪->⎩(2)因为112emmx x +<,所以121ln ln m x m x +<+,由题意知()f x 的定义域为(0,),+∞()ln f x x ax '=-,故12,x x 是关于x 的方程()ln 0f x x ax '=-=的两个根,所以()()111222ln 0,ln 0f x x ax f x x ax ='-=-'==,即1122ln ,ln x ax x ax ==,所以121ln ln m x m x +<+,等价于()12121m ax max a x mx +<+=+.因为120,0m x x ><<,所以原式等价于121ma x mx +>+,又1122ln ,ln x ax x ax ==,作差,得()1122lnx a x x x =-,即1212lnx x a x x =-,所以原式等价112122ln 1xx m x x x mx +>-+,因为120x x <<,所以()()1212121lnm x x x x x mx +-<+恒成立.令12x t x =,则(0,1)t ∈,故不等式()()11ln m t t t m+-<+在(0,1)t ∈上恒成立,令()()11()ln m t t t t mϕ+-=-+.又因为()()()()()()2222111t t m m t t t m t t m ϕ--+'=-=++,当21m ≥时,得(0,1)t ∈,所以()0t ϕ'>在(0,1)上单调递增,又()10ϕ=,所()0t ϕ<在(0,1)上恒成立,符合题意;当21m <时,可得2(0,)t m ∈时,()0t ϕ'>,()2,1t m ∈时,()0t ϕ'<,所以()t ϕ在2(0,)m 上单调递增,在2(,1)m 上单调递减,又因为()10ϕ=,所以()t ϕ在(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式112emmx x +<恒成立,只需满足21m ≥,又0m >,故m 1≥,即正数m 的取值范围为[1,)+∞.2.(2023·河南·校联考二模)已知函数()22ln f x x x x =+.(1)求()f x 的极值;(2)若不等式()2e x f x x m x≥+在1,e ∞⎡⎫+⎪⎢⎣⎭上恒成立,求实数m 的取值范围.【解析】(1)函数()22ln f x x x x =+的定义域为()0,∞+,又()()2ln 22ln 3f x x x x x x x '=++=+,令()0f x '<得320e x -<<,令()0f x ¢>得32e x ->,所以()f x 在320,e -⎛⎫ ⎪⎝⎭上单调递减,在32e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,所以()f x 在32e x -=处取得极小值3321e e 2f --⎛⎫=- ⎪⎝⎭,无极大值.(2)由()2e x f x x m x≥+得2ln e x x x x x m -+≥,即对任意的1,e x ∞⎡⎫∈+⎪⎢⎣⎭,2ln exx x x xm -+≤恒成立,令()2ln e xx x x xh x -+=,1,e x ∞⎡⎫∈+⎪⎢⎣⎭,则()()()1ln 2e x x x x h x '--+=,令()ln 2x x x ϕ=-+,则()1xx xϕ'-=,所以当11ex <<时()0x ϕ'>,当1x >时()0x ϕ'<,所以()x ϕ在1,1e ⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,又1110e e ϕ⎛⎫=-> ⎪⎝⎭,()110ϕ=>,()22e 4e 0ϕ=-<,所以当1,e x ∞⎡⎫∈+⎪⎢⎣⎭时()x ϕ在()21,e 内存在唯一的零点0x ,所以当1,1e x ⎛⎫∈ ⎪⎝⎭时()0x ϕ>,()0h x '>,()h x 单调递增,当()01,x x ∈时()0x ϕ>,()0h x '<,()h x 单调递减,当()0,x x ∈+∞时()0x ϕ<,()0h x '>,()h x 单调递增,所以()()0min1,e h x h x h ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,12e 1e e h --⎛⎫=- ⎪⎝⎭,因为()000ln 20x x x ϕ=-+=,所以00ln 11x x -+=-,020e x x -=,所以()()00000220000000002ln 1ln e 1e e e e ex x x x x x x x x x x x x h x --+-+--=====-,因为e 122e e ---->-,所以()01e h h x ⎛⎫> ⎪⎝⎭,所以()()02min 1e h x h x ==-,所以实数m 的取值范围为21,e ⎛⎤-∞- ⎥⎝⎦.3.(2023·全国·模拟预测)已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.【解析】(1)当1a =时,()111221f =-+=,且()()11,11f x x f x=-+'∴=',∴函数()f x 在点()()1,1f 处的切线方程112y x -=-,即2210x y --=.(2)()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,∴方程21ln 02x x x a-+=,即22ln 20x a x ax --=在()0,∞+有唯一实数解.设()22ln 2g x x a x ax =--,则()2222x ax ag x x--'=.令()0g x '=,即20.0,0,x ax a a x --=>> 20x ax a ∴--=的两个根分别为1402a a a x =(舍去),2x =当()20,x x ∈时,()()0,g x g x '<在()20,x 上单调递减,当()2,x x ∈+∞时,()()0,g x g x '>在()20,x 上单调递增,当2x x =时,()()0,g x g x '=取最小值()2g x ,要使()g x 在()0,∞+有唯一零点,则须()()220,0,g x g x ⎧=⎪⎨='⎪⎩即22222222ln 20,0,x a x ax x ax a ⎧--=⎨--=⎩()22222ln 0,0,2ln 10.*a x ax a a x x ∴+-=>∴+-= 设函数()2ln 1,h x x x =+-当0x >时()h x 是增函数,()h x ∴至多有一解.⋅()10,h =∴ 方程()*的解为21x =1=,解得12a =,∴实数a 的值为12.4.(2023·广西柳州·柳州高级中学校联考模拟预测)已知函数()ln eaf x x x =-(其中a ∈R ,e 为自然对数的底数).(1)若函数()f x 存在极大值,且极大值不小于1,求a 的取值范围;(2)当e a =时,证明()121e 2102x x f x x -⎛⎫+-++< ⎪⎝⎭.【解析】(1)由已知可得,函数()f x 定义域为()0,∞+,()1ea f x x =-'.①当0a ≤时,()10eaf x x =->'在()0,∞+上恒成立,所以()f x 在()0,∞+上单调递增,此时函数()f x 无极值;②当0a >时,()e e axf x x-=',解()e 0e axf x x-=='可得e x a =.当e 0x a <<时,()0f x ¢>,所以()f x 在e 0,a ⎛⎫⎪⎝⎭上单调递增;当e x a >时,()0f x '<,所以()f x 在e ,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以,函数()f x 在ex a=处取得极大值e f a ⎛⎫ ⎪⎝⎭.由已知,e 1f a ⎛⎫≥ ⎪⎝⎭,即e e ln 11f a a ⎛⎫=-≥ ⎪⎝⎭,解得10ea <≤,所以,a 的取值范围为10,e ⎛⎤⎥⎝⎦.(2)因为()()()112211e 212e 22x x x f x x x f x --⎛⎫⎛⎫+-++=++- ⎪ ⎪⎝⎭⎝⎭,又因为0x >,所以只需证明()12e212x f x x -<-+即可.当e a =时,()ln f x x x =-,由(1)知()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以,()f x 在1x =处取得极大值,也是最大值()()max 11f x f ==-.记()12e212x g x x -=-+,0x >,则()1112222211ee e 221122x x x x x g x x x ---⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭'==⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增,所以,()g x 在12x =处取得极小值,也是最小值()min 112g x g ⎛⎫==- ⎪⎝⎭.因为()max f x 与()min g x 不能同时取到,所以结论成立.5.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]ex xf x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1mx x -≤-+.【解析】(1)由题可知(0)0,()(cos sin )e 2πx f f x x x x -'==--+,因为(0)1πf =+',所以,()y f x =在(0,(0))f 处的切线方程为(1π)y x =+.(2)()f x m =存在两个非负零点12,x x ,设12x x <,由(1)可知()y f x =在(0,(0))f 处的切线方程为(1π)y x =+,注意到π1(π)0,(π)πe f f =-'=-,所以,()y f x =在(π,0)处的切线方程为π1π(π)e y x ⎛⎫=--- ⎪⎝⎭.下证:当[0,π]x ∈时,()(1π)f x x ≤+,且π1()π(π)e f x x ⎛⎫≤--- ⎪⎝⎭.(i )要证()(1π)f x x ≤+,即证2sin e xx x x ≤+,只需证()2sin e x x x x ≤+.①设()sin ,0,()1cos 0g x x x x g x x -=-'=≥≥,故()g x 在[0,)+∞上单调递增,故()(0)0g x g ≥=,即sin ,[0,)x x x ≤∀∈+∞恒成立.要证①,只需证()2e xx x x ≤+.当0x =时上式成立;当0x >时,即证1(1)e x x ≤+,此时,由于11,e 1x x +≥≥,故(1)e 1x x +≥,于是,当0x ≥时,()(1π)f x x ≤+.(ii )要证1()π(π)e x f x x ⎛⎫≤--- ⎪⎝⎭,只需证2πsin 1ππ(π)e e x x x x x ⎛⎫-+≤--- ⎪⎝⎭,即证2sin 1ππ(π)0,[0,π]e e x x x x x x x ⎛⎫-+++-≤∈ ⎪⎝⎭.设2πsin 1()ππ(π),[0,π]e e x x h x x x x x ⎛⎫=-+++-∈ ⎪⎝⎭,则πcos sin 1()2ππ,(π)0e e x x x h x x h -''=-+++=.设πcos sin 1()2ππ,[0,π]e e xx x m x x x -=-+++∈,则()2cos cos 221e e x x x x m x -⎛⎫=-=-+ ⎝'⎪⎭.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,cos 0,e 0,()0x x m x ≥><',当,2x π⎛⎤∈π ⎥⎝⎦时,π2cos 0,|cos |1,e e 1x x x <≤>>,故cos 10,()0e x x m x '+><.于是()0,[0,π]m x x <∀∈'恒成立,故()m x 在[0,]π上单调递减.从而()(π)0m x m ≥=,即()0,[0,π]h x x ≥∀∈'恒成立,故()h x 在[0,]π上单调递增,从而()(π)0h x h ≤=,于是π1()π(π)e f x x ⎛⎫≤--- ⎪⎝⎭.设(1π)x m +=的零点为31,π(π)e x x x m ⎛⎫---= ⎪⎝⎭的零点为4x ,则()341(1π),ππe x m x m π⎛⎫+=---= ⎪⎝⎭.因为()311(1π)(1π)x m f x x +==≤+,所以31x x ≤,因为()()()422π11ππππe e x m f x x π⎛⎫⎛⎫---==≤--- ⎪ ⎪⎝⎭⎝⎭,所以42x x ≥,又34π,π11ππex m mx ==-++,所以2143π2ππ11π1ππe mm m x x x x -≤-=--≤-+++,所以212ππ1mx x -≤-+.6.(2023·上海静安·统考二模)已知函数()()211ln 2f x x a x a x =-++.(其中a 为常数)(1)若2a =-,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当a<0时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.【解析】(1)当2a =-时,可得()212ln 2f x x x x =+-,可得()2(2)(1)1x x f x x x x+-'=+-=,所以()22f '=且()242ln 2f =-,所以切线方程为(42ln 2)2(2)y x --=-,即22ln 20x y --=,即曲线所以曲线()y f x =在点(2,(2))f 处的切线方程为22ln 0x y x --=.(2)由函数()()211ln 2f x x a x a x =-++,可得函数()f x 的定义域为(0,)+∞,又由()()(1)x a x f x x--'=,令()0f x '=,解得1x a =,11x =,当a<0时,()f x 与()f x '在区间(0,)+∞的情况如下表:x (0,1)1(1,)+∞()f x '-+()f x极小值↗所以函数的极小值为()112f a =--,也是函数()f x 的最小值,所以当a<0时,函数()f x 的最小值为12a --(3)当0a =时,()212f x x x =-,令()0f x =,解得122,0x x ==(舍去)所以函数()y f x =在(0,)+∞上有一个零点;当01a <<时,()f x 与()f x '在区间(0,)+∞的情况如下表:x (0,)a a(,1)a 1(1,)+∞()f x '+0-0+()f x ↗极大值极小值↗所以函数()f x 在(0,)a 单调递增,在(,1)a 上单调递减,此时函数()f x 的极大值为()21ln 02f a a a a a =--+<,所以函数()y f x =在(0,1)上没有零点;又由()1102f a =--<且函数()f x 在(1,)+∞上单调递增,且当x →+∞时,()f x →+∞,所以函数()f x 在(1,)+∞上只有一个零点,综上可得,当01a ≤<时,()f x 在(0,)+∞上有一个零点.7.(2023·河北沧州·统考模拟预测)已知函数()()ln 1f x x ax a =--∈R .(1)若函数()y f x =在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)若方程()20f x +=有两个实根1x ,2x ,且212x x >,求证:212332e x x >.参考数据:ln 20.693≈,ln 3 1.099≈.【解析】(1)函数()f x 的定义域为()0,∞+,由题意,()11ax f x a x x-'=-=.当0a ≤时,()0f x ¢>,函数()f x 在()0,∞+上单调递增,不合题意;当0a >时,由()0f x ¢>得10x a <<,所以函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.又函数()y f x =在区间[)1,+∞上单调递减,所以,11a≤,即1a ≥.因此,实数a 的取值范围是[)1,+∞.(2)由题意()2ln 10f x x ax +=-+=,于是1122ln 1ln 1x ax x ax +=⎧⎨+=⎩,令21x t x =,则由212x x >可得,2t >.于是221111ln 1ln ln 1ln 1ln 1x x t x t x x x +++===++,即1ln ln 11t x t =--.从而21ln ln ln ln 11t tx t x t =+=--.另一方面,对212332e x x >两端分别取自然对数,则有12ln 2ln 5ln 23x x +>-,于是,即证ln 2ln 35ln 2311t t t t t +->---,即()12ln 5ln 21t t t +>-,其中2t >.设()()12ln 1t t g t t +=-,2t >.则()()()()()221212ln 112ln 3ln 2111t t t t t t t t t g t t t +⎛⎫+--+-+-- ⎪⎝⎭'==--,设()13ln 21t t t tϕ=-+--,2t >.则()()()22222113123120t t t t t t t t t ϕ----+'=++==>在()2,+∞上恒成立,于是,()t ϕ在()2,+∞上单调递增,从而()()1523ln 2413ln 2022t ϕϕ>=-+--=->.所以,()0g t '>,即函数()g t 在()2,+∞上单调递增,于是()()25ln 2g t g >=.因此,212332e x x >,即原不等式成立.8.(2023·广东湛江·统考一模)已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.【解析】(1)证明:由()e cos 2xf x x =+-可得()00e cos020f =+-=,当0x <时,e 1x <,cos 1≤x ,所以e cos 2x x +<,故e cos 20x x +-<,故()f x 在区间(),0∞-上无零点.当0x ≥时,()e sin xf x x '=-,而e 1x ≥,sin 1x -≥-,且等号不会同时取到,所以()e sin 0xf x x =->',所以当0x ≥时,函数()f x 单调递增,所以()()00f x f ≥=,故函数()f x 在区间[)0,∞+上有唯一零点0,综上,函数()f x 在定义域上有唯一零点.(2)由()sin f x ax x >-在区间()0,∞+上恒成立,得e cos 2sin x x ax x +->-,即e sin cos 20x x x ax ++-->在区间()0,∞+上恒成立.设()e sin cos 2xg x x x ax =++--,则()0g x >在区间()0,∞+上恒成立,而()e cos sin xg x x x a =+--',()e cos sin x m x x x a =+--,则()e sin cos x m x x x =-'-.设()e 1xh x x =--,则()e 1x h x '=-,当0x >时,()0h x '>,所以函数()h x 在区间()0,∞+上单调递增,故在区间()0,∞+上,()()00h x h >=,即在区间()0,∞+上e 1x x >+,设函数()()0n ,si ,p x x x x ∞=-∈+,则()1cos 0p x '=-≥,所以函数()p x 在区间()0,∞+上单调递增,故在区间()0,∞+上()()00p x p >=,即在区间()0,∞+上,sin x x >,所以在区间()0,∞+上,e 1sin cos x x x x >+>+,即()e sin cos 0xm x x x =-->',所以在区间()0,∞+上函数()g x '单调递增.当2a ≤时,()020g a '=-≥,故在区间()0,∞+上函数()0g x '>,所以函数()g x 在区间()0,∞+上单调递增.又()00g =,故()0g x >,即函数()sin f x ax x >-在区间()0,∞+上恒成立.当2a >时,()020g a '=-<,()()()ln 22cos ln 2sin ln 2g a a a a a '+=+++-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()π2ln 204a ⎛⎫=+-> ⎪⎝⎭,故在区间()()0,ln 2a +上函数()g x '存在零点0x ,即()00g x '=,又在区间()0,∞+上函数()g x '单调递增,故在区间()00,x 上函数()()00g x g x ''<=,所以在区间()00,x 上函数()g x 单调递减,又()00g =,所以在区间()00,x 上函数()(0)0g x g <=,与题设矛盾.综上,a 的取值范围为(],2-∞.9.(2023·重庆九龙坡·统考二模)已知函数()ln ax ax f x x=+-,函数()2ln 2e 2e 12xx x a g x a x x-=+-+.(1)当0a >时,求()f x 的单调区间;(2)已知12a ≥,1e 2xx >,求证:()0g x <;(3)已知n 为正整数,求证:11111ln 212212n n n n n+++⋅⋅⋅+>++-.【解析】(1)2221()ln ,()a a ax x af x x ax f x a x x x x-+-'=-+∴=--= ,①当12a ≥时,此时2140a ∆=-≤,则()0f x '≤恒成立,则()f x 的减区间为()0,∞+,②当102a <<时,令()0f x ¢>,解得11,22x a a ⎛+∈⎪ ⎪⎝⎭,则()f x 的增区间为⎝⎭令()0f x '<,解得1141140,,22x a a ⎛⎫⎛⎫∈⋃+∞ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,则()f x 的减区间为110,,,22a a ⎛⎛⎫+∞⎪ ⎪ ⎪⎝⎭⎝⎭,综上当12a ≥时,()f x 的减区间为()0,∞+,无增区间;当102a <<时,()f x 的增区间为⎝⎭,减区间为110,,22a a ⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.(2)欲证2ln 2e ()2e 10,2xx x a g x a x x-=+-+<需证ln 22e 02e xxax x ax x +-+<,即需证()ln 2e 2e 02ex xxax ax x -+<,令2e x t x =,即需证ln 0a t at t-+<,设()ln a h t t at t =-+12e x t x => ,由(1)知当12a ≥时,()h t 的减区间为()0,,∞+所以()(1)0,h t h <=故()0.g x <(3)由(2)知,当11,2t a >=时,11ln 2t t t ⎛⎫<- ⎪⎝⎭,令()*21N t n n=+∈,则2121122ln 11122222(21)1n n n n n n n n n n ⎛⎫⎪⎛⎫⎛⎫⎛⎫+<+-=+-=< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎪+⎝⎭+即2ln(2)ln n n n+-<所以2ln(3)ln(1)1n n n +-+<+2ln(4)ln(2)2n n n +-+<+2ln(5)ln(3)3n n n +-+<+......ln(21)ln(21)212n n n +--<-ln(22)l )22n(2n n n+-<以上各式相加得:11111ln(22)ln(21)ln ln(1)212212n n n n n n n n n ⎛⎫+++--+<+++⋯++ ⎪++-⎝⎭()()()212211111112ln ln 4ln 212212212n n n n n n n n n n ++⎛⎫+++⋯++>=+> ⎪++-+⎝⎭10.(2023·广东梅州·统考二模)已知函数()1e ln -=-xf x a x ,其中R a ∈.(1)当1a =时,讨论()f x 的单调性;(2)当[]0,πx ∈时,()21cos 1f x x +-≥恒成立,求实数a 的取值范围.【解析】(1)当1a =时,1()e ln x f x x -=-,函数()f x 的定义域为(0,)+∞,求导得11()e x f x x-'=-,显然函数()f x '在(0,)+∞上单调递增,且()01f '=,因此当(0,1)x ∈时,()0,()'<f x f x 单调递减,当(1,)x ∈+∞时,()0,()'>f x f x 单调递增,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)[0,π]x ∈,令()2(1)cos 2e 2ln(1)cos x g x f x x a x x =+-=-+-,求导得2()2e sin 1x ag x x x '=-++,当0a ≤时,()0g x '>,则()g x 在[0,π]上单调递增,0()(0)2e 2ln1cos 01g x g a ≥=--=,满足题意,当0a >时,设()()h x g x '=,则22()2e cos 0(1)xah x x x '=++>+,因此函数()h x ,即()g x '在[0,π]上单调递增,而0(0)2e 2sin 022g a a '=-+=-,(i)当01a <≤时,()(0)220,()g x g a g x ''≥=-≥在[0,π]上单调递增,于是0()(0)2e 2ln1cos 01g x g a ≥=--=,满足题意,(ii)当π2(π)2e sin π0π1ag '=-+≤+,即π(π1)e a ≥+时,对[0,π],()0x g x '∀∈≤,则()g x 在(0,π)上单调递减,此时0()(0)2e 2ln1cos 01g x g a <=--=,不合题意,(iii )当π1(1)e a π<<+时,因为()g x '在[0,π]上单调递增,且π2(0)(π)(22)(2e )0π1ag g a ''=--<+,于是0[0,π]x ∃∈,使()00g x '=,且当()00,x x ∈时,()g x '单调递减,此时0()(0)2e 2ln1cos 01g x g a <=--=,不合题意,所以实数a 的取值范围为(,1]-∞.11.(2023·上海松江·统考二模)已知0x >,记()e xf x =,()xg x x =,()ln ()h x g x =.(1)试将()y f x =、()y g x =、()y h x =中的一个函数表示为另外两个函数复合而成的复合函数;(2)借助(1)的结果,求函数()2y g x =的导函数和最小值;(3)记()()()f x h x H x x a x-=++,a 是实常数,函数()y H x =的导函数是()y H x '='.已知函数()()y H x H x =⋅'有三个不相同的零点123x x x 、、.求证:1231x x x ⋅⋅<.【解析】(1)()ln ()ln ln (())e e e e ()xh x g x x x x x y f h x x g x =======(2)利用复合函数的求导法则可求得2(2)2(2)(ln 21)x g x x x '=+,令2(2)2(2)(ln 21)0x g x x x '=+=,可求得:令(2)0g x '=,0x >,20(2)x x ∴>,所以ln 210x +=,解得12e x =,当102e x <<时,(2)0g x '<,此时()2g x 单调递减,当12e x >时,(2)0g x '>,此时()2g x 单调递增,所以函数(2)y g x =的最小值为e 11e ⎛⎫ ⎪⎝⎭.(3)()()e ()ln xf x h x H x x a x x ax x-=++=-++由()2222e (1)e (1)1e (1)()1x x x x x x x x x H x x x x x +----+'=-+==,0,e 0x x x >∴+> ,令()0H x '>,解得1x >,此时()H x 单调递增,令()0H x '<,解得1x <,此时()H x 单调递减,因为函数()()y H x H x =⋅'有三个不相同的零点123,,x x x .而()y H x '=的零点为1,不妨设31x =,则()y H x =的零点为12,x x .不妨设12x x <,则()()12121101,1,0x x H x H x x <<<>==.令1()()K x H x H x ⎛⎫=- ⎪⎝⎭,则()11222211e 1e (1)1(1)()e e 11x x x x x x x x x K x x x x x x x⎛⎫⎛⎫+- ⎪ ⎪+-⎛⎫⎝⎭-⎝⎭'=+⨯=+-- ⎪⎝⎭.令1()e e 1x xp x x x =+--,则()111211e 1e e e 1e 1xxx xx p x x x x ⎛⎫=+-+⨯=++- ⎝'⎪⎭,所以当(0,1)x ∈时,()0p x '>,所以当(0,1)x ∈时,()p x 是严格单调递增的,所以当(0,1)x ∈时,()(1)0p x p <=,所以当(0,1)x ∈时,()0K x '>,则1()()K x H x H x ⎛⎫=- ⎪⎝⎭在(0,1)上单调递增,所以在(0,1)上,1()()(1)0K x H x H K x ⎛⎫=-<= ⎪⎝⎭,所以()1110H x H x ⎛⎫-< ⎪⎝⎭.又()()120H x H x ==,所以()2110H x H x ⎛⎫-< ⎪⎝⎭,即()211H x H x ⎛⎫< ⎪⎝⎭.又函数()y H x =在(1,)+∞上单调递增,所以211x x <,即121x x <.综上,1231x x x <.12.(2023·浙江宁波·统考二模)已知函数2()ln f x x ax =-.(1)讨论函数()f x 的单调性:(2)若12,x x 是方程()0f x =的两不等实根,求证:(i )22122e x x +>;(ii )12x x >【解析】(1)由题意得,函数()f x 的定义域为(0,)+∞.由2()ln f x x ax =-得:2112()2ax f x ax x x-'=-=,当0a ≤时,()0,()'>f x f x 在(0,)+∞上单调递增;当0a >时,由()0f x '>得0x <()0f x '<得x >所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减.(2)因为12,x x 是方程2ln 0x ax -=的两不等实根,即12,x x 是方程22ln 20x ax -=的两不等实根,令2(0)t x t =>,则221122,t x t x ==,即12,t t 是方程ln 2ta t=的两不等实根.令ln ()tg t t=,则21ln ()t g t t -'=,所以()g t 在(0,e)上递增,在(e,)+∞上递减,1(e)eg =,当0t →时,()g t →-∞;当t →+∞时,()0g t >且()0g t →.所以102a e <<,即102ea <<.令121e t t <<<.(i )要证22122e x x +>,只需证122e t t +>,解法1:令()()(2e ),(1,e)h t g t g t t =--∈,则ln ln(2e )(2e )ln ln(2e )()()(2e )2e (2e )t t t t t t h t g t g t t t t t ----=--=-=--,令()(2e )ln ln(2e )t t t t t ϕ=---,则()22e 2e ()1ln ln(2e )ln 2e 2e 2e t t tt t t t t t t t tϕ-'=----+=+--+--2e 202e t t t t->+->-,所以()t ϕ在(1,e)上递增,()(e)0t ϕϕ<=,所以()()(2e )0h t g t g t =--<,所以()(2e )g t g t <-,所以()()()2112e g t g t g t =<-,所以212e t t >-,即122e t t +>,所以22122e x x +>.解法2:先证121212ln ln 2x x x xx x -+<-,令120x x <<,只需证212121ln 2ln x x x x x x -<+-,只需证2112ln 011x x x x x x ⎛⎫--<=> ⎪+⎝⎭,令1()2ln (1)1x x x x x ϕ-=->+,22241(1)()0(1)(1)x x x x x x ϕ--'=-=<++,所以()ϕx 在(1,)+∞上单调递减,所以()(1)0x ϕϕ<=.因为1212ln ln t t t t =,所以1212121212ln ln ln ln 2t t t t t t t t t t +-+=<+-,所以12ln ln 2t t +>,即212e t t >,所以122e t t +>>.解法3:由()1212121e ln ln t t t t t t =<<<,设112111ln ln ln (0),t t t t t t λλλλ+=>=,所以11ln ln ln t t λλ+=,即1212ln ln (1)ln ln ,ln ,ln ln 111t t t t λλλλλλλλ+==+=---,构造函数2(1)()ln (1)1x g x x x x -=->+,22214(1)()0(1)(1)x g x x x x x -'=-=>++,所以()g x 在(1,)+∞上单调递增,所以()(1)0g x g >=.(ii)要证:12x x >12e 2t t a >,只需证:12ln ln 1ln 2t t a +>-,只需证:12221ln 2at at a +>-,只需证:121ln 22at t a-+>,212121ln ln 2t t t tt t -+<-令112t a =得22211222ln 22t t a aat a -+<+即222ln 212(ln 21)02a at a t a a+-++>①令212t a =得1111122ln 222t t a aa at -+<--即211ln 212(ln 21)02a at a t aa ⎛⎫----+>⎪⎝⎭②①+②得:()()2221212(ln 21)0a t t a t t -+-->,即121ln 22at t a-+>.13.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.【解析】(1)法一:首先证明sin x x ≤,[)0,x ∈+∞,理由如下:构造()sin j x x x =-,[)0,x ∈+∞,则()cos 10j x x '=-≤恒成立,故()sin j x x x =-在[)0,x ∈+∞上单调递减,故()()00j x j ≤=,所以sin x x ≤,[)0,x ∈+∞,()()sin ln 1f x x x =-+,[]0,1x ∈,()22111cos 12sin 1212121x x f x x x x x ⎛⎫'=-=--≥--⎪+++⎝⎭()21111012121x x x x x=--≥--≤≤++,故()()2122202222x x x x x f x x x-+---'≥=>++在[]0,1x ∈上恒成立,所以()f x 在[]0,1单调递增,故()()00f x f ≥=法二:()()sin ln 1f x x x =-+,[]0,1x ∈,()1cos 1f x x x'=-+,且()00f '=,令()()1cos 1f x x xq x '=-=+,则()()21sin 1q x x x '=-++,令()()()21sin 1w q x x x x =-+='+,则()()32cos 01w x x x '=--<+在[]0,1x ∈上恒成立,所以()()21sin 1q x x x '=-++单调递减,又()010q '=>,其中π1sin1sin62>=,故()1sin1014q =-+<',故()00,1x ∃∈,使得()00q x '=,且当()00,x x ∈时,()0q x '>,当()0,1x x ∈时,()0q x '<,所以()f x '先增后减,又()00f '=,()11cos102f '=->,∴()0f x ¢>在()0,1x ∈上恒成立,所以()f x 单调递增,()()00f x f ≥=;(2)法一:()()2e 2sin ln 1xg x x a x =--++,()()()()()2e 1sin ln 11ln 10x g x x x x x x a x =--+-+-++++≥,下证:()e 100xx x --≥≥,()0sin 0x x x -≥≥,()()0ln 10x x x -+≥≥,且在0x =处取等号,令()()0e 1x x r x x -=-≥,则()()e 100x r x x -≥'=≥,故()()0e 1xx r x x -=-≥单调递增,故()()00r x r ≥=,且在0x =处取等号,()0sin 0x x x -≥≥在(1)中已证明;令()()()0ln 1t x x x x =-≥+,则()()101011x t x x x x '=-≥++≥=,故()()()0ln 1t x x x x =-≥+单调递增,故()()00t x t ≥=,且在0x =处取等号,当0x >时,()ln 10x +>,当10a +≥时,即1a ≥-时,()0g x ≥符合题意,当1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞;法二:()()2e 2sin ln 1x g x x a x =--++,()2e cos 1xag x x x '=-++,()0,πx ∈,①当0a ≥时,()2e 10xg x '≥->,()0,πx ∈,()g x 在[]0,π单调递增,且()()00g x g ≥=符合题意,②当a<0时,()2e cos 1xag x x x '=-++在()0,π单调递增,()0211g a a '=+-=+,③当10a +≥时,即10a -≤<时,()()010g x g a ''≥=+≥()g x 在[]0,π单调递增,()()00g x g ≥=符合题意,②当10a +<时,即1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞.14.(2023·浙江金华·模拟预测)已知函数()()sin ln 1,R f x a x x a =-+∈.(1)若对(1,0]x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln 2ni i =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,证明:方程()1eln 10x mx +--+=有唯一的实数根,(其中e 2.71828= 是自然对数的底数)【解析】(1)1()cos 1f x a x x'=-+ (10-<≤x )a 为正实数,∴函数()f x '在区间(1,0]-上单调递增,且(0)1f a '=-.①当01a <≤时,()(0)0f x f ''≤≤,所以函数()f x 在(1,0]-上单调递减,此时()(0)0f x f ≥=,符合题意.②当1a >时,11(0)10,1cos 10f a f a a a a a a ⎛⎫⎛⎫''=->-=--<-= ⎪ ⎪⎝⎭⎝⎭,由零点存在定理,0(1,0)x ∃∈-时,有()00f x '=,即函数()f x 在()01,x -上递减,在()0,0x 递增,所以当()0,0x x ∈时,有()(0)0f x f <=,此时不符合.综上所述,正实数a 的最大值为1.(2)由(1)知,当1,(1,0)a x =∈-时,sin ln(1)x x >+,令21x i =-时,有2222111sin ln 1ln i i i i -⎛⎫⎛⎫->-= ⎪ ⎪⎝⎭⎝⎭,即2221sin ln 1i i i <-,累加得,2212232sinln ln ln 2ln ln 2132111ni n n n i n n n =⎛⎫<⋅⋅==+< ⎪+++⎝⎭∑ .(3)因为1()e ln(1)x g x x +=-+,所以11()e 1x g x x +'=-+,即函数()g x '在(1,)-+∞上递增,又1(0)e 10,202g g ⎛⎫''=->-=< ⎪⎝⎭,由零点存在定理,11,02x ⎛⎫∃∈- ⎪⎝⎭时,有()10g x '=,即1111e 1x x +=+,因此()11111lnln 11x x x +==-++,而函数()g x 在()11,x -上递减,在()1,x +∞上递增,所以()()()11111min 111111e ln 1ln 1111x m g x g x x x x x x +===-+=+=+++++,即52,2m ⎛⎫∈ ⎪⎝⎭.要证方程1e ln(1)0x m x +--+=有唯一的实数解,只要证方程1e e ln(1)0x m x +-+=有唯一的实数解.设15()ee ln(1)22xmH x x m +⎛⎫=-+<< ⎪⎝⎭,则()1e e 1mxH x x+'=-+,所以函数()H x '在(1,)-+∞上递增,又(0)e e 0mH '=-<,e (1)(1)0mm H m m-'-=>,由零点存在定理,2(0,1)x m ∃∈-时,2()0H x '=,即212e e1mx x +=+,因此()221ln 1m x x =+++,又1111ln 11m x x =+++,设()ln m x x x =+,则函数()m x 在(0,)+∞上递增,于是21111x x +=+且()21ln 11x x +=+,而函数()H x 在()21,x -上递减,在()2,x +∞上递增,()()()()()21min 2221121()e e ln 1e ln 1e 1101x m m m H x H x x x x x x +⎛⎫∴==-+=-+=+-+= ⎪+⎝⎭,即函数()H x 有唯一零点2x ,故方程1e ln(1)0x m x +--+=有唯一的实数解.15.(2023·青海西宁·统考二模)已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.【解析】(1)由()e ln xf x a x =-,可得()1e x f x a x'=-,因为()f x 在[)1,+∞上单调递增,则()0f x '≥在[)1,+∞上恒成立,即1e xa x ≥在[)1,+∞上恒成立,令()()1,1e x g x x x =≥,则()()()2211e e 0e e x x x x x g x x x x +'=-+=-<在[)1,+∞上恒成立,即()g x 在[)1,+∞上单调递减,所以()()max 11eg x g ==,由1e x a x ≥在[)1,+∞上恒成立,可得()max1ea g x ≥=,所以实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.(2)因为函数()e 1x x x φ=--,()e 1xx φ'=-,令()0x φ'=,则0x =,即0x >时,()0x φ'>,则()x φ单调递增;即0x <时,()0x φ'<,则()x φ单调递减;所以()()0110x φφ≥=-=,即e 1x x ≥+(当且仅当0x =取等号),因为函数()ln 1x x x ϕ=-+,()0x >,则()11x xϕ'=-,令()0x ϕ'=,则1x =,当01x <<时,()0x ϕ'>,则函数()x ϕ单调递增;当1x >时,()0x ϕ'<,则函数()x ϕ单调递减;所以()()10110x ϕϕ≤=-+=,即ln 1≤-x x (当且仅当1x =取等号),因为21ea ≥,且e 1xx ≥+(当且仅当0x =取等号),ln 1≤-x x (当且仅当1x =取等号),所以()()221e ln e 1e 1exxx f x a x x x -=->⋅--=-+(两个等号不同时成立这里反为大于号),令()()2e1,0x h x x x -=-+>,即证()0h x ≥,因额为()2e1x h x -'=-,令()0h x '=,可得20e e 1x -==,所以2x =,当02x <<时,()0h x '<,则函数()h x 单调递减;当2x >时,()0h x '>,则函数()h x 单调递增;所以()()22min 2e 210h x h -==-+=,所以()()20h x h ≥=,即当21e a ≥时,()0f x >.16.(2023·江西·统考模拟预测)已知函数()ln af x x x=+的图象在1x =处的切线方程为y b =.(1)求a ,b 的值及()f x 的单调区间.(2)已知()()2e e x x xf x mxF x x x-+=-,是否存在实数m ,使得曲线()y F x =恒在直线1y x =+的上方?若存在,求出实数m 的值;若不存在,请说明理由.【解析】(1)因为()ln af x x x=+,所以21()a f x x x '=-,又()f x 在1x =处的切线方程为y b =,所以(1)10,f a ='-=故1a =,又()1ln11f a =+=,所以切线方程为1y =,故1b =,所以()1ln f x x x=+,则22111().x f x x x x -'=-=当01x <<时,()0f x '<,()f x 单调递减;当1x ≥时,()0f x '≥,()f x 单调递增.综上,()f x 的单调递减区间为()0,1,单调递增区间为[)1,+∞.(2)22e ()e e ln e ln (),0,1x x x x x f x mx x x mx x mF x x x x x x x -+++===>---且1x ≠.由曲线()y F x =恒在直线1y x =+的上方,知e ln 11x x m x x +>+-.当1x >时,e ln 11x x mx x +>+-等价于2e ln 1x x m x +>-,即2e ln 10.x x x m -++>设2 ()e ln 1(1),x g x x x m x =-++>则112()e (ln )2e (ln )ex xx x g x x x x x x '=+-=+-.由(1)可知,当1x >时,()1ln f x x x=+单调递增,所以()()11f x f >=.设2()e x x h x =,则2(1)()e xx h x -'=,当1x >时,()0h x '<,所以()h x 在()1,+∞上单调递减,所以2()(1)1eh x h <=<.所以当1x >时,12()e (ln 0exx xg x x x '=+->,所以()g x 在()1,+∞上单调递增,所以()(1)g x g m >=,所以0m ≥.当01x <<时,e ln 11x x mx x +>+-等价于2e ln 1x x m x +<-,即2e ln 10.x x x m -++<设2()e ln 1(01),x g x x x m x =-++<<由①可知12()e (ln e x xxg x x x '=+-.。

函数与导数重点题型01:含参函数单调性、极值、零点问题研究

函数与导数重点题型01:含参函数单调性、极值、零点问题研究

重点题型一:含参函数的单调性、极值、最值及零点问题【问题分析】含参函数的单调性、极值点及零点问题,在高考中考查频次非常高,主要考查利用分类讨论来研究函数单调性和由函数极值、最值及零点求解参数范围。

此类问题难度较大,经常出现在试卷T20或T21,属于高考压轴题型。

该题型主要考查考生的分类讨论思想、等价转化思想。

解决此类问题的本质就是确定函数定义域上的单调性,基本思想就是“分类讨论”,解题的关键就是参数“分界点”的确定。

所以,要解决好此类问题,首先要明确参数“分界点”,其次确定在参数不同的分段区间上函数的单调性,进而可以确定函数的极值点、最值及零点,达到解题目的。

图1-1 含参函数问题解题思路【知识回顾】图1-2 函数f (x )单调性、极值、最值及零点关系图特别提醒:1.函数f (x )单调性、极值、最值及零点必须在函数定义域内研究,所以解决问题之前,必须先确定函数的定义域。

2.函数f (x )的极值点为其导函数变号的点,亦即导函数f ′(x )的变号零点。

3.函数f (x )的极值点为函数单调区间的“分界点”,经过极大值点函数由增变减,经过极小值点函数由减变增。

函数f(x)的单调性函数f(x)的极值点导函数f ′(x)的变号零点函数f(x)的最值确定分界点有影响分类讨论函数单调性参数导函数f ′(x)值/f ′(x )=0的根函数f(x)4. 函数f (x )单调区间不能写成并集,也不能用“或”连接,只能用逗号“,”或“和”连接。

【“分界点”确认】参数对导函数f ′(x )的值符号有影响,就必须根据参数对导函数的影响确定参数“分界点”,然后在进行分类讨论函数的单调性。

常见的“分界点”确认方法如下: 1.观察法:解决问题的过程中,我们会发现导函数形式比较简单的情况下,我们可以通过观察直接确定参数的“分界点”,例如:当导函数f ′(x )的值与y =x 2+a 函数有关,可以直接观察得到:当a ≥0时,y ≥0;当a <0时,y =0有两个根x 1=−√−a,x 2=√−a,当x ∈(−∞,−√−a)∪(√−a,+∞)时,y >0,当x ∈(−√−a,√−a)时,y <0.所以我们可以根据常见函数的性质及其之间的不等关系,通过直接观察确定“分界点”,常见函数性质及其之间的关系如下: ①x 2≥0 (x ∈R ), 完全平方式不小于0 ②tanx >x >sinx (0<x <π2)③e x ≥x +1 (x ∈R ),仅当x =0时,等号成立e x =x +1 ④lnx ≤x −1 (x >0),仅当x =1时,等号成立lnx =x −1 ⑤lnx <x <e x (x >0) ⑥a x >0 (x ∈R )2.由二次函数引发的“分界点”当函数f (x )求导后,导函数f ′(x )值符号由一个含参的二次函数(二次三项式)决定,一般可以从两个方面进行“分界点”的确定:(1)通过二次函数(一元二次方程)的∆判别式进行“分界点”的确定. 对于一个二次函数y =ax 2+bx +c (a ≠0): ① {a >0∆≤0⟹y ≥0或{a <0∆≤0⟹y ≤0.② {a >0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数大于0,两根之内函数小于0.③ {a <0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数小于0,两根之内函数大于0. 特别提醒:当二次函数有两个零点时,需要确定两个零点是否在函数定义域之内,若不在需要舍弃. (2)由二次函数零点分布(一元二次方程实根分布)进行“分界点”确定设x 1,x 2(x 1<x 2)是二次函数y =ax 2+bx +c (a >0)的两个零点(一元二次方程ax 2+bx +c =0(a >0)的两个根),则x 1,x 2的分布情况与二次函数系数之间的关系如下(k,k 1,k 2∈R,k 1<k 2):零点分布函数图像等价条件x 1<x 2<k{∆>0f (k )>0−b 2a<kk <x 1<x 2{∆>0f (k )>0−b 2a>kx 1<k <x 2f (k )<0k 1<x 1<x 2<k 2{∆>0f (k 1)>0f (k 2)>0k 1<−b 2a<k2 x 1,x 2中仅有一个在(k 1,k 2)内\f (k 1)∙f (k 2)<0或f (k 1)=0,k 1<−b2a <k 1+k 22或f (k 2)=0,k 1+k 22<−b2a <k 2或{∆=0k 1<−b 2a<k 2当二次函数定义域受限,可以根据上表情况进行“分界点”确认,进而进行分类讨论。

函数与导数之零点问题(解析版)

函数与导数之零点问题(解析版)

函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.#(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.-探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==xy x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。

高考复习:导数压轴题零点问题中如何找点

高考复习:导数压轴题零点问题中如何找点

∴a>2 时, g x 有两个零点,即 f x 有两个零点。
点评:本题解答的第一步利用函数的零点与方程的根把 f x 的零点问题转化为 g x 的 零点问题,使得在导数中不含参数;在找点环节,找左边为正的点时,选择
舍弃ex−1
是为了构造一个减函数,而在找右边为正点时选择舍弃1是为了构造一个增函
x
数,使得放缩以后的函数大于零都有解。
比如在本例中,寻找 x=lna 右边的零点时,如果我么利用不等式ex > x 进行放缩,
则f x
=
ex

ax
>
x

ax,x

ax
=
0
无解,放缩失败,若利用不等式ex
>
1 x
进行放缩,则 f x
=
ex

ax
>
1 x

ax,令
1 x

ax
=
0,则
x
=
1 a
<
lna, 放缩失败.我们发现函数 y = ax 本身就是一条斜率可以无穷大的直线,故我
①a ≤ e + 1 时,r' t > 0 恒成立,r t 在 0, + ∞ 单增,r t > r 0 = 0,r t 无零点;

1 x2
,由
1
可知 xex−1
+1
>
0,故 x <
0 时,
ex−1
+
1 x
<
0,又
a
>
0,
∴g x
=
ex−1
−a+
1 x

专题11 导数压轴题之隐零点问题(解析版)

专题11 导数压轴题之隐零点问题(解析版)

导数章节知识全归纳专题11 导数压轴题中有关隐零点问题一.隐零点问题知识方法讲解:1.“隐零点”概念:隐零点主要指在研究导数试题中遇到的对于导函数f ’(x)=0时,不能够直接运算出来或是不能够估算出来,导致自己知道方程有根存在,但是又不能够找到具体的根是多少,通常都是设x=x 0,使得f ’(x)=0成立,这样的x 0就称为“隐藏零点”。

2.“隐零点”解决方向:针对隐零点问题通常解决步骤:1.求导判定是否为隐零点问题,2.设x=x 0,使得f ’(x)=0成立,3.得到单调性,并找到最值,将x 0带入f(x),得到f(x 0),4.再将x 0的等式代换,再求解(注意:x 0的取值范围)二.隐零点问题中的典型例题:典例1.已知函数()ln f x x =,()2sin g x x x =-.(1)求()g x 在()0,π的极值;(2)证明:()()()h x f x g x =-在()0,2π有且只有两个零点.解:(1)由()12cos g x x '=-,()0,x π∈, 当03x π<<时,()0g x '<,此时函数()g x 单调递减, 当3x ππ<<时,()0g x '>,此时函数()g x 单调递增,所以,函数()g x 的极小值为33g ππ⎛⎫=- ⎪⎝⎭ (2)证明:()()()ln 2sin h x f x g x x x x =-=-+,其中02x π<<.则()112cos h x x x '=-+,令()12cos 1x x x ϕ=+-,则()212sin x x xϕ'=--. 当()0,x π∈时,()212sin 0x x x ϕ'=--<,则()x ϕ在()0,π上单调递减, 303πϕπ⎛⎫=> ⎪⎝⎭,2102πϕπ⎛⎫=-< ⎪⎝⎭, 所以,存在0,32x ππ⎛⎫∈ ⎪⎝⎭,使得()()000x h x ϕ'==. 当00x x <<时,()0h x '>,此时函数()h x 在()00,x 上单调递增,当0x x π<<时,()0h x '<,此时函数()h x 在()0,x π上单调递减.()()0h x h x ∴=极大值,而ln 0333h πππ⎛⎫=-+> ⎪⎝⎭,()2ln ln 20h e πππππ=-<-=-<,则()003h x h π⎛⎫>> ⎪⎝⎭,又ln 1666h πππ⎛⎫=-+ ⎪⎝⎭, 令()ln 1m x x x =-+,其中01x <<,则()1110x m x x x-'=-=>, 所以,函数()m x 在()0,1上单调递增,则()()10m x m <=,所以,ln 10666h πππ⎛⎫=-+< ⎪⎝⎭.由零点存在定理可知,函数()h x 在()0,π上有两个零点;当[),2x ππ∈时,2sin 0x ≤,()ln 2sin ln h x x x x x x =-+≤-,设ln y x x =-,则1110x y x x-'=-=<对任意的[),2x ππ∈恒成立, 所以,ln ln 0x x ππ-≤-<,所以,函数()h x 在[),2ππ上没有零点,综上所述,函数()()()h x f x g x =-在()0,2π上有且只有两个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.典例2.已知函数()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行.(1)求k 的值; (2)若()()2cos p x f x x =-,试讨论()p x 在π3π22⎡⎤⎢⎥⎣⎦,上的零点个数.解:(1)()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行, 则有()1πf a '=-,()k f x a x'=-,则(1)ππf k a a k '=-=-⇒= (2)()()2cos πln 2cos 2a p x f x x x ax x ⎛⎫=-=+-- ⎪⎝⎭,π3π,22x ⎡⎤∈⎢⎥⎣⎦, π()2sin p x x a x '=+-,令()()g x p x '=,则2π()2cos g x x x'=-+, 当π3π,22x ⎡⎤∈⎢⎥⎣⎦时,cos 0x ≤且2π0x -<,则2π()2cos 0g x x x '=-+<,则()g x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππ22422g p a a ⎛⎫⎛⎫'==+-=- ⎪ ⎪⎝⎭⎝⎭,3π3π2422233g p a a ⎛⎫⎛⎫'==--=-- ⎪ ⎪⎝⎭⎝⎭, 当4a ≥时,π02p ⎛⎫'≤ ⎪⎝⎭且()()p x g x '=在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≤,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππππππln 2cos πln 0222222a a p ⎛⎫⎛⎫=+--=> ⎪ ⎪⎝⎭⎝⎭,3π3π3π3π3ππln 2cos πln 222222a a p a π⎛⎫⎛⎫=+--=- ⎪ ⎪⎝⎭⎝⎭, 由于4a ≥,则03π2p ⎛⎫< ⎪⎝⎭,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则有一个零点, 当43a ≤-时,3π02p ⎛⎫'≥ ⎪⎝⎭,由于()()=p x g x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≥,()p x在π3π,22⎡⎤⎢⎥⎣⎦单调递增, ππ=πln 022p ⎛⎫> ⎪⎝⎭,则π()02p x p ⎛⎫≥> ⎪⎝⎭,则()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点, 当443a -<<时,π02p ⎛⎫'> ⎪⎝⎭,3π02p ⎛⎫'< ⎪⎝⎭,()p x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则存在0π3π,22x ⎛⎫∈ ⎪⎝⎭使()0p x '=, 当0π,2x x ⎛⎫∈⎪⎝⎭,()0p x '>,()p x 单调递增,当03π,2x x ⎛⎫∈ ⎪⎝⎭,()0p x '<,()p x 单调递减,πππln 022p ⎛⎫=> ⎪⎝⎭,3π3ππln π22p a ⎛⎫=- ⎪⎝⎭, 若3π3π0ln 22p a ⎛⎫>⇒< ⎪⎝⎭,则由0π2p ⎛⎫> ⎪⎝⎭,3π02p ⎛⎫> ⎪⎝⎭及()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,此时43πln 32a -<<, 若3π3π0ln 22p a ⎛⎫≤⇒≥⎪⎝⎭,由0π2p ⎛⎫> ⎪⎝⎭,3π02P ⎛⎫≤ ⎪⎝⎭和()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点,此时3πln 42a ≤<, 综上,当3πln2a <时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,当3πln 2a ≥时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点.【点睛】关键点点睛:本题第二问考查利用导数分析函数的零点个数问题,解答此问题的关键在于多次求导以及分类讨论思想的运用;当原函数()f x 的导函数()f x '无法直接判断出正负时,可先通过将原函数的导函数看作新函数()g x ,利用导数思想先分析()g x '的单调性以及取值正负,由此确定出()g x 的单调性并分析其取值正负,从而()f x '的正负可分析,则根据()f x 的单调性以及取值可讨论零点个数.典例3.已知函数()e sin 1xf x x =+-. (1)判断函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上的零点个数,并说明理由; (2)当[0,)x ∈+∞时,()0f x mx +,求实数m 的取值范围.解:(1)解法一:由题意得,()e cos x f x x '=+, 当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,易得函数()'f x 单调递增, 而()e 10f ππ--=-<',2e 02f ππ-⎛⎫-=> ⎪⎝⎭', 故()00,,02x f x ππ⎛⎫∃∈--= ⎪⎝'⎭, 当[)0,x x π∈-时,()0f x '<; 当0,2x x π⎛⎫∈- ⎪⎝⎭时,()0f x '>, 而2()e 10,e 202f f ππππ--⎛⎫-=-<-=-< ⎪⎝⎭, ∴函数f (x )在,2ππ⎡⎫--⎪⎢⎣⎭上无零点;当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,()e cos 0x f x x =+>', ∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增, 而(0)0f =,∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上有1个零点. 综上所述,函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上有1个零点. (2)令()()e sin 1x g x f x mx x mx =+=++-,[0,)x ∈+∞,则()e cos xg x x m =++'. 0(0)e sin 0010g m =++⨯-=,0(0)e cos02g m m =++=+',令()()e cos x h x g x x m +'==+,()e sin xh x x =-' 因为0x =时,0()e sin 010h x =-=>', 当0x >时,e 1x >,sin 1x ≤,()e sin 110xh x x =>-'-=,所以()e sin 0x h x x -'=>在()0,+∞上恒成立, 则h (x )为増函数,即()'g x 为增函数①当20m +,即2m -时,()(0)20g x g m '='+,∴g (x )在[0,)+∞上为增函数,()(0)0g x g ∴=,即()0g x 在[0,)+∞上恒成立;②当m +2<0,即m <-2时,(0)20g m =+<',0(0,)x ∴∃∈+∞,使()00g x '=,当()()00,,0,()x x g x g x ∞∈+>'为增函数;当[)()000,,0,()x x g x g x <'∈为减函数, ()0(0)0g x g ∴<=,与()0g x 在[0,)+∞上恒成立相矛盾,2m ∴<-不成立.综上所述,实数m 的取值范围是[2,)-+∞.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.典例4.设函数()2ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数;(Ⅰ)证明:当0a >时()22ln f x a a a≥+. 解:(∴)()f x 的定义域为()0+∞,,()2()=20x a f x e x x '->.当0a ≤时,()0f x '>,()f x '没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x '在()0+∞,单调递增.又()0f a '>,当b 满足04a b <<且14b <时,()0f b '<,故当0a >时,()f x '存在唯一零点. (∴)由(∴),可设()f x '在()0+∞,的唯一零点为0x ,当()00x x ∈,时,()0f x '<; 当()0+x x ∈∞,时,()0f x '>. 故()f x 在()00x ,单调递减,在()0+x ∞,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++≥+. 故当0a >时,2()2ln f x a a a≥+. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.典例5.已知函数()()ln 1x a f x e x x a -=--∈R .(1)若1a =,讨论()f x 的单调性;(2)令()()(1)g x f x a x =--,讨论()g x 的极值点个数.解:(1)若1a =,则()1ln 1x f x e x x -=--,其定义域为()0,∞+,()1ln 1x f x e x -'=--.令()()1ln 1x m x f x e x -'==--,则()11x m x e x -'=-, 易知()m x '在()0,∞+上单调递增,且()10m '=,所以当()0,1x ∈时,()0m x '<,()m x 在()0,1上单调递减, 当()1,x ∈+∞时,()0m x '>,()m x 在()1,+∞上单调递增, 因此()()10m x m ≥=,即()0f x '≥,所以()f x 在()0,∞+上单调递增.(2)由题意知,()()ln 11x a g x e x x a x -=----,则()ln x a g x e x a -'=--,由(1)知,1ln 10x e x ---≥,当1a ≤时,()ln ln 10x a x a g x e x a e x --'=--≥--≥, 所以()g x 在()0,∞+上单调递增,此时()g x 无极值点. 当1a >时,令()()ln x a h x g x e x a -'==--,则()1x a h x ex -'=-,易知()h x '在()0,∞+上单调递增, 又()1110a h e -'=-<,()110h a a'=->, 故存在()01,x a ∈,使得()00010x a h x e x -'=-=, 此时有001x a e x -=,即00ln a x x =+, 当()00,x x ∈时,()0h x '<,()h x 在()00,x 上单调递减, 当()0,x x ∈+∞时,()0h x '>,()h x 在()0,x +∞上单调递增,所以()()00000min 01ln 2ln x ah x h x ex a x x x -==--=--. 令()12ln x x x xϕ=--,()1,x a ∈, 易知()x ϕ在()1,a 上单调递减, 所以()0x ϕ<,即()00h x <.因为()0aa eah e e---=>,()23ln 321ln 31ln 32ln 30a h a e a a a a a a =-->+--=+->->,且0013a e x a a -<<<<<,所以存在()10,ax e x -∈,()20,3x x a ∈,满足()()120h x h x ==,所以当()10,x x ∈时,()()0g x h x '=>,()g x 在()10,x 上单调递增, 当()12,x x x ∈时,()()0g x h x '=<,()g x 在()12,x x 上单调递减, 当()2,x x ∈+∞时,()()0g x h x '=>,()g x 在()2,x +∞上单调递增, 所以当1a >时,()g x 存在两个极值点.综上,当1a ≤时,()g x 不存在极值点;当1a >时,()g x 存在两个极值点. 【点睛】关键点点睛:本题第(2)问的关键有:(1)当1a ≤时,合理利用第(1)问中得到的1ln 10x e x ---≥以及不等式的性质得到()0g x '≥;(2)当1a >时,灵活构造函数,并根据等式将a 代换掉,得到()()090min 12ln nh x h x x x x ==--,最后巧妙取点,利用零点存在定理得到()h x 的零点,从而得到结果.变式1.已知函数()()xf x e ax a =-∈R . (1)讨论函数()f x 的单调性;(2)当2a =时,求函数()()cos g x f x x =-在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数. 解:(1)()x f x e ax =-,其定义域为R ,()xf x e a '=-①当0a ≤时,因为()0f x '>,所以()f x 在R 上单调递增, ②当0a >时,令()0f x '>得ln x a >,令()0f x '<得ln x a < 所以()f x 在(),ln a -∞上单调递减,()ln ,a +∞上单调递增, 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞单调递减,()ln ,a +∞单调递增,(2)已知得()2cos xg x e x x =--,,2x π⎛⎫∈-+∞ ⎪⎝⎭则()sin 2xg x e x '=+-①当,02x π⎛⎫∈- ⎪⎝⎭时,因为()()1(sin 1)0xg x e x '=-+-<所以()g x 在,02π⎛⎫- ⎪⎝⎭单调递减,所以()()00g x g >=, 所以()g x 在,02π⎛⎫- ⎪⎝⎭上无零点;②当0,2x π⎡⎤∈⎢⎥⎣⎦时,因为()g x '单调递增,且(0)10g '=-<,2102g e ππ⎛⎫'=-> ⎪⎝⎭,所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使()00g x '= 当()00,x x ∈时,()0g x '<,当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '> 所以()g x 在[)00,x 递减0,2x π⎛⎤⎥⎝⎦递增,且()00g =,所以()00g x <,又因为202g e πππ⎛⎫=-> ⎪⎝⎭所以()002g x g π⎛⎫⋅< ⎪⎝⎭所以()g x 在0,2x π⎛⎫⎪⎝⎭上存在一个零点, 所以()g x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; ③当,2x π⎛⎫∈+∞ ⎪⎝⎭时,2()sin 230x g x e x e π'=+->->,所以()g x 在,2π⎛⎫+∞⎪⎝⎭单调递增 因为02g π⎛⎫>⎪⎝⎭,所以()g x 在,2π⎛⎫+∞ ⎪⎝⎭上无零点;综上所述,()g x 在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数为2个. 【点睛】方法点睛:函数的零点问题常见的解法有:(1)方程法(直接解方程得解);(2)图象法(直接研究函数()f x 的图象得解);(3)方程+图象法(令()0f x =得到()()g x h x =,再研究函数(),()g x h x 图象性质即得解).要根据已知条件灵活选择方法求解.变式2.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明:(1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解:(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减 又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x ∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减 则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x ∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.变式3.已知函数3()sin (),2f x ax x a R =-∈且在,0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-,(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明 解:(1)由已知得f ′(x )=a (sinx +xcosx ),对于任意的x ∴(0,2π), 有sinx +xcosx >0,当a =0时,f (x )=−32,不合题意; 当a <0时,x ∴(0,2π),f ′(x )<0,从而f (x )在(0, 2π)单调递减, 又函数f (x )=axsinx −32 (a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上的最大值为f (0),不合题意; 当a >0时,x ∴(0,2π),f ′(x )>0,从而f (x )在(0, 2π)单调递增, 又函数f (x )=axsinx −32(a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上上的最大值为f (2π)=2πa −32=32π-,解得a =1,综上所述,得3()sin (),2f x x x a R =-∈; (2)函数f (x )在(0,π)内有且仅有两个零点。

导数压轴题分类(6)--- 函数的隐零点问题(含答案)

导数压轴题分类(6)--- 函数的隐零点问题(含答案)

导数压轴题分类(6)--- 函数的隐零点问题(含答案)所以f'(x)=1,代入式子1得到e^m-3x^2=1,又因为曲线y=f(x)在点(。

)处的切线斜率为1,所以f'( )=1,代入式子1得到e^m-3^2=1,解得m=ln(10);Ⅱ)证明:当m≥1时,f(x)=e^m-x^3+x,g(x)=ln(x+1)+2-x^3,考虑f(x)-g(x)+x^3的单调性,求导得到f'(x)-g'(x)+3x^2=0,即e^m-3x^2-1=ln(x+1)+2-3x^2-1+3x^2-1,即e^m-ln(x+1)-2>x^3,因为左边是常数,所以当m≥1时,f(x)>g(x)-x^3.当$-10$时,$p'(x)>0$。

设$p(x)=x-\ln(x+1)$,则$p'(x)=1-\frac{1}{x+1}$。

因此当$-10$时,函数$p(x)$单调递增。

所以$p(x)\geq p(0)=0$。

因此$x-\ln(x+1)\geq 0$,当且仅当$x=0$时取等号。

由于取等号的条件不同,所以$e^x+1-\ln(x+1)-2>0$。

综上可知,当$m\geq 1$时,$f(x)>g(x)-x^3$。

证法二:因为$f(x)=e^{x+m}-x^3$,$g(x)=\ln(x+1)+2$,所以$f(x)>g(x)-x^3$等价于$e^{x+m}-\ln(x+1)-2>x^3$。

思路1:设$h(x)=e^{x+m}-\ln(x+1)-2$,则$h'(x)=e^{x+m}-\frac{1}{x+1}$。

因此$h'(x)>0$当且仅当$x>-1$,$h'(x)-1$时,$h(x)$单调递增,当$x0$,所以$h(x)>0$。

思路2:先证明$e^t-\ln t>2$,令$t=x+1$,转化为证明$e^x-\ln(x+1)>2$。

函数与导数之零点问题(解析版)

函数与导数之零点问题(解析版)

函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。

【高考数学冲刺解题技巧】高考导数压轴题中的“隐零点”问题之专项训练题

【高考数学冲刺解题技巧】高考导数压轴题中的“隐零点”问题之专项训练题

导数压轴题中的“隐零点”问题之专项训练题1、设函数 f x e x ax 2.( Ι ) 求f x 的单调区间;(Ⅱ)若a 1 , k 为整数,且当x 0 时,x k f x x 1 0 ,求 k 的最大值.变式训练:已知函数 f x xl n x a,x a. R(Ⅰ)若函数 f x 在e2 ,上为增函数,求 a 的取值范围;(Ⅱ)若x 1,, f x k x 1 ax x 恒成立,求正整数k 的值.2、已知函数 f x e x ln x m .( Ι ) 设x0 是 f x 的极值点,求m ,并谈论 f x 的单调性;(Ⅱ)当m 2 时,证明 f x0 .变式训练:已知函数 f x 2 x3x2ax 1 在1,0上有两个极值点x1、 x2,且 x1 x2.3( Ι ) 求实数a的取值范围;(Ⅱ)证明: f x211. 123、已知a R ,函数 f x e x ax2; g x 是 f x 的导函数.(Ⅰ)当 a 1f x 的单调区间;时,求函数2(Ⅱ)当 a0 时,求证:存在唯一的x01,0,使得 g x00 ;2a(Ⅲ)若存在实数a,b ,使得 f x b 恒成立,求 a b 的最小值.变式训练:已知函数 f (x) 满足满足 f ( x) f (1)e x 1 f (0) x 1 x2.2(Ⅰ)求 f ( x) 的剖析式及单调区间;(Ⅱ)若 f (x) 1 x2ax b ,求 ( a1)b 的最大值.24、已知函数f x 2 x a ln x x22ax 2a2 a ,其中 a 0 .(Ⅰ)设 g x 是 f x 的导函数,谈论g x的单调性;(Ⅱ)证明:存在a0,1,使得 f x0在区间 1,内恒成立,且 f x0 在区间 1,内有唯一解 .变式训练,已知函数 f x2ln x x22ax a2,其中a0 ,设g x 是 f x 的导函数.(Ⅰ)谈论 g x 的单调性;(Ⅱ)证明:存在 a 0,1 ,使得 f x 0 恒成立,且 f x 0 在区间1,内有唯一解.变式训练 ,已知函数f x a x2ln x x 1, g x ae x a ax 2a 1 ,其中a R.2x(Ⅰ)若 a 2 ,求 f x 的极值点;(Ⅱ)试谈论 f x 的单调性;(Ⅲ)若 a 0 ,x 0,,恒有g x f x ( f x 为 f x 的导函数),求a的最小值.变式训练,已知函数f x ln x 1 ax2x ,a R.2(Ⅰ)求函数 f x 的单调区间;(Ⅱ)可否存在实数 a ,使得函数 f x 的极值大于 0 ?若存在,则求出 a 的取值范围;若不存在,请说明原由.。

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03函数与导数常见经典压轴小题1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.考向一:函数、零点嵌套问题考向二:函数整数解问题考向三:等高线问题考向四:零点问题考向五:构造函数解不等式考向六:导数中的距离问题考向七:导数的同构思想考向八:最大值的最小值问题(平口单峰函数、铅锤距离)1、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点,具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.a >()232f x ax bx c'=++判别式∆>0∆=0∆<图象()32f x ax bx cx d=+++单调性增区间:()1, x -∞,()2, x +∞;减区间:()12, x x 增区间:(), -∞+∞增区间:(), -∞+∞图象(1)当0∆≤时,()0f x '≥恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223bx x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d =+++的两个不相等的极值点,那么:①若()()120f x f x ⋅>,则()f x 有且只有1个零点;②若()()120f x f x ⋅<,则()f x 有3个零点;③若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.3、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.4、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.5、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.6、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.7、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.8、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.9、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.1.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m=+-=+>+,且()()120f x g x ==,则()2111em x x -+的最大值为()A .1B .eC .2eD .1e【答案】A【解析】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e ex m m m x x x m---+==,1(),0e m m t m m -=>,则11(),e m m t m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.2.(2023·湖南岳阳·统考二模)若函数()22ln 2e 2ln x xf x a x ax -=-+有两个不同的零点,则实数a 的取值范围是()A .(),e -∞-B .(],e -∞-C .()e,0-D .()【答案】A【解析】函数()f x 的定义域为(0,)+∞,()()222ln 22ln 2e 2ln e 2ln x x x x f x a x ax a x x --=-+=+-,设2()2ln (0)h x x x x =->,则22(1)(1)()2x x h x x x x+-'=-=,令()01h x x '>⇒>,令()001h x x '<⇒<<,所以函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,且(1)1h =,所以min ()(1)1h x h ==,所以()1h x ≥,函数()f x 有两个不同的零点等价于方程()0f x =有两个不同的解,则()222ln 2ln 22e e 2ln 02ln x x x x a x x a x x--+-=⇒-=-,等价于函数y a =-与22ln 2e 2ln x xy x x-=-图象有两个不同的交点.令22ln x x t -=,()1e ,tg t tt =>,则函数y a =-与()1e ,tg t tt =>图象有一个交点,则()()22e 1e e 0tt t t t g t t t '--==>,所以函数()g t 在(1,)+∞上单调递增,所以()()1e g t g >=,且t 趋向于正无穷时,()e tg t t=趋向于正无穷,所以e a ->,解得e a <-.故选:A.3.(2023·江西吉安·统考一模)已知,R,0,0x y x y ∈>>,且2x y xy +=,则8e y x-的可能取值为()(参考数据: 1.1e 3≈, 1.2e 3.321≈)A .54B .32C .e 1-D .e【答案】D【解析】由2x y xy +=,可得844x y =-且1y >,所以84e e 4y yx y-=+-,令()()4e 4,1,yg y y y =+-∈+∞,可得()24e y g y y='-,令()24e yh y y =-,可得()38e 0yh y y '=+>,()h y 为单调递增函数,即()g y '单调递增,又()()1.1 1.222441.1e 0, 1.2e 01.1 1.2g g =--'<'=>,所以存在()0 1.1,1.2y ∈,使得()00204e 0yg y y =-=',所以()()0min 002000444e 44, 1.1,1.2yg g y y y y y ==+-=-∈,设()0200444f y y y =+-,则()0320084f y y y =--',因为()0 1.1,1.2y ∈,所以()00f y '<,所以()0f y 在()1.1,1.2上单调递减,所以()()0191.229f y f >=>,又因为()22e 2e g =->,()g y 在()0,y ∞+上递增,所以D 正确.故选:D.4.(2023·河南开封·开封高中校考一模)若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-【答案】D 【解析】由11e x ax +⎛⎫+≥ ⎪⎝⎭两边取对数可得 1()ln 11x a x ⎛⎫++≥ ⎪⎝⎭①,令11,t x +=则11x t =-,因为[)1,x ∞∈+,所以(1,2]t ∈,则①可转化得1ln 11a t t ⎛⎫+≥⎪-⎝⎭,因为ln 0t >,11ln 1a t t ∴≥--因为存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,所以存在(1,2]t ∈,11ln 1a t t ≥--成立,故求11ln 1t t --的最小值即可,令11(),(1,2]ln 1g x x x x =-∈-2211()(ln )(1)g x x x x '∴=-+⋅-2222(ln )(1)(1)(ln )x x x x x x ⋅--=-2222222(1)1(ln )(ln )2(1)(ln )(1)(ln )x x x x x x x x x x ----+==--,令()h x 21(ln )2,(1,2]x x x x=--+∈212ln 11()2ln 1x x x h x x x xx-+'∴=⋅-+=,令1()2ln ,(1,2]x x x x xϕ=-+∈,2222121()1x x x x x x ϕ-+-'∴=--=22(1)0x x --=<,所以()ϕx 在(1,2]上单调递减,所以()(1)0x ϕϕ<=,()0h x '∴<,所以()h x 在(1,2]上单调递减,所以()(1)0,()0,h x h g x '<=∴<()g x ∴在(1,2]上单调递减,1()(2)1ln 2g x g ∴≥=-,11ln 2a ∴≥-,所以实数a 的最小值为11ln 2-故选:D5.(2023·河北石家庄·统考一模)已知210x x a -=在()0,x ∈+∞上有两个不相等的实数根,则实数a 的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,2e ⎛⎫⎪⎝⎭C .12e 1,e ⎛⎤ ⎥⎝⎦D .12e 1,e ⎛⎫ ⎪⎝⎭【答案】D【解析】由()0,x ∈+∞,则210x x a =>,故2ln ln xa x=,要使原方程在()0,x ∈+∞有两个不等实根,即2ln ()xf x x =与ln y a =有两个不同的交点,由432ln 12ln ()x x x x f x x x --'==,令()0f x '>,则120e x <<,()0f x '<,则12e x >,所以()f x 在12(0,e )上递增,12(e ,)+∞上递减,故12max 1()(e )2e f x f ==,又x 趋向于0时,()f x 趋向负无穷,x 趋向于正无穷时,()f x 趋向0,所以,要使()f x 与ln y a =有两个不同的交点,则10ln 2ea <<,所以12e 1e a <<.故选:D6.(2023·吉林·统考三模)已知不等式22e ln ln x x λλ+≥在()0,x ∈+∞上恒成立,则实数λ的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,4e ⎛⎤ ⎥⎝⎦C .1,2e ∞⎡⎫+⎪⎢⎣⎭D .1,4e ⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由22e ln ln x x λλ+≥得22e ln ln lnxxx λλλ≥-=,即22e lnxxxx λλ≥,令()e t f t t =,()0,t ∈+∞,则()()1e 0tf t t '=+>,所以()e tf t t =在()0,∞+上单调递增,而ln22e lnlne xxxxxx λλλλ≥=等价于()2ln x f x f λ⎛⎫≥ ⎪⎝⎭,∴2lnxx λ≥,即2e xx λ≥令()2e x g x x =,()0,x ∈+∞,则()212e xg x x-'=,所以()g x 在10,2x ⎛⎫∈ ⎪⎝⎭时()0g x '>,为增函数;在在1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0g x '<,为减函数,所以()g x 最大值为1122e g ⎛⎫= ⎪⎝⎭,∴12e λ≥.故选:C7.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)设()f x 是定义在R 上的可导函数,()f x 的导函数为()f x ',且()()32f x f x x '⋅>在R 上恒成立,则下列说法中正确的是()A .()()20232023f f <-B .()()20232023f f >-C .()()20232023f f <-D .()()20232023f f >-【答案】D【解析】由题设32()()4f x f x x ⋅>',构造24()()g x f x x =-,则3()2()()40g x f x f x x =-'>',所以()g x 在R 上单调递增,则(2023)(2023)g g >-,即2424(2023)2023(2023)(2023)f f ->---,所以22(2023)(2023)f f >-,即()()20232023f f >-.故选:D8.(2023·四川广安·统考二模)若存在[]01,2x ∈-,使不等式()022002e 1ln e 2ex ax a x +-≥+-成立,则a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【解析】()022002e 1ln e 2e x a x a x +-≥+-⇔()()222e 1ln e 12e x a a x ---≥-()()()000022222 e 1ln e 1ln e 2 e 1ln 2e e x x x x a a a a e ⇔---≥-⇔-≥-令ex at =,即()2e 1ln 220t t --+≥,因为0[1,2]x ∈-,所以21,e e a a t -⎡⎤∈⎢⎥⎣⎦,令()2()e 1ln 22f t t t =--+.则原问题等价于存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.()22e 12e 1()2t f t t t---'=-=令()0f t '<,即()2e 120,t --<解得2e 12t ->,令()0f t '>,即()2e 120,t -->解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞⎪⎝⎭上单调递减.又因为()()2222(1)0,e e 1ln e 2e 2f f ==--+222e 22e 20=--+=而22e 11e 2-<<,∴当21e t ≤≤时,()0f t ≥.若存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.只需22e e a ≤且11e a -≥,解得4ea ≤且1e a ≥,所以41e ea ≤≤.故a 的取值范围为41,e e ⎡⎤⎢⎥⎣⎦.故选:D9.(2023·河南郑州·统考二模)函数()ln ,01,0x x x f x x x >⎧=⎨+≤⎩,若关于x 的方程()()()210f x m f x m -++=⎡⎤⎣⎦恰有5个不同的实数根,则实数m 的取值范围是()A .10em -<<B .10em -<≤C .10em -≤<D .10em -≤≤【答案】A【解析】由()2[()]1()[()][()1]0f x m f x m f x m f x -++=--=,可得()f x m =或()1f x =,令ln y x x =且定义域为(0,)+∞,则ln 1y x ¢=+,当1(0,ex ∈时0'<y ,即y 递减;当1(,)ex ∈+∞时0'>y ,即y 递增;所以min 1e y =-,且1|0x y ==,在x 趋向正无穷y 趋向正无穷,综上,根据()f x 解析式可得图象如下图示:显然()1f x =对应两个根,要使原方程有5个根,则()f x m =有三个根,即(),f x y m =有3个交点,所以10em -<<.故选:A10.(2023·贵州·统考模拟预测)已知函数()f x 在R 上满足如下条件:(1)()()0f x f x -+=;(2)()20f -=;(3)当()0,x ∈+∞时,()()f x f x x'<.若()0f a >恒成立,则实数a 的值不可能是()A .3-B .2C .4-D .1【答案】B 【解析】设()()f x g x x =,则()()()2xf x f x g x x'-'=,因为当()0,x ∈+∞时,()()f x f x x'<,所以当0x >时,有()()0xf x f x '-<恒成立,即此时()g x '<0,函数()g x 为减函数,因为()f x 在R 上满足()()0f x f x -+=,所以函数()f x 是奇函数,又()20f -=,所以()20f =,又()()()()()f x f x f x g x g x x x x---====--,故()g x 是偶函数,所以()()220g g =-=,且()g x 在(),0x ∈-∞上为增函数,当0a >时,()0f a >,即()()0f a ag a =>,等价为()0g a >,即()()2g a g >,得02a <<;当a<0时,()0f a >,即()()0f a ag a =>,等价为()0g a <,即()()2g a g <-,此时函数()g x 为增函数,得2a <-,综上不等式()0f a >的解集是()(),20,2-∞- ,结合选项可知,实数a 的值可能是3-,4-,1.故选:B11.(2023·广西·统考三模)已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a <<B .c a b<<C .c b a<<D .a c b<<【答案】A【解析】因为2()cos ,R f x x x x =+∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=-+-=+=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-,设()2sin g x x x =-,则()2cos g x x =-',1cos 1x -≤≤ ,()0g x '∴>,所以()g x 即()f x '在[0,)+∞上单调递增,所以()(0)0f x f ''≥=,所以()f x 在[0,)+∞上单调递增,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递减,又因为41ln0,054<-<,所以445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415eln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b >>.故选:A.12.(2023·天津南开·统考一模)已知函数()()216249,1,11,1,9x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩则下列结论:①()1*9,Nn f n n -=∈②()()10,,x f x x∞∀∈+<恒成立③关于x 的方程()()R f x m m =∈有三个不同的实根,则119m <<④关于x 的方程()()1*9N n f x n -=∈的所有根之和为23n n +其中正确结论有()A .1个B .2个C .3个D .4个【答案】B【解析】由题意知,()()()()1211111219999n n f n f n f n f n n --=-=-==--=⎡⎤⎣⎦ ,所以①正确;又由上式知,要使得()()10,,x f x x∞∀∈+<恒成立,只需满足01x <≤时,()1f x x <恒成立,即2116249x x x-+<,即321624910x x x -+-<恒成立,令()(]32162491,0,1g x x x x x =-+-∈,则()248489g x x x '=-+,令()0g x '=,解得14x =或34x =,当1(0,4x ∈时,()0g x '>,()g x 单调递增;当13(,)44x ∈时,()0g x '<,()g x 单调递减;当3(,)4x ∈+∞时,()0g x '>,()g x 单调递增,当14x =时,函数()g x 取得极大值,极大值11101444g f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,所以②不正确;作出函数()f x 的图象,如图所示,由图象可知,要使得方程()()R f x m m =∈有三个不同的实根,则满足()()21f m f <<,即119m <<,所以③正确;由()1(1)9f x f x =-知,函数()f x 在(),1n n +上的函数图象可以由()1,n n -上的图象向右平移一个单位长度,再将所有点的横坐标不变,纵坐标变为原来的19倍得到,因为216249y x x =-+的对称轴为34x =,故()09f x =的两根之和为32,同理可得:()19f x =的两个之和为322+, ,()19nf x -=的两个之和为32(1)2n +-,故所有根之和为23333(2)[2(1)]2222n n n +++++-=+,所以④不正确.故选:B.13.(2023·山东济南·一模)函数()()()221xxx f x a a a =++-+(0a >且1a ≠)的零点个数为()A .1B .2C .3D .4【答案】B【解析】由()0f x =可得22011x x a a a a +⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,即11112011x xa a ⎛⎫⎛⎫-++-= ⎪ ⎪++⎝⎭⎝⎭,因为0a >且1a ≠,则1110,,1122a ⎛⎫⎛⎫∈ ⎪ ⎪+⎝⎭⎝⎭,令11t a =+,令()()()112x xg x t t =-++-,则()()010g g ==,()()()()()1ln 11ln 1xxg x t t t t '=--+++,令()()()()()1ln 11ln 1xxh x t t t t =--+++,则()()()()()221ln 11ln 10xxh x t t t t '=--+++>⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()g x '在R 上单调递增,因为()()()()20ln 1ln 1ln 1ln10g t t t'=-++=-<=,()()()()()11ln 11ln 1g t t t t '=--+++,令()()()()()1ln 11ln 1p t t t t t =--+++,其中01t <<,则()()()ln 1ln 10p t t t '=+-->,所以,函数()p t 在()0,1上单调递增,所以,()()()100g p t p >'==,由零点存在定理可知,存在()00,1x ∈,使得()00g x '=,且当0x x <时,()0g x '<,此时函数()g x 单调递减,当0x x >时,()0g x '>,此时函数()g x 单调递增,所以,()()()0010g x g g <==,所以,函数()g x 的零点个数为2,即函数()f x 的零点个数为2.故选:B.14.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()222g x f x a f x a =---⎡⎤⎣⎦恰有5个零点,则a 的取值范围是()A .()3e,0-B .470,e ⎛⎫ ⎪⎝⎭C .473e,e ⎛⎫- ⎪⎝⎭D .()0,3e 【答案】B【解析】函数()g x 恰有5个零点等价于关于x 的方程()()()2220f x a f x a ⎡⎤---=⎣⎦有5个不同的实根.由()()()2220f x a f x a ⎡⎤---=⎣⎦,得()f x a =或()2f x =-.因为()()25e x f x x x =+-,所以()()234e x f x x x '=+-()()41e xx x =+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减.因为()474e f -=,()13e f =-,当x →+∞时,()f x →+∞,当x →-∞时,()0f x →,所以可画出()f x 的大致图象:由图可知()2f x =-有2个不同的实根,则()f x a =有3个不同的实根,故470,e a ⎛⎫∈ ⎪⎝⎭,故A ,C ,D 错误.故选:B.15.(2023·山东枣庄·统考二模)已知()f x =,a ∈R ,曲线cos 2y x =+上存在点()00,x y ,使得()()00f f y y =,则a 的范围是()A .()8,18ln 3+B .[]8,18ln 3+C .()9,27ln 3+D .[]9,27ln 3+【答案】B【解析】因为[]cos 1,1x ∈-,所以[]cos 21,3y x =+∈,由题意cos 2y x =+上存在一点()00,x y 使得()()00f f y y =,即[]01,3y ∈,只需证明()00f y y =,显然()f x =假设()00f y y c =>,则()()()()000f f y f c c y f y ==>>不满足()()00f f y y =,同理()00f y c y =<不满足()()00f f y y =,所以()00f y y =,那么函数()[]1,3f x =即函数()f x x =在[]1,3x ∈有解,x =,可得[]2ln 9,1,3x x a x x +-=∈,从而[]2ln 9,1,3x x x a x +-=∈,令()[]2ln 9,1,3h x x x x x =+-∈,则()2119292x x h x x x x+-'=+-=,令()0h x '=,即21920x x +-=,解得12993,044x x -=>=(舍去),()0h x '>时03x <<<()0h x '<时x >所以()h x 在[]1,3单调递增,所以()()()13h h x h ≤≤,()1ln1918h =+-=,()3ln 3279ln 318h =+-=+,所以()h x 的取值范围为[]8,ln 318+,即a 的取值范围为[]8,ln 318+.故选:B.16.(2023·四川绵阳·盐亭中学校考模拟预测)已知()(0)ln kxx k xϕ=>,若不等式()11e kxxx ϕ+<+在()1+∞,上恒成立,则k 的取值范围为()A .1e⎛⎫+∞ ⎪⎝⎭,B .()ln2+∞,C .()0,eD .()0,2e 【答案】A【解析】由题意知,(1,)x ∀∈+∞,不等式11e ln kx x kx x+<+恒成立,即()(1,),1eln e(1)ln kxkxx x x ∀∈+∞+>+成立.设()(1)ln (1)f x x x x =+>,则()e ()kxf f x >.因为11()ln ln 10x f x x x x x+'=+=++>,所以()f x 在()1+∞,上单调递增,于是e kx x >对任意的()1x ∈+∞,恒成立,即ln xk x >对任意的()1x ∈+∞,恒成立.令ln ()(1)x g x x x=>,即max ()k g x >.因为21ln ()xg x x-'=,所以当(1,e)x ∈时,()0g x '>;当()e x ∈+∞,时,()g x '<0,所以()g x 在(1,e)上单调递增,在()e ,+∞上单调递减,所以max 1()(e)eg x g ==,所以1ek >.故选:A .17.(2023·江西·校联考模拟预测)已知()ee 1ln x x a x+>有解,则实数a 的取值范围为()A .21,e ⎛⎫-+∞ ⎪⎝⎭B .1,e⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e⎛⎫-∞ ⎪⎝⎭【答案】A【解析】不等式()e e 1ln x x a x+>可化为()e ln 1x a x x x ++>,()()e ln e 1x x a x x +>,令e x t x =,则ln 1at t +>且0t >,由已知不等式ln 1t at +>在()0,∞+上有解,所以1ln ta t ->在()0,∞+上有解.令()1ln t f t t -=,则()2ln 2t f t t ='-,当20e t <<时,()0f t '<,()f t 在()20,e 上单调递减;当2t e >时,()0f t '>,()f t 在()2e ,+∞单调递增,所以()min f t =()221e e f =-,所以21e a >-,所以a 的取值范围为21,e ⎛⎫-+∞ ⎪⎝⎭,故选:A.18.(2023·辽宁朝阳·校联考一模)设0k >,若不等式()ln e 0xk kx -≤在0x >时恒成立,则k 的最大值为()A .eB .1C .1e -D .2e 【答案】A【解析】对于()ln e 0xk kx -≤,即()e ln x kx k≤,因为()ln y kx =是e xy k =的反函数,所以()ln y kx =与e xy k =关于y x =对称,原问题等价于e x x k≥对一切0x >恒成立,即e xk x≤;令()e x f x x =,则()()'21e x x f x x -=,当01x <<时,()()'0,f x f x <单调递减,当1x >时,()()'0,f x f x >单调递增,()()min 1e f x f ==,e k ∴≤;故选:A.19.(2023·四川南充·统考二模)已知函数()()2ln ln 1212x x h x t t x x ⎛⎫=--+- ⎪⎝⎭有三个不同的零点123,,x x x ,且123x x x <<.则实数11ln 1x x ⎛-⎝)A .1t -B .1t -C .-1D .1【答案】D 【解析】令ln x y x =,则21ln xy x-'=,当(0,e)x ∈时0'>y ,y 是增函数,当(e,)x ∈+∞时0'<y ,y 是减函数;又x 趋向于0时y 趋向负无穷,x 趋向于正无穷时y 趋向0,且e 1|ex y ==,令ln xm x=,则2()()(12)12h x g m m t m t ==--+-,要使()h x 有3个不同零点,则()g m 必有2个零点12,m m ,若11(0,e m ∈,则21em =或2(,0]m ∞∈-,所以2(12)120m t m t --+-=有两个不同的根12,m m ,则2Δ(12)4(12)0t t =--->,所以32t <-或12t >,且1212m m t +=-,1212m m t =-,①若32t <-,12124m m t +=->,与12,m m 的范围相矛盾,故不成立;②若12t >,则方程的两个根12,m m 一正一负,即11(0,)em ∈,2(,0)m ∞∈-;又123x x x <<,则12301e x x x <<<<<,且121ln x m x =,32123ln ln x x m x x ==,故11ln 1x x ⎛⎫- ⎪⎝⎭(()()221111m m m =-=--12121()1m m m m =-++=.故选:D20.(2023·陕西咸阳·武功县普集高级中学统考二模)已知实数0a >,e 2.718=…,对任意()1,x ∈-+∞,不等式()e e 2ln xa ax a ⎡⎤++⎣⎦≥恒成立,则实数a 的取值范围是()A .10,e ⎛⎤⎥⎝⎦B .1,1e⎡⎫⎪⎢⎣⎭C .20,e⎛⎫⎪⎝⎭D .2,1e⎛⎫ ⎪⎝⎭【答案】A【解析】因为()e e 2ln xa ax a ⎡⎤++⎣⎦≥,所以()()1e2ln 2ln 2ln ln(1)x a ax a a a ax a a a a a x -⎡⎤++=++=+++⎣≥⎦,即11e 2ln ln(1)x a x a-⋅++≥+,即1ln 11ln e e 2ln ln(1)e 2ln ln(1)x x a a a x a x ---⋅+++⇔+≥++≥,所以1ln e 1ln ln(1)1x a x x a x --+≥--+++,令()e ,(1,)x f x x x =+∈-+∞,易知()f x 在()1,x ∈-+∞上单调递增,又因为ln(1)[ln(1)]e ln(1)1ln(1)x f x x x x ++=++=+++,所以(1ln )[ln(1)]f x a f x --≥+,所以1ln ln(1),(1,)x a x x --≥+∈-+∞,所以ln 1ln(1),(1,)a x x x ≤--+∈-+∞,令()1ln(1),(1,)g x x x x =--+∈-+∞,则1()111x g x x x '=-=++,所以当(1,0)x ∈-时,()0g x '<,()g x 单调递减;当,()0x ∈+∞时,()0g x '>,()g x 单调递增;所以min ()(0)1g x g ==-,所以ln 1a ≤-,解得10ea <≤.故选:A21.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()0g x f f x a a =->,则()g x 的零点个数不可能是()A .1B .3C .5D .7【答案】D【解析】令()0g x =,即()()f f x a =,因为()()25e xf x x x =+-,所以()2()34e x f x x x '=+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减,因为()474e f -=,()13e f =-,当+x →∞时,()+f x →∞,当x →-∞时,()0f x →,令()0f x =,解得1212x -=或1212x -=,所以可画出()f x 的大致图像,设()t f x =,则()f t a =,第一种情况:当470e a <<时,()f t a =有三个不同的零点1t ,2t ,3t ,不妨设123t t t <<,则14t <-,2142t -<<-,312t ->,①讨论()1f x t =根的情况:当13e t <-时,()1f x t =无实数根,当13e t =-时,()1f x t =有1个实数根,当13e 4t -<<-时,()1f x t =有2个实数根,②讨论()2f x t =根的情况:因为2142t -<<-,所以()2f x t =有2个实数根,③讨论()3f x t =根的情况:因为3t >47e>,所以()3f x t =只有1个实数根,第二种情况:当47e a =时,()f t a =有2个实数根44t =-,51212t ->,则()4f x t =有2个实数根,()5f x t =有1个实数根,故当47ea =时,()()f f x a =有3个实数根;第三种情况:当47e a >时,()f t a =有一个实数根612t ->,则()6f x t =有1个实数根,综上,当470ea <<时,()()f f x a =可能有3个或4个或5个实数根;当47e a =时,()()f f x a =有3实数根;当47e a >时,()()f f x a =有1个实数根;综上,()g x 的零点个数可能是1或3或4或5.故选:D .22.(多选题)(2023·河北唐山·开滦第二中学校考一模)若关于x 的不等式1ln ln e e ex m xm -+≥在(),m +∞上恒成立,则实数m 的值可能为()A .21e B .22e C .1eD .2e【答案】CD【解析】因为不等式1ln ln ee e x m x m -+≥在(),m +∞上恒成立,显然0x m >>,1x m >,ln 0xm>,因此ln 1ln ln 1ee ln e ln e ln e e e xx x x x mm x x x x x m x x m m m m m-+≥⇔≥⇔≥⇔≥⋅,令()e ,0x f x x x =>,求导得()(1)0x f x x e '=+>,即函数()f x 在(0,)+∞上单调递增,ln e ln e ()(ln xxm x x x f x f m m ≥⋅⇔≥,于是ln x x m ≥,即e e xx x x m m ≥⇔≥,令(),0e x xg x x =>,求导得1()ex x g x -'=,当01x <<时,()0g x '>,当1x >时,()0g x '<,因此函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,max 1()(1)eg x g ==,因为0x m >>,则当01m <<时,()g x 在(,1)m 上单调递增,在(1,)+∞上单调递减,1()(1)eg x g ≤=,因此要使原不等式成立,则有11em ≤<,当m 1≥时,函数()g x 在(,)m +∞上单调递减,()()()11eg x g m g <≤=,符合题意,所以m 的取值范围为1[,)e+∞,选项AB 不满足,选项CD 满足.故选:CD23.(多选题)(2023·山东·沂水县第一中学校联考模拟预测)已知函数()()()32e 04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩,其中e 是自然对数的底数,记()()()2h x f x f x a =-+⎡⎤⎣⎦,()()()3g x f f x =-,则()A .()g x 有唯一零点B .方程()f x x =有两个不相等的根C .当()h x 有且只有3个零点时,[)2,0a ∈-D .0a =时,()h x 有4个零点【答案】ABD【解析】因为32()461(0)f x x x x =-+≥,所以2()121212(1)(0)f x x x x x x '=-=-≥,所以(0,1)x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>所以()()()32e04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩的图像如下图,选项A ,因为()()()3g x f f x =-,令()f x t =,由()0g x =,得到()3f t =,由图像知,存在唯一的01t >,使得()3f t =,所以0()1f x t =>,由()f x 的图像知,存在唯一0x ,使00()f x t =,即()()()3g x f f x =-只有唯一零点,所以选项A 正确;选项B ,令()g x x =,如图,易知()g x x =与()y f x =有两个交点,所以方程()f x x =有两个不相等的根,所以选项B 正确;选项C ,因为()()()2h x f x f x a =-+⎡⎤⎣⎦,令()f x m =,由()0h x =,得到20m m a -+=,当()h x 有且只有3个零点时,由()f x 的图像知,方程20m m a -+=有两等根0m ,且0(0,1)m ∈,或两不等根12,m m ,1210,1m m -<<>,或121,1m m =-=(舍弃,不满足韦达定理),所以140a ∆=-=或Δ140(0)0(1)0(1)0a f f f =->⎧⎪<⎪⎨->⎪⎪<⎩即14a =或14020a a aa ⎧<⎪⎪⎪<⎨⎪-<⎪<⎪⎩,所以14a =或20a -<<,当14a =时,12m =,满足条件,所以选项C 错误;选项D ,当0a =时,由()0h x =,得到()0f x =或()1f x =,由()f x 的图像知,当()0f x =时,有2个解,当()1f x =时,有2个解,所以选项D 正确.故选:ABD.24.(多选题)(2023·全国·模拟预测)已知函数()21ln 1f x a x x =++.若当()0,1x ∈时,()0f x >,则a 的一个值所在的区间可能是()A .()12,11--B .()0,1C .()2,3D .()24e ,e 【答案】ABC 【解析】设21t x =,因为01x <<,所以1t >,则211ln 1ln 12a x t a t x ++=-+.设()1ln 12g t t a t =-+,则()12ag t t'=-.若2a ≤,则()0g t '>,所以()g t 在()1,+∞上单调递增,所以()()120g t g >=>,则A ,B 符合题意.若2a >,则当1,2a t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,所以()g t 单调递减;当,2a t ⎛⎫∈+∞ ⎪⎝⎭时,()0g t '>,所以()g t 单调递增.所以()ln 12222a a a ag t g ⎛⎫≥=-+ ⎪⎝⎭.设()()ln 11h x x x x x =-+>,则()ln 0h x x '=-<,所以()h x 在()1,+∞上单调递减,且3533ln 02222h ⎛⎫=-> ⎪⎝⎭,所以若()2,3a ∈,则()30222a a g t g h h ⎛⎫⎛⎫⎛⎫≥=>> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0,1x ∈时,()0f x >,C 符合题意.因为()h x 在()1,+∞上单调递减,且()22e e 10h =-+<,所以若()24e ,e a ∈,则24e e ,222a ⎛⎫∈ ⎪⎝⎭,取22e a =,则()2e 022a a g h h ⎛⎫⎛⎫=<< ⎪ ⎝⎭⎝⎭,此时存在()1,t ∈+∞,使得()0g t <,即存在()0,1x ∈时,使得()0f x <,D 不符合题意.故选:ABC .25.(多选题)(2023·全国·本溪高中校联考模拟预测)已知函数()f x 是定义在()0,∞+上的函数,()f x '是()f x 的导函数,若()()122e xx f x xf x '+=,且()e 22f =,则下列结论正确的是()A .函数()f x 在定义域上有极小值.B .函数()f x 在定义域上单调递增.C .函数()()eln H x xf x x =-的单调递减区间为()0,2.D .不等式()12e e 4x f x +>的解集为()2,+∞.【解析】令()()m x xf x =,则()()()m x f x xf x ''=+,又()()22e xx f x xf x '+=得:()()2e xf x xf x x'+=,由()()m x f x x =得:()()()()()()()22222e xm x x m x xf x x f x m x m x f x x x x ''⋅-+--'===,令()()2e xh x m x =-得:()()2222e e e 2e 222x x x xx h x m x x x -''=-=-=⎛⎫ ⎪⎝⎭,当()0,2x ∈时,()0h x '<,()h x 单调递减;当()2,x ∈+∞时,()0h x '>,()h x 单调递增,所以()()()()2e 2e 220h x h m f ≥=-=-=,即()0f x '≥,所以()f x 单调递增,所以B 正确,A 不正确;由()()eln H x m x x =-且定义域为()0,∞+得:()()2e e e x H x m x xx-''=-=,令()0H x '<,解得02x <<,即()H x 的单调递减区间为()0,2,故C 正确.()12ee 4xf x +>的解集等价于()2e e 4x x x xf x +>的解集,设()()2e e 44xx x x m x ϕ=--,则()()222ee ee e 11424424x xx x x x m x x ϕ⎛⎫⎛⎫''=-+-=-+- ⎪ ⎪⎝⎭⎝⎭2282e e 84x x x x --=⋅-,当()2,x ∈+∞时,2820x x --<,此时()0x ϕ'<,即()x ϕ在()2,+∞上递减,所以()()()22e 0x m ϕϕ<=-=,即()2e e 4x x x xf x +<在()2,+∞上成立,故D 错误.26.(多选题)(2023·山东泰安·统考一模)已知函数()()()ln f x x x ax a =-∈R 有两个极值点1x ,2x ()12x x <,则()A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-【答案】ACD【解析】对于A :()()()ln f x x x ax a =-∈R ,定义域()0,x ∈+∞,()()ln 120f x x ax x '=+->,函数()f x 有两个极值点1x ,2x ,则()f x '有两个变号零点,设()()ln 120g x x ax x =+->,则()1122axg x a xx-'=-=,当0a ≤时,()0g x '>,则函数()f x '单调递增,则函数()f x '最多只有一个变号零点,不符合题意,故舍去;当0a >时,12x a <时,()0g x '>,12x a>时,()0g x '<,则函数()f x '在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减,若()f x '有两个变号零点,则102f a ⎛⎫'> ⎪⎝⎭,解得:12a <,此时x 由正趋向于0时,()f x '趋向于-∞,x 趋向于+∞时,()f x '趋向于-∞,则()f x '有两个变号零点,满足题意,故a 的范围为:102a <<,故A 正确;对于B :函数()f x 有两个极值点1x ,2x ()12x x <,即()f x '有两个变号零点1x ,2x ()12x x <,则1212x x a<<,故B 错误;对于C :当102a <<时,()1120f a '=->,则12112x x a <<<,即212x a >,11x ->-,则21112x x a->-,故C 正确;对于D :()f x '有两个变号零点1x ,2x ()12x x <,且函数()f x '先增后减,则函数()f x 在()10,x 与()2,x +∞上单调递减,在()12,x x 上单调递增,121x x << ,且102a <<,()()()()1210112f x f a f x f a ⎧<=-<⎪∴⎨>=->-⎪⎩,故D 正确;故选:ACD.27.(多选题)(2023·吉林·东北师大附中校考二模)已知函数()ln xf x a a =,()()ln 1g x a x =-,其中0a >且1a ≠.若函数()()()h x f x g x =-,则下列结论正确的是()A .当01a <<时,()h x 有且只有一个零点B .当1e 1e a <<时,()h x 有两个零点C .当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线D .若()h x 为单调函数,则e e 1a -≤<【答案】BCD【解析】对A ,()ln ln(1),x h x a a a x =--令()10,ln ln(1),log (1)x x a h x a a a x a x -=∴=-∴=-,令111,164a x =-=,或111,162a x =-=1log (1)x a a x -=-都成立,()h x 有两个零点,故A 错误;对B ,1ln ln(1),x a a x -=-令1ln ,(1)ln ln ,ln(1),1x ta t x a t t x x -=∴-=∴⋅=--ln (1)ln(1)t t x x ∴=--,(1t >).考虑ln (),()ln 10,y x x F x F x x '===+=11,()(1),e x x F a F x -∴=∴=-所以函数()F x 在1(0,e单调递减,在1(,)e +∞单调递增,1()(1),x F a F x -∴=-1ln(1)1,ln 1x x a x a x --∴=-∴=-.考虑2ln 1ln (),()0,e,x xQ x Q x x x x -'=∴==∴=所以函数()Q x 在(0,e)单调递增,在(e,)+∞单调递减,1(e),eQ =当1ln1e ()e 0,1e eQ ==-<x →+∞时,()0Q x >,所以当10ln e a <<时,有两个零点.此时1e 1e a <<,故B 正确;对C ,设21ln ,(),()e 1x ak a f x a k g x x ''=>=⋅=-,1t x =-.设切点1122111222(,()),(,()),()()(),()()(),x f x x g x y f x f x x x y g x g x x x ''∴-=--=-所以12111222()()()()()()f x g x f x x f x g x x g x ''''=⎧⎨-=-⎩.①111122222211,,11x x t a a k a k a k x x t -=∴==--。

函数与导数经典常考压轴大题

函数与导数经典常考压轴大题

函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x 22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.02证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .3(2024·上海松江·二模)已知函数y =x ⋅ln x +a (a 为常数),记y =f (x )=x ⋅g (x ).(1)若函数y =g (x )在x =1处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:f (x )+f (t -x )≥f (t )-t ln2+a ;(3)当a =1时,求证:g (x )+cos x <e x x.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x ∈D ,m ≤f x ⇔m ≤f x min ;(2)∀x ∈D ,m ≥f x ⇔m ≥f x max ;(3)∃x ∈D ,m ≤f x ⇔m ≤f x max ;(4)∃x ∈D ,m ≥f x ⇔m ≥f x min .3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-axe x a∈R.(1)讨论f x 的单调性;(2)若关于x的不等式f x >a1-x无整数解,求a的取值范围.2(2024·黑龙江哈尔滨·一模)已知函数f x =xe x-ae x,a∈R.(1)当a=0时,求f x 在x=1处的切线方程;(2)当a=1时,求f x 的单调区间和极值;(3)若对任意x∈R,有f x ≤e x-1恒成立,求a的取值范围.3(2024·陕西安康·模拟预测)已知函数f x =ln x+1,g x =e x-1.(1)求曲线y=f x 与y=g x 的公切线的条数;(2)若a>0,∀x∈-1,+∞,f x+1≤a2g x +a2-a+1,求a的取值范围.04零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x轴(或直线y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x-1,g x =ln x+b.(1)求函数F x =x-1f x 的单调区间;(2)若总存在两条直线和曲线y=f x 与y=g x 都相切,求b的取值范围.2(2024·北京房山·一模)已知函数f(x)=e ax+1 x.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f (x)⋅x2,求函数g(x)的极大值;(3)若a<-e,求函数f(x)的零点个数.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.2(2024·河北沧州·一模)已知函数f x =x a e2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.3(2024·全国·模拟预测)已知函数f (x )=e x -sin x .(1)若f (x )≥ax 2+1对于任意x ∈[0,+∞)恒成立,求a 的取值范围;(2)若函数f (x )的零点按照从大到小的顺序构成数列x n ,n ∈N *,证明:2ni =1x i <-2n 2+n π;(3)对于任意正实数x 1,x 2,证明:e x 2-x 2-1 e x 1>sin x 1+x 2 -sin x 1-x 2cos x 1.1已知函数f x =ax -ln x x ,a >0.(1)若f x 存在零点,求a 的取值范围;(2)若x 1,x 2为f x 的零点,且x 1<x 2,证明:a x 1+x 2 2>2.2已知函数f x =3ln x -ax .(1)讨论f x 的单调性.(2)已知x 1,x 2是函数f x 的两个零点x 1<x 2 .(ⅰ)求实数a 的取值范围.(ⅱ)λ∈0,12 ,f x 是f x 的导函数.证明:f λx 1+1-λ x 2 <0.3如图,对于曲线Γ,存在圆C 满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 0 3);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1 和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.4已知函数f x =ax2+x-ln x-a.(1)若a=1,求f x 的最小值;(2)若f x 有2个零点x1,x2,证明:a x1+x22+x1+x2>2.5已知函数f x =12e2x+a-2e x-2ax.(1)若曲线y=f x 在0,a-32处的切线方程为4ax+2y+1=0,求a的值及f x 的单调区间.(2)若f x 的极大值为f ln2,求a的取值范围.(3)当a=0时,求证:f x +5e x-52>32x2+x ln x.6已知函数f x =12x2+x+a ln x+1,a∈R.(1)讨论f x 的单调性;(2)证明:当a<-1时,a2+f x >1.7已知函数f x =x ln x+ax+1a∈R.(1)若f x ≥0恒成立,求a的取值范围;(2)当x>1时,证明:e x ln x>e(x-1).(1)判断函数f(x)的单调性(2)证明:①当a≥0时,f(x)≤0;②sin1n+1+sin1n+2+⋯+sin12n<ln2,n∈N*.9牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程f x =0的其中一个根r在x=x0的附近,如图6所示,然后在点x0,f x0处作f x 的切线,切线与x轴交点的横坐标就是x1,用x1代替x0重复上面的过程得到x2;一直继续下去,得到x0,x1,x2,⋯,x n.从图形上我们可以看到x1较x0接近r,x2较x1接近r,等等.显然,它们会越来越逼近r.于是,求r近似解的过程转化为求x n,若设精度为ε,则把首次满足x n-x n-1<ε的x n称为r的近似解.已知函数f x =x3-x+1,a∈R.(1)试用牛顿迭代法求方程f x =0满足精度ε=0.5的近似解(取x0=-1,且结果保留小数点后第二位);(2)若f x +3x2+6x+5+ae x≤0对任意x∈R都成立,求整数a的最大值.(计算参考数值:e≈2.72,e1.35≈3.86,e1.5≈4.48,1.353≈2.46,1.352≈1.82)(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.11已知函数f x =x2-2a ln x-2(a∈R).(1)讨论f x 的单调性;(2)若不等式f x ≤2ln x2+x2-2x在区间(1,+∞)上有解,求实数a的取值范围.12已知函数f x =xe x,其中e=2.71828⋯为自然对数的底数.(1)求函数f x 的单调区间;(2)证明:f x ≤e x-1;(3)设g x =f x -e2x+2ae x-4a2+1a∈R,若存在实数x0使得g x0≥0,求a的最大值.13已知函数f x =e x-1-ax a∈R.(1)若函数f x 在点1,f1处的切线与直线x+2ey+1=0垂直,求a的值;(2)当x∈0,2时,讨论函数F x =f x -x ln x零点的个数.14已知函数f(x)=e2x-(2a-1)e x-ax.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.15已知函数f x =e x-x2+a,x∈R,φx =f x +x2-x.(1)若φx 的最小值为0,求a的值;(2)当a<0.25时,证明:方程f x =2x在0,+∞上有解.16已知f (x )=x ex,g (x )=ln x x .(1)求函数y =f (x )、y =g (x )的单调区间和极值;(2)请严格证明曲线y =f (x )、y =g (x )有唯一交点;(3)对于常数a ∈0,1e,若直线y =a 和曲线y =f (x )、y =g (x )共有三个不同交点x 1,a 、x 2,a 、x 3,a ,其中x 1<x 2<x 3,求证:x 1、x 2、x 3成等比数列.17已知函数f x =sin x -ax ⋅cos x ,a ∈R .(1)当a =1时,求函数f x 在x =π2处的切线方程;(2)x ∈0,π2时;(ⅰ)若f x +sin2x >0,求a 的取值范围;(ⅱ)证明:sin 2x ⋅tan x >x 3.18f(x)=2sin(x+φ)-a+e-x,φ∈0,π2,已知f(x)的图象在(0,f(0))处的切线与x轴平行或重合.(1)求φ的值;(2)若对∀x≥0,f(x)≤0恒成立,求a的取值范围;(3)利用如表数据证明:157k=1sinkπ314<106.eπ314e-π314e78π314e-78π314e79π314e-79π314 1.0100.990 2.1820.458 2.2040.45419数值线性代数又称矩阵计算,是计算数学的一个重要分支,其主要研究对象包括向量和矩阵.对于平面向量a =(x ,y ),其模定义为|a |=x 2+y 2.类似地,对于n 行n 列的矩阵A nn =a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮,其模可由向量模拓展为A =∑ni =1∑nj =1a 2ij12(其中a ij为矩阵中第i 行第j 列的数,∑为求和符号),记作A F,我们称这样的矩阵模为弗罗贝尼乌斯范数,例如对于矩阵A 22=a 11a 12a21a 22=2435,其矩阵模A F =∑n i =1∑nj =1a 2ij12=22+42+32+52=3 6.弗罗贝尼乌斯范数在机器学习等前沿领域有重要的应用.(1)∀n ∈N *,n ≥3,矩阵B nn =100⋯0020⋯0003⋯0⋮⋮⋮⋮00⋯n,求使B F >35的n 的最小值.(2)∀n ∈N *,n ≥3,,矩阵C nn =1cos θcos θcos θ⋯cos θcos θ0-sin θ-sin θcos θ-sin θcos θ⋯-sin θcos θ-sin θcos θ00sin 2θsin 2θcos θ⋯sin 2θcos θsin 2θcos θ⋮⋮⋮⋮⋮⋮0000⋯(-1)n -2sin n -2θ(-1)n -2sin n -2θcos θ0000⋯0(-1)n -1sin n -1θ求C F.(3)矩阵D mn =ln n +2n +100⋅⋅⋅0ln n +1n 22ln n +1n 220⋅⋅⋅0⋮ln 43n -1n -1ln 43 n -1n -1ln 43 n -1n -1⋅⋅⋅0ln 32 n n ln 32 n n ln 32 nn ⋅⋅⋅ln 32nn,证明:∀n ∈N *,n ≥3,D F >n 3n +9.20已知函数f x =sin x -ln 1+ax .(1)若x ∈0,π2时,f x ≥0,求实数a 的取值范围;(2)设n ∈N *,证明:sin 13+ln 32-ln n +2n +1<nk =1sin 1k k +2 <34.1函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;2(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【解析】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4(t +1)2=(t -1)2t (t +1)>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.【解析】(1)当a =1时,f x =2e x -12x 2+1,f x =2e x -x ,则f 0 =3,f 0 =2,则切线方程为y -3=2x ,因此曲线y =f x 在点0,f 0 处的切线方程为2x -y +3=0.(2)证明:函数f x =a +1 e x -x ,x 1,x 2是y =f x 的两个零点,所以x 1=a +1 e x 1,x 2=a +1 e x 2,则有x 1+x 2=a +1 e x 1+e x 2,且x 2-x 1=a +1 e x 2-e x1,由x 1<x 2,得a +1=x 2-x 1e x 2-ex 1.要证x 1+x 2>2,只要证明a +1 e x 1+e x 2>2,即证x 2-x 1 e x 2+ex1e x 2-ex 1>2.记t =x 2-x 1,则t >0,e t >1,因此只要证明t ⋅e t +1e t -1>2,即t -2 e t +t +2>0.记h t =t -2 e t +t +2(t >0),则h t =t -1 e t +1,令φt =t -1 e t +1,则φ t =te t ,当t >0时,φ t =te t >0,3所以函数φt =t -1 e t +1在0,+∞ 上递增,则φt >φ0 =0,即h t >h 0 =0,则h t 在0,+∞ 上单调递增,∴h t >h 0 =0,即t -2 e t +t +2>0成立.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.【解析】(1)因为f x =ln x +x 2-2ax ,x >0,所以f(x )=1x +2x -2a =2x 2-2ax +1x,令g (x )=2x 2-2ax +1,则Δ=4a 2-8=4a 2-2 ,因为a >0,当0<a ≤2时,Δ≤0,则g (x )≥0,即f (x )≥0,此时f (x )在(0,+∞)上单调递增,当a >2时,Δ>0,由g (x )=0,得x 3=a -a 2-22,x 4=a +a 2-22,且x 3<x 4,当0<x <x 3或x >x 4时,g (x )>0,即f (x )>0;当x 3<x <x 4时,g (x )<0,即f (x )<0,所以f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减;综上,当0<a ≤2时,f (x )在(0,+∞)上单调递增,当a >2时,f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减,其中x 3=a -a 2-22,x 4=a +a 2-22.(2)由(1)可知,x 3,x 4为f (x )的两个极值点,且x 3<x 4,所以x 1=x 3,x 2=x 4,且x 1,x 2是方程2x 2-2ax +1=0的两不等正根,此时a >2,x 1+x 2=a >0,x 1⋅x 2=12,所以x 1∈0,22 ,x 2∈22,+∞ ,且有2ax 1=2x 21+1,2ax 2=2x 22+1,则2f x 1 -f x 2 =2ln x 1+x 21-2ax 1 -ln x 2+x 22-2ax 2=2ln x 1+x 21-2x 21-1 -ln x 2+x 22-2x 22-1 =-2x 21+2ln x 1-ln x 2+x 22-1=x 22-212x 22+2ln12x 2-ln x 2-1=x 22-12x 22-32ln x 22-2ln2-1令t =x 22,则t ∈12,+∞ ,令g t =t -12t -32ln t -2ln2-1,则g t =1+12t 2-32t =2t -1 t -1 2t 2,当t ∈12,1 时,g t <0,则g t 单调递减,当t ∈1,+∞ 时,g t >0,则g t 单调递增,所以g t min =g 1 =-1+4ln22,所以2f x 1 -f x 2 的最小值为-1+4ln22.402证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.【解析】(1)f x =me x -2x +m ,f 2 =me 2-4+m ,f 2 =me 2-4+m ,则有4e 2=me 2-4+m ,4e 2×2-me 2-4+m -4e 2=0,解得m =4;(2)由m =4,故f x =4e x -x 2+4x -4,要证对一切x ≥0,都有f x ≥e 2x 2,即证4e x ≥e 2+1 x 2-4x +4对一切x ≥0恒成立,即证e 2+1 x 2-4x +4e x ≤4对一切x ≥0恒成立,令g x =e 2+1 x 2-4x +4e x,gx =2e 2+1 x -4-e 2+1 x 2+4x -4e x =-e 2+1 x 2+2e 2+3 x -8e x=-e 2+1 x -4 x -2 e x ,则当x ∈0,4e 2+1 ∪2,+∞ 时,g x <0,则当x ∈4e 2+1,2时,g x >0,即g x 在0,4e 2+1 、2,+∞ 上单调递减,在4e 2+1,2上单调递增,又g 0 =4e 0=4,g 2 =4e 2+1 -4×2+4e 2=4e 2+4-8+4e 2=4,故g x ≤4对一切x ≥0恒成立,即得证.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .【解析】(1)当a =4时,f (x )=(x -4)e x +x +4,则f (x)=(x-3)e x+1,得f (0)=-2,又f(0)=0,所以f(x)在x=0处的切线为y=-2x;(2)f(x)=(x-a)e x+x+a≥0对∀x∈[0,+∞)恒成立,f (x)=(x+1-a)e x+1,设g(x)=(x+1-a)e x+1(x≥0),则g (x)=(x+2-a)e x,当2-a≥0即a≤2时,g (x)≥0,g(x)在[0,+∞)上单调递增,且g(0)=2-a≥0,所以g(x)≥0,即f (x)≥0,此时f(x)在[0,+∞)上单调递增,且f(0)=0,所以f(x)≥0对∀x∈[0,+∞)恒成立.当2-a<0即a>2时,令g (x)<0⇒0<x<a-2,g (x)>0⇒x>a-2,所以函数g(x)在(0,a-2)上单调递减,在(a-2,+∞)上单调递增,则g(x)min=g(a-2)=1-e a-2<0,又g(0)=2-a<0,所以在(0,a-2)上恒有g(x)<0,即f (x)<0,函数f(x)在(0,a-2)上单调递减,且f(0)=0,则在(0,a-2)上有f(x)<0,不符合题意.综上,a≤2,即实数a的取值范围为(-∞,2](3)由a n+1=2a na n+2,得1a n+1-1a n=12,又1a1=1,所以数列1a n是以1为首项,以12为公差的等差数列,故1a n=1+12(n-1)=n+12,所以a n=2n+1.当n=1时,S1+13=a1+13=43<ln6恒成立;当n≥2时,先证:2n+1<ln n+2n,即证2n+1<ln n+1+1n+1-1=ln1+1n+11-1n+1,设x=1n+1,则0<x<1,即证2x<ln1+x1-x(0<x<1),令h(x)=2x-ln 1+x1-x(0<x<1),则h (x)=2-1x+1-11-x=-2x21-x2<0,所以h(x)在(0,1)上单调递减,故h(x)<h(0)=0,即2x<ln 1+x1-x,即2n+1<ln n+2n.所以当n≥2时,S n+13=13+23+24+⋯+2n+1<ln6+ln42+ln53+⋯+ln n+2n=ln6×4×5×⋯×n(n+1)(n+2)2×3×4×5×⋯×n=ln[(n+1)(n+2)].综上,S n+13<ln[(n+1)(n+2)].3(2024·上海松江·二模)已知函数y=x⋅ln x+a(a为常数),记y=f(x)=x⋅g(x).(1)若函数y=g(x)在x=1处的切线过原点,求实数a的值;(2)对于正实数t,求证:f(x)+f(t-x)≥f(t)-t ln2+a;(3)当a=1时,求证:g(x)+cos x<e xx.【解析】(1)由题意,函数y=x⋅ln x+a,且y=f(x)=x⋅g(x),可得g(x)=f(x)x=ln x+ax,x>0,则g (x)=1x-ax2=x-ax2,5所以g (1)=1-a,又因为g(1)=ln1+a=a,所以g x 在x=1处的切线方程为y=(1-a)(x-1)+a,又因为函数y=g(x)在x=1处的切线过原点,可得0=(1-a)⋅(0-1)+a,解得a=1 2 .(2)设函数h x =f x +f t-x,t>0,可得h x =x ln x+(t-x)ln(t-x)+2a,其中0<x<t,则h x =ln x+1-ln(t-x)-1=lnxt-x,令h x >0,可得xt-x>1,即2x-tt-x>0,即2x-tx-t<0,解得t2<x<t,令h x <0,可得0<xt-x<1,解得0<x<t2,所以h x 在t2,t上单调递增,在0,t2上单调递减,可得h x 的最小值为ht2,所以h x ≥h t2 ,又由ht2=f t2 +f t-t2=t ln t2+2a=f t -t ln2+a,所以f x +f t-x≥f t -t ln2+a.(3)当a=1时,即证ln x+1x <e xx-cos x,由于cos x∈[-1,1],所以e xx-cos x≥e xx-1,只需证ln x+1x<e xx-1,令k x =ln x+1x-e xx+1,x>0,只需证明k x <0,又由k x =1x-1x2-e x(x-1)x2=(1-e x)(x-1)x2,因为x>0,可得1-e x<0,令k x >0,解得0<x<1;令k x <0,解得x>1,所以k x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以k x 在x=1处取得极大值,也时最大值,所以k x max=k1 =2-e<0,即k x <0,即a=1时,不等式g(x)+cos x<e xx恒成立.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x∈D,m≤f x ⇔m≤f x min;(2)∀x∈D,m≥f x ⇔m≥f x max;(3)∃x∈D,m≤f x ⇔m≤f x max;(4)∃x∈D,m≥f x ⇔m≥f x min.673、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-ax e x a ∈R .(1)讨论f x 的单调性;(2)若关于x 的不等式f x >a 1-x 无整数解,求a 的取值范围.【解析】(1)f x =1-a -ax e x ,当f x =0,得x =1-aa ,当a >0时,x ∈-∞,1-a a时,fx >0,f x 单调递增,x ∈1-a a,+∞ 时,f x <0,f x 单调递减,当a <0时,x ∈-∞,1-aa时,f x <0,f x 单调递减,x ∈1-a a,+∞ 时,f x >0,f x 单调递增,当a =0时,f x =e x ,函数f x 在R 上单调递增,综上可知,a >0时,函数f x 的单调递增区间是-∞,1-a a,单调递减区间是1-aa ,+∞ ,a <0时,函数f x 的单调递减区间是-∞,1-a a ,单调递增区间是1-aa ,+∞ ,a =0时,函数f x 的增区间是-∞,+∞ ,无减区间.(2)不等式1-ax e x >a 1-x ,即a x -x -1e x<1,设h x =x -x -1e x ,h x =1-2-x e x =e x +x -2e x,设t x =e x +x -2,t x =e x +1>0,所以t x 单调递增,且t 0 =-1,t 1 =e -2>0,所以存在x 0∈0,1 ,使t x 0 =0,即h x 0 =0,当x ∈-∞,x 0 时,h x <0,h x 单调递减,当x ∈x 0,+∞ 时,h x >0,h x 单调递增,所以h x ≥h x 0 =x 0e x-x 0+1ex,因为e x≥x +1,所以h x ≥h x 0 =x 0e x-x 0+1e x 0≥x 0x 0+1 -x 0+1e x 0=x 20+1ex>0,当x ≤0时,h x ≥h 0 =1,当x ≥1时,h x ≥h 1 =1,不等式1-ax e x >a 1-x 无整数解,即a x -x -1e x<1无整数解,若a ≤0时,不等式恒成立,有无穷多个整数解,不符合题意,若a ≥1时,即1a≤1,因为函数h x 在-∞,0 上单调递减,在1,+∞ 上单调递增,所以x ∈Z 时,h x ≥min h 0 ,h 1 =1≥1a ,所以h x <1a 无整数解,符合题意,当0<a <1时,因为h 0 =h 1 =1<1a ,显然0,1是a ⋅h x <1的两个整数解,不符合题意,8综上可知,a ≥1.2(2024·黑龙江哈尔滨·一模)已知函数f x =xex -ae x ,a ∈R .(1)当a =0时,求f x 在x =1处的切线方程;(2)当a =1时,求f x 的单调区间和极值;(3)若对任意x ∈R ,有f x ≤e x -1恒成立,求a 的取值范围.【解析】(1)当a =0时,f x =xex ,则f x =1-x ex,f 1 =0,f 1 =1e ,所以切线方程为y =1e.(2)当a =1时,f x =xe -x -e x ,f x =1-x e -x -e x =1-x -e 2xex.令g x =1-x -e 2x ,g x =-1-2e 2x<0,故g x 在R 上单调递减,而g 0 =0,因此0是g x 在R 上的唯一零点即:0是f x 在R 上的唯一零点当x 变化时,f x ,f x 的变化情况如下表:x-∞,0 00,+∞f x +0-f x↗极大值↘f x 的单调递减区间为:0,+∞ ;递增区间为:-∞,0 f x 的极大值为f 0 =-1,无极小值(3)由题意知xe -x-ae x≤e x -1,即a ≥xe -x -e x -1e x,即a ≥x e2x -1e ,设m x =x e 2x -1e ,则mx =e 2x -2xe 2x e 2x2=1-2x e 2x ,令m x =0,解得x =12,当x ∈-∞,12 ,m x >0,m x 单调递增,当x ∈12,+∞ ,m x <0,m x 单调递减,所以m x max =m 12 =12e -1e =-12e,所以a ≥-12e3(2024·陕西安康·模拟预测)已知函数f x =ln x +1,g x =e x -1.(1)求曲线y =f x 与y =g x 的公切线的条数;(2)若a >0,∀x ∈-1,+∞ ,f x +1 ≤a 2g x +a 2-a +1,求a 的取值范围.【解析】(1)设f x =ln x +1,g x =e x -1的切点分别为x 1,f x 1 ,x 2,g x 2 ,则f x =1x,g (x )=e x ,故f x =ln x +1,g x =e x -1在切点处的切线方程分别为y =1x 1x -x 1 +ln x 1+1⇒y =1x 1x +ln x 1,y =e x 2x -x 2 +e x 2-1⇒y =e x 2x -x 2e x 2+e x2-1则需满足;91x 1=ex 2ln x 1=-x 2ex 2+e x 2-1,故ln1ex 2=-x 2e x 2+e x 2-1⇒e x 2-1 x 2-1 =0,解得x 2=0或x 2=1,因此曲线y =f x 与y =g x 有两条不同的公切线,(2)由f x +1 ≤a 2g x +a 2-a +1可得ln x +1 +1≤a 2e x -1 +a 2-a +1,即ln x +1 ≤a 2e x -a 对于∀x ∈-1,+∞ 恒成立,ln 0+1 ≤a 2e 0-a ,结合a >0,解得a ≥1设m (x )=ln x -x +1,,则当x >1时m (x )=1x-1<0,m x 单调递减,当0<x <1时,m (x )>0,m x 单调递增,故当m (x )≤m 1 =0,故ln x ≤x -1,因此ln x +1 ≤x ,x >-1 ,令F x =x -a 2e x +a ,x >-1 ,则F x =1-a 2e x ,令F x =1-a 2e x =0,得x =-2ln a ,当-2ln a ≤-1时,此时a ≥e ,F x =1-a 2e x <0,故F x 在x >-1上单调递减,所以F x <F -1 =-1-a 2e +a =-a 2+ea -e e =-a -e 2 2+e 24-e e≤-e -e 22+e 24+ee=e -2<0,所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,当-2ln a >-1时,此时1<a <e ,令F x =1-a 2e x >0,解得-1<x <-2ln a ,F x 单调递增,令F x =1-a 2e x <0,解得x >-2ln a ,F x 单调递减,故F x ≤F x max =F -2ln a =-2ln a -1+a ,令p a =-2ln a -1+a ,则p a =-2a +1=a -2a ,由于1<a <e ,所以p a =-2a +1=a -2a<0,故p a 在1<a <e 单调递减,故p a <p 1 ,即可p a <0,因此F x ≤F x max =F -2ln a =-2ln a -1+a <0⇒F x <0所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,综上可得a ≥104零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y =k )在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x -1,g x =ln x +b .(1)求函数F x =x -1 f x 的单调区间;10(2)若总存在两条直线和曲线y =f x 与y =g x 都相切,求b 的取值范围.【解析】(1)F x =x -1 f x =x -1 e x -1,F x =xe x -1,令F x >0,得x >0,令F x <0,得x <0,所以函数F x 的单调递增区间为0,+∞ ,单调递减区间为-∞,0 ;(2)∵f x =e x -1∴f x =e x -1在m ,e m -1 处的切线方程为y =e m -1x +1-m e m -1,∵g x =1x,∴g x =ln x +b 在点n ,ln n +b 处的切线方程为y =1nx +ln n +b -1,由题意得e m -1=1n(1-m )e m -1=ln n +b -1,则m -1 e m -1-m +b =0,令h m =m -1 e m -1-m +b ,则h (x )=me m -1-1,令φm =me m -1-1,则φ m =m +1 e m -1,当m <-1时,φ m <0,当m >-1时,φ m >0,所以函数φm 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,即函数h m 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,又h 1 =0,且当m ≤0时,h m <0,所以m <1时,h m <0,h (m )单调递减;当m >1时,h (m )>0,h (m )单调递增,所以h m min =h 1 =b -1,若总存在两条直线和曲线y =f x 与y =g x 都相切,则曲线y =h m 与x 轴有两个不同的交点,则h 1 =b -1<0,所以b <1,此时h b -1 =b -2 e b -2+1>-1e+1>0,h 3-b =2-b e 2-b +2b -3>2-b 3-b =b -322+34>0,所以b 的取值范围为-∞,1 .2(2024·北京房山·一模)已知函数f (x )=e ax +1x.(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)设g (x )=f (x )⋅x 2,求函数g (x )的极大值;(3)若a <-e ,求函数f (x )的零点个数.【解析】(1)当a =0时,f (x )=1+1x ,f x =-1x 2,则f 1 =-1,f 1 =2,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -2=-x -1 ,即y =-x +3;(2)f (x )=ae ax -1x2,则g (x )=f (x )⋅x 2=ax 2e ax -1x ≠0 ,则g x =2axe ax +a 2x 2e ax =ax ax +2 e ax x ≠0 ,当a =0时,g x =-1,此时函数g x 无极值;当a >0时,令g x <0,则x >0或x <-2a ,令g x <0,则-2a<x <0,所以函数g x 在-∞,-2a ,0,+∞ 上单调递增,在-2a ,0 上单调递减,所以g x 的极大值为g -2a =4ae2-1;当a<0时,令g x <0,则x<0或x>-2a,令gx <0,则0<x<-2a,所以函数g x 在-∞,0,-2a,+∞上单调递增,在0,-2a上单调递减,而函数g x 的定义域为-∞,0∪0,+∞,所以此时函数g x 无极值.综上所述,当a≤0时,函数g x 无极大值;当a>0时,g x 的极大值为4ae2-1;(3)令f(x)=e ax+1x =0,则e ax=-1x,当x>0时,e ax>0,-1x<0,所以x>0时,函数f x 无零点;当x<0时,由e ax=-1x,得ax=ln-1x,所以a=-ln-xx,则x<0时,函数f x 零点的个数即为函数y=a,y=-ln-xx图象交点的个数,令h x =-ln-xxx<0,则h x =ln-x-1x2,当x<-e时,h x >0,当-e<x<0时,h x <0,所以函数h x 在-∞,-e上单调递增,在-e,0上单调递减,所以h x max=h-e=1 e,又当x→-∞时,h x >0且h x →0,当x→0时,h x →-∞,如图,作出函数h x 的大致图象,又a<-e,由图可知,所以函数y=a,h x =-ln-xx的图象只有1个交点,即当x<0时,函数f x 只有1个零点;综上所述,若a<-e,函数f(x)有1个零点.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.【解析】(1)由题意知f x 定义域0,+∞,当m=5时,f x =-4x3+5x-1,-4x3+5x-1≥ln xln x,-4x3+5x-1<ln x ,令g x =-4x3+5x-1,g x =-12x 2+5>0⇒0<x <6012,⇒g x 在0,6012 单调递增,6012,+∞ 单调递减,且g 1 =0,令h x =ln x ,则在0,+∞ 单调递增,而f 1 =0=h 1 ,又g 14 =316,h 14 =ln 14<-1,而g 0 =-1,所以当0<x <14时,g x >h x ,当14≤x <1时,g x >0>h x ,所以当0<x <1时,f x =g x ,当x ≥1时,f x =h x ,所以f x =-4x 3+5x -1,0<x <1ln x ,x ≥1,所以f x 在0,6012和1,+∞ 单调递增,在6012,1 单调递减.(ⅰ)当0<x <1时,f x =-12x 2+5,设切点M x 0,-4x 30+5x 0-1 ,则此切线方程为y =-12x 20+5 x -x 0 -4x 30+5x 0-1,又此切线过原点,所以0=-12x 20+5 0-x 0 -4x 30+5x 0-1,解得x 0=12,即此时切线方程是2x -y =0;(ⅱ)当x ≥1时,f x =ln x ,所以f x =1x,设切点为x 0,ln x 0 ,此时切线方程y =1x 0x -x 0 +ln x 0,又此切线过原点,所以0=1x 00-x 0 +ln x 0,解得x 0=e ,所以此时切线方程x -ey =0,综上所述,所求切线方程是:x -ey =0或2x -y =0;(2)(ⅰ)当m =5时,由(1)知,f x 在0,6012 和1,+∞ 单调递增,6012,1单调递减,且f 0 =1,f 14 =316>0,f 1 =0,此时f x 有两个零点;(ⅱ)当m >5时,当0<x <1时,-4x 3+5x -1<-4x 3+mx -1,由(1)知:g x =-4x 3+5x -1在0,6012 递增,6012,1递减,且g 1 =0,所以x ∈6012,+∞ 时,f x >0,而f 0 =-1,所以f x 在0,6012 只有一个零点,6012,+∞ 没有零点;(ⅲ)当0<m <5时,y =-4x 3+mx -1,此时y =-12x 2+m >0得0<x <m 12<6012,由(1)知,当x ≥1时,f x =ln x 只有一个零点x =1,要保证f x 只有一个零点,只需要当0<x <1时,f x =-4x 3+mx -1没有零点,f m12=-4m123+m m 12-1=m 3m 9-1<00<m<1 ,得0<m <3;(ⅳ)当m≤0时,当x∈0,+∞时,g x =-4x3+mx-1<0,此时f x 只有一个零点x=1,综上,f x 只有一个零点时,m<3或m>5 .05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.【解析】(1)因为f x =13x3-12a x2+2cos x+x cos x-sin x,所以f x =x2-ax+a sin x-x sin x=x-ax-sin x.设g x =x-sin x,则g x =1-cos x≥0,所以g x 在R上单调递增,且g0 =0,所以当x>0时,x-sin x>0;当x<0时,x-sin x<0.当a=0时,f x =x x-sin x≥0,所以f x 在R上单调递增.当a>0时,若x∈0,a,则f x <0,所以f x 单调递减;若x∈-∞,0或x∈a,+∞,则f x >0,所以f x 单调递增.当a<0时,若x∈a,0,则f x <0,所以f x 单调递减;若x∈-∞,a或x∈0,+∞,则f x >0,所以f x 单调递增.综上所述,当a=0时,f x 在R上单调递增;当a>0时,f x 在0,a上单调递减,在-∞,0,a,+∞上单调递增;当a<0时,f x 在a,0上单调递减,在-∞,a,0,+∞上单调递增. (2)①由(1)知,当a>0时,f x 在0,a上单调递减,在a,+∞上单调递增,又f0 =-a<0,所以f a <f0 <0,所以f x 在0,a上没有零点.因为x>0,所以f(x)=13x3-12a x2+2cos x+x cos x-sin x>13x3-12a x2+2-x-1=19x2x-92a+19x x2-9+19x3-a+1所以当x>92ax>3x>39a+9时,f x >0,此时f x 在a,+∞上只有1个零点.综上可得,f x 在0,+∞上只有1个零点.②由a>0,知f x 在0,a上单调递减,在a,+∞上单调递增,所以f x ≥f a =-16a3-sin a,所以f a +16a 3+12a 2+2sin a +π4 -1=12a 2+cos a -1.设h a =12a 2+cos a -1,则h a =a -sin a .由(1)知,当a >0时,a -sin a >0,所以当a >0时,h a >0,所以h a >0在0,+∞ 上单调递增,所以h a >h 0 =0,即f a >1-16a 3-12a 2-2sin a +π4 ,所以f x >1-16a 3-12a 2-2sin a +π4.2(2024·河北沧州·一模)已知函数f x =x ae2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.【解析】(1)当a =2时,f x =x 2e 2xfx =2x ⋅e 2x -x 2⋅e 2x ⋅2e 2x 2=-2x (x -1)e 2x 令f x =0,解得x =0或x =1,所以x 、f (x )、f (x )的关系如下表:x (-∞,0)0(0,1)1(1,+∞)f (x )-0+-f (x )单调递减单调递增1e 2单调递减所以函数f x 的单调递增区间为:(0,1),单调递减区间为:(-∞,0)和(1,+∞);极大值f (1)=1e2,极小值f (0)=0;(2)f (x )-cos ln f (x ) ≥a ln x 2-4x ⇔x a e 2x -cos ln x a e2x≥2a ln x -4x⇔e a ln x -2x -2(a ln x -2x )-cos (a ln x -2x )≥0令g (t )=e t -2t -cos t ,其中t =a ln x -2x ,设F (x )=a ln x -2x ,a >0F (x )=a x -2=a -2xx 令F (x )>0,解得:0<x <a2,所以函数F (x )在0,a 2上单调递增,在a2,+∞ 上单调递减,F (x )max =F a 2 =a ln a2-a ,且当x →0+时,F (x )→-∞,所以函数F (x )的值域为-∞,a ln a2-a ;又g (t )=e t -2+sin t ,设h (t )=e t -2+sin t ,t ∈-∞,a ln a2-a ,则h (t )=e t +cos t ,当t ≤0时,e t ≤1,sin t ≤1,且等号不同时成立,即g (t )<0恒成立;t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数压轴题零点问题练习题一、解答题1.(2020·省高三考试)设函数()()21f x x bx b R =-+∈,()()(),0,0f x x F x f x x ⎧>⎪=⎨->⎪⎩.(1)如果()10f =,求()F x 的解析式;(2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围.【答案】(1)()2221,021,0x x x F x x x x ⎧-+>=⎨-+-<⎩(2)(][),22,k ∈-∞-+∞【解析】(1)因为()10f =,所以110b -+=,即2b =.所以()2221,021,0x x x F x x x x ⎧-+>=⎨-+-<⎩. (2)因为()21f x x bx =-+为偶函数,所以0b =,即()21f x x =+.因为()()g x f x kx =-有零点,所以方程210x kx +-=有实数根. 所以240k ∆=-≥, 所以(][),22,k ∈-∞-+∞.2.(2020·全国高三专题练习)已知函数3()sin f x x x =-,()f x '为()f x 的导函数.(1)求()f x 在0x =处的切线方程;(2)求证:()f x '在,22ππ⎛⎫- ⎪⎝⎭上有且仅有两个零点.【答案】(1)y x =;(2)证明见解析. 【解析】(1)()2cos 3,f x x x '=-()01f '=,又()00f =,所以切点为()0,0.故()f x 在0x =处的切线方程为y x =;(2)2()cos 3,f x x x '=-因为()f x '为偶函数,且()01f '=,则只需证明()f x '在0,2π⎛⎫⎪⎝⎭上有且仅有一个零点即可.()sin 6f x x x ''=--,当0,2x π⎛⎫∈ ⎪⎝⎭时()0f x ''<, 故()f x '在0,2π⎛⎫⎪⎝⎭上单调递减, 因为()010f '=>,23022f ππ⎛⎫⎛⎫'=-⨯< ⎪ ⎪⎝⎭⎝⎭, 由零点存在定理,可知存在00,2x π⎛⎫∈ ⎪⎝⎭使得()00f x '=, 所以()f x '在0,2π⎛⎫⎪⎝⎭上有且仅有一个零点, 因此()f x '在,22ππ⎛⎫- ⎪⎝⎭上有且仅有两个零点.3.(2020·省高三期末)已知函数1()(2)xf x e a x x=+++在区间(1,0)-存在零点. (1)求a 的围; (2)设22ea >,1221,()x x x x <是()f x 的两个零点,求证:122x x -<. 【答案】(1)0a >(2)证明见解析【解析】(1)由题意,方程1e (2)0x a x x+++=在区间(1,0)-有解, 即方程2e (1)0x x a x ++=在区间(1,0)-有解,设函数2()e (1)x g x x a x =++,即g()x 在区间(1,0)-存在零点. 因为()(1()e )2x g x x a '=++,①若0a >,则e 20x a +>,10x +>,()0g x '>成立,g()x 在区间(1,0)-单调递增,(0)0g a =>,1(1)0e g -=-<,(0)(1)0g g ⋅-<,所以g()x 在区间(1,0)-存在零点;②若0a =,则()e 0x g x x '=<,g()x 在(1,0)-单调递减,且()(0)0g x g a >==,所以g()x 在区间(1,0)-无零点; ③若0a <,则e 0x x <,2(1)0a x +<, 当(1,0)x ∈-时,()0g x '<,()(1)0g x g <-< 故g()x 在区间(1,0)-无零点; 综上所述,0a >. (2)由(1)可知,22e a >时,g()x 在区间(,1)-∞-单调递减,在区间(1,)-+∞单调递增, 且g()x 在区间(1,0)-存在一个零点; 又22(2)0eg a -=-+>,(2)(1)0g g -⋅-<, 所以g()x 在区间(2,1)--也存在一个零点, 从而2120x x -<<<, 所以122x x -<,不等式得证. 4.(2020·省高三月考)已知函数()()()32111323a f x x a x x a R =-++-∈. (1)若1a >,求函数()f x 的极值;(2)当01a << 时,判断函数()f x 在区间[]0,2上零点的个数. 【答案】(1)详见解析;(2)详见解析. 【解析】(1)∵()()32111323a f x x a x x =-++-, ∴()()()21111f x ax a x a x x a ⎛⎫'=-++=-- ⎪⎝⎭,因为1a >,所以101a<<, 当x 变化时,()(),f x f x '的变化情况如下表:由表可得当1x a=时,()f x 有极大值,且极大值为2212316a a f a a -+-⎛⎫= ⎪⎝⎭,当1x =时,()f x 有极小值,且极小值为()()1116f a =--. (2)由(1)得()()11f x a x x a ⎛⎫=-- ⎝'⎪⎭. ∵ 01a <<,∴11a>. ① 当11202a a ≥<≤,即时,()f x 在()0,1上单调递增,在()1,2上递减 又因为()()()()()11100,110,2210363f f a f a =-=--=-≤ 所以()f x 在(0,1)和(1,2)上各有一个零点, 所以()[]0,2f x 在上有两个零点.② 当112a <<,即112a <<时,()f x 在()0,1上单调递增,在11,a ⎛⎫ ⎪⎝⎭上递减,在1,2a ⎛⎫ ⎪⎝⎭上递增, 又因为()()()()()221111100,110,0366a a f f a f a a ---⎛⎫=-=--=> ⎪⎝⎭所以()f x 在[]0,1上有且只有一个零点,在[]1,2上没有零点, 所以在[]0,2上有且只有只有一个零点. 综上:当102a <≤时,()f x 在[]0,2上有两个零点; 当112a <<时,()f x 在[]0,2上有且只有一个零点. 5.(2020·省棠湖中学高三月考)已知设函数()ln(2)(1)axf x x x e =+-+.(1)若0a =,求()f x 极值;(2)证明:当1a >-,0a ≠时,函数()f x 在(1,)-+∞上存在零点.【答案】(1)()f x 取得极大值0,无极小值(2)见证明【解析】(1)当0a =时,()()()ln 21f x x x =+-+,定义域为()2,-+∞,由()102x f x x +'=-=+得1x =-.当x 变化时,()f x ', ()f x 的变化情况如下表:故当1x =-时,()f x 取得极大值()()()1ln 21110f -=---+=,无极小值. (2)()()1e 112ax f x a x x ⎡⎤=-++⎣+'⎦,2x >-. 当0a >时,因为1x >-,所以()()()21e 1202axf x a a x x ⎡⎤=--++⎣+'<⎦', ()f x '在()1,-+∞单调递减.因为()11e0af --=->',()1002f b -'=-<,所以有且仅有一个()11,0x ∈-,使()10g x '=,当11x x -<<时,()0f x '>,当1x x >时,()0f x '<, 所以()f x 在()11,x -单调递增,在()1,x +∞单调递减. 所以()()010f x f >-=,而()0ln210f =-<, 所以()f x 在()1,-+∞存在零点.当10a -<<时,由(1)得()()ln 21x x +≤+, 于是e 1x x ≥+,所以()e11axax a x -≥-+>-+.所以()()()()())e e ln 21e 1ln 21]ax ax axf x x x x a x -⎡⎤⎡=+-+>-+++⎣⎣⎦. 于是1111111e e e 1ln e 21]e e 1ln e 1]0a a a a af a a -------⎡⎫⎡⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫>+-+->+--=⎪⎪⎢⎢ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎢⎢⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎭⎣⎭.因为()0ln210f =-<,所以所以()f x 在1e ,a -⎛⎫+∞ ⎪⎝⎭存在零点.综上,当1a >-,0a ≠时,函数()f x 在()1,-+∞上存在零点.6.(2020·省高三期末)已知函数2()(2)ln 47()f x x x ax x a a =++-+∈R .(1)若12a =,求函数()f x 的所有零点; (2)若12a ≥,证明函数()f x 不存在的极值.【答案】(1) 1x = (2)见证明 【解析】(1)当1a 2=时,()()2172ln 422f x x x x x =++-+, 函数()f x 的定义域为()0,∞+,且()2ln 3f x x x x =++-'. 设()2ln 3g x x x x=++-,则()()()2222211221x x x x g x x x x x +-+-='=-+= 0x .当01x <<时,()0g x '<;当1x >时,()0g x '>,即函数()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以当0x >时,()()10g x g ≥=(当且仅当1x =时取等号). 即当0x >时,()0f x '≥(当且仅当1x =时取等号). 所以函数()f x 在()0,∞+单调递增,至多有一个零点. 因为()10f =,1x =是函数()f x 唯一的零点. 所以若12a =,则函数()f x 的所有零点只有1x =. (2)证法1:因为()()22ln 47f x x x ax x a =++-+, 函数()f x 的定义域为()0,∞+,且()2ln 24x f x x ax x++'=+-. 当12a ≥时,()2ln 3f x x x x≥++-',由(1)知2ln 30x x x++-≥. 即当0x >时()0f x '≥,所以()f x 在()0,∞+上单调递增. 所以()f x 不存在极值.证法2:因为()()22ln 47f x x x ax x a =++-+,函数()f x 的定义域为()0+∞,,且()2ln 24x f x x ax x++'=+-. 设()2ln 24x m x x ax x+=++-, 则()22212222ax x m x a x x x+-=-+=' 0x .设()()2220h x ax x x =+-> ,则()m x '与()h x 同号. 当12a ≥时,由()2220h x ax x =+-=,解得10x =<,20x =>.可知当20x x <<时,()0h x <,即()0m x '<,当2 x x >时,()0h x >,即()0m x '>, 所以()f x '在()20,x 上单调递减,在()2,x +∞上单调递增. 由(1)知2ln 30x x x++-≥. 则()()()2222222ln 321210f x x x a x a x x =++-+-≥-≥'. 所以()()20f x f x ''≥≥,即()f x 在定义域上单调递增. 所以()f x 不存在极值.7.(2020·省高三期末)已知函数()11xx f x e x +=--. (Ⅰ)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(Ⅱ)设0x 是()f x 的一个零点,证明曲线xy e =在点()00,x A x e处的切线也是曲线ln y x =的切线.【答案】(Ⅰ)()f x 在(),1-∞,()1,+∞单调递增,证明见解析;(Ⅱ)见解析. 【解析】(Ⅰ)()f x 的定义域为()(),11,-∞+∞,因为()()2201'x e x f x =+>-,所以()f x 在(),1-∞,()1,+∞单调递增.因为()212103f e --=<,()110f e-=>,所以()f x 在(),1-∞有唯一零点1x , 因为12532f e ⎛⎫⎪⎝⎭=-,由3322.8225e <<<,得302f ⎛⎫< ⎪⎝⎭; 因为()2230f e =->,所以()f x 在()1,+∞有唯一零点2x . 综上,()f x 有且仅有两个零点.(Ⅱ)由题设知()00f x =,即00011x x e x +=-, 由x y e =,得'xy e =,曲线x y e =在()00,x A x e处的切线1l 为:()000x x y e x x e =-+,即()0001x x y e x e x =+-.由ln y x =,得1'y x=,则曲线ln y x =的斜率为0e x 的切线的切点横坐标x 满足01xe x =,解得0x x e -=,代入ln y x =,得00ln x y ex -==-,故曲线ln y x =的斜率为0e x 的切线2l 方程为()0x x y e x e x -=--,即()001x y ex x =-+,由00011x x ex +=-,得()()00011xe x x -=-+,从而1l 与2l 为同一条直线. 8.(2020·高三月考)已知函数()lnf x x ax a =-+(a 为常数)的最大值为0. (1)数a 的值;(2)设函数3()(1)ln ()1F x m x x f x e=--+-,当0m >时,求证:函数()F x 有两个不同的零点1x ,2x (12x x <),且121x x e e --<-.【答案】(1)1a =(2)见解析【解析】(1)函数()f x 的定义域为:(0,)+∞,1()axf x x-'=当0a ≤时,()0f x '>,则函数()f x 在(0,)+∞上单调递增,无最大值;当0a >时,令1()0axf x x '-=>,即(1)0x ax -<,解得10x a<<, 所以函数()f x 在1(0,)a上单调递增,1(,)a +∞上单调递减,max 11()()ln 10f x f a a a ==-+=,易知函数1ln y a=与函数1y a =-的图像相交于点(1,0),所以方程1ln 10a a-+=的解为1a =; (2)3()(1)ln ln F x m x x x x e=--+-2111()(ln 1)1()mx m F x m x F x x x x -++'''=++-+⇒=当0m >时()0F x ''>,则()F x '在(0,)+∞上单调递增,又因为()10F '=,所以()F x 在(0,1)上单调递减,在(1,)+∞上单调递增,又()1031e F =-<,112()(1)10F m e e e =-+->,23()(1)0e e F e m e e--=-+>所以函数()F x 有两个不同的零点11(,1)x e ∈,2(1,)x e ∈,故211x x e e-<-. 9.(2020·省高三期末)已知函数()()2e 12e x xf x a a x =+--.(1)当0a <时,讨论()f x 的单调性;(2)若()f x 有两个不同零点1x ,2x ,证明:1a >且120x x +<. 【答案】(1)分类讨论,详见解析;(2)详见解析.【解析】(1)()()()()22e 12e 1e 12e 1x x x x f x a a a '=+--=-+.因为0a <,由()0f x '=得,0x =或1ln 2x a ⎛⎫=- ⎪⎝⎭.i )1ln 02a ⎛⎫-< ⎪⎝⎭即12a <-时,()f x 在1,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在()0,∞+单调递减;ii )1ln 02a ⎛⎫-= ⎪⎝⎭即12a =-时,()f x 在(),-∞+∞单调递减;iii )1ln 02a ⎛⎫-> ⎪⎝⎭即102a -<<时,()f x 在(),0-∞单调递减,在10,ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在1ln ,2a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭单调递减. (2)由(1)知,12a <-时,()f x 的极小值为111ln 1ln 10242f a a a ⎛⎫⎛⎫⎛⎫-=--->> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,102a -<<时,()f x 的极小值为()0110f a =->>, 12a =-时,()f x 在(),-∞+∞单调,故0a <时,()f x 至多有一个零点.当0a ≥时,易知()f x 在(),0-∞单调递减,在()0,∞+单调递增.要使()f x 有两个零点,则()00f <,即120a a +-<,得1a >.令()()()F x f x f x =--,(0x >),则()()()F x f x f x '''=+-()()22e 12e 1x xa a =+--()()22e 12e 1x x a a --++--()()()2e e 1e e 2e e 20x x x x x x a ---=+++-++-≥,所以()F x 在0x >时单调递增,()()00F x F >=,()()f x f x >-.不妨设12x x <,则10x <,20x >,20x -<, ()()()122f x f x f x =>-. 由()f x 在(),0-∞单调递减得,12x x <-,即120x x +<.10.(2020·维吾尔自治区高三月考)已知函数221()ln ()x f x a x a R x-=-∈(1)若0a >时,讨论()f x 的单调性;(2)设()()2g x f x x =-,若()g x 有两个零点,求a 的取值围 【答案】(1)答案不唯一,具体见解析(2)a e >【解析】(1)易知()f x 的定义域为(0,)+∞,且2221()x ax f x x'-+=, 对于222108x ax a -+=∆=-,,又0a >,①若0a <≤0,()0f x '∆≤≥,()f x ∴在(0,)+∞上是增函数;②若a >()0f x '=,得120,0x x =>=>,()f x ∴在()10,x 和()2,x +∞上是增函数,在()12,x x 上是减函数.(2)由1()ln g x a x x=--, ∴定义域为(0,)+∞且222111()a ax ax g x x x x x '--=-=-= ①当0a ≤时,()0g x '>恒成立,()g x 在(0,)+∞上单调递增,则()g x 至多有一个零点,不符合题意; ②当0a >时,()0g x '=得1x a=, ()g x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减 max 1()ln g x g a a a a ⎛⎫∴==-+ ⎪⎝⎭∴要使()g x 有两个零点,则ln 0a a a -+>,由0a >解得a e > 此时11,(1)10g a>=-< 易知当a e >时()211,,ln a a a a a a e a e g e a e e a a e----><=--=-+, 令2(),(,),()2x x m x e x x e m x e x '=-∈+∞=-,令()2x h x e x =-,所以()2x h x e '=-, (,)x e ∴∈+∞时()0h x '<,()m x '∴在(,)x e ∈+∞为增函数,2()()20m x m e e e ''>=-> ()m x ∴在(,)x e ∈+∞为增函数,2()()0e m x m e e e >=->,所以()2,0a a e a g e -><∴函数()g x 在1,a e a -⎛⎫ ⎪⎝⎭与1,1a ⎛⎫ ⎪⎝⎭各存在一个零点 综上所述,a e >.11.(2020·全国高三专题练习)已知函数()2cos 1.f x x ax =+-(1)当12a =时,证明:()0f x ; (2)若()f x 在R 上有且只有一个零点,求a 的取值围.【答案】(1)见解析; (2)()1,0,.2⎡⎫-∞+∞⎪⎢⎣⎭.【解析】(1)当12a =时,()21cos 12f x x x =+-, 所以()f x 的定义域为R ,且()(),f x f x -=故()f x 为偶函数.当0x 时,()sin f x x x '=-+,记()()sin g x f x x x '==-+,所以()cos 1g x x '=-+.因为()0g x '≥,所以()g x 在[)0,+∞上单调递增,即()f x '在[)0,+∞上单调递增,故()()00f x f ''≥=,所以()f x 在[)0,+∞上单调递增,所以()()00f x f ≥=,因为()f x 为偶函数,所以当x ∈R 时,()0f x ≥.(2)①当0a =时,()cos 1f x x =-,令cos 10x -=,解得()2x k k =π∈Z ,所以函数()f x 有无数个零点,不符合题意;②当0a <时,()22cos 10f x x ax ax =+-≤≤,当且仅当0x =时等号成立,故0a <符合题意;③因为()()f x f x -=,所以()f x 是偶函数,又因为()00f =,故0x =是()f x 的零点.当0a >时,()sin 2f x x ax '=-+,记()()sin 2g x f x x ax '==-+,则()cos 2g x x a '=-+. 1)当12a ≥时,()cos 2cos 10g x x a x '=-+≥-+≥, 故()g x 在()0,∞+单调递增,故当0x >时,()()00.g x g >=即()0f x '>,故()f x 在()0,∞+单调递增,故()()00.f x f >=所以()f x 在()0,∞+没有零点.因为()f x 是偶函数,所以()f x 在R 上有且只有一个零点.2)当102a <<时,当(]0,2x π∈时,存在10,2x π⎛⎫∈ ⎪⎝⎭,使得1cos 2x a =,且当10x x <<时,()g x 单调递减,故()()00g x g <=,即()10,x x ∈时,()0f x '<,故()f x 在()10,x 单调递减,()()100f x f <=, 又()()222cos 22140f a a π=π+π-=π>,所以()()120f x f π<, 由零点存在性定理知()f x 在()1,2x π上有零点,又因为0x =是()f x 的零点, 故102a <<不符合题意; 综上所述,a 的取值围为()1,0,.2⎡⎫-∞+∞⎪⎢⎣⎭ 12.(2020·省高三开学考试)已知函数()ln 2f x x x a =-+(a R ∈).(1)若函数()f x 有两个零点,数a 的取值围(2)证明:1212ln ln 22x x x x e -+⎛⎫-≥++ ⎪⎝⎭ 【答案】(1)()1ln 2,++∞;(2)证明见解析.【解析】(1)由题意,函数()ln 2f x x x a =-+的定义域为()0,∞+,令()ln 20f x x x a =-+=,则2ln a x x =-,记()2ln g x x x =-,0x >,则()1212x g x x x ='-=-,令()0g x '=,得12x =, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,()g x 单调递减, 当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 所以()g x 有最小值,且为11ln 22g ⎛⎫=+ ⎪⎝⎭, 又当0x →时,()g x →+∞;当x →+∞时,()g x →+∞,所以要使函数()f x 有两个零点,则函数()g x 的图象与y a =有两个不同的交点, 则1ln 2a >+,即实数a 的取值围为()1ln 2,++∞.(2)由(1)知,函数()g x 有最小值为11ln 22g ⎛⎫=+⎪⎝⎭,可得2ln 1ln 2x x -≥+, 当且仅当12x =时取等号, 因此要证明1212ln e ln 22x x x x -+⎛⎫-≥++ ⎪⎝⎭, 即只需要证明121e 12x x -+⎛⎫+≤ ⎪⎝⎭, 记()121e 2x x x ϕ-+⎛⎫=+ ⎪⎝⎭,则()11221e e 2x x x x ϕ-+-+⎛⎫'=-+ ⎪⎝⎭121e 2x x -+⎛⎫=- ⎪⎝⎭, 令()0x ϕ'=,得12x =. 当10,2x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>,()x ϕ单调递增, 当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0x ϕ'<,()x ϕ单调递减, 所以()1122111e 1222x ϕϕ-+⎛⎫⎛⎫≤=+= ⎪ ⎪⎝⎭⎝⎭, 即121e 12x x -+⎛⎫+≤ ⎪⎝⎭恒成立,当且仅当12x =时取等号, 所以1212ln e ln 22x x x x -+⎛⎫-≥++ ⎪⎝⎭,当且仅当12x =时取等号. 13.(2020·省执信中学高三月考)已知函数()()1xf x alnx x e =--,其中a 为非零常数. ()1讨论()f x 的极值点个数,并说明理由;()2若a e >,()i 证明:()f x 在区间()1,+∞有且仅有1个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点且11x >,求证:0012x lnx x +>.【答案】(1)见解析;(2)(i )证明见解析;(ii )证明见解析.【解析】()1解:由已知,()f x 的定义域为()0,+∞,()2xx a a x e f x xe x x-=-=', ①当0a <时,20x a x e -<,从而()'0f x <,所以()f x 在()0,+∞单调递减,无极值点;②当0a >时,令()2xg x a x e =-, 则由于()g x 在[)0,+∞上单调递减,()00g a =>,(10ga a =-=-<,所以存在唯一的()00,x ∈+∞,使得()00g x =, 所以当()00,x x ∈时,()0g x >,即()'0f x >;当()0,x x ∈+∞时,()0g x <,即()'0f x <, 所以当0a >时,()f x 在()0,+∞上有且仅有一个极值点.综上所述,当0a <时,函数()f x 无极值点;当0a >时,函数()f x 只有一个极值点;()2证明:()i 由()1知()2xa x e f x x-'=. 令()2xg x a x e =-,由a e >得()10g a e =->, 所以()0g x =在()1,+∞有唯一解,从而()'0f x =在()0,+∞有唯一解,不妨设为0x ,则()f x 在()01,x 上单调递增,在()0,x +∞上单调递减,所以0x 是()f x 的唯一极值点.令()1h x lnx x =-+,则当1x >时,()1'10h x x =-<, 故()h x 在()1,+∞单调递减,从而当1x >时,()()10h x h <=,所以1lnx x <-.从而当a e >时,1lna >,且()()()()()1110lna f lna aln lna lna ea lna lna a =--<---=又因为()10f =,故()f x 在()1,+∞有唯一的零点.()ii 由题意,()()0100f x f x ⎧=⎪⎨='⎪⎩即()012011010x x a x e alnx x e ⎧-=⎪⎨--=⎪⎩,从而()0120111x x x e lnx x e =-,即1011201x x x lnx e x --=. 因为当11x >时,111lnx x <-,又101x x >>, 故10112011x x x e x x --<-,即1020x x e x -<, 两边取对数,得1020x x lnelnx -<, 于是1002x x lnx -<,整理得0012x lnx x +>.。

相关文档
最新文档