高中数学《双曲线》典型例题12例(含标准答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《双曲线》典型例题12例

典型例题一

例1 讨论

19252

2=-+-k

y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9

解:(1)当9-k ,09>-k ,

所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0).

(2)当259<-k ,09<-k ,所给方程表示双曲线,此时,

k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0).

(3)25

说明:将具有共同焦点的一系列圆锥曲线,称为同焦点圆锥曲线系,不妨取一些k 值,画出其图形,体会一下几何图形所带给人们的美感.

典型例题二

例2 根据下列条件,求双曲线的标准方程.

(1)过点⎪⎭⎫ ⎝⎛4153,P ,⎪⎭

⎝⎛-5316,

Q 且焦点在坐标轴上. (2)6=c ,经过点(-5,2),焦点在x 轴上.

(3)与双曲线14

162

2=-

y x 有相同焦点,且经过点()

223, 解:(1)设双曲线方程为12

2=+

n

y m x ∵ P 、Q 两点在双曲线上,

∴⎪⎪⎩⎪⎪⎨⎧=+=+1

259256116225

9n

m n m 解得⎩⎨⎧=-=916n m

∴所求双曲线方程为19

162

2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c ,

∴设所求双曲线方程为:162

2

=--

λ

λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164

25

=--

λ

λ

∴5=λ或30=λ(舍去)

∴所求双曲线方程是15

22

=-y x

说明:以上简单易行的方法给我们以明快、简捷的感觉.

(3)设所求双曲线方程为:

()16014162

2<<=+--λλλy x ∵双曲线过点()

223,

,∴144

1618=++-λ

λ ∴4=λ或14-=λ(舍)

∴所求双曲线方程为18

122

2=-

y x 说明:(1)注意到了与双曲线

14

162

2=-y x 有公共焦点的双曲线系方程为14162

2=+--λ

λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面.

典型例题三

例3 已知双曲线116

92

2=-

y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F

∠的大小.

分析:一般地,求一个角的大小,通常要解这个角所在的三角形. 解:∵点P 在双曲线的左支上 ∴621=-PF PF

∴362212

22

1=-+PF PF PF PF ∴1002

2

2

1=+PF PF ∵()

100441222221=+==b a c F F ∴ 9021=∠PF F

说明:(1)巧妙地将双曲线的定义应用于解题当中,使问题得以简单化. (2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索.

典型例题四

例 4 已知1F 、2F 是双曲线1422

=-y x 的两个焦点,点P 在双曲线上且满足

9021=∠PF F ,求21PF F ∆的面积.

分析:利用双曲线的定义及21PF F ∆中的勾股定理可求21PF F ∆的面积.

解:∵P 为双曲线14

22

=-y x 上的一个点且1F 、2F 为焦点.

∴4221==-a PF PF ,52221==c F F ∵ 9021=∠PF F

∴在21F PF Rt ∆中,202

212221==+F F PF PF ∵()162212

22

12

21=-+=-PF PF PF PF PF PF

∴1622021=-PF PF ∴221=⋅PF PF ∴12

1

2121=⋅=

∆PF PF S PF F

说明:双曲线定义的应用在解题中起了关键性的作用.

典型例题五

例5 已知两点()051,-F 、()052,F ,求与它们的距离差的绝对值是6的点的轨迹.

分析:问题的条件符合双曲线的定义,可利用双曲线定义直接求出动点轨迹. 解:根据双曲线定义,可知所求点的轨迹是双曲线. ∵5=c ,3=a

∴16435222222==-=-=a c b

∴所求方程116

92

2=-

y x 为动点的轨迹方程,且轨迹是双曲线. 说明:(1)若清楚了轨迹类型,则用定义直接求出其轨迹方程可避免用坐标法所带来的繁琐运算.

(2)如遇到动点到两个定点距离之差的问题,一般可采用定义去解.

典型例题六

例6 在ABC ∆中,2=BC ,且A B C sin 21

sin sin =-,求点A 的轨迹.

分析:要求点A 的轨迹,需借助其轨迹方程,这就要涉及建立坐标系问题,如何建系呢?

解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,则()01,-B ,()01,C .

设()y x A ,,由A B C sin 21

sin sin =-及正弦定理可得:

12

1

==-BC AC AB ∵2=BC

∴点A 在以B 、C 为焦点的双曲线右支上设双曲线方程为:

相关文档
最新文档