信号配时计算
信号配时计算过程
本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。
四个交叉口均属于定时信号配时。
国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规》推荐方法、停车线法、冲突点法共六种方法。
本次设计运用的是比较经典的英国的TRRL 法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。
对单个交叉口的交通控制也称为“点控制”。
本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要容。
在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。
柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。
该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。
其公式计算过程如下:1.最短信号周期C m交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。
因此,C m恰好等于一个周期损失时间之和加上全部到达车辆以饱和流量通过交叉口所需的时间,即:1212nm m m m nV V VC L C C C S S S =++++(4-8)式中:L ——周期损失时间(s );——第i 个相位的最大流量比。
由(4-8)计算可得:111m niL L C Yy ==--∑ (4-9)式中:Y ——全部相位的最大流量比之和。
2.最佳信号周期C 0最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。
若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式:122(25)32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+--- (4-10)式中:d ——每辆车的平均延误; C ——周期长(s );λ——绿信比。
信号配时计算
信号配时计算一、友谊东路进口道流量比计算各进口道大车率(HV)友谊东路东进口HV=202/1738=0.116文艺北路南进口HV=58/902=0.064友谊东路西进口HV=163/2328=0.070HV=154/1346=0.114文艺北路北进口(一)友谊东路东进口①计算饱和流量车道宽度校正系数:f w =1坡度及大车校正系数: f g =1- (G +HV)=1-(0+0.116)=0.884 直行车道饱和流量:S T =S b T×f w× f g=1130×1×0.884=999 饱和流量: S d=S T=999②计算流量比: y直=q直/S d=464/999=0.464(二)友谊东路西进口①计算饱和流量车道宽度校正系数:f W=1坡度及大车校正系数: f g =1- (G +HV) =1-(0+0.07)=0.93直行车道饱和流量:S T =S b T×f w× f g=1130×1×0.93=1008 直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.93=930 饱和流量: S d= S T+S TR=1008+837=1845②计算流量比: y直=q直/S d=738/1845=0.400Y直右=q直右/S d=647/1845=0.351(三)文艺北路南进口①计算饱和流量车道宽度校正系数:f W=1坡度及大车校正系数: f g =1- (G +HV) =1-(0+0.064)=0.936直行车道饱和流量:S T =S b T×f w× f g=1130×1×0.936=1058直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.936=936左转车道饱和流量:S L=S b L×f w× f g=900×1×0.93=837饱和流量: S d= S T+S T R+S L=1058+936+837=2831②计算流量比: y直= q直/S d=435/2831=0.154Y直右=q直右/S d=150/2831=0.053Y左=q左/S d=253/2831=0.089(四)文艺北路北进口①计算饱和流量车道宽度校正系数:f W=1坡度及大车校正系数: f g =1- (G +HV) =1-(0+0.114)=0.886直行车道饱和流量:S T =S b T×f w× f g=1130×1×0.886=1001直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.886=886左转专用车道饱和流量:S L=S b L×f w× f g=900×1×0.886=798饱和流量: S d= S T+S T R+S L=1001+886+798=2685②计算流量比: y直=q直/S d=558/2685=0.208Y直右=q直右/S d=359/2685=0.134Y左=q左/S d=394/2685=0.147信号配时计算③计算流量比的总和,公式如下式:Y=∑3max[y j,y j……]= ∑2max[(q d/s d)j, (q d/s d)j……] =0.464+0.147+0.208=0.819<0.9 满足要求④信号总损失时间L=Σ(l+I-A) =3×﹙3+3-3﹚=9⑤信号周期时长的计算,公式如下所示:C0=(1.5l+5)/(1-y) =(1.5×9+5)÷(1-0.819)=103C0—周期时长,Y—流量比总和,L—信号总损失时间⑥各个相位的有效绿灯时间和显示绿灯时间:第一相位:Ge1=Ge×max[y i,y i……] /Y=53绿信比:λ1= Ge1 /C0=0.524第二相位:Ge2=Ge×max[y i,y i……] /Y=17第三相位:Ge3=Ge×max[y i,y i……] /Y=24绿信比:λ2= Ge2/ C0=0.165Ge—总有效绿灯时间,就是C0减去L。
交叉口信号配时
摘要道路交叉口是指两条或两条以上道路的相交处。
车辆、行人汇集、转向和疏散的必经之地,为交通的咽喉。
因此,正确设计道路交叉口,合理组织、管理交叉口交通,是提高道路通行能力和保障交通安全的重要方面。
此次交叉口信号灯控制配时的调查地点是西南路和五一路交叉口。
该交叉口地处市区西南部,属于平面十字型交叉口。
西南路方向路段为双向五车道;五一路方向由东向西黄线以北是五车道,黄线以南是五车道,五一路由西向东黄线以北是两车道,黄线以南是三车道。
周围分布饭店、居民住宅区、净水厂等,是一个非常重要的交叉口,并且西南路是主干道。
本组通过实际观测的方法测得了道路交叉口的交通流量等信息。
西南路车流量比五一路车流量大很多,在五一路方向均有左转车流,西南路只在南进口存在左转车流,另外在五一路西路口和西南路南路口均有直行加右转相位。
且西南路南进口的左转仅限公交且车流量极少。
到目前为止,定时信号的配时方法在国际上主要有英国的WEBSTER法,澳大利亚ARRB法及美国HCM法等。
我们在《交通管理与控制》课本中已经学会了webster法和HCM法,我国有停车线法和冲突点法等方法。
随着研究不断深入,定时信号的配时方法也在进一步的改进。
本设计采用的方法以英国的WEBSTER法为主。
本次设计本小组分工合作,共采集了车道宽、交通流量、车头时距、信号灯信号显示及周期等数据。
并且对数据作出了运算整理.摒弃了有问题的数据,保证使用严谨的数据进行运算.关键字道路交叉口,信号配时,WEBSTER法,相位,课程设计。
目录第一章现状交通调查1.1西南路与五一路交叉口现状概况 (1)1.2交通流量调整 (2)1.3交叉口几何尺寸调查 (2)第二章信号相位分析2.1实地观测 (3)2.2理论依据 (5)2.3具体算法步骤 (5)2.4必要性分析结果 (6)第三章制定配时方案3.1信号配时方案原理 (7)3.2程序计算结果 (8)第四章延误分析及服务水平测定4.1延误估算方法 (10)4.2服务水平 (10)第五章结果分析5.1结果对比 (12)第一章现状交通调查1.1 西南路/五一路交叉口现状概况道路交叉口是指两条或两条以上道路的相交处。
交叉口信号灯配时案例计算模板
高峰信号配时计算一、信号配时计算书交叉口几何现状为:北进口道五个车道,一个右转车道,三个直行车道,一个专用左转车道;南进口道五个车道,一个右转车道,三个直行车道,一个专用左转车道;西进口道两个车道,一个直右转车道,一个专用左转车道;东进口道三个车道,一个直右转车道,一个专用左转车道。
1、计算四个进口道各流向车道饱和流量S1)饱和流量用实测平均基本饱和流量乘以各影响因素校正系数的方法得到估算值。
即进口到的饱和流量:S=S bi·f式中:S——进口道的估算饱和流量(pcu/h);S bi——第i条进口道基本把饱和流量(pcu/h),i取T、L或R,分别表示相应的直行、左转或右转;各类进口道各有其专用相位时的基本饱和流量S bi,可采用下表数值:2、高峰各交叉口进口道交通量如下表本图需要替换掉表如下所示:3、采用四相位的信号控制方案,右转车道不受信号控制;结合上述问题分析,相位相序设置如图。
相位一:Y 1=max (0.195,0.261)=0.261 相位二:Y 2=max (0.143,0.165)=0.165 相位三:Y 3=max (0.254,0.200)=0.2 相位四:Y 4=max (0.121,0.200)=0.2流量比总和:Y=0.261+0.165+0.2+0.2=0.826由于交叉口总的饱和流量比小于0.9,可采用Webster 方法进行信号配时 5、信号总损失时间L启动损失时间s L =3s ,黄灯时长A=3s ,绿灯间隔时间I=3s ,一个周期内的绿灯间隔数为k=4。
则信号总损失时间 :()s L I A K L =+−=∑12s6、信号最佳周期时长0C已知流量比总和 Y=0.826,则0 1.551L YC +=−=133s ,取0C =135s 。
(周期取5的整数倍,不小于60s )7、计算绿灯时间总有效绿灯时间:0L G C e =−=123s相位1:11ee ygG Y ==123*0.261/0.826=39s 相位2:22ee yg G Y ==123*0.165/0.826=24s 相位3:33ee yg G Y ==123*0.2/0.826=30s 相位4:44=ee y gG Y=123*0.2/0.826=30s 8、初始各相位显示绿灯时间各相位实际显示绿灯时间:s 各相位显示绿灯时间: G1 = Ge1 – A + Ls = 39S G2 = Ge2 – A + Ls =24S G3 = Ge3 – A + Ls =30S G4 = Ge4 – A + Ls =30S 各相位绿信比:λ1 = Ge1 / C=39/135=0.29 λ2 = Ge2 / C=24/135=0.18 λ3 = Ge3 / C =30/135=0.22 λ4 = Ge4 / C =30/135=0.22于是,得信号配时如下表所示:e g g A L =−+。
交通信号配时评价计算表
#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!
#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!
总有效绿灯时间Ge=78s 各车道通 行能力 CAPi #REF! 24 0.235294118 21 #REF! #REF! #REF! 20 0.196078431 17 #REF! #REF! #REF! 33 0.323529412 30 #REF! #REF! #REF! 25 0.245098039 22 #REF! #REF! 控制类型 校正 e
有效绿灯 时间ge
绿信比 λ
显示绿灯时 间g
饱和度x
均匀延误 d1
#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF!
#REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! 0.5
交通信号配时评价计算表 周期C=102s、相位数j=4、计算相位损失时间Ls=3s、总损失时间L=12s、总有效绿灯时间Ge=78s
进口道
车道功能 渠化车道数
设计饱和 流量比 流量Sd
y
最大流量 比
流量比总 和 Y
左 西 直 右 左 东 直 右 左 北 直 右 左 南 直 右
2 2 1 2 2 1 1 2信控 进口车道 交叉口信 交叉口服 d2 延误d3 延误 控延误 务水平
信号配时计算过程.
本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。
四个交叉口均属于定时信号配时。
国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规范》推荐方法、停车线法、冲突点法共六种方法。
本次设计运用的是比较经典的英国的TRRL法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。
对单个交叉口的交通控制也称为“点控制”。
本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要内容。
在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。
柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。
该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。
其公式计算过程如下:1.最短信号周期C m交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期内到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。
因此,C m恰好等于一个周期内损失时间之和加上全部到达车辆以饱和流量通过交叉口所需的时间,即:1212nm m m m nV V VC L C C C S S S =++++(4-8)式中:L ——周期损失时间(s );——第i 个相位的最大流量比。
由(4-8)计算可得:111m niL L C Yy ==--∑ (4-9)式中:Y ——全部相位的最大流量比之和。
2.最佳信号周期C 0最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。
若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式:122(25)32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+---(4-10)式中:d ——每辆车的平均延误; C ——周期长(s );λ——绿信比。
交通行业交通信号配时规范
交通行业交通信号配时规范导言在现代社会中,交通事故频发,交通拥堵问题日益严重,交通信号灯的配时规范对于维持道路秩序和保障交通安全起着至关重要的作用。
因此,制定并严格遵守交通行业的交通信号配时规范,是确保交通系统正常运行的关键之一。
一、交通信号灯的基本原则交通信号灯的配时规范应遵循以下基本原则:1. 合理性原则:根据道路的交通流量和车辆种类,合理分配不同方向的绿灯时间,并确保各路段的通行效率。
同时,还要考虑到周边道路的红绿灯配时情况,避免造成拥堵。
2. 安全性原则:在红灯亮起时,应保证道路上的车辆停车,而绿灯亮起时,应确保道路上车辆能够安全通行。
配时规范应确保行人过马路的时间充足,并与车辆的信号灯同步进行。
3. 灵活性原则:交通信号配时规范应考虑到不同时间段的交通流量变化,以及特殊情况下的应急处理。
在早晚高峰期间,信号配时应增加道路绿灯时间,以减少交通拥堵。
二、交通信号配时规范的具体要求1. 路口信号灯配时规范(1)绿灯时间计算:绿灯时间应根据道路的宽度、交通流量和车辆行驶速度进行合理计算。
一般来说,绿灯的时间应能够满足过路车辆的需要,但不宜过长,以免造成其他方向的等待时间过长。
(2)黄灯时间设置:为确保交通安全,黄灯时间应适当延长,以使通过红灯的车辆能够有足够的时间安全地停车。
黄灯时间的设置应根据道路条件和车辆行驶速度灵活调整。
(3)红灯时间设置:红灯时间的设置应根据交通流量、路口行人过街时间和清障时间来确定。
在人行横道线上,红灯时间应相对较长,以确保行人安全。
2. 路段信号灯配时规范(1)绿波带设置:对于一些在交通流量较大的主干道上设置的信号灯,应根据道路长度和流量情况设置绿波带。
绿波带的设置能够保持车辆的连续通行,减少交通拥堵。
(2)行人专用信号灯:在人行横道线和人行天桥出入口设置行人专用信号灯,以保障行人的交通安全。
行人专用信号灯的配时应与机动车的信号灯同步进行。
(3)左转信号灯:在一些需要调整转向的路段设置左转信号灯,以减少交通事故的发生。
道路平面交叉口信号配时计算
四、交通设计与改善方案4.1 交通设计方案4.2 交通组织改善4.2.1 信号配时的计算(1)迎江路与和州大道交叉口相位方案为:①南北向直行和右转②南北向专用左转③东西向直行和右转④东西向专用左转。
交叉口信号相位如图4.1所示,交叉口信号相位配时如图4.2所示。
图4.1 迎江路与和州大道交叉口信号相位图图4.2 迎江路与和州大道交叉口现在信号相位配时图交叉口各进口道的流量及通行能力如表4.1所示。
进口道车道流量(小时)q 通行能力s北左转24 1029 直行249 1059 直右14 1125南左转283 2000 直行257 1200 直右113 1139流量比q y s=,式中q-小时流量,s-通行能力。
经计算,各进口道的流量比如表4.2所示。
根据图4.1、表4.2,可以得出:第一相位的流量比取0.2352,第二相位的流量比取0.1415,第三相位的流量比取0.1991,第四相位的流量比取0.0945。
总流量比:12340.23520.14150.19910.09450.6703Y y y y y =+++=+++= 已知起动损失时间3s L s =,黄灯时长3A s =,绿灯间隔时间3I s =。
信号周期内总的损失时间1()(333)12ns kk kL L I A ==+-=+-=∑∑s因此,最佳信号周期0 1.55 1.5*1252370110.67030.3297L C Y ++====--s 一个周期总的有效绿灯时间为:0701258e G C L =-=-=s 第一相位的有效绿灯时间为:110.235258200.6703e e y g G Y =⨯=⨯=s 第二相位的有效绿灯时间为:220.141558120.6703e e y g G Y =⨯=⨯=s 第三相位的有效绿灯时间为:330.199158180.6703e e y g G Y =⨯=⨯=s第四相位的有效绿灯时间为:440.09455880.6703e e y g G Y =⨯=⨯=s 第一相位的显示绿灯时间:11203320e s g g L A =+-=+-=s 第二相位的显示绿灯时间:22123312e s g g L A =+-=+-=s 第三相位的显示绿灯时间:33183318e s g g L A =+-=+-=s 第四相位的显示绿灯时间:448338e s g g L A =+-=+-=s 第一相位的显示红灯时间:1017020347r C g A =--=--=s 第二相位的显示红灯时间:2027012355r C g A =--=--=s 第三相位的显示红灯时间:3037018349r C g A =--=--=s 第四相位的显示红灯时间:404708359r C g A =--=--=s 交叉口信号相位配时如图4.3所示。
信号交叉口信号配时
右转车道
1550
S S f f 左转专用车道饱和流量: = × ×
L
bL
w
g
S ―左转专用车道有专用相位时的基本饱和流量,pcu/h bL
饱和流量: S d = ST + S L
②计算流量比,公式如下。
yi=qi/si
③计算流量比的总和,公式如下式:
Y=Σmax[yj,yj……]= Σmax[(qd/sd)j, (qd/sd)j……]
2 交叉口渠化设计及优化组织方案设计.................................................................................................. 4 2.1 交叉口渠化设计方案....................................................................................................................... 4 2.2 交叉口设计相位方案....................................................................................................................... 5
1
目录
1 交叉口现状调查及数据分析............................................................................................................... 2 1.1 解放路/长征路交叉口现状概况..................................................................................................... 2 1. 2 交叉口设计交通流量数据.............................................................................................................. 3 1.3 交叉口各进口道大车率................................................................................................................... 3
交叉口信号配时计算例题
1、某交叉口东西向绿灯时长为30秒,红灯时长为60秒,黄灯时长为5秒,则一个完整的信号周期为多少秒?A. 85秒B. 90秒C. 95秒D. 100秒(答案)C2、在一个四相位信号控制的交叉口,第一相位绿灯时长为25秒,黄灯时长为3秒,其余三个相位的绿灯和黄灯时长总和分别为28秒、27秒和26秒,求该交叉口的信号周期长度。
A. 100秒B. 110秒C. 120秒D. 130秒(答案)B(注:四个相位绿灯黄灯时长总和为25+3+28+27+26=109秒,但通常周期长度为各相位时长之和的整数倍且需包含所有相位变换,故常取稍大于此值的整数,如110秒,实际应用中还需考虑安全间隔等因素。
)3、某交叉口南北向车流量较大,设置绿灯时长为40秒,黄灯时长为4秒,为保持交通流畅,东西向绿灯时长应如何设置(假设周期长度固定为120秒)?A. 40秒B. 36秒C. 32秒D. 28秒(答案)B(注:周期120秒,南北向绿灯+黄灯=44秒,剩余76秒中需分配绿灯和黄灯给东西向,保持对称性,通常黄灯时间相同,则东西向绿灯时间为(76-2*4)/2=34秒,但考虑实际操作中可能的小数取舍,选择接近且不影响整体流畅性的36秒作为答案。
)4、一个两相位交叉口的信号周期为80秒,第一相位绿灯时长为35秒,黄灯时长为5秒,求第二相位的绿灯时长。
A. 35秒B. 40秒C. 30秒D. 25秒(答案)B(注:周期80秒,第一相位绿灯+黄灯=40秒,剩余40秒为第二相位绿灯和黄灯时间,通常黄灯时间相同,则第二相位绿灯时间为40-5=35秒,但考虑实际操作中可能的安全间隔,可能略减为35秒附近的整数值,如40秒在某些情况下也是可行的,依据实际情况调整,此处选择最直接的40秒作为答案。
)5、某交叉口采用三相位信号控制,第一相位绿灯时长为20秒,黄灯时长为3秒,第二相位绿灯时长为25秒,黄灯时长也为3秒,若信号周期总长为90秒,求第三相位的绿灯时长。
信号配时计算
信号配时计算信号配时计算⼀、友谊东路进⼝道流量⽐计算各进⼝道⼤车率(HV)友谊东路东进⼝HV=202/1738=0.116⽂艺北路南进⼝HV=58/902=0.064友谊东路西进⼝HV=163/2328=0.070⽂艺北路北进⼝HV=154/1346=0.114(⼀)友谊东路东进⼝①计算饱和流量车道宽度校正系数:f w =1坡度及⼤车校正系数: f g =1- (G +HV)=1-(0+0.116)=0.884 直⾏车道饱和流量:S T =S b T×f w× f g=1130×1×0.884=999饱和流量: S d=S T=999②计算流量⽐: y直=q直/S d=464/999=0.464(⼆)友谊东路西进⼝①计算饱和流量车道宽度校正系数:f W=1坡度及⼤车校正系数: f g =1- (G +HV) =1-(0+0.07)=0.93直⾏车道饱和流量:S T =S b T×f w× f g=1130×1×0.93=1008 直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.93=930 饱和流量: S d= S T+S TR=1008+837=1845②计算流量⽐: y直=q直/S d=738/1845=0.400Y直右=q直右/S d=647/1845=0.351(三)⽂艺北路南进⼝①计算饱和流量车道宽度校正系数:f W=1坡度及⼤车校正系数: f g =1- (G +HV) =1-(0+0.064)=0.936直⾏车道饱和流量:S T =S b T×f w× f g=1130×1×0.936=1058直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.936=936左转车道饱和流量:S L=S b L×f w× f g=900×1×0.93=837饱和流量: S d= S T+S T R+S L=1058+936+837=2831②计算流量⽐: y直= q直/S d=435/2831=0.154Y直右=q直右/S d=150/2831=0.053Y左=q左/S d=253/2831=0.089(四)⽂艺北路北进⼝①计算饱和流量车道宽度校正系数:f W=1坡度及⼤车校正系数: f g =1- (G +HV) =1-(0+0.114)=0.886直⾏车道饱和流量:S T =S b T×f w× f g=1130×1×0.886=1001直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.886=886左转专⽤车道饱和流量:S L=S b L×f w× f g=900×1×0.886=798饱和流量: S d= S T+S T R+S L=1001+886+798=2685②计算流量⽐: y直=q直/S d=558/2685=0.208Y直右=q直右/S d=359/2685=0.134Y左=q左/S d=394/2685=0.147信号配时计算③计算流量⽐的总和,公式如下式:Y=∑3max[y j,y j……]= ∑2max[(q d/s d)j, (q d/s d)j……] =0.464+0.147+0.208=0.819<0.9 满⾜要求④信号总损失时间L=Σ(l+I-A) =3×﹙3+3-3﹚=9⑤信号周期时长的计算,公式如下所⽰:C0=(1.5l+5)/(1-y) =(1.5×9+5)÷(1-0.819)=103C0—周期时长,Y—流量⽐总和,L—信号总损失时间⑥各个相位的有效绿灯时间和显⽰绿灯时间:第⼀相位:Ge1=Ge×max[y i,y i……] /Y=53绿信⽐:λ1= Ge1 /C0=0.524第⼆相位:Ge2=Ge×max[y i,y i……] /Y=17第三相位:Ge3=Ge×max[y i,y i……] /Y=24绿信⽐:λ2= Ge2/ C0=0.165Ge—总有效绿灯时间,就是C0减去L。
(完整版)交通信号配时评价计算表(1)
进口道
车道校正 车道功能 渠化车道数
Fw
坡度、大车校正
G+HV
Fg
右转弯校正 r
左
2
西
直
2
右
1
左
2
东
直
2
右
1
左
1
北
直
2
右
1
左
1
南
直
2
右
1
1
0.033
0.967
1
0.047
相位 1 相位 2 相位 3 相位 4
0.162167
24
0.073390
20
0.689459
0.271704
33
0.182198
25
15
13
绿信比 λ
显示绿灯 时间g
各车道通 行能力 CAPi
各进口道 通行能力
CAP
饱和度x
均匀延误 d1
控制类型 校正 e
随机延误 d2
0.235294 21 0.196078 17 0.323529 30 0.245098 22
10
19.01
22
13.46
44
13.78
24
50.05
7
20.74
41
14.30
12
47.77
11
18.97
51
14.82
8
qa
进口车道 交叉口信 交叉口服 延误 控延误 务水平
78
14.08
90
韦伯斯特配时法
Webster配时法模型是以车辆延误时间最小为目标来计算信号配时的一种方法,因此其核心内容是车辆延误和最佳周期时长的计算。
而这里的周期时长是建立在车辆延误的计算基础之上,是目前交通信号控制中较为常用的计算方式。
其计算信号配时的步骤如下:1.饱和流量计算饱和流量的定义是:在一次连续的绿灯信号时间内,进口道上一系列连续车队能通过进口道停止线的最大流量,单位是pcu/绿灯时间。
交叉口进口道经划分车道并加渠化以后,进口道饱和流量随进口道车道数及渠化方案而异,所以必须分别计算各条进口道的饱和流量,然后再把各条车道的饱和流量累计成进口到的饱和流量。
饱和流量用实测平均基本饱和流量乘以各影响因素校正系数的方法估算。
S f=S bi×f(F i)(1-1)式中:S f—进口到的估算饱和流量(pcu/h)S bi—第i条进口车道基本饱和流量(pcu/h),i取T、L或R,分别表示相应的直行、左转和右转,下同;f(F i)—各类进口车道各类校正系数。
(1)基本饱和流量各类进口车道各有其专用相位时的基本饱和流量S bi,可采用表2-1中的数值。
表1各类车道的基本饱和流量(pcu/h)(2)各类车道通用校正系数①车道宽度校正f w={0.4(w−0.5) 2.7≤w≤3.01 3.0<w≤3.50.05(w+1.65) w>3.5(1-2)式中:f w—车道宽度校正系数;w—车道宽度(m)②坡度及大车校正f g=1−(G+HV)(1-3)式中:f g—坡度及大车校正系数;G—道路纵坡,下坡时取0;HV—大车率,这里HV不大于0.50。
③直行车道饱和流量直行车流受同相位绿灯初期左转自行车的影响时,直行车道设计饱和流量除需作通用校正外,尚需作自行车影响校正。
自行车影响校正系数可按下式计算:f b={1−1+√b Lg e(无左转专用相位)1 (有左转专用相位)(1-4)式中:f b—自行车影响校正系数;b L—左转自行车数(辆/周期)。
信号配时过程
莲塘北路-莲塘东路路口配时20m斑马线5m宽莲塘北路莲塘东路图1 莲塘北路-莲塘东路道路线型表1莲塘北路/莲塘东路相位图通过计算,莲塘北路-莲塘东路路口配时过程如下表2莲塘北路-莲塘东路各进口车道设计交通量表3莲塘北路-莲塘东路各进口车道设计饱和流量根据配时参数计算公式计算配时表4莲塘北路-莲塘东路各进口道流量比统计表1. 流量比总和两相位时(南北、东西)2. 信号总损失时间两相位时(南北、东西)10)353(2∑=+-+=L3. 信号周期时长最小周期 Y LC m -=1 最佳周期 YL C o -+=155.1两相位时(南北、东西) 最小周期 1009.0110=-=m C 4. 总有效绿灯时间L C G e -=两相位时(南北、东西)9010100=-=-=L C G e5. 各相位有效绿灯时间两相位时(南北、东西)6090.060.0901=⨯=e g 3090.030.0902=⨯=e g6. 各相位的绿信比Cg ej j =λ两相位时(南北、东西)60.010060011===C g e λ 30.010030022===C g e λ 各相位的显示绿灯时间两相位时(南北、东西)60336011=+-=+-=j j e l A g g 30333022=+-=+-=j j e l A g g通过计算,莲塘北路-莲塘东路路口配时过程如下表5莲塘北路-莲塘东路各进口车道设计交通量表6 三相位莲塘北路-莲塘东路各进口车道设计饱和流量表7莲塘北路-莲塘东路各进口道流量比统计表。
智能交通系统中的智能信号配时算法研究
智能交通系统中的智能信号配时算法研究智能交通系统(Intelligent Transportation System,ITS)是指将信息技术与交通管理相结合,以提高交通效率、优化交通安全和减少交通拥堵为目标的综合交通管理系统。
在智能交通系统中,智能信号配时算法是关键的技术之一,它通过分析和处理实时交通数据,根据不同道路的交通状况来调整交通信号灯的配时,以实现道路交通的高效、快速和安全。
智能交通系统中的智能信号配时算法主要有以下几个方面的研究内容。
首先,是实时交通数据采集和分析。
智能信号配时算法需要实时获取各个交通节点和路段的交通信息,包括车辆流量、行驶速度、拥堵情况等。
这些数据可以通过传感器、摄像头、卫星定位等手段采集,并利用数据挖掘和统计分析的方法进行处理和分析,以得到准确的交通状况。
其次,是交通信号灯配时模型的建立。
根据实时交通数据分析的结果,可以建立交通信号灯配时模型。
这个模型可以以传统的车辆流理论为基础,结合实际交通情况,考虑交叉口的结构、道路的容量以及行车路径等因素,通过数学模型和优化算法来确定最优的交通信号灯配时方案。
第三,是优化算法的研究。
智能信号配时算法需要考虑到不同的交通状况和交通需求,以及不同的交通管理目标。
因此,需要设计和研究适应不同情况和目标的优化算法,包括遗传算法、模拟退火算法、粒子群优化算法等。
这些优化算法可以根据实时交通数据和交通信号灯的状态,对信号配时方案进行调整和优化。
最后,是智能信号配时算法的实时控制与应用。
智能交通系统需要实时监测和控制交通信号灯的配时方案。
智能信号配时算法需要与交通信号灯控制设备进行实时通信,根据实时交通数据的变化,动态调整交通信号灯的配时方案。
在实际应用中,智能信号配时算法需要考虑到交通流量的均衡性、交通信号灯的运行稳定性,以及道路的负荷均衡等因素。
总之,智能交通系统中的智能信号配时算法是一项复杂而关键的技术。
通过实时交通数据的采集、交通信号灯配时模型的建立、优化算法的研究和智能信号配时算法的实时控制与应用,可以实现道路交通的高效、快速和安全。
信号配时计算
信号配时计算方法
1、计算信号配时常用公式
(1)信号周期:各相位信号灯轮流显示一次所需时间的总和,可用式(4-1)表示: Y
L C -+=
155.10 式(4-1) 其中:C 0 ——信号最佳周期(秒); L ——周期总损失时间(秒),其计算如式(4-2):
∑=-+=n
i i i i A I l L 1)( 式(4-2)
其中:l ——车辆启动损失时间,一般为3秒;
I ——绿灯间隔时间,即黄灯时间加全红灯清路口时间,一般黄灯为3秒,全
红灯为2-4秒;
A ——黄灯时间,一般为3秒;
n ——所设相位数;
Y ——组成周期全部相位的最大流量比之和,即
∑==n
i i i Y Y Y 1),max ( 式(4-3)
Y i ——第i 个相位的最大流量比,即
i i i s q Y /= 式(4-4) q i ——第i 相位实际到达流量(调查得到);
s i ——第i 相位流向的饱和流量(调查得到)。
(2)绿信比:各相位所占绿灯时间与周期时间之比。
Y
Y Y MAX G g i i e el ),(1
= 式(4-5) 式中:g el ——有效绿灯时间(秒);
G e ——C 0 –L ; G e1 ——第一相位有效绿灯时长,用上式也可求得其他相位有效绿灯时长。
各相位实际显示绿灯时间:
L A g g e +-= 式(4-6) 每一相位换相时四面清路口全红时间:
i i i A I r -= 式(4-7)
r i ——第i 相全红时间(秒); I i ——第i 相绿灯间隔时间(秒); A i ——第i 相黄灯时间(秒)。
信号配时的计算
信号配时的计算某交叉口渠化方案如图所示,相位方案为:①东西向直行和右转②东西向专用左转③南北向直行和右转④南北向专用左转。
经计算,各进口道的流量比如表所示,每个进口道宽度为16.5m。
已知:Ls=3s,A=3s,I=3s。
试计算以下信号配时参数:(12分)(1)最佳周期时长C0;(2)各相位实际显示绿灯时间和红灯时间。
(3)画出最终的配时图。
解:a)根据上面的图形和表格可以得出:第一相位的流量比取0.2117;第二相位的流量比取0.1669;第三相位的流量比取0.2206;第四相位的流量比取0.2059;(1分)总流量比:8051.02059.02206.01669.02117.04321=+++=+++=yyyyY(0.5分)已知Ls=3s,A=3s,I=3s信号周期内总的损失时间∑∑==-+=-+=nkkksAILL112)333()(s(1分)因此,最佳信号周期1201949.0238051.01512*5.1155.1==-+=-+=YLC s(1分)。
b).一个周期总的有效绿灯时间为:10812120=-=-=LCGes,(0.5分)第一相位的有效绿灯时间为:288051.02117.010811=⨯=⨯=YyGgees(0.5分)第二相位的有效绿灯时间为:228051.01669.010822=⨯=⨯=YyGgees(0.5分)第三相位的有效绿灯时间为:308051.02206.010833=⨯=⨯=YyGgees(0.5分)第四相位的有效绿灯时间为:288051.02059.010844=⨯=⨯=Y y G g e e s (0.5分) c )、第一相位的显示绿灯时间:28332811=-+=-+=A L g g s e s (0.5分) 第二相位的显示绿灯时间:22332222=-+=-+=A L g g s e s (0.5分) 第三相位的显示绿灯时间:30333033=-+=-+=A L g g s e s (0.5分) 第四相位的显示绿灯时间:28332844=-+=-+=A L g g s e s (0.5分) 第一相位的显示红灯时间:89328120101=--=--=A g C r s (0.5分) 第二相位的显示红灯时间:95322120202=--=--=A g C r s (0.5分) 第三相位的显示红灯时间:87330120303=--=--=A g C r s (0.5分) 第四相位的显示红灯时间:89328120404=--=--=A g C r s (0.5分) 配时图(2分)第一相位第二相位第三相位第四相位28s89s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号配时计算方法
1、计算信号配时常用公式
(1)信号周期:各相位信号灯轮流显示一次所需时间的总和,可用式(4-1)表示: Y
L C -+=
155.10 式(4-1) 其中:C 0 ——信号最佳周期(秒); L ——周期总损失时间(秒),其计算如式(4-2):
∑=-+=n
i i i i A I l L 1)( 式(4-2)
其中:l ——车辆启动损失时间,一般为3秒;
I ——绿灯间隔时间,即黄灯时间加全红灯清路口时间,一般黄灯为3秒,全
红灯为2-4秒;
A ——黄灯时间,一般为3秒;
n ——所设相位数;
Y ——组成周期全部相位的最大流量比之和,即
∑==n
i i i Y Y Y 1),max ( 式(4-3)
Y i ——第i 个相位的最大流量比,即
i i i s q Y /= 式(4-4) q i ——第i 相位实际到达流量(调查得到);
s i ——第i 相位流向的饱和流量(调查得到)。
(2)绿信比:各相位所占绿灯时间与周期时间之比。
Y
Y Y MAX G g i i e el ),(1
= 式(4-5) 式中:g el ——有效绿灯时间(秒);
G e ——C 0 –L ; G e1 ——第一相位有效绿灯时长,用上式也可求得其他相位有效绿灯时长。
各相位实际显示绿灯时间:
L A g g e +-= 式(4-6) 每一相位换相时四面清路口全红时间:
i i i A I r -= 式(4-7)
r i ——第i 相全红时间(秒); I i ——第i 相绿灯间隔时间(秒); A i ——第i 相黄灯时间(秒)。