五年级奥数速算与巧算
五年级奥数速算、巧算方法及习题

五年级奥数速算、巧算方法及习题五年级奥数速算、巧算方法及习题数的概念自然数:0,1,2,3,4……叫自然数。
整数:正整数,0,负整数统称整数。
……-4,-3,-2,-1,0,1,2,3,4……1、整除:整数a除以整数b,如果除得的商是整数,而余数为0,我们就说a能被b整除,或者说b能整除a。
如果整数a能被整数b整除(b不等于0),a就叫b的倍数,b 就叫a的约数(因数)。
2、整除的条件:(1)、除数被除数都是整数( 2 )、被除数除以除数,商是整数,而且余数为零,除数不为零。
4、整除的特征:(1)、0能整除任意非零的整数,1能整除任意整数(2)、能被2整除的数的特征:一个数的末尾数字是0,2,4,6,8(3)、能被3(或9)整除的数的特征:各位数字的和能被3(或9)整除(4)、能被4(或25)整除的数的特征:末尾两位能被4(或25)整除(5)、能被5整除的数的特征:一个数的末尾是0或5(6)、能被6整除的数的特征:同时能被2或3整除(7)、能被7整除的数的特征:去掉个位数字,再从剩下的数中减去个位数字的2倍,差是7的倍数(8)、能被8(或125)整除的数的特征:末尾3位能被8(或125)整除(9)、能被10整除的数的特征:末尾数字是0(10)、能被11整除的数的特征:奇位上的数字的和与偶位上数字的和的差能被11整除(11)、能被7、11、13整除的数的特征:一个整数,如果他的末三位数与末三位以前的数字所组成的数的差能被7、11、13整除(12)、能被16(或625)整除的数的特征:末尾四位数能被16或625整除。
练习1:(1)、判断下列哪些数能被2整除?21 44 56 65 98(2)、判断下列哪些数能被3整除111 135 186 **** ****(3)、判断下列哪些数能被4整除?84 200 1984 1978 2008 200912456 37212 7800 5408(4)、判断下列哪些数能被5整除?135 65 80 4246 15360 95556 50058(5)、判断下列哪些数能被25整除?75 125 7800 178 197 2050 2029 2350 65325(6)、判断下列哪些数能被10整除?9060 4140 1531 95856 56340(7)、判断下列哪些数能被100整除?1200 170 110 200 2029(8)、判断下列哪些数能被7整除?判断下列哪些数能被11整除?判断下列哪些数能被13整除?128114 94146 64152 238231 413412 242231 439417(9) 判断下列哪些数能被8整除?判断下列哪些数能被125整除?1880 1978 1997 2008 2009 178 197 2250 2029 672520 333640 78500 987000 333420(10)、判断下列哪些数能被9整除?1161 4248 15310 95856 56349 73265 64585 6723 661232:(1)、在□中填入合适的数字,使组成的数能被4整除78□4 7653□ 863□□(2)、在□中填入合适的数字,使组成的数能被25整除98□5 765□ 667□ 874□0(3)、在□中填入合适的数字,使组成的数能被8整除32□80 789□2□ 664□(4)、在□中填入合适的数字,使组成的数能被125整除662□0 887□0 4525□□ 6673□□(5)、在□中填入合适的数字,使组成的数能被9整除78□3 68□4 322□(6)、在□中填入合适的数字,使852□7能被7整除,7630□2能被11整除,890□能被13整除。
五年级奥数分数的速算与巧算

五年级奥数 分数的速算与巧算(一)一、知识要点1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.5、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
五年级《速算与巧算》奥数教案

板书:
原式= + + +
=2
练习2:(5分)
计算: + + + -
分析:
将算式中的分数先化成最简分数,然后会发现化简后每个分数都是 。
板书:
原式= + + + -
=1
三、小结:(5分)
整数的加法交换律、结合律对分数的加减计算同样适用。
第二课时(50分)
师:那么我们可不可以将式子写成这种形式。
板书:
原式=(1- )+( - )+( - )+……+( - )
=1- + - + - +……+ -
=1-
=
师:从式子中我们发现中间的分数都是一加一减刚好抵消的。将数列中的每一
项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,我们
把这种解题方法叫做裂项相消法。
生: ,老师,我知道了,给式子加上一个 ,再在最后减去一个 ,
+ = , + = , + = ,最后式子变成1+2+3+4+5+ + - 。
师:恩恩,同学的反应能力很快,那么请你将过程板书到黑板上。
板书:
原式=1+2+3+4+5+ + + + +( + )-
=15+ + + +( + )-
=15+ + +( + )-
练习1:(5分)
计算: - + +
分析:
小学五年级奥数教学课件:速算与巧算

(2)2.34与5.66的和是整数8,所以根据减法的运算性 质把原式变为11.48-(2.34+5.66),运算就简便了。
(3)这几个数每个数只要增加一点,就成为某个整十 、整百或整千数,把这几个数“凑整”以后,就容易计 算了。当然要记住,“凑整”时增加了多少要减回去。 1999接近整千数2000,其余各加数分别接近一个整数, 可把各加数看作与它接近容易计算的数,再把多加的那 部分减去。
乘法交换律的概念为:两个因数交换位置,积不变。 字母公式:a×b=b×a • 乘法结合律 乘法结合律的概念为:先乘前两个数,或者先乘后两 个数,积不变。 字母公式:a×b×c=a×(b×c) • 乘法分配律 乘法分配律的概念为:两个数与一个数相乘,可以先 把它们与这个数分别相乘,再相加。 字母公式:(a+b)×c=a×c+b×c
#
练习:(1)16×5.5 (2)8.88×1.25 (3)37.6×0.25 (4)145÷1.25 (5)0.25×16×1.25
#
移动小数点位置
计算下列各题: (1)0.06ห้องสมุดไป่ตู้5×2500+695×0.24+51×6.95 (2)2424.2424÷242.4 分析:(1)本题计算时,如果机械地按步计算,就很
#
练习:(1)、5.32+2.06+19.4+1.84+7.68 (2)、0.9+9.9+99.9+999.9+9999.9 (3)、23.67-3.25-8.43-6.75-1.57
#
基准法
五年级奥数——巧算与速算(含解析)

速算与巧算教学目标1.掌握常用的运算律并能熟练运用;2.掌握周期性数字的特征;3.掌握从简单情况找规律的思想方法。
巧用运算律在计算的过程中,运算律的应用是最常用的技巧。
经常用到的运算律有:⑴加法交换律:a b b a+=+⑵加法结合律:()()++=++a b c a b c⑶乘法交换律:a b b a⨯=⨯⑷乘法结合律:()()⨯⨯=⨯⨯a b c a b c⑸乘法分配律:()⨯+=⨯+⨯(反过来就是提取公因数)a b c a b a c⑹减法的性质:()--=-+a b c a b c⑺除法的性质:()÷⨯=÷÷a b c a b c+÷=÷+÷a b c a c b c()-÷=÷-÷()a b c a c b c上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用。
要注意添括号或者去括号对运算符号的影响:⑴在“+”号后面添括号或者去括号,括号内的“+”、“-”号都不变;⑵在“-”号后面添括号或者去括号,括号内的“+”、“-”号都改变,其中“+”号变成“-”号,“-”号变成“+”号;⑶在“⨯”号后面添括号或者去括号,括号内的“⨯”、“÷”号都不变,但此时括号内不能有加减运算,只能有乘除运算;⑷在“÷”号后面添括号或者去括号,括号内的“⨯”、“÷”号都改变,其中“⨯”号变成“÷”号,“÷”号变成“⨯”号,但此时括号内不能有加减运算,只能有乘除运算。
此外,下面的三个结论也是很有用的:商不变性质:如果除数和被除数同时扩大或缩小相同的倍数,它们的商不变。
【例1】(“走进美妙的数学花园”初赛)计算:11353715⨯-⨯【分析】根据“一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变”的道理,进行适当变换,再提取公因数,进而凑整求和。
原式11353735=⨯-⨯⨯=⨯-⨯11351115=-⨯(113111)5=10【例2】(武汉明心奥数挑战赛)计算:1234567981⨯【分析】原式123456799912345679(101)9(12345679012345679)9=⨯⨯=⨯-⨯=-⨯=⨯=1111111119999999999[巩固] 计算:123456789876543219⨯[分析] 原式12345678987654321(101)=⨯-=-12345678987654321012345678987654321=111111110888888889【例3】(“走进美妙的数学花园”决赛)计算:⨯+⨯+÷-⨯+2237.522.312.523040.7 2.51【分析】原式2233 2.522.35 2.523 2.50.7 2.50.4 2.5=⨯⨯+⨯⨯+⨯-⨯+⨯=⨯⨯+⨯+-+2.5(223322.35230.70.4)2.5(669111.5230.70.4)=⨯++-+=⨯2.5803.2=⨯÷803.2104=÷80324=2008[巩固] 计算:199.919.98199.819.97⨯-⨯[分析] (法1)原式199.919.9819.98199.7=⨯-⨯=⨯-19.98(199.9199.7)=⨯19.980.2(法2)也可以用凑整法来解决。
五年级奥数分数的速算与巧算

五年级奥数 分数的速算与巧算(一)一、知识要点1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.5、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯(2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
五年级奥数题速算与巧算

小学五年级奥数题——速算与巧算在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
例1:计算:9.996+29.98+169.9+3999.5解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。
当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5=10+30+170+4000-(0.004+0.02+0.1+0.5)=4210-0.624=4209.376例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)=0.04×25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)=1例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20 解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
五年级奥数 速算与巧算

【同步教导信息】本周教授教养内容:速算与巧算(一)同窗们,今天我们一路来研讨速算与巧算,在数的运算中根据数的特色及数与数之间的特别关系,适当地应用四则运算中的纪律,不单可以进步运算速度,并且还能使我们的盘算又准又快,锤炼思维,进步运算的技能技能.[进修进程]一. 浏览思虑:例1. 简算:(1剖析:题中,接近10,且和都是有6.8这两个数字.解法一:解法二:(2剖析:审题可知,125和可以互相转化例2.剖析:这道题是乘除同级运算,解答时,应用添括号轨则,在“÷”后面添括号,括号里面要变号,“×”变“÷”,“÷”变“×”.不过,同窗们请留意,这种办法只实用于乘.除同级运算.例剖析:我们可以把乘法分派律引申开,用来解题.二. 测验测验体验1. 请你断定下面的做法是否轻便.准确.(1(22. 先按提醒请求完成下面题的盘算,再比较哪种算法巧,说说巧算的根据.(1(2【模仿试题】(答题时光:20分钟)【试题答案】60124518【励志故事】茄子的利害财主对家丁说:“茄子促进食欲,是好器械.”“不错.”家丁说,“难怪它戴着顶王冠.”几天后,财主又说:“茄子倒人胃口,还生痰,是坏器械呢.”“是呀!”家丁说,“瞧它头上长着刺呢.”财主不满足了:“前天你说茄子是好器械,今天又说它是坏器械,什么意思?”家丁说:“我该怎么说呢?我是老爷您的家丁,不是茄子的家丁呀.”这则外国典故后来成了成语:“不是茄子的家丁”,相当于我国的成语“见机行事”.我想它的讥讽其实是搞错了对象.家丁的答话岂非不是源于财主的信口雌黄?家丁不过是给财主的乱说八道找了点注脚罢了.它的确实寄义应该是:强权下的服从.。
五年级奥数第2课时:速算与简算

第二讲速算与巧算一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×42.分解因数,凑整先乘。
例 2计算① 24×25②56×125③125×5×32×53.应用乘法分配律。
例3 计算① 175×34+175×66②67×12+67×35+67×52+6例4 计算① 123×101② 123×994.几种特殊因数的巧算。
例5一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推。
如:15×10=15015×100=150015×1000=15000 例6一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;…以此类推。
如:12×9=12×99=12×999=例7一个偶数乘以5,可以除以2添上0 如:6×5=16×5=116×5=例8 一个数乘以11,“两头一拉,中间相加”。
如2222×11=2456×11=例9一个偶数乘以15,“加半添0”.24×15例10个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25如15×15=1×(1+1)×100+25=22525×25=2×(2+1)×100+25=625自己尝试往下写:二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。
五年级奥数- 巧算与速算

速算与巧算一、考点、热点回顾:1、掌握小学数学中常用的速算方法,并根据数字特点选择恰当方法计算。
二、典型例题:例1计算72.19+6.48+27.81-1.38-5.48-0.62。
解:观察发现,有些加数可以凑整;有的加数和减数尾数相同,可以抵消。
于是:72.19+6.48+27.81-1.38-5.48-0.62=(72.19+27.81)+(6.48-5.48)-(1.38+0.62)=100+1-2=99例2用简便方法计算 1.25×67.875+125×6.7875+1250×0.053375。
解:观察发现:相加的三个乘积中分别有1.25、125、250,因此想到利用积不变的性质,使三个积有相同的因数。
于是:1.25×67.875+125×6.7875+1250×0.053375=1.25×67.875+1.25×678.75+1.25×53.375=1.25×(67.875+678.75+53.375)=1.25×800=1000例3计算1999+199.9+19.99+1.999。
解法一:观察发现,构成这四个加数的数字和排列顺序完全相同,因此可以把它们都看作1999与某个数的积,于是:1999+199.9+19.99+1.999=1999×(1+0.1+0.01+0.001)=1999×1.111=(2000-1)×1.111=2222-1.111=2220.889解法二:观察发现这四个加数分别接近2000、200、20、2,于是1999+199.9+19.99+1.999=2000+200+20+2-1.111=2220.889例4计算(1+0.33+0.44)×(0.33+0.44+0.55)-(1+0.33+0.44+0.55)×(0.33+0.44)。
五年级奥数:速算与巧算

五年级奥数:速算与巧算例1:计算236×37×27分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764例2:计算333×334+999×222分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000例3:计算20012001×2002-20022002×2001分析与解答:这道题如果直接计算,显得比较麻烦。
根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便。
20012001×2002-20022002×2001=2001×10001×2002-2002×10001×2001=0例4:不用笔算,请你指出下面哪个得数大。
163×167 164×166分析与解答:仔细观察可以发现,第二个算式中的两个因数分别与第一个算式中的两个因数相差1,根据这个特点,可以把题中的数据作适当变形,再利用乘法分配律,然后进行比较就方便了。
163×167 164×166=163×(166+1) =(163+1)×166=163×166+163 =163×166+166所以,163×167<164×166例5:888…88[1993个8]×999…99[1993个9]的积是多少?分析将999…99[1993个9]变形为“100…0[1993个0]-1”,然后利用乘法分配律来进行简便计算。
五年级奥数速算与巧算

例 9÷13+13÷9+11÷13+14÷9+6÷13 =(9+11+6)÷13+(13+14)÷9 =26÷13+27÷9 =2+3 =5
总结:除数相同,多商求和时,可以将被除数 相加除以相同的除数。
教学资料整理
• 仅供参考,
(1)199999+19999+1999+199+19 =200000+20000+2000+200+19-4 =200000+20000+2000+200+15 =22215 (2)997+9979+124 =(997+3)+(9979+21)+124-3-21 =11100
2000x200120012001-2001x200020002000 =2000x2001x100010001-2001x2000x100010001 =0
=333×(3×111)+333×667 =333×333+333×667 =333×(333+667) =333×1000 =333000
(1)100000÷32÷125÷25 =100000÷(4×8)÷125÷25 =100000÷(125×8)÷(25×4) =1
(2)999×222+333×334 =3×(3×222)+333×334 =333×(666+334) =333000
÷100
= =
1990-1985+1980-1975+ ……+20-15+10-5 =5 ×199=5 ×(200-1)=1000-5=995
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速算与巧算
知识导航
我们在进行运算时,除了熟练掌握好运算法则外,还要通过观察和分析,找出题目中数的特点,合理、有效地进行计算。
分数、小数四则混合运算常用的方法、技巧如下:
1.运算法则:先乘除后加减;先算小括号,再算中括号;同级运算从左到右依次计算。
2.运算定律与性质: 加法交换律:a b b a +=+;
加法结合律:)()(c b a c b a ++=++; 乘法交换律:a b b a ⨯=⨯ 乘法结合律:)(c b a c b a ⨯⨯=⨯⨯ 乘法分配律:c a b a c b a ⨯±⨯=±⨯)( 减法的性质:)(c b a c b a +-=--
除法的性质:)(c b a c b a ⨯÷=÷÷
3.灵活运用通分和约分
4.分数、小数化成统一的形式再计算,一般是分数化成小数。
5.凑整法:运用运算定律,使式子中一些数凑成整十、整百或整千的数再计算。
我们通常是利用运算律将一些数凑成整一、整十或整百再计算。
凑整技巧主要有:①分组凑整;②加补凑整;③基准凑整。
6.分组分解法:利用交换律和结合律对式子进行分组求解,最后再综合求解。
7.综合方法:计算比较复杂的式子时要多种方法一起用。
精典例题
例1:25.697241283675.01000÷⎥⎦
⎤
⎢⎣
⎡
⨯+-⨯
)(计算: 思路点拨
注意运算的先后顺序,同时要注意乘法分配律的应用。
模仿练习
125.019
15
8861915886625.025.01915886194113⨯+⨯+⨯+计算:
例2:计算:⎪⎭⎫
⎝⎛+++÷⎪⎭⎫ ⎝⎛+++6495374253136545434323
21
思路点拨
先将带分数化成假分数,再利用乘法分配律。
模仿练习
)
()计算:(11
1
933139911115933539951++÷++
例3:9.019
5
105375.119484
⨯+⨯计算: 思路点拨
84和105有公因数21,可以把84和105分解,然后计算。
模仿练习
5
2
69.434.316.3⨯+⨯计算:
例
4:9
819)375.41213(145232852÷+⨯- 思路点拨
把小数转化成分数,把带分数转化成假分数,并注意将分子、分母同乘同一个数,以消去各自中
的分母。
模仿练习
1.212
73117425.1763620173⨯÷+÷-⨯)()(计算:
学以致用
A 级
1.计算:149
74
481498614814914839⨯
+⨯+⨯
2.)
()计算:(9
5
7
59
277
29+÷+(1993年奥赛决赛试题)
3.8
3
1375.09732.0158÷⨯-÷)计算:(
(第四届《小学生数学报》竞赛决赛试题)
4.5
3287.011911313731
⨯⨯-⨯)(计算:(第一届“九章杯”小学数学竞赛初赛试题)
5.9
113.548.11115.349.0÷+⨯+⨯计算:
B 级
6.4
3
35391992199185336.3199211÷÷⨯+⨯)计算:(
(江西省第二届“八一杯”小学数学竞赛决赛试题)
7.04.6)5.13
21(125.181274609.6733
91.3⨯-÷+-⨯+++)()计算:(
8.813
23125.26433
325.0240034.0+÷÷+⨯+⨯⨯)计算:(
C 级
9.5.2)15
14
4.23(54321787
5.17.0625.0127121432415411⨯⨯-÷÷+⨯⎥⎦⎤
⎢⎣⎡-+⨯++⨯)(计算:
10.)1.420
11(5.01522
3245.316.075622145.199.13
13+⨯++÷-÷+⨯计算:
备注:。