压力容器罐体厚度计算书

合集下载

罐体钢板厚度计算

罐体钢板厚度计算

JSJ5257GXH下灰车罐体钢板厚度计算书
根据GB713-2008《锅炉和压力容器用钢板》,第5条(尺寸、外形、重量及允许偏差)中而规定:厚度允许偏差按GB/T709的B类偏差。

根据GB/T709-2006《热轧钢板和钢带的尺寸、外形、重量及允许偏差》中,表3《单轧钢板的厚度允许偏差(B类)》中规定的钢板最大负偏差为0.3,我单位购买的δ6/Q345R的钢板厚度能保证在5.85mm以上。

封头厂在旋制封头时,钢板的减薄量为15%,δ6/Q345R钢板旋制封头后的实际厚度为:
5.85×0.85=4.97mm
计算厚度:
计算压力 P c=0.5Mpa
内径 D i=2100
许用应力 [σ]t=170Mpa
焊接接头系数φ=0.85
δ=P c D i/(2[σ]tφ-0.5P c)
=0.5×2100/(2×170×0.85-0.5×0.5)
=3.64mm
名义厚度δn=δ+C2(腐蚀裕量)=3.64+1=4.64<4.97mm 有效厚度δe=4.97-C2=3.97mm
最大允许压力:[Pw]=2[σ]tφδe/(D i+0.5δe)=0.546Mpa 结论:合格
我单位购买的δ5/Q345R的钢板厚度能保证在4.85mm以上,同上述计算的筒体参数:
名义厚度δn=δ+C2(腐蚀裕量)=3.64+1=4.64<4.85mm 有效厚度δe=4.85-C2=3.85mm
最大允许压力:[Pw]=2[σ]tφδe/(D i+δe)=0.529Mpa
结论:合格
天门市江汉三机特车有限责任公司技术部
2011年10月27。

立式压力容器筒体计算书

立式压力容器筒体计算书

计算单位
压力容器专用计算软件 GB 150.3-2011 筒体简图
MPa C mm ( 板材 ) MPa MPa MPa mm mm 厚度及重量计算
计算厚度 有效厚度 名义厚度 重量 压力试验类型 试验压力值 压力试验允许通过 的应力水平 T 试验压力下 圆筒的应力 校核条件 校核结果
Pc Di = 2[ ]t P = 4.35 c
2
过 程 设 备 强 度 计 算 书
SW6-2011
内筒体外压计算 计算所依据的标准 计算条件 计算压力 Pc 设计温度 t 内径 Di 材料名称 试验温度许用应力 设计温度许用应力 试验温度下屈服点 s 钢板负偏差 C1 腐蚀裕量 C2 焊接接头系数 压力试验类型 试验压力值 压力试验允许通过的应力t 试验压力下圆筒的应力 校核条件 校核结果 计算厚度 有效厚度 名义厚度 外压计算长度 L 筒体外径 Do
T = p T .( D i e ) = 42.36 2 e . T T 合格 厚度及重量计算 = 14.95 e =n - C1- C2= 17.70 n = 18.00
MPa MPa MPa
mm mm mm mm mm
L= 1400.00 Do= Di+2n = 2336.00
过 程 设 备 强 度 计 算 书
立式搅拌容器校核 筒体设计条件 设计压力 p 设计温度 t 内径 Di 名义厚度 n 材料名称 许用应力 压力试验温度下的屈服点 钢材厚度负偏差 C1 腐蚀裕量 C2 厚度附加量 C=C1+C2 焊接接头系数 压力试验类型 试验压力 pT 筒体长度 Lw 内筒外压计算长度 L 封 头 设 计 条 件 封头形式 名义厚度 n 材料名称 设计温度下的许用应力 钢材厚度负偏差 C1 腐蚀裕量 C2 厚度附加量 C=C1+C2 焊接接头系数 主 要 计 算 结 果 内圆筒体 校核结果 质 量 m kg 搅拌轴计算轴径 mm 备 注 校核合格 2572.37 内筒上封头

储罐计算

储罐计算

应设置 1 个中间抗风圈于 H E /2 处。 应设置 2 个中间抗风圈于 H E /3 , 2HE/3 处。 应设置 3 个中间抗风圈于 HE/4 , 2HE/4 , 3HE/4 处。
以此类推
6.2.地震载荷计算: 6.2.1.地震作用下罐壁底产生的最大轴向应力
3.515262556
竖向地震影响系数Cv(7,8度地震区取1;9度地震区取1.45)
罐底部垂 直载荷
N1=(md+mt)g
罐壁横截面积(其中t为底部罐壁有效厚度)
A1=πDt
翘离影响 系底数部罐壁 断面系数

CL
Z1=πD2t/4
总水平地震力在罐底部产生的地震弯矩
ML=0.45Q0H
总水平地震力在罐底部产生的水平剪力 综合影响 系数 地震影响系数(据Tc,Tg,αmax按图D.3.1选取)
6.1.2.中间抗风圈计算
罐壁筒体
的临界压
[Pcr ] 16.48
D HE
tmin D
2.5
#N/A
KPa
tmin= 3.7 mm
HE=∑Hei= Hei——罐 壁He各i=H段i 当 (罐t壁min各/ti段)2.5 当量高度
罐壁段号
#N/A
实际高度 Hi(m)
m
有效壁厚ti (mm)
当量高度Hei(m)
s m m
kg kg
第9页
MPa MPa m m s s
第 10 页
设计[σ]d (MPa)
137 137 137 137 137 137 137
σs (MPa
) 205
205
205
165
165
165
165

压力容器壁厚标准计算书(附带公式编辑)

压力容器壁厚标准计算书(附带公式编辑)

10.45697181 σ t最大允许 应力 (kgf/cm2) 1310.130719
标 准 椭 圆 形 封 头
壁厚公式 S=PDi/(2*[σ t]*Φ -0.5P)+C 符号意义 [σ ]许用应 P压力(kg/cm2) D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) 壁厚计算 10 2000 1370 0.85 最大允许工 [P]=(2[σ t]φ (S-C))/((Di+0.5(S-C)) 作压力 符号意义 [σ ]许用应 C壁厚附加量 D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) (mm)
标 准 椭 圆 形 封 头
压力校核 应力校核公 符号意义 及单位 应力校核
2000 1370 0.85 1 σ t=(P(Di+0.5(S-C))/(2(S-C)φ ); 必须满足σ t≦[σ t] P压力(kg/cm2) 10 D直径(mm) 2000 Φ 焊缝系数 0.85 C壁厚附加量 (mm) 1
球 壳 与 球 形 封 头
壁厚公式 S=PDi/(4*[σ t]*Φ -P)+C 符号意义 [σ ]许用应 P压力(kg/cm2) D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) 壁厚计算 10 2000 1370 0.85 最大允许工 [P]=(4[σ t]φ (S-C))/((Di+(S-C)) 作压力 符号意义 [σ ]许用应 C壁厚附加量 D直径(mm) Φ 焊缝系数 及单位 力(kgf/cm2) (mm) 压力校核 2000 1370 0.85 1 应力校核公 σ t=(P(Di+(S-C))/(2(S-C)φ ); 必须满足σ t≦[σ t] 符号意义 及单位 应力校核 P压力(kg/cm2) 10 D直径(mm) 2000 Φ 焊缝系数 0.85 C壁厚附加量 (mm) 1

大型储罐计算书

大型储罐计算书

⼤型储罐计算书4000m3储罐计算书⼀、计算个圈壁板厚度1、计算罐壁板厚度,确定罐底板、罐顶板厚度:⽤GB50341-2003中公式(6.3.1-1)计算罐壁厚度σρd d ][0.3)-(H 9.4t D =式中:d t —储存介质条件下管壁板的计算厚度,mm D —油罐内径(m )(21m )H —计算液位⾼度(m ),从所计算的那圈管壁板底端到罐壁包边⾓钢顶部的⾼度,或到溢流⼝下沿(有溢流⼝时)的⾼度(12.7m )ρ—储液相对密度(1.0)d ][σ—设计温度下钢板的许⽤应⼒,查表4.2.2(157MPa ) ?—焊接接头系数(0.9)第1圈: mm 7.89.0163.010.3)-(12.7219.4t d ==n δ=8.7+2.3=11mm 取12mm 第2圈: mm 38.79.0163.011.88)-0.3-(12.7219.4t d ==n δ=7.38+2.3=9.68mm 取12mm 第3圈: mm 06.69.0163.011.88)2-0.3-(12.7219.4t d ==n δ=6.06+2.3=8.36mm 取10mm 第4圈: mm 74.49.0163.011.88)3-0.3-(12.7219.4t d ==n δ=4.74+2.3=7.04mm 取8mm根据表6.4.4,罐壁最⼩厚度得最⼩厚度为6+2=8mm ,故第5、6、7圈取8mm 。

⼆、罐底、罐顶厚度、表边⾓钢选择(按GB50341规定)罐底板厚度:查表5.1.1,不包括腐蚀余量的最⼩公称直径为6mm ,加上腐蚀余量2mm ,中幅板厚度为8mm查表5.1.2,不包括腐蚀余量的最⼩公称直径为11mm ,加上腐蚀余量2mm ,取边缘板厚度为14mm 罐顶板厚度:查7.1.3,罐顶板不包括腐蚀余量的公称厚度不⼩于4.5mm ,加上1mm 的腐蚀余量后取6mm包边⾓钢:按GB50341表6.2.2-1,选∠75×10 罐顶加强筋:-60×8 三、罐顶板数据计算:①分⽚板中⼼⾓(半⾓)55.2425200302/21000arcsin 302/arcsini 1?=-=-=)()(SR D α②顶板开孔(φ2200)中⼼⾓(半⾓)5.2252001100arcsin r arcsin2?===SR α顶板开孔直径参照《球罐和⼤型储罐》中表5-1来选取注:中⼼顶板与拱顶扇形顶板的搭接宽度⼀般取50mm ,考虑到分⽚板最⼩弧长不⼩于180mm ,故取φ2200mm③分⽚板展开半径mm 1151144.25tg 25200tg 11=??==αSR R mm 1100.52tg 25200tg 22=??==αSR R ④分⽚板展开弧长:⌒AD = mm 96985.255.24360252002360221=-=-?)()(πααπSR ⑤分⽚板⼤⼩头弧长:⼤头:⌒ABmm 1535446021000n302i =?+-?=?+?-=)()(ππD ⼩头:⌒CDmm 1974411002n r 2=?+??=?+=ππ⑥中⼼顶板展开弧长⌒Lmm 22995023605.22520022502360222=?+=?+??=)()(παπSR四、拱顶⾼度计算内侧拱顶⾼:mm 227830)-(21000/2252002520030)-/2(D h 222i 2n =--=--=SR SR外侧拱顶⾼:mm 228462278h w =+=五、盘梯计算计算参数:g H —罐壁⾼度,mm (12700) i R —罐内半径,mm (10500)W SR —拱顶半径,mm (25206)α—内侧板升⾓(45°)n R —内侧板半径,mm (n R =10500+12+150=10662mm ) B —盘梯宽度(内外板中⼼距)取656mm ,板宽150mm ,板厚6mm1、平台⾼度WW SR SR --+=2i 2w 1L)-(R h h425mm 252061000)-(1050025206228422=--+=mm 3125142512700=+=H式中:1h —平台⽀撑⾓钢上表⾯⾄包边⾓钢上表⾯的距离,mmL —平台端部⾄罐内表⾯的距离,⼀般取800-1000mm ,取L=1000mm2、内侧板展开长度mm 184202100)-(1312523n =?=-=)(H H L式中:3H —盘梯下端⾄罐底上表⾯的距离,mm ,≮50mm ,取100mm3、外侧板展开长度mm 189951066265611184207071.0117071.022n n w =++??=++=?R B L L )()( 4、三⾓架个数个)(717001225)-(13125x n 3==-=L H式中:x —第⼀个三⾓架到罐底上表⾯的距离,mm 取1225mm 3L —相邻三⾓架的垂直距离,mm ⼀般1500-2000mm5、三⾓架在罐壁上的⽔平位置a n =n01n 2b h R R)(- 式中:1b —内侧板及外侧板的宽度,mm ,⼀般取150mm —n h 第n 个三⾓架平台表⾯的距离,n ×1700mm0R —底圈壁板外半径,mm (10500+12=10512mm ) n R —内侧板半径mm (10662)a 1=mm 1467106621051221507001=-)( a 2=mm 31431066210512215070012=-?)( a 3=mm 48191066210512215070013=-?)( a 4=mm 64951066210512215070014=-?)( a 5=mm 81711066210512215070015=-?)( a 6=mm 98471066210512215070016=-?)( a 7=mm 115231066210512215070017=-?)( 6、盘梯包⾓=-=-=96.691801066210013119180n 3b ππαR H H ≈70° 六、带肋球壳稳定性验算21mn 2s m t t t 0001.0][)()(?=R E P (C.2.1-1)式中: ][P —带肋求壳的许⽤外载荷,KPaE —设计温度下钢材的弹性模量,MPa 查表4.1.6得192×103 MPaS R —球壳的曲率半径,mm S R =SR=25200mm n t —罐顶板有效厚度,mm n t =6-C=6-1-0.6=4.4mm m t —带肋球壳的折算厚度,mm332m3n 31m m 4t t 2t t ++= (C.2.1-2)式中:]e t n 12t 4t 2t h 3h b h [12t 21n 13n 2nn 121s 11131m-+++?=)(L (C.2.1-3)]e t n 12t 4t 2t h 3h b h [12t22n 23n 2nn 222s 22232m-+++?=)(L (C.2.1-4) SL 1n 111t b h 1n += (C.2.1-5) SL 2n 222t b h 1n += (C.2.1-6)式中:31m t —纬向肋与顶板组合截⾯的折算厚度,mm1h —纬向肋宽度,mm (⾼度60)1b —纬向肋有效厚度mm (8-(2×1+0.8)=5.2) 1s L —纬向肋在径向的间距,mm (1228) 1n —纬向肋与顶板在径向的⾯积折算系数058.112284.42.5061t b h 1n 1n 111=??+=+=S L 1e —纬向肋与顶板在径向组合截⾯的形⼼到顶板中⾯的距离,mm(按CD130A6-86《钢制低压湿式⽓柜设计规定》算出下⾯公式)78.1)602.54.41214(2)4.460(602.5)(2)(e 1111111=?+??+??=++=h b t l t h h b n s n32m t —径向肋与顶板组合截⾯的折算厚度,mm 2h —径向肋宽度,mm (⾼度60)2b —径向肋有效厚度mm (8-(2×1+0.8)=5.2)2s L —径向肋在纬向的间距,mm 下⾯求2s L :a) 先求第1圈纬向肋的展开半径3R 先求第圈纬向肋处的⾓度(半⾓3α)∵600360/252002=πα∴364.1=?α° ?=?-?=?-=186.23364.155.2413ααα再求第1圈纬向肋处展开半径3Rmm 10793186.23tg 25200tg R 33=??==αSRb) 求第1圈纬向肋的每块分⽚板肋板的弧长2s Lmm 14152]186.23cos 10790244360sin[L 2s ==)( 2n —径向肋与顶板在径向的⾯积折算系数05.114154.4602.51t b h 1n 2n 222=??+=+=S L 2e —径向肋与顶板在纬向组合截⾯的形⼼到顶板中⾯的距离,mm537.1)602.54.41415(2)4.460(602.5)(2)(e 2222222=?+??+??=++=h b t l t h h b n s n带肋球壳按下图布置把上⾯各参数代⼊C.2.1-3中求31m t4082]78.14.4058.1124.444.424.40636012152.506[12t232231m=??-++?+=)(把上⾯各参数代⼊C.2.1-4中求32m t3492]4537.14.405.1124.444.424.40636014152.506[12t232232m=??-++?+=)(c) 把31m t ,31m t 代⼊C.2.1-2中,求m tmm 46.12492434.424082t 33m =+?+=d) 把m t 代⼊C.2.1-1中求[P]78.246.124.42.2546.12101920001.0][2123==)()(P KPae) 验算:设计外载荷(外压)L P 按7.1.2条规定取1.7KPaL P <[P] 即1.7<2.78 ∴本带肋球壳是稳定的(L P 是外载荷,按7.1.2条规定,取1.7MPa )七、加强圈计算1、设计外压,按6.5.3-3q 25.2P k o +=W (6.5.3-3)式中:o P —罐壁筒体的设计外压(KPa ) ?W k —风载荷标准值(KPa )见式6.4.7q —罐顶呼吸阀负压设定压⼒的1.2倍(KPa ),取1.2(按SYJ1016 5.2.2条规定)风载荷标准值:按式6.4.7o z s z k w µµβ=?W (6.4.7)式中:?z β——⾼Z 处见风振系数,油罐取1s µ—风载体系形数,取驻点值,o w —基本风压(取0.4KPa )z µ—风压⾼度变化系数z µ风压⾼度变化系数,查表6.4.9.1,建罐地区属于B 类(指⽥野、乡村,丛林及房屋计较稀疏的乡镇和城市郊区,本储罐⾼度为12.7m ,介于10和15中间,要⽤内插法求x=z µ=1.08(15m —1.14 10—1.0 12.7—x )风载荷标准值:432.04.008.111k ==?W KPa 把k w =0.432KPa 代⼊6.5.3-3中a 2.22.1432.025.2P o KP =+?=2、计算罐壁筒体许⽤临界压⼒ 2.5min cr )Dt (48.16][P E H D = (6.5.2-1)∑=ei H H E 5.2imin iei t t h )(=H 式中:][P cr —核算区间罐壁筒体的需⽤临界压⼒,KPa E H —核算区间罐壁筒体的当量⾼度,mmin t —核算区间最薄板的有效厚度,mm(8-2.3=5.7) i t —第i 圈罐壁板的有效厚度,mmi h —第i 圈罐壁板的实际⾼度,mm (1880) ei H —第i 圈壁板的当量⾼度E H 表∑==95.8ei H H E m把E H 代⼊(6.5.2-1)中48.1)215.7(95.82148.16][P 2.5cr =??=KPa ∵o P =2.3>1.48MPa ∴需要加强圈具体⽤⼏个加强圈依据6.5.4的规定∵22.3][P 2.3 cr ≥>∴应设1个加强圈,其位置在1/2E 处根据6.5.5规定,在最薄板上,不需要换算,到包边⾓钢的实际距离就是4.5m (距包边⾓钢上表⾯4.5m )根据表6.5.6选取加强圈规格,本设计选∠125×80×8⼋、抗震计算(CD130A 2-84) 1、⽔平地震载荷W a Q max 0Z C =式中:0Q —⽔平地震载荷 kgfZ C —综合影响系数 0.4max a —地震影响系数,按附表A 选0.45W —产⽣地震荷载的储液等效重量(波动液体)’w F W f =式中:f F —动液系数,由R H W /的⽐值,按附表A 2选取,如遇中间值则⽤插值法求。

压力容器计算

压力容器计算

补强区焊缝截面积 焊缝底边长度 A3 焊缝高度
需 要 补 强 的 面 积 A A4 = A - ( A1 判 断 + A2 + A3)= -610.54 m m
2
A4 > 0 开孔处需要补强 A4 ≤ 0 开孔处无需补强 加 强 管 补 强 ( A1 + A2 + A3)≥A
重取接管管壁厚度δ t, 重复以上计算 ,直至
设计温度 [ σ ]t 钢板厚度负偏差 腐蚀裕量 C1 C2
焊接接头系数 φ
壳体最小厚度δ min (不包括腐蚀裕量) 计算壁厚
碳钢 不锈钢 δ =
低合金钢
≥3m m ≥2m m 取较大值
PcDi 2[σ ]tφ -Pc
1.06
mm
壁厚附加量
C
C1 + C2
3.8
4.86
mm
mm
δ 'n = δ + C = _ 取 δ n = 6
北京第一通用机械厂
σ
T
≤0.9σ sφ
可行
强度削弱系数
fr = [σ ]tT
[σ ] =
t
1.150 =
取fr =
1.000
因开孔削弱所需补强面积 A = dδ + 2δ (δ nt - CT )(1 - fr )
237.39 m m2
强度削弱系数
fr =
[σ ] t T
[σ ] =
t
1.1504 =
t T T
A2
A3
d
C
Ä ¦
mm mm mm mm mm MPa
6 0.9 1 130 1
Y
X
管 设计温度下许用应力 [σ ] 接管焊接接头系数 φ

压力容器计算书

压力容器计算书

软件批准号:DATA SHEET OF PROCESSEQUIPMENT DESIGN设备名称:分气缸EQUIPMENT图号:DWG NO。

设计单位:青岛畅隆电力设备有限公司DESIGNER钢制卧式容器计算单位青岛畅隆电力设备有限公司计算条件简图设计压力p 1 MPa设计温度t300 ℃筒体材料名称Q235-B封头材料名称Q235-B封头型式椭圆形筒体内直径D i800 mm筒体长度L5656 mm筒体名义厚度δn10mm 支座垫板名义厚度δrn6mm 筒体厚度附加量C 2.8mm 腐蚀裕量C1 2 mm 筒体焊接接头系数Φ0.85封头名义厚度δhn8.8mm 封头厚度附加量C h 2.8mm 鞍座材料名称Q235-B鞍座宽度b150mm 鞍座包角θ120°支座形心至封头切线距离A625mm 鞍座高度H 250mm 地震烈度低于七度内压圆筒校核计算单位 青岛畅隆电力设备有限公司计算条件筒体简图计算压力 P c 1.00MPa 设计温度 t 300.00︒ C 内径 D i 800.00mm 材料Q235-B ( 板材 )试验温度许用应力 [σ]116.00MPa 设计温度许用应力 [σ]t81.00MPa 试验温度下屈服点 σs 235.00MPa 钢板负偏差 C 1 0.80mm 腐蚀裕量 C 2 2.00mm 焊接接头系数 φ0.85厚度及重量计算 计算厚度 δ = P D P c it c 2[]σφ- = 5.85mm 有效厚度 δe =δn - C 1- C 2= 7.20 mm 名义厚度 δn = 10.00mm 重量1129.80Kg压力试验时应力校核 压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt = 1.7901 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 211.50MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 118.05 MPa校核条件 σT ≤ [σ]T校核结果合格压力及应力计算最大允许工作压力 [P w ]=2δσφδe t i e []()D += 1.22825MPa 设计温度下计算应力 σt= P D c i e e()+δδ2= 56.06 MPa [σ]tφ 68.85 MPa校核条件 [σ]t φ ≥σt 结论 合格左封头计算计算单位青岛畅隆电力设备有限公司计算条件椭圆封头简图计算压力P c 1.00 MPa设计温度 t 300.00 ︒ C内径D i 800.00 mm曲面高度h i 200.00 mm材料 Q235-B (板材)设计温度许用应力[σ]t 81.00 MPa试验温度许用应力[σ] 116.00 MPa钢板负偏差C1 0.80 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ- = 4.95mm有效厚度δe =δn - C1- C2= 6.00mm最小厚度δmin = 3.00mm名义厚度δn =8.80mm结论满足最小厚度要求重量51.97 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 1.21046MPa结论合格右封头计算计算单位青岛畅隆电力设备有限公司计算条件椭圆封头简图计算压力P c 1.00 MPa设计温度 t 300.00 ︒ C内径D i 800.00 mm曲面高度h i 200.00 mm材料 Q235-B (板材)设计温度许用应力[σ]t 81.00 MPa试验温度许用应力[σ] 116.00 MPa钢板负偏差C1 0.80 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ- = 4.95mm有效厚度δe =δn - C1- C2= 6.00mm最小厚度δmin = 3.00mm名义厚度δn =8.80mm结论满足最小厚度要求重量51.97 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 1.21046MPa结论合格卧式容器(双鞍座)计算单位青岛畅隆电力设备有限公司计算条件简图计算压力p C 1 MPa设计温度t300 ℃圆筒材料Q235-B鞍座材料Q235-B圆筒材料常温许用应力 [σ] 116 MPa圆筒材料设计温度下许用应力[σ]t 81 MPa圆筒材料常温屈服点σσ235MPa鞍座材料许用应力 [σ]sa147MPa 工作时物料密度Oγ1000kg/m3液压试验介质密度γT1000kg/m3圆筒内直径D i800 mm 圆筒名义厚度δn10mm 圆筒厚度附加量C 2.8mm 圆筒焊接接头系数φ0.85封头名义厚度hnδ8.8mm 封头厚度附加量 C h 2.8mm 两封头切线间距离L5706 mm 鞍座垫板名义厚度δrn6mm 鞍座垫板有效厚度δre6mm 鞍座轴向宽度 b150mm 鞍座包角θ120°鞍座底板中心至封头切线距离A625mm 封头曲面高度h i200mm 试验压力p T 1.79012MPa 鞍座高度H250mm 腹板与筋板组合截面积A sa9500mm2腹板与筋板组合截面断面系数Z r96864.8mm3地震烈度<7圆筒平均半径R a405 mm物料充装系数oφ1一个鞍座上地脚螺栓个数2地脚螺栓公称直径16mm 地脚螺栓根径13.835mm 鞍座轴线两侧的螺栓间距530 mm 地脚螺栓材料Q345。

压力容器设计计算书(MMF+AC+MB+SF)

压力容器设计计算书(MMF+AC+MB+SF)
多介质过滤器
原始数据
Flow(m /h)
3
活性炭过滤器
原始数据
8.5 Flow(m /h)
3
10
MMF 桶体直径 7 过滤流速(m/h) 1243.73 计算桶体直径(mm) 1200.00 修正桶体直径(mm) 7.52 修正流速(m/h) MMF 桶体高度 填充总高度(mm) 膨胀系数 膨胀高度(mm) 修正膨胀高度(mm) 上水帽高度(mm) 下水帽高度(mm) 过滤器总高度(mm) MMF 反洗水量 LV(m/h) 反洗流量(m /h) 正洗流速(m/h) 正洗流量(m3/h) 反洗时间(min) 静置时间(min) 正洗时间(min) 反洗总时间(min) 反洗水量(m3) 正洗水量(m3) 总水量(m3)
3
15 14.25 10 10 10 10 10 30 2.37 1.67 4.04
1200 0.4 480 500 100 100 1900
1200 9.22 7 8.5 10 10 10 30 3.20 1.42 4.62
LV(m/h) 反洗流量(m /h) 正洗流速(m/h) 正洗流量(m3/h) 反洗时间(min) 静置时间(min) 正洗时间(min) 反洗总时间(min) 反洗水量(m3) 正洗水量(m3) 总水量(m3)
3
ACF 桶体直径 10 过滤流速(m/h) 1128.67 计算桶体直径(mm) 1100.00 修正桶体直径(mm) 10.53 修正流速(m/h) ACF 桶体高度 填充总高度(mm) 膨胀系数 膨胀高度(mm) 修正膨胀高度(mm) 上水帽高度(mm) 下水帽高度(mm) 过滤器总高度(mm) ACF 反洗水量

压力容器低温低压力工况计算

压力容器低温低压力工况计算

RT1277-00 500L 搪玻璃反应罐(开式)计算书1.设计参数:1)内筒设计压力:-0.1/0.4MPa 设计温度:-35℃筒身(封头)内直径mm D i 900= 筒身(封头)名义厚度mm n 14=δ 筒身(封头)材料:Q245R2)夹套设计压力:0.4MPa 设计温度:-60℃ 筒身(封头)内直径mm D i 1000= 筒身(封头)名义厚度mm n 8=δ 筒身(封头)材料:Q245R2.主要受压元件:筒身、上封头和下封头。

3.校核依据:GB150.3-2011附录E “低温低应力工况”:壳体或其受压元件的设计温度虽然低于-20℃,但设计应力小于或等于钢材标准常温屈服强度的1/6,且不大于50MPa 时的工况。

Q245R 标准常温屈服强度MPa R eL 245=,故MPa R eL 8.40624561==。

4.内压计算校核:1)筒身内压计算校核:取筒身名义厚度mm n 14=δ,则有效厚度:mm C C C n n e 5.112.23.01421=--=--=-=δδδ其中:C 为厚度附加量:1C 为材料厚度负偏差;2C 为腐蚀裕量其中1.2mm 为搪烧减薄量,1mm 为腐蚀裕量。

则筒身计算应力:()MPa MPa D p e e i c t 8.409.155.1125.119004.02)(<=⨯+⨯=+=δδσ。

筒身计算厚度:m m p R D p cel ic 43.44.012456129004.0612≈-⨯⨯⨯⨯=-⨯=φδ,则设计厚度mm C d 63.62.243.42=+=+=δδ,所以取名义厚度mm n 14=δ合格。

2)内筒封头内压计算校核: a.上封头内压计算校核:取上封头名义厚度mm nh 14=δ,则其有效厚度:mm C C C n nh eh 1.116.23.01421=--=--=-=δδδ。

其中:C 为厚度附加量:1C 为材料厚度负偏差;2C 为腐蚀裕量其中1.2mm 为搪烧减薄量,1.4mm 为上封头压制成型时的加工减薄量。

压力容器计算书示例

压力容器计算书示例

DATA SHEET OF PROCESSEQUIPMENT DESIGN工程名:PROJECT设备位号:ITEM设备名称:EQUIPMENT图号:DWG NO。

设计单位:DESIGNER内筒体内压计算计算单位计算条件筒体简图计算压力 P c 2.20MPa 设计温度 t 80.00︒ C 内径 D i 313.00mm 材料20(GB8163) ( 管材 )试验温度许用应力 [σ]152.00MPa 设计温度许用应力 [σ]t148.25MPa 试验温度下屈服点 σs 245.00MPa 钢板负偏差 C 1 0.75mm 腐蚀裕量 C 2 2.00mm 焊接接头系数 φ1.00厚度及重量计算 计算厚度 δ = P D P c it c 2[]σφ- = 2.34mm 有效厚度 δe =δn - C 1- C 2= 3.25 mm 名义厚度 δn = 6.00mm 重量56.64Kg压力试验时应力校核压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt = 2.7640 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 220.50MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 134.48 MPa校核条件 σT ≤ [σ]T校核结果合格压力及应力计算最大允许工作压力 [P w ]=2δσφδe t i e []()D += 3.04704MPa 设计温度下计算应力 σt= P D c i e e()+δδ2= 107.04 MPa [σ]tφ 148.25 MPa校核条件 [σ]t φ ≥σt 结论 合格内筒上封头内压计算计算单位计算条件椭圆封头简图计算压力P c 2.20 MPa设计温度 t 80.00 ︒ C内径D i 313.00 mm曲面高度h i 75.00 mm材料 Q245R (板材)设计温度许用应力[σ]t 147.25 MPa试验温度许用应力[σ] 148.00 MPa钢板负偏差C1 0.30 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0590计算厚度δ =KP DPc itc205[].σφ- = 2.49mm有效厚度δe =δn - C1- C2= 3.70mm最小厚度δmin = 3.00mm名义厚度δn =6.00mm结论满足最小厚度要求重量 6.14 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 3.26902MPa结论合格内筒下封头内压计算计算单位计算条件椭圆封头简图计算压力P c 2.20 MPa设计温度 t 80.00 ︒ C内径D i 313.00 mm曲面高度h i 75.00 mm材料 Q245R (板材)设计温度许用应力[σ]t 147.25 MPa试验温度许用应力[σ] 148.00 MPa钢板负偏差C1 0.30 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0590计算厚度δ =KP DPc itc205[].σφ- = 2.49mm有效厚度δe =δn - C1- C2= 3.70mm最小厚度δmin = 3.00mm名义厚度δn =6.00mm结论满足最小厚度要求重量 6.14 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 3.26902MPa结论合格。

压力容器材料厚度计算

压力容器材料厚度计算

3、设计压力(design pressure)(1)相关的基本概念(除了特殊注明的,压力均指表压力)✧工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。

①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同;②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。

③标准中的最大工作压力,最高工作压力和工作压力概念相同。

✧设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。

①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa;②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。

③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温度确定。

(详细内容,参考GB150-1998,附录B(标准的附录),超压泄放装置。

)✧计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去静压力。

①注意与GB150-1989 对设计压力规定的区别;《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。

当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。

使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。

②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。

③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。

4、设计温度(Design temperature)设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。

压力容器材料厚度计算

压力容器材料厚度计算

3、设计压力(design pressure)(1)相关的基本概念(除了特殊注明的,压力均指表压力)✧工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。

①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同;②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。

③标准中的最大工作压力,最高工作压力和工作压力概念相同。

✧设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。

①对最大工作压力小于的内压容器,设计压力取为;②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。

③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温度确定。

(详细内容,参考GB150-1998,附录B(标准的附录),超压泄放装置。

)✧计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去静压力。

①注意与GB150-1989 对设计压力规定的区别;《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。

当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。

使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。

②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。

③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。

4、设计温度(Design temperature)设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。

常压容器设备强度计算书 模板

常压容器设备强度计算书 模板

0.84
MpaБайду номын сангаас
盛水试验时应力效核
设计温度下圆筒计算应力
σ=PcDi/2δhe
2.44
Mpa
许用值
σ≤φ[σ]t
110.5
Mpa
σ≤φ[σ]t
可行
5
常压容器设备强度计算书
6
常压容器设备强度计算书
内压平盖 (NB/T47003.1-2009)
设计条件
设计压力 物料密度 重力加速度 液面高度 液注静压力 计算压力 P+ρgh 设计温度 平盖计算直径 封头材料 试验温度下屈服强度 常温下材料许用应力 设计温度下材料许用应力 钢板厚度负偏差 腐蚀裕量 焊接接头系数 结构特征系数
δ = Pc Di / 2 [σ]t φ=
0.13
Di
δ
3 2
取较大值 mm
壁厚附加量 C = C1 + C2 = 设计厚度 δ`n = δ + C =
0.3
mm
2.30
mm
名义厚度取 δn =δ + C2 + C1 +圆整
6
mm
有效厚度 δe = δn - C =
5.7
mm
液压试验时应力效核
液压试验压力(取较大值) PT=1.25 P [σ]/[σ]t=
mm 16.68
mm
mm 0.00
mm
mm
mm
mm
mm
δt=PcDi/2[σ]tφ
9
常压容器设备强度计算书
10
常压容器设备强度计算书
内压筒体开孔补强 (NB/T47003.1-2009)
开孔补强计算
圆筒开孔所需的补强面积

压力容器罐体厚度计算书

压力容器罐体厚度计算书
MPa
大圆弧B点
90.7
大小圆弧C点
-139
A点焊接接头组合应力
MPa
壳体应力校核结论
应力类别
各类应力计算值MPa
应力许用值
薄膜应力
小圆弧区A点
12.6
125
MPa
大圆弧区B点
9.09
125
大小圆弧区C点
10.5
125
壳体最大组合应力
128.2
146.9
外加强件最大组合应力
-685
170.7
A点焊接接头组合应力
9.09
大小圆弧区
C点
10.5
内壁
弯曲应力
小圆弧区A点
116
MPa
大圆弧区B点
-98.6
大小圆弧区C点
24.8
内壁
组合应力
小圆弧区A点
128
MPa
大圆弧区B点
-89.5
大小圆弧区C点
35.2
外壁
弯曲应力
小圆弧区A点
-698
MPa
大圆弧区B点
81.7
大小圆弧区
C点
-149
外壁
组合应力
小圆弧A点
-685
焊接头系数1
1.00

圆弧区
孔径d2
mm
孔中心距Lh1
加强件
材料钢号
16Mn
型式
扁钢
间距Ls
260
mm
规格
-50x4
侧板厚度及中间参数计算
壳体材料
屈服限
常温
235.0
MPa
外加强件
常温
275.0
MPa
设温
235.0

压力容器计算书

压力容器计算书

Pressure Vessel版次Rev. No.产品名称:空气储罐Product Name : Air storage tank施工图号:xxxxxxxDrawing. No.版次:0Rev.:版次Rev.编制Prepared By批准Approved By授权检验师Authorized InspectorPressure Vessel版次Rev. No.设计计算书Design Calculation Sheet1. 设计参数和条件Design Data and Condition:1) 设计所遵循的规范Applicable Code:ASME SectionⅧ,Div.1, 2013 Edition;2) 设计压力(p) : 内部1.2兆帕Design Pressure (p):Internal 1.2 Mpa;3) 设计温度: 0摄氏度到60摄氏度Design Temperature: 0℃~60℃;4) 最低设计金属温度:-29℃;MDMT: -29℃5) 焊缝系数(E): 壳体为0.85,封头为0.85(无缝),Joint Efficiency (E): 0.85 for Shell and 1.0 for Heads(seamless);6) 材料最大许用应力Material Max. Allowable Stress:Based on ASME Code Sec.Ⅱ, Part D Table 1A壳体和封头: SA516M Gr. 485,60摄氏度时为138兆帕Shell & Heads: SA516M Gr. 485 Material Max. Allowable Stress is 138MPa at 60℃;接管: SA106M Gr. B,60摄氏度时为118兆帕Nozzles:SA106M Gr. B Steel Material Max. Allowable Stress 118 Mpa at 60℃;7) 媒介: 空气Medium: Air ;8) 封头类型: 2:1椭圆封头Head type: 2:1Ellipsoidal Head;9) 其他载荷: Others Loadings:See verify for UG-22 loading;10) 腐蚀余度: 2.0毫米Corrosion Allowance: 2.0 mm11) 容器外形和尺寸(见图纸空气储罐U-1110-1 )Layout of Vessel and Dimension:As Shown in Air storage tank Specification (Dwg. No. U-1110-1)12) ASME 认证钢印及标志符: 要求”ASME”钢印及”U”标志符Stamp of ASME Ceretification Mark and U Designator: Stamp of ASME Ceretification Mark and U Designator required.Pressure Vessel版次Rev. No.2. 计算Calculation:Verify for UG-22 LoadingYes No1.Internal Pressure 内部压力√2.External Pressure 外部压力√3.Weight of the Vessel 容器重量√4.Weight of Normal Contents Under Operating Conditions (Static Head)√在运行条件下正常容量的重量(落差)5.Weight of Normal Contents Under Test Conditions (Static Head)√在测试条件下正常容量的重量(落差)6.Superimposed Static Loadings From Weight of Attached Equipment√从附加设备重量产生的叠加静负荷7.The Attachment of Internals 内部附件√8.The Attachment of Lifting Lugs 吊耳√9.The Attachment of Vessel of Vessel Support (Skirt, Legs, Saddles,√Etc.) 容器支撑上的附件(裙座、支架、鞍座等)10.Cyclic and Dynamic Loadings Due to Pressure√由于压力产生的旋转和动力载荷11.Cyclic and Dynamic Loadings Due to Thermal Variations√由于热变化产生的旋转和动力载荷12.Cyclic and Dynamic Loadings Due to Equipment mounted on Vessel√由安装在容器上的设备产生的旋转和动力载荷13.Cyclic and Dynamic Loadings Due to Mechanical Loadings√由机械负荷产生的旋转和动力载荷14.Wind Loadings 风负荷√15.Snow Loadings 雪负荷√16.Seismic Loadings 地震负荷√17.Impact Loadings Such As Those Due to Thermal Shock√碰撞负荷,例如由于热冲击产生的负荷18.Temperature Gradients 温度梯度√19.Differential Thermal Expansion 局部热膨胀√20.Minimum Design Metal Temperature 最小设计金属温度√21.Test pressure and the joint effect of static head√试验压力和共同作用的静压头Pressure Vessel版 次Rev. No.2.1 内压壳体最小厚度 Min. Required Thickness of Shell under Internal Pressure符号 Symbols:t= 壳体要求最小厚度,毫米t = minimum required thickness of shell, mm P = 内部设计压力, 1.2兆帕 P = internal design pressure, 1.2MPa [see UG-21]R = 容器筒内半径, 402毫米 (考虑腐蚀余量)R = inside radius of the shell course under consideration, 402mmS = 最大许用应力值,138兆帕S = maximum allowable stress value, 138MPa [ see ASME Code Part II D Table 1A for materialSA516M Gr.485]E = 焊缝系数,0.85E = joint efficiency, 0.85 [see Table UW-12(1)]Since P=1.2MPa is less than 0.385SE=45.16MPa, Formula UG-27(c)(1) is used:)(14.42.1*6.085.0138)2400(2.16.0mm P SE PR t =-⨯+⨯=-=考虑腐蚀裕量:Consider of corrosion allowable: tr= t + Ca = 4.14 + 2.0 = 6.14mm ;这些公式只有在环向接头系数小于纵向接头系数一半时才起作用,根据UG-27(c) (2)的注释16,用于纵向应力的UG-27(c) (2)公式不用考虑。

NB-T47003.1-2009矩形 中 罐体计算书

NB-T47003.1-2009矩形 中 罐体计算书

标准代号材质设计压力P 0.002700MPaG+FW 介质密度ρ0.0000011kg/mm 3设计温度t 50.00o C 容器长L 5800.00mm 工作压力P 0ATM KPaG 容器宽W 2000.00mm 工作温度t 05-33.5o C 容器高H 2500.00mm 第一层壁板板的许用挠度[f]25.74MPa 顶板的许用挠度[f]45.31MPa 第二层壁板板的许用挠度[f]24.00MPa 设计温度下材料的弹性模量E t 198000.00MPa 第三层壁板板的许用挠度[f]23.32MPa 重力加速度g 9.81m/s 2第四层壁板板的许用挠度[f]0.00MPa 计算压力P c 0.03MPa 厚度附加量C 1.50mm 底板支承梁间距L b 400.00mm 钢材厚度负偏差C 10.50mm 底板支承梁允许最大间距L b,max 537.36mm 腐蚀裕量C 2 1.00mm 加固柱间距L p 800.00mm 第1层壁板计算厚度δ1 2.53mm 加固柱允许最大间距L p,max 1229.46mm 第1层壁板名义厚度δ1,n 8.00mm 加固柱所需截面系数Z p 1054.14mm 3第1层壁板有效厚度δ1,e 6.50mm 顶板加强筋沿L方向的间距L T 800.00mm 第2层壁板计算厚度δ2 4.53mm 顶板加强筋沿W方向的间距W T 600.00mm第2层壁板名义厚度δ2,n 8.00mm 顶板附加载荷P a 0.001200MPa第2层壁板有效厚度δ2,e 6.50mm 顶板加强筋所需截面系数Z T 2298.45mm 3第3层壁板计算厚度δ3 4.96mm 顶板加强筋所需截面系数Z T,L 2298.45mm 3第3层壁板名义厚度δ3,n 8.00mm 顶板加强筋所需截面系数Z T,W 1489.60mm 3第3层壁板有效厚度δ3,e 6.50mm 常温下型钢的许用应力[σ]b 118.00MPa第4层壁板计算厚度δ40.00mm 设计温度下板材的许用应力[σ]t 118.00MPa第4层壁板名义厚度δ4,n 0.00mm 板料密度ρM 0.00000785kg/mm 3第4层壁板有效厚度δ4,e 1.50mm 第1层壁板最大挠度f 1,max 1.55mm顶板计算厚度δT 6.52mm 第2层壁板最大挠度f 2,max 1.29mm顶板名义厚度δT,n 6.00mm 第3层壁板最大挠度f 3,max 1.30mm顶板有效厚度δT,e 4.50mm 第4层壁板最大挠度f 4,max 0.00mm底板计算厚度δb 4.84mm 顶板最大挠度f T,max 291.00mm底板名义厚度δb,n 8.00mm 第1截面加固圈单位长度上的载荷F 110.12N/mm底板有效厚度δb,e 6.50mm 第2截面加固圈单位长度上的载荷F 213.60N/mm顶边距第1截面加固圈距离h 11125.00mm 第3截面加固圈单位长度上的载荷F 30.00N/mm顶边距第2截面加固圈距离h 21875.00mm 顶边加固件承受储液压力的宽度L p 800.00mm顶边距第3截面加固圈距离h 32500.00mm 顶边加固件所需惯性距I c,T 34008.00mm 4顶边距第4截面加固圈距离h 40.00mm 第1截面加固圈所需惯性距I c,134008.00mm 4第1段加固圈间距H 11125.00mm 第2截面加固圈所需惯性距I c,245721.87mm 4第2段加固圈间距H 2750.00mm第3截面加固圈所需惯性距I c,30.00mm 4第3段加固圈间距H 3625.00mm第4段加固圈间距H 40.00mm 计 算 书文件编号设备位号罐体符号说明设计条件NB/T 47003.1-2009SS316Lα=β=291.00≤[f]==6.00≥L T =W T =α=0.0440β=0.0295f T,max = 1.04≤[f]==实取板厚= 6.00≥顶板加强筋取角钢∠50×50×5截面系数为计算压力0.02968垂直加固柱间距假定值 L p =容器设计高度H= 2.00查图8-7α1=0.03250查图8-7β1=0.03400查图8-7α2=0.01950查图8-7β2=0.01060查图8-7α3=0.01600查图8-7β3=0.00730查图8-7α4=查图8-7β4=h 1=H 1=h 3=H 1+H 2+H 3=h 2=H 1+H 2=h 4=H 1+H 2+H 3+H 4=查图8-7α0=0.01850查图8-7β0=0.01120加固柱取角钢∠50×50×5截面系数为加固柱取角钢∠50×50×5惯性距为顶板厚度计算及验证一(不设加强筋)==2500.00据表8-2得加固圈数量为1125.001875.002500.001054.14≥ Z p =顶边加固柱所需惯性距=7663.57112100.00≥ I c,T =7663.57P c =ρgH+P=加固柱允许最大间距=1229.46加固柱所需截面系数=1054.14H 3=0.25×H=625.00H 1=H 2=H 4=0.45×H=0.30×H=×H=W/L=0.3448查图8-15得0.7500查图8-15得顶板名义厚度H 1/L P = 1.41H 2/L P =0.940.014600.00300壁板、加强筋各段计算及验证顶板的许用挠度顶板计算厚度顶板最大挠度=顶板(有加强)验证合格18.185.175.1745.31顶板最大挠度===18.181.043.67H 4/L P =Lp/H 1=0.713130.00H 3/L P =0.781125.00750.00实取板厚=不合格顶板加强筋沿L方向的间距顶板加强筋沿W方向的间距800.00600.00W T /L T =顶板的许用挠度顶板计算厚度顶板厚度计算及验证二(设加强筋)45.316.52291.00800.00个L方向顶板加强筋所需截面系数=2298.453130.00≥ Z T =2298.45W方向顶板加强筋所需截面系数=1489.60顶板加强筋所需截面系数=2298.458.028.02顶板(无加强)验证f T,max =顶板名义厚度f 1,max = 1.55≤[f]=25.74实取板厚=8.00≥ 4.03f 2,max = 1.29≤[f]=24.00实取板厚=8.00≥ 6.03f 3,max = 1.30≤[f]=23.32实取板厚=8.00≥ 6.46f 4,max =0.00≤[f]=0.00实取板厚=0.00≥ 1.50加固圈取角钢∠50×50×5惯性距为加固圈取角钢∠50×50×5惯性距为加固圈取角钢∠50×50×5惯性距为实取板厚=8.00≥6.34第3道加固圈单位长度上的载荷=第1道加固圈所需惯性距=34008.00第2道加固圈所需惯性距第3道加固圈所需惯性距==45721.87第4层壁板最大挠度=顶边及第1道加固圈单位长度上的载荷=10.12第2道加固圈单位长度上的载荷=13.60第3层壁板最大挠度=1.30合格第4层壁板的许用挠度=第4层壁板验证第4层壁板板计算厚度=第4层壁板名义厚度=1.50第3层壁板的许用挠度=23.32第3层壁板验证第3层壁板板计算厚度=4.96第3层壁板名义厚度=6.46第2层壁板板计算厚度第2层壁板最大挠度=1.29合格第2层壁板验证第2层壁板名义厚度=6.03====24.00=4.532.53第1层壁板验证第1层壁板名义厚度=4.03合格第1层壁板最大挠度1.55第1层壁板的许用挠度第2层壁板的许用挠度25.74第1层壁板板计算厚度112100.00≥I c,T =34008.00≤合格底板厚度、支承梁计算及验证底板计算厚度=4.84底板支承最大间距=537.36底板支承距离实取 L b =537.36底板名义厚度=6.34400.00112100.00≥I c,2 =45721.87112100.00≥I c,3 =0.00。

计算书-压力容器判定

计算书-压力容器判定

压力容器判定计算书
根据《压力容器安全技术监察规程》
第3条 本规程适用于同时具备下列条件的压力容器:
1.最高工作压力(Pw)(注2)大于等于0.1MPa(不含液体静压力,下同);
2.内直径(非圆形截面指断面最大尺寸)大于等于0.15m,且容积(V)(注3)大于等于0.025m3; 3.介质为气体、液体气体或最高工作温度高于等于标准沸点的液体。

计算过程:
最高工作压力P=3Mpa
内直径或截面最大尺寸=0.2m
容积V=0.03m³
介质是否为:气体、液化气体或最高工作温度高于标准沸点的液体。

1是填入1,不是填入2
判定:是压力容器
附:容积计算
气泡形式:1圆形填1,矩形填2
1.圆形气包
内直径D=0.2m
长度L=1m
容积V=0.03L
2.矩形气泡
内容积宽A=0.4m
内容积高B=0.5m
内容积长=1000m
容积V=200.00L。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软件批准号:CSBTS/TC40/SC5-D01-1999
DATA SHEET OF PROCESS EQUIPMENT DESIGN
工程名:
PROJECT
设备位号:
ITEM
设备名称:
EQUIPMENT
图号:
DWG NO。
设计单位:
DESIGNER
设计
日期
校核
日期
审核
日期
审定
Approved by
日期
结论:校核通过
外加强椭圆形截面壳体计算
计算单位
压力容器专用计算软件 ?
计算条件
简图
计算压力pc
0.100
MPa
设计温度t
25

材料名称
Q235-C
椭圆截面
内轴长度
短轴2bi
1080
mm
长轴2ai
1500
壳体轴向长度L1
4000
mm
初始名义厚度n
6.0
mm
钢板负偏差参数IC1
计入C1
腐蚀裕量C2
0.2
mm
小圆弧区A点
MPa
大圆弧B点
90.7
大小圆弧C点
-139
A点焊接接头组合应力
MPa
壳体应力校核结论
应力类别
各类应力计算值MPa
应力许用值
薄膜应力
小圆弧区A点
12.6
125
MPa
大圆弧区B点
9.09
125
大小圆弧区C点
10.5
125
壳体最大组合应力
128.2
146.9
外加强件最大组合应力
-685
170.7
A点焊接接头组合应力
mm4
近似椭圆中面半径
小圆弧r
442.5
mm
中性线椭圆长轴a1
760.4
mm
大圆弧R
972.8
开孔削弱系数ηm
系数
=arctg( b/a)
0.625
rad
=/2 -
0.946
A4
A4= a1- a
5.25
mm
弯矩MA
1.91e+06
N.mm
壳体侧板应力计算
薄膜应力
小圆弧区A点
12.6
MPa
大圆弧区B点
9.09
大小圆弧区
C点
10.5
内壁
弯曲应力
小圆弧区A点
116
MPa
大圆弧区B点
-98.6
大小圆弧区C点
24.8
内壁
组合应力
小圆弧区A点
128
MPa
大圆弧区B点
-89.5
大小圆弧区C点
35.2
外壁
弯曲应力
小圆弧区A点
-698
MPa
大圆弧区B点
81.7
大小圆弧区
C点
-149
外壁
组合应力
小圆弧A点
-685
焊接头系数1
1.00

圆弧区
孔径d2
mm
孔中心距Lh1
加强件
材料钢号
16Mn
型式
扁钢
间距Ls
260
mm
规格
-50x4
侧板厚度及中间参数计算
壳体材料
屈服限
常温
235.0
MPa
外加强件
常温
275.0
MPa
பைடு நூலகம்设温
235.0
设温
273.1
薄膜应力
许用值
小圆弧A点
125.0
MPa
壳体设计温度许用应力
125.0
MPa
大圆弧B点
125.0
壳体组合应力许用值
146.9
大小圆弧C点
125.0
外加强件组合应力许用值
170.7
厚度
名义厚度n
6.0
mm
侧板有效宽度W
163.8
mm
有效厚度e
5.2
外加强件横截面F
200.0
mm2
椭圆
中面半径
短轴b
542.6
mm
组合
截面
形心至内壁距离ci
7.8
mm
长轴a
752.6
惯性矩I11
1.29e+05
相关文档
最新文档