数项级数收敛性的判别概论

合集下载

数项级数判别法总结

数项级数判别法总结

数项级数判别法总结数项级数判别法是高等数学中的一种重要知识点,通过对级数的特征进行分析,判断其是否收敛或发散。

下面将对常用的数项级数判别法进行总结。

一、正项级数判别法正项级数指的是级数的每一项都是非负数。

正项级数判别法是最简单也是最常用的判别法。

当正项级数的通项公式可以用比较简单的公式表示时,可以直接利用比较大小的方法进行判别。

比如,如果级数的通项公式可以表示成n的k次幂,k为正整数,那么当k>1时,级数收敛;当k<=1时,级数发散。

二、比值判别法比值判别法是通过计算相邻两项的比值,并观察其极限值的大小来判断级数的收敛性。

具体而言,如果该极限值小于1,则级数收敛;如果该极限值大于1,则级数发散;如果该极限值等于1,则无法判断级数的收敛性。

三、根值判别法根值判别法是通过计算相邻两项的n次方根,并观察其极限值的大小来判断级数的收敛性。

具体而言,如果该极限值小于1,则级数收敛;如果该极限值大于1,则级数发散;如果该极限值等于1,则无法判断级数的收敛性。

四、积分判别法积分判别法是通过将级数转化为函数,然后对该函数进行积分计算,来判断级数的收敛性。

具体而言,如果该函数在无穷大区间上的积分收敛,则级数收敛;如果该函数在无穷大区间上的积分发散,则级数发散。

五、级数收敛的充分条件如果级数的通项公式满足以下条件,则该级数收敛:1.通项公式单调递减;2.通项公式趋于零。

六、级数收敛的必要条件如果级数收敛,则其通项公式趋于零。

以上是数项级数判别法的常用方法。

需要注意的是,不同的级数判别法适用于不同的级数类型,使用时需要根据具体情况进行选择。

同时,在实际应用中,也需要结合其他数学知识和技巧,灵活运用,才能更好地解决问题。

数列与级数的收敛性初步了解数列与级数的收敛性概念及其判定方法

数列与级数的收敛性初步了解数列与级数的收敛性概念及其判定方法

数列与级数的收敛性初步了解数列与级数的收敛性概念及其判定方法数列与级数是数学中重要的概念,对于数学学习的初学者来说,了解数列与级数的收敛性概念及其判定方法是十分重要的。

本文旨在帮助读者初步了解数列与级数的收敛性,并介绍一些判定方法。

一、数列的收敛性数列是按一定规律排列的一组数,常用符号表示为{an}或(an),其中n为自然数。

数列的收敛性是指数列是否能趋于某个确定的数。

1. 数列的极限数列{an}的极限为数a,即lim(n→∞)an=a。

当数列存在极限时,称该数列收敛;当数列不存在极限时,称该数列发散。

2. 数列收敛的判定方法(1)夹逼准则:若对于数列{an}、{bn}、{cn},满足an≤bn≤cn,并且lim(n→∞)an=lim(n→∞)cn=a,则lim(n→∞)bn=a。

(2)单调有界准则:若数列{an}单调递增(递减)且有上(下)界,则数列收敛。

(3)迭代序列的判定方法:对于形如an+1=f(an)的递推公式,如果数列{an}的初值确定并且递推公式满足一定条件,则数列收敛。

二、级数的收敛性级数是数列的和,常用符号表示为∑(n=1)∞an。

级数的收敛性是指级数的部分和是否能趋于某个确定的数。

1. 正项级数的收敛性对于正项级数∑(n=1)∞an,如果数列{Sn}的部分和有上界,则称该级数收敛。

2. 任意项级数的收敛性对于任意项级数∑(n=1)∞an,如果数列{Sn}的部分和存在有限的极限,则称该级数收敛;如果数列{Sn}的部分和无限趋向于正无穷或负无穷,则称级数发散。

3. 级数收敛的判定方法(1)比较判别法:如果存在一个收敛的正项级数∑(n=1)∞bn,并且满足0≤an≤bn,则正项级数∑(n=1)∞an收敛;如果存在一个发散的正项级数∑(n=1)∞bn,并且满足bn≤an,则正项级数∑(n=1)∞an发散。

(2)比值判别法:如果lim(n→∞)│an+1/an│=L<1,则正项级数∑(n=1)∞an收敛;如果lim(n→∞)│an+1/an│=L>1或lim(n→∞)│an+1/an│=∞,则正项级数∑(n=1)∞an发散。

级数收敛的概念和判别法则

级数收敛的概念和判别法则

级数收敛的概念和判别法则级数是数学中重要的概念之一,它是由无穷多个数相加而成的一种数列。

级数的收敛性与数列的求和有着密切的关系,它在分析学、数学物理等领域中都有广泛的应用。

本文将介绍级数收敛的概念及其判别法则。

一、级数收敛的概念级数是指由无穷多个数按照一定次序相加而成的表达式。

设a₁,a₂,a₃,……,aₙ,……是一个数列,则级数可以表示为S = a₁ +a₂ + a₃ + …… + aₙ + ……当数列{Sₙ}存在有限的极限值S时,称级数S收敛,记作∑aₙ = S。

反之,若数列{Sₙ}不存在有限的极限值,则称级数S发散。

二、级数收敛的判别法则为了判断一个级数是否收敛,数学家们提出了多种判别法则,下面将介绍其中几种常见的方法。

1. 初等判别法初等判别法适用于一些简单级数的判断。

对于级数∑aₙ,如果当n趋于无穷大时,aₙ趋于零,即lim(aₙ) = 0,那么级数必收敛。

2. 比较判别法比较判别法适用于正项级数的判定。

设有两个级数∑aₙ和∑bₙ,且对于所有n,都有0 ≤ aₙ ≤ bₙ成立。

若级数∑bₙ收敛,则级数∑aₙ也收敛;若级数∑aₙ发散,则级数∑bₙ也发散。

3. 极限判别法极限判别法适用于形式为aₙ = f(n)的级数。

若存在正整数N和常数p,使得当n > N时,有aₙ ≤ (n^p)成立,那么根据级数∑(n^p)的收敛性来判断∑aₙ的收敛性。

4. 比值判别法比值判别法适用于正项级数的判定。

设有级数∑aₙ,若存在正实数q,使得当n足够大时,有(aₙ₊₁/aₙ) ≤ q成立,那么如果q < 1,级数∑aₙ收敛,如果q > 1,级数∑aₙ发散,若q = 1,则该方法不适用。

5. 根值判别法根值判别法适用于正项级数的判定。

设有级数∑aₙ,若存在正实数r,使得当n足够大时,有(n√aₙ) ≤ r成立,那么如果r < 1,级数∑aₙ收敛,如果r > 1,级数∑aₙ发散,若r = 1,则该方法不适用。

级数收敛的判别方法

级数收敛的判别方法

级数收敛的判别方法1. 比较判别法:若级数的通项与一个已知的收敛级数或发散级数之间存在比较关系,通过比较它们的大小可以判断级数的收敛性。

2. 极限判别法:对于正项级数,若其通项在n趋于无穷大时的极限存在且非零,那么级数收敛;若极限为零或不存在,则级数发散。

3. 比值判别法:对于正项级数,计算相邻两项的比值的极限,若极限小于1,则级数收敛;大于1,则级数发散;等于1,则判别不出结果,可能为发散也可能为收敛。

4. 高斯判别法:对于形如an = f(n)g(n)的级数,若函数f(n)和g(n)满足一定的条件,那么级数收敛。

5. 绝对收敛和条件收敛:若级数的绝对值级数收敛,则原级数也收敛,否则原级数发散。

条件收敛是指原级数在绝对收敛的前提下仍然收敛。

6. 积分判别法:对于正项级数,将通项进行积分,若积分级数收敛,则原级数收敛;若积分级数发散,则原级数发散。

7. Ratio Test:For a series with positive terms, if the ratio of consecutive terms has a limit less than 1, then the series converges. If the limit is greater than 1 or does not exist, the series diverges.8. Root Test:For a series with positive terms, if the nth root of the absolute value of each term has a limit less than 1, then the series converges. If the limit is greater than 1 or does not exist, the series diverges.9. Alternating Series Test:For an alternating series with decreasing terms, if the absolute value of the terms tends to zero as n approaches infinity, then the series converges.10. Power Series Convergence Test:For a power series of the form ∑(an(x-c)^n), if there exists a number R such that the series converges for |x-c| < R and diverges for |x-c| > R, then the series converges for the interval (c-R, c+R) and diverges elsewhere.。

级数收敛性判断方法总结

级数收敛性判断方法总结

级数收敛性判断方法总结级数是由无限多项式相加而成的一个数列,对于级数来说,有两个重要的性质,即级数的收敛性和发散性。

收敛性是指级数的和可以无限接近一些数,而发散性是指级数的和无法无限接近一些数,可能趋向于无穷大或无穷小。

判断一个级数是否收敛的方法有很多,下面是一些常用的方法总结:1.有限和法:如果一个级数的部分和随着项数的增加趋于一些有限数,那么该级数收敛,否则发散。

2.单调有界法:如果一个级数的一般项是单调递减(或递增)的,并且一般项的绝对值是有界的,那么该级数收敛。

3.比较判别法:如果一个级数的一般项与一个已知的收敛(或发散)级数的一般项相比,它们之间的大小关系足够清楚,那么该级数的收敛性与已知级数的收敛性相同。

a. 比较判别法之比较法:若对于级数∑an和∑bn来说,存在一个正数c,使得当n足够大时,有,an,≤c,bn,那么∑bn收敛必有∑an收敛;b. 比较判别法之极限判别法:若对于级数∑an和∑bn来说,当n趋向于无穷时,有lim(an/bn)=c(其中c为常数)存在而不为0和正无穷大,那么∑bn与∑an同时收敛或∑bn与∑an同时发散。

4. 比值判别法:对于级数∑an来说,如果存在正数c,当n足够大时,有,an+1/an,≤c(0≤c<1),那么级数∑an收敛;如果存在正数c,当n足够大时,有,an+1/an,≥c(c>1),那么级数∑an发散;如果不存在这样的c,那么级数∑an的收敛与发散是不确定的。

5. 根值判别法:对于级数∑an来说,如果存在正数c,当n足够大时,有(√(,an+1,))/√(,an,)≤c(0≤c<1),那么级数∑an收敛;如果存在正数c,当n足够大时,有(√(,an+1,))/√(,an,)≥c(c>1),那么级数∑an发散;如果不存在这样的c,那么级数∑an的收敛与发散是不确定的。

6.积分判别法:对于非负函数f(x),当函数在[1,+∞)上单调递减有界,则级数∑f(n)与曲线y=f(x)所围成图形的面积为收敛;若级数∑f(n)与曲线y=f(x)所围成的图形面积为发散。

级数与收敛性判定方法

级数与收敛性判定方法

级数与收敛性判定方法级数是数学中一个重要的概念,它是由一列数相加而得到的数列。

在数学中,级数的收敛性判定方法是一个关键的问题,它帮助我们确定级数是否会趋于一个有限的值。

本文将介绍一些常见的级数和收敛性判定方法。

一、等差级数等差级数是最简单的级数形式,它由一个常数项和一个公差确定。

例如,1+2+3+4+...就是一个等差级数,其中常数项为1,公差为1。

对于等差级数,我们可以使用求和公式来判断其是否收敛。

对于等差级数1+2+3+4+...,我们可以使用求和公式S = n(n+1)/2来计算其和,其中n为级数的项数。

如果n趋于无穷大时,求和公式的结果也趋于无穷大,那么该等差级数就是发散的;反之,如果求和公式的结果趋于有限的值,那么该等差级数就是收敛的。

二、等比级数等比级数是由一个常数项和一个公比确定的级数。

例如,1+2+4+8+...就是一个等比级数,其中常数项为1,公比为2。

对于等比级数,我们可以使用求和公式S = a/(1-r)来计算其和,其中a为常数项,r为公比。

同样地,如果公比r的绝对值大于1,那么等比级数就是发散的;反之,如果公比r的绝对值小于1,那么等比级数就是收敛的。

当公比r的绝对值等于1时,等比级数可能是发散的也可能是收敛的,这时我们需要进一步分析级数的项是否趋于无穷大。

三、幂级数幂级数是由一列系数和一列幂指数确定的级数。

例如,1+x+x^2+x^3+...就是一个幂级数,其中系数为1,幂指数递增。

对于幂级数,我们可以使用比值判别法来判断其收敛性。

比值判别法是通过计算级数的相邻两项的比值的极限来判断级数的收敛性。

具体地,如果这个极限小于1,那么幂级数就是收敛的;如果这个极限大于1,那么幂级数就是发散的;如果这个极限等于1,那么比值判别法无法确定级数的收敛性,我们需要使用其他方法进一步分析。

四、绝对收敛与条件收敛在判断级数的收敛性时,还需要考虑绝对收敛和条件收敛的概念。

如果一个级数的绝对值级数收敛,那么我们称该级数是绝对收敛的;如果一个级数本身收敛但其绝对值级数发散,那么我们称该级数是条件收敛的。

高等数学(第三版)12.2数项级数的收敛性判别法-PPT文档资料

高等数学(第三版)12.2数项级数的收敛性判别法-PPT文档资料
河北工业职业技术学院
高等数学
主讲人 宋从芝
12.2 数项级ห้องสมุดไป่ตู้的收敛性判别法
本讲概要
正项级数的收敛性判别法
交错级数的收敛性判别法 绝对收敛与条件收敛
一.正项级数的收敛性判别法
, 即 u ≥ 0 定义1 若级数 u n 中各项均为非负 n
n 1


( n 1 , 2 ,3 , ) ,则称该级数为正项级数 .
如 果 仔细分析例 3 与例 4,我们就会发现,
而其分子分母都是 正项级数的通项 u n 是分式, n 的多项式 ( 常数是零次多项式 ) 或无理式时, 只要分母的最高次数高出分子最高次数一次以上
否则发散. (不包括一次), 该正项级数收敛,
1 例 5 判定 收敛性 . n 1 n !

练习 试判定以下正项级数的收敛性 :

2
3 3 n 1 n 1
,
3 其中分母 n 的最高次数为 次,分子是零次,分 2 3 3 母比分子高 次, 1,故级数收敛 . 2 2
定理 3 (达朗贝尔比值判别法)
un1 设有正项级数 u n , 如果极限 lim n u n1 n 存在, 那么
(1) 当 < 1 时级数收敛;
O
1
2
3

n
n+1
x
根据定积分的几何意义 ,显然
1 1 1 S n 1 d x 1 (p 1 ) p 1 2 ( p 1 x 1 ) n p 1 1 p p . 1 p 1 p 1n p 1
n 1
所以部分和数列有界. 于是由定理 1 可知,这时 p 级数收敛 . 综上所述可知: p 级数当 p ≤ 1 时发散; p > 1 时 收敛 .

数项级数收敛性的判别

数项级数收敛性的判别

数项级数收敛性的判别一、基本概念数项级数是由一列实数构成的无限级数,形式化表示为:$$\sum_{n=1}^{\infty}a_n=a_1+a_2+...+a_n+...$$其中$a_n$为级数中第$n$个数。

对于数项级数$\sum_{n=1}^{\infty}a_n$,我们关心的问题是其收敛性或发散性。

设数列$\{S_n\}$表示数项级数的前$n$项和,则有:二、基本判别法1.正项级数判别法正项级数指所有项都是非负数的级数。

对于正项级数$\sum_{n=1}^{\infty}a_n$,若存在正整数$p$,使得对于任意$n\ge p$,都有$a_n\ge a_{n+1}$,则数项级数收敛。

该判别法常被称为级数单调有界准则,或称作单调有界原理,其思路为:单调有界必收敛。

当级数中第$p$项后,级数的每一项都小于等于$a_p$,同时又因为级数的每一项都为非负数,所以$\{S_n\}$必单调不降;又由于$a_n$单调减少,$\{S_n\}$最终必定收敛。

2.比较判别法(1)当级数$\sum_{n=1}^{\infty}b_n$收敛时,级数$\sum_{n=1}^{\infty}a_n$也收敛。

比较判别法常被称为比较原理,其思路为:级数$\sum_{n=1}^{\infty}a_n$的上界为级数$\sum_{n=1}^{\infty}b_n$的上界,则当$\sum_{n=1}^{\infty}b_n$收敛时,$\sum_{n=1}^{\infty}a_n$必定收敛;反之,当$\sum_{n=1}^{\infty}a_n$发散时,$\sum_{n=1}^{\infty}b_n$必定发散。

设极限$L=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$存在,则:若$L=1$,则比值判别法无法断定级数的收敛性。

在比值判别法中,我们通常都称级数$\sum_{n=1}^{\infty}\frac{a_{n+1}}{a_n}$为原级数的比值级数。

级数与收敛性的判断

级数与收敛性的判断

级数与收敛性的判断一. 级数的定义和收敛性判断级数是指由一系列无穷多个数相加而成的表达式,通常形式为 a1 + a2 + a3 + ...,其中ai为序列中的第i个数。

在数学中,我们经常需要判断一个级数是否收敛,即求出级数的和,或者判断级数是否发散,即级数的和是无穷大或不存在。

确定一个级数是否收敛有多种方法,下面将介绍常用的四种方法,它们分别是:比较判别法、比值判别法、根值判别法和积分判别法。

二. 比较判别法比较判别法是最常用的求解级数收敛性的方法之一。

该方法通过将待判断级数与一个收敛的基准级数进行比较,从而判断待判断级数的收敛性。

具体来说,比较判别法可以分为以下两种情况:1. 若存在一个收敛的正项级数∑b_n,则当对于所有n,有0 ≤ a_n ≤ b_n时,级数∑a_n也收敛。

2. 若存在一个发散的正项级数∑b_n,则当对于所有n,有a_n ≥ b_n ≥ 0时,级数∑a_n也发散。

三. 比值判别法比值判别法是另一种常用的级数收敛性判断方法。

通过取待判断级数的相邻项的比值的极限值,可以得出判断结果。

具体来说,比值判别法可以分为以下两种情况:1. 若存在一个正常数L,使得lim(n→∞) |a_(n+1)/a_n| = L,若L < 1,则级数∑a_n收敛;若L > 1,则级数∑a_n发散;若L = 1,则比值判别法无法判断,需要结合其他方法。

2. 若lim(n→∞) |a_(n+1)/a_n| = +∞,则级数∑a_n发散;若lim(n→∞) |a_(n+1)/a_n| = 0,则级数∑a_n收敛。

四. 根值判别法根值判别法是一种用于判断级数收敛性的方法,它采用级数的相邻项的根值的极限来进行判断。

具体来说,根值判别法可以分为以下两种情况:1. 若存在一个正常数L,使得lim(n→∞) (|a_n|^1/n) = L,若L < 1,则级数∑a_n收敛;若L > 1,则级数∑a_n发散;若L = 1,则根值判别法无法判断。

数项级数收敛的判别方法

数项级数收敛的判别方法

数项级数收敛的判别方法数项级数是数学中的一个重要概念,它由一组序列所构成,有无穷多个数相加而成。

判断数项级数是否收敛是一个重要的问题,本文将围绕“数项级数收敛的判别方法”展开讨论。

第一步,先说一下收敛和发散的定义。

对于一个数列(即只有一项的“级数”),如果其极限值存在,则称这个数列是收敛的,否则就是发散的。

对于一个数项级数,如果其部分和的极限值存在,则称该级数是收敛的,反之,则是发散的。

因此,我们要判断一组序列相加后的部分和是否收敛,就需要寻找相应的判别方法。

第二步,几种常用的判别方法。

1. 比较判别法比较判别法是数项级数判别法中最常用的一种。

其基本思想是通过与其它更简单的级数进行比较,来判断该级数的收敛性。

具体做法有两种:(1)比较原则一:若0≤an≤bn,且级数∑bn收敛,则级数∑an也收敛。

(2)比较原则二:若0≤bn≤an,且级数∑bn发散,则级数∑an也发散。

2. 极限判别法极限判别法是另一种常用的判断级数收敛性的方法。

它的基本思想是利用极限的大小关系来判断级数的收敛性。

具体做法如下:若an>0,且limn→∞an/bn=L(L为常数),则(1)若L< ∞,则级数∑an和级数∑bn收敛或发散;(2)若L > 0,∑bn收敛,则∑an收敛;(3)若L = ∞,∑bn发散,则∑an也发散。

3. 交错级数判别法交错级数是一种类似于分数的级数形式,其每一项的符号交替出现。

交错级数判别法的基本思想是,若交错级数满足某些特殊条件,该级数就是收敛的。

具体做法如下:若交错级数∑(-1)nan满足以下条件,则该级数收敛:(1)an > 0;(2)an单调递减;(3)limn→∞an=0。

第三步,应用判别法解决实际问题。

当我们遇到一个分数、一个根号,或者一个三角函数等等一些复杂的级数时,直接用极限或比较原则对其进行处理可能会非常复杂。

这时我们就需要灵活运用各种级数收敛性判别方法,比如利用洛必达法则求解极限,或通过变形将其转化为其他形式更容易处理的级数。

数项级数判别法总结

数项级数判别法总结

数项级数判别法总结数项级数是一个非常重要的概念,在数学的各个领域中都有着广泛的应用。

在对数项级数进行求和时,我们需要判断它是否收敛或发散。

为了判断一个数项级数的收敛性或发散性,我们需要使用数项级数的判别法。

这篇文章将会为您详细介绍数项级数判别法的各种方法及其应用。

一、比较判别法比较判别法是数项级数判别法中最常用的方法之一。

在使用比较判别法时,我们将要研究的级数与一个已知的级数相比较,看看它们之间的大小关系。

如果目标级数可看作是一个比已知级数更小的级数,那么它的收敛性可以得到保证,反之则发散。

比较判别法的形式化表述为:设有两个级数{an}和{bn},令K为正实数,若存在正整数N,使得对于所有的n≥N,都有|an|≤K|bn|,则(1)当{bn}收敛时,{an}也收敛;(2)当{an}发散时,{bn}也发散。

比较判别法的适用范围很广,不仅仅适用于常数项级数,还适用于更广泛的级数情形,比如幂级数和函数项级数等。

需要注意的一点是,比较判别法只能确定级数的收敛性或发散性,并不能确定极限值。

二、极限比值法极限比值法能够被用来确定一个级数的收敛半径。

它的适用范围包括了绝大多数级数的情形,是数项级数判别法中十分重要的一种方法。

极限比值法的形式化表述为:对于级数{an},设limn→∞│an+1│/│an│=L则有:(1)当0≤L<1时,级数{an}绝对收敛;(2)当L>1时,级数{an}发散;(3)当L=1时,不能确定级数{an}的收敛性或发散性。

需要注意的一点是,极限比值法只有在{an}的每一项都非零时才适用。

三、根值法根值法是数项级数判别方法中另一种经典而重要的方法。

与极限比值法类似,它能够被用来确定级数的收敛半径。

根值法的形式化表述为:对于级数{an},设limn→∞│an│1/n=L则有:(1)当0≤L<1时,级数{an}绝对收敛;(2)当L>1时,级数{an}发散;(3)当L=1时,不能确定级数{an}的收敛性或发散性。

函数项级数收敛的判别方法

函数项级数收敛的判别方法

函数项级数收敛的判别方法1.比较判别法比较判别法是根据函数项级数与已知的正项级数进行比较来判定其收敛性。

设函数项级数为∑an(x)和已知的正项级数∑bn(x),若对于所有的n,存在正数M使得,an(x),≤Mbun(x),则函数项级数与正项级数的收敛性同时成立。

比较判别法的关键是寻找一个已知的正项级数,使得函数项级数的绝对值小于等于正项级数的绝对值,并且根据正项级数的收敛性来推断函数项级数的收敛性。

2.比值判别法比值判别法是通过计算函数项级数相邻两项的比值的极限值来判定其收敛性。

设函数项级数为∑an(x),如果存在正数r,当n趋向于无穷大时,具有lim ,an+1(x)/an(x), = r,那么:-若r<1,函数项级数绝对收敛;-若r>1,函数项级数发散;-若r=1,比值判别法不确定。

比值判别法可以通过计算函数项级数的极限值和已知的收敛级数或发散级数的极限值比较,来判断函数项级数的收敛性。

3.根值判别法根值判别法是通过计算函数项级数项的绝对值的n次方根的极限值来判定其收敛性。

设函数项级数为∑an(x),如果存在正数r,当n趋向于无穷大时,具有lim ,an(x),^(1/n) = r,那么:-若r<1,函数项级数绝对收敛;-若r>1,函数项级数发散;-若r=1,根值判别法不确定。

根值判别法与比值判别法类似,也可以通过计算函数项级数的极限值和已知的收敛级数或发散级数的极限值比较,来判断函数项级数的收敛性。

4.积分判别法积分判别法是通过将函数项级数与一个已知的函数进行积分比较来判定其收敛性。

设函数项级数为∑an(x),如果存在函数f(x),当x大于等于其中一点a时,具有∫[a,+∞) ,an(x),dx = ∑∫[a,+∞)an(x)dx = ∫[a,+∞)f(x)dx,那么:- 若∫[a,+∞)f(x)dx收敛,函数项级数绝对收敛;- 若∫[a,+∞)f(x)dx发散,函数项级数发散。

函数项级数一致收敛的几个判别法_数学与应用数学专业毕业论文 精品

函数项级数一致收敛的几个判别法_数学与应用数学专业毕业论文 精品

分类号O174.1编号2012010743毕业论文题目函数项级数一致收敛的几个判别法学院数学与统计学院姓名郝金贵专业数学与应用数学学号281010743研究类型基础研究指导教师贾凤玲提交日期2012年5月22日原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果.学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处.除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果.本声明的法律责任由本人承担.论文作者签名:年月日论文指导教师签名:函数项级数一致收敛的判别法的讨论郝金贵(天水师范学院数学与统计学院 ,甘肃,天水,741000)摘要:本文着重介绍函数项级数一致收敛的几种判别法,首先通过问题引入探讨函数项级数一致收敛的概念,然后进一步研究了几种判别方法,即对数判别法;积分判别法;有效充要判别法;加逼收敛判别法等,并对每种新方法给予严格证明.关键字:函数项级数;一致收敛性;积分判别法;有效充要判别法;加逼收敛判别法;比较判别法.The Discussion on Some Method for Uniform Convergence of FunctionSeriesHaoJinguiAbstract: the paper gives several discriminant method on uniform convergence of Function Series,firstly, discusses a series of function uniform convergence concepts by introducing a problem,and then further researches on several identifying method, such that logarithm discriminant method,integral discriminant method,effective sufficient discriminant method,and forced convergence test, etc,and new methods of each given strict proof. Keywords: function Series;uniform convergence;integral discriminant method;effective sufficient discriminant method;and forced convergence test;more discriminant method目录引言 (1)1.函数项级数一致收敛的定义 (1)1.1函数项级数一致收敛概念引入 (1)2.函数项级数一致收敛的判别方法 (2)2.1比式判别法 (2)2.2根式判别法 (2)2.3对数判别法 (3)2.4积分判别法 (3)2.4.1正项级数判别法的回顾 (3)2.4.2函数项级数一致收敛的积分判别法 (4)2.5利用确界条件把函数项级数转化为相应的数项级数进行判别 (5)2.6有效充要判别法 (8)2.7夹逼收敛判别法 (10)2.8比较判别法 (11)3.正项函数项级数一致收敛的几个新的判别法及证明 (12)参考文献 (16)函数项级数一致收敛的几个判别法的讨论引言众所周知,函数项级数作为数项级数的推广,在研究内容上同数项级数有许多及其相似的地方,对比数项级数的收敛性和函数项级数的一致收敛性判别法,不难发现他们在判别方法上极其相似,特别是在判别法的名称上,比如它们都有Cauchy 判别法,Abel 判别法,Dirichlete 判别法等,这里就是根据数项级数判别法探讨几个函数项级数一致收敛的判别法.1 函数项级数一致收敛的定义 1.1函数项级数一致收敛概念引入我们先来看一下下面这样一个例子:例1 设u 1(x) = x, u n (x) = x n -x n-1( n=2,3,……),x ∈[0,1]由上知,S n (x)=∑=nk u 1k (x) = x n , S(x) =⎩⎨⎧=≤≤1,11x 0,0x ,当x ∈(0,1) 时,| S n (x)-S(x) | = xn.),1(0<>∀ε | S n (x)- S(x) | = x n<⇔εn In x <InxIn n εε>⇔.当x()1,0∈时,x变,N也变,且当x-→1时,n+→∞,因此找不到公用的N*,使得(),1,0*,∈∀≥∀x N n 有|S n (x)- S(x)|<ε.不论n 多么大,总有离1很近的x,使得S n (x)离S(x)很远. 再来看这样一个例子: 例2 设u 1=21x x +,()⎪⎪⎭⎫ ⎝⎛-+-+=2222111x n x x n x u n (),...3,2,1=n ,x R ∈,0)(lim )(==∞→x S x S n n ,所以|S n (x) -S(x)|=n x n x n n x n x 211||2211||2222≤+=+.,0>∀ε取N=[ε21]+1,R x N n ∈∀≥∀,,恒有| S n (x)-S(x)|≤ε.由上面的两个例子可以看出,并非所有的函数项级数对于给定的0>ε,都能找到一个公用的N*,使得ε≤-∈∀≥∀|)()(|,*,x S x S E x N n n 恒成立.由此,我们引出一致收敛的概念.定义 设函数项级数∑∞=1)(n n x u 在数集E 上收敛于S (x ).如果,))((,0N N N ∈=∃>∀εε使得E x N n ∈∀≥∀,,恒有ε<-∑=|)()(|1x S x u n k k ,则称∑∞=1)(n n x u 在E上一致收敛于S(x).2 函数项级数一致收敛的判别方法 2.1比式判别法定理2.1 设u n (x)为定义在数集D 上正的函数列,记)()()(1x u x u x q n n n +=,存在正整数N 及实数q 、M,使得:q n (x)≤q<1,M x u N ≤)(对任意的n>N,D x ∈成立,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.定理1有极限形式:定理 2.2 设)(x u n 为定义在数集D 上正的函数列,记)()()(1x u x u x q n n n +=,若)()(lim x q x q nn =∞→ 0≤q<1,且)(x u n在D 上一致有界,则函数项级数)(1x u n n∑∞=在D 上一致收敛.2.2根式判别法定理 2.3 设u n (x)为定义在数集D 上的函数列,若存在正整数N,使得1|)(|<≤q x u nn ,对D x N n ∈>∀,成立,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.注:当定理3条件成立时,级数)(1x u n n ∑∞=在D 上还绝对收敛.定理 2.4 设)(x u n 为定义在数集D 上的函数列,若1)(|)(|lim <≤=∞→q x q x u n n n 对D x ∈∀成立,则函数项级数)(1x u n n ∑∞=在D 上一致收敛.2.3对数判别法定理2.5 设)(x u n 为定义在数集D 上正的函数列,若Innx Inu n n )(lim-∞→=p(x)存在,那么:⑴若对1)(,>>∈∀p x p D x ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛;⑵若对,D x ∈∀1)(<<p x p , 则函数项级数∑∞=1)(n n x u 在D 上不一致收敛.证明 由定理条件知,对N n N >∀∃>∀使得对,,0ε,有ε-)(x p <-<Inn x Inu n )(ε+)(x p ,即εε+-<<)()(1)(1x p n x p nx u n ,则当D x p x p ∈∀>>对1)(成立时,有p n nx u 1)(<,而p 级数∑p n 1当p 大于1时收敛,由优级数判别法知函数项级数∑∞=1)(n nx u 在D 上一致收敛;而当1)(<<p x p 对D x ∈∀成立时,有∑>ppnn p nx u 1,1)(级数当p<1时发散,从而函数项级数∑∞=1)(n n x u 在D 上不一致收敛.例3 设 nn x n n x u )]1(41...[951)]1(32...[852)(-+⋅⋅-+⋅⋅=为定义在D=[0,1]上的函数列,由于:143434132lim )()(lim1<≤=++=∞→+∞→x x n n x u x u n nn n ,0≤)(x u n ≤2,由定理2知函数项级数∑∞=1)(n n x u 在[0,1]上一致收敛.例4 函数项级数∑nx n在()],[,+∞⋃-∞-r r 上一致收敛(其中r 为大于1的实常数).因为1||1||||<<→=r x x n x n nn n ,由定理4知结论成立. 2.4积分判别法2.4.1正项级数判别法的回顾定理 2.6 设f 为[1,+∞)上的非负减函数,那么正项级数∑)(n f 与反常积分⎰+∞1)(dx x f 同时收敛或同时发散.例5 讨论级数∑∞=2)(1n pInn n 的敛散性. 解 首先研究反常积分dx Inx x p⎰+∞2)(1的敛散性,由dx Inx x p ⎰+∞2)(1=du uInx Inx d In p p ⎰⎰+∞+∞=221)()(,当p>1时收敛,p ≤1发散.根据定理1知级数∑∞=2)(1n pInn n 在p>1时收敛,在p ≤1时发散. 2.4.2函数项级数一致收敛的积分判别法定理2.7 (函数项级数一致收敛的柯西准则)函数项级数∑∞=1)(n n x u 在数集D 上一致收敛的充要条件是:对任意给定的正数ε,总存在某一正整数N,使得当n>N 时对一切x D ∈和一切正整数p,都有ε<+++++|)(...)()(|1x u x u x u p n n n .定理2.8 (含参变量反常积分一致收敛的柯西准则)含参变量反常积分dy y x f c ⎰+∞),(在[a,b]上一致收敛的充要条件是:对任意给定的正数ε,总存在某一实数M>c,使得当21,A A >M 时,对一切x ∈[a,b]都有ε<⎰|),(|21dy y x f A A .定理 2.9 设f(x,y)为区域R={(x,y)|a ≤x ≤b,+∞<≤y 1}上的非负函数,如果f(x,y)在区间[1,∞+)上关于y 为单调减函数,那么函数项级数∑∞=1),(n n x f 与含参变量反常积分dy y x f ⎰+∞1),(在区间[a,b]上具有相同的一致收敛性.证明 由假设),(y x f 为区域R =(){}∞≤≤≤≤y b x a y x 1,|,上的非负函数,并且),(y x f 关于y 为),1[+∞上的减函数,对区间[a,b]上任意固定的x 以及任意n ≥2的自然数,我们有)1,(),(),(1-≤≤⎰-n x f dy y x f n x f nn ⑴①若含参变量反常积分dy y x f c⎰+∞),(在[a,b]上一致收敛,则由定理3可得,对任意给定的正数ε,总存在某一实数M>1,使得当n>M+1时,对一切x ∈[a,b]和一切正整数p,都有⎰+-<pn n dy y x f 1|),(|ε.由⑴式,对一切x ∈[a,b]有⎰+-<<+++++p n n dy y x f p n x f n x f n x f 1),(|),(...)1,(),(|ε.由定理2可知:函数项级数∑∞=1),(n n x f 在区间[a,b]上一致收敛.⑵若函数项级数∑∞=1),(n n x f 在区间[a,b]上一致连续,由定理3可得:对任意给定的正数ε,总尊在某一正数N,使得当n>N 时,对一切x D ∈和一切正整数p,都有ε<+++++|),(...)1,(),(|p n x f n x f n x f .而对任意的NA A >21,,令1][,1][2010+=++=A p n A n (这样的正整数0n 和p 总是存在的),由⑴式,对一切],[b a x ∈有ε<+++++<<⎰⎰+|),(...)1,(),(||),(||),(|0002100p n x f n x f n x f dy y x f dy y x f A A pn n .由定理4可知:含参变量反常积分⎰+∞1),(dy y x f 在[a,b]上一致收敛.例6 设)1(1),(223y x In yy x f +=,证明含参变量积分⎰+∞1),(dy y x f 在[0,1]上一致收敛.证明 令...2,1),1(1)(223=+=n x n In n x u n ,易见,对每个n,)(x u n 为[0,1]上的增函数,故有 )1(1)1()(23n In nu x u n n +=≤,n=1,2...又当t ≥1时,有不等式t t In <+)1(2,所以 ...2,1,1)1(1)(223=<+≤n nn In n x u n以收敛级数∑∑)(12x u nn 为为优级数,推得∑)(x u n 在[0,1]上一致收敛.另外,对任意的{}1,10|),(),(+∞≤≤≤≤=∈y x y x R y x 有0)1(1),(223≥+=y x In yy x f ,并且对任意固定,0),(],1,0[≤∈y x f x y 即),(y x f 是区间[1,+∞)上的减函数,因此由定理2知,含参变量积分⎰+∞1),(dy y x f 在[0,1]上一致收敛. 由此可见,以定理2为依据,我们既可以利用函数项级数的一致收敛性判别某些含参变量积分的性质,也可以利用积分的便利条件判断某些函数级数的一致收敛性.2.5利用确界条件把函数项级数转化为相应的数项级数进行判别定理 2.10 函数数列{})(x n Φ在数集D 上一致收敛于⇔Φ)(x 对任意给定的+∈∃>Z N ,0ε,使得当n>N 时,对一切D x ∈和任意的+∈Z p ,都有ε<Φ-Φ+|)()(|x x n pn .定理2.11 函数项级数∑∞=1)(k k x u 在数集D 上一致收敛⇔对任意的+∈∃>Z N ,0ε,使得当n>N 时,对一切D x ∈和任意的+∈Z p ,都有|)(|1∑++=pn n k kx u ε<++=++|)(...)(|1x u x up n n .由定理1和定理2容易看出,函数项级数一致收敛同他的部分和序列的一致收敛是等价的.虽然都是充要条件,但在实际应用上,要用这一原理判断一致收敛仍是困难的,因为函数的片段也是较难求和.从以上的定理可推出更为简单的M 判别法如下: 定理 2.12 设有函数项级数)(1x u k k ∑∞=,且D x ∈的每一项)(x u k 满足D x M x u k n ∈≤,|)(|,则函数项级数)(1x u k k ∑∞=在D 上一致收敛.由上可知,M 判别法也只是充分判别法,一般的函数项级数很难满足此充分条件,即使在满足的条件下,在寻求其相应的控制级数(或优级数)时也具有相当的难度. 定理 2.13 设级数)(x u n∑为函数项级数,Ix ∈若N N ∈∃,使n>N 时有)(|)()(|1x r x u x u n n ≤+,其中1)(sup <=∈r x r Ix ,且)(x u n 在I 上有界,则)(x u n ∑在I 上绝对收敛. 证明 不妨设n=1时就有)(|)()(|1x r x u x u n n ≤+,则可推的M r x u r x u n n n 111|)(||)(|--≤≤ n=2,3… M |)(|sup 1x u Ix ∈= 而∑∞=-11n n Mr收敛根据M 判别法|)(|1∑∞=n n x u 在I 上一致收敛.推论 设级数 |)(|1∑∞=n n x u 为函数项级数,)(|)()(|lim ,1x r x u x u I x n n n =∈+∞→若,1)(sup <=∈r x r I x 且)(x u n (n=1,2...)于I 上有界,则∑∞=1)(n n x u 在I 上绝对一致收敛.证明 由)(|)()(|lim 1x r x u x u n n n =+∞→且1)r 0(1)(sup <+>∀<=∈εε不妨取得r x r Ix ,N N ∈∃,当n>N 有1)(|)()(|1<+≤+<+εεr x r x u x u n n ,即当n>N 有|)(|)(|)(|)(|11N n n n r x u r x u -+++≤+≤εεN N n N M r x u -++≤1)(|)(|ε其中|)(|sup x u M N Ix n ∈=而N Nn Nn M r ∑∞=-++1)(ε收敛.根据M 判别法,∑)(x u n 于I 绝对一致收敛.定理 2.14 设级数∑∞=1)(n n x u 为函数项级数,N N .∈∃∈若I x 使n>N 时有)(|)(|x r x u nn ≤,且1)(sup <=∈r x r Ix ,则∑∞=1)(n n x u 在I 上绝对一致收敛.证明 据条件,n>N 时有成立。

数项级数收敛的定义

数项级数收敛的定义

数项级数收敛的定义1. 引言在数学中,级数是由一系列项相加而成的表达式。

而数项级数则是其中的一种特殊形式,它由一系列实数或复数项相加而成。

判断一个数项级数是否收敛是一个重要的问题,它在实际应用中具有广泛的应用。

本文将着重介绍数项级数收敛的定义及相关概念。

2. 数项级数首先,我们来了解一下什么是数项级数。

一个数项级数可以表示为:S=a1+a2+a3+⋯其中,a1,a2,a3,⋯是一系列实数或复数,称为该级数的项。

我们可以将这个级数看作是无穷个部分和相加而成的。

3. 部分和为了更好地理解级数的性质,我们引入了部分和的概念。

第n个部分和S n表示前n 个项相加得到的结果:S n=a1+a2+⋯+a n显然,当n趋向于无穷大时,S n也会趋向于无穷大(若不然,则称该部分和序列收敛)。

因此,我们需要引入级数的收敛性概念。

4. 数项级数的收敛数项级数的收敛是指级数的部分和序列收敛到一个有限的值。

具体来说,对于一个数项级数S=a1+a2+a3+⋯,如果存在一个实数(或复数)L,使得对于任意给定的正实数(或复数)ε,总存在正整数N,使得当n>N时,部分和序列满足以下条件:|S n−L|<ε则称该级数收敛,且其和为L。

反之,如果不存在这样的实数(或复数)L,使得上述条件成立,则称该级数发散。

5. 收敛级数与发散级数根据上述定义,我们可以将级数分为两类:收敛级数和发散级数。

5.1 收敛级数如果一个级数是收敛的,则其部分和序列会趋向于某个有限值。

我们可以用符号∑a n ∞n=1=S 表示一个收敛的级别,并称L =S 为该级别的和。

5.2 发散级数如果一个级别不是收敛的,则称其为发散级数。

对于发散级数,其部分和序列没有一个有限的极限。

6. 收敛级数的性质收敛级数具有一些重要的性质,下面我们将介绍其中几个。

6.1 收敛级数的唯一性一个收敛级数只能有一个和。

这是因为如果该级数存在两个不同的和L 1和L 2,则可以证明它们之间的差L 1−L 2也是该级数的和,这与唯一性相矛盾。

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。

(总结)数项级数是一类由无穷多个项组成的数列,它们的和是一个数。

在数学中,我们通常利用一些方法来判断数项级数的收敛性和发散性。

以下是数项级数敛散性判别法的总结:1. 正项级数收敛判别法:如果数列中的每一项都是非负数,且后一项大于等于前一项,那么这个数项级数收敛。

2. 比较判别法:如果一个数项级数的绝对值序列能够被一个已知的收敛数项级数和一个已知的发散数项级数所夹逼,那么这个数项级数与已知的收敛数项级数具有相同的收敛情况,与已知的发散数项级数具有相同的发散情况。

3. 极限比值判别法:对于一个数项级数,如果存在一个常数$q$,使得 $0\leq q<1$,并且对于充分大的 $n$,有$|\frac{a_{n+1}}{a_n}|<q$,那么数项级数收敛。

如果存在一个常数 $r>1$,并且对于充分大的 $n$,有$|\frac{a_{n+1}}{a_n}|>r$,那么数项级数发散。

如果 $q=1$,那么该方法不确定。

4. 根号(拉阔)判别法:对于一个数项级数,如果$\limsup\sqrt[n]{|a_n|}<1$,那么数项级数收敛;如果$\limsup\sqrt[n]{|a_n|}>1$,那么数项级数发散;如果$\limsup\sqrt[n]{|a_n|}=1$,那么该方法不确定。

5. 积分判别法:对于一个递减的正项函数 $f(x)$,如果数项级数 $\sum_{n=1}^{\infty} a_n$ 可以表示成积分$\int_{1}^{\infty}f(x)dx$ 的形式,且该积分收敛,那么数项级数也收敛。

如果积分发散,那么数项级数也发散。

级数收敛的定义判别方法

级数收敛的定义判别方法

级数收敛的定义判别方法
级数收敛是数学中的一个重要概念,它在许多领域都有广泛的应用。

在本文中,我们将介绍级数收敛的定义及其判别方法。

首先,我们来回顾一下级数的定义。

给定一个数列{an},我们可以构造一个级数S=∑an,其中S表示前n项和。

如果S存在有限极限,即limn→∞S=L,则我们称级数S收敛于L。

如果S不存在有限极限,即limn→∞S不存在或为无穷大,我们称级数S发散。

接下来,我们将介绍几种常见的判别级数收敛的方法:
1. 比较判别法:如果存在一个收敛的级数∑bn,使得对于所有的n,有|an|≤|bn|,则级数∑an收敛。

如果存在一个发散的级数∑bn,使得对于所有的n,有|an|≥|bn|,则级数∑an发散。

2. 极限判别法:如果limn→∞an/bn=c,其中c是一个常数且0<c<∞,则级数∑an和∑bn同时收敛或同时发散。

如果c=0,则级数∑bn收敛,则级数∑an也收敛。

如果c=∞,则级数∑bn发散,则级数∑an也发散。

3. 积分判别法:如果函数f(x)在区间[1,∞)上单调递减且f(x)≥0,且级数∑an可以表示为∫f(x)dx的形式,则级数∑an和∫
f(x)dx同时收敛或同时发散。

4. 绝对收敛:如果级数∑|an|收敛,则级数∑an绝对收敛。

绝对收敛的级数一定收敛,但收敛的级数不一定绝对收敛。

总之,判别级数收敛的方法有很多种,上述四种方法是最常用的几种。

掌握这些方法,可以有效地判断级数的收敛性,为数学研究提
供有力的工具。

级数收敛的判别方法

级数收敛的判别方法

级数收敛的判别方法级数收敛是数学中一个重要的概念,对于级数的收敛性质的判别方法也是数学分析中的一个重要内容。

在本文中,我们将讨论级数收敛的判别方法,包括级数收敛的概念、级数收敛的判别方法以及一些常用的级数收敛判别定理。

首先,我们来回顾一下级数收敛的概念。

对于一个级数$\sum_{n=1}^{\infty}a_n$,如果它的部分和数列$\{S_n\}$收敛,即$\lim_{n\to\infty}S_n=S$存在,那么我们称级数$\sum_{n=1}^{\infty}a_n$收敛,否则级数$\sum_{n=1}^{\infty}a_n$发散。

接下来,我们将介绍一些常用的级数收敛的判别方法。

首先是比较判别法。

对于两个级数$\sum_{n=1}^{\infty}a_n$和$\sum_{n=1}^{\infty}b_n$,如果对于所有的$n$,都有$0\leq a_n\leq b_n$,且$\sum_{n=1}^{\infty}b_n$收敛,则$\sum_{n=1}^{\infty}a_n$也收敛;如果对于所有的$n$,都有$a_n\geq b_n\geq 0$,且$\sum_{n=1}^{\infty}b_n$发散,则$\sum_{n=1}^{\infty}a_n$也发散。

这就是比较判别法,它可以帮助我们判断一个级数的收敛性。

其次是比值判别法。

对于一个级数$\sum_{n=1}^{\infty}a_n$,如果$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L$存在,那么如果$L<1$,级数$\sum_{n=1}^{\infty}a_n$收敛;如果$L>1$或者$L=\infty$,级数$\sum_{n=1}^{\infty}a_n$发散;如果$L=1$,比值判别法不起作用,需要使用其他方法进行判别。

此外,我们还有根值判别法。

对于一个级数$\sum_{n=1}^{\infty}a_n$,如果$\lim_{n\to\infty}\sqrt[n]{|a_n|}=L$存在,那么如果$L<1$,级数$\sum_{n=1}^{\infty}a_n$收敛;如果$L>1$或者$L=\infty$,级数$\sum_{n=1}^{\infty}a_n$发散;如果$L=1$,根值判别法不起作用,需要使用其他方法进行判别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级:数学091 姓名:韩海飞数项级数收敛性的判别摘要:文章对数项级数收敛性的判别方法进行了归纳总结,得到一般的解题思路.关键词:判别方法归纳总结数项级数敛散性解题思路引言:在讲解数项级数敛散性判别方法时,每讲一种判别方法,学生按照指定的判别方法进行解题,一般都能很容易求得结果,而当把多种判别方法讲完,再让学生作综合判别时,学生要么束手无策,要么选择判别方法时带有盲目性,拿作判别方法进行实验性解题,只要求得结果,不问方法的简单与繁琐,而不是先从简单方法入手,往往用一种简单的方法就可以轻松解题,却用较繁琐方法费了九牛二虎之力,结果还不一定正确,造成这种情况的主要原因主要是学生对所学的判别方法的使用条件及特点不太熟悉,解题思路比较乱.所以在讲解完常数项级数敛散性判别方法之后,非常有必要归纳总结一下.一、定义定义1:设有数列 表达式(1) 称为数项级数,可记为 ,其中 称为数项级数(1)的第n 项或一般项。

定义2: 称为级数(1)的第n 个部分和,数列称为它的部分和数列。

定义3:设 是级数(1)的部分和数列,若 则说级数(1)的和是S ,这时也说级数(1)是收敛(于S )的。

记为: 。

若 是发散数列,则称级数(1)发散。

余项: 定义4:绝对收敛:若∑∞=1n n u 收敛,则称级数∑∞=1n n u 绝对收敛条件收敛:若∑∞=1n n u 发散,则称级数∑∞=1n n u 条件收敛二、性质定理定理12.2若级数1n n u ∞=∑与1n n v ∞=∑都收敛,则对任意常数,c d ,级数111()nn n n n n n cudv c u d v ∞∞∞===+=+∑∑∑也收敛.定理12.3 去掉、增加或改变级数的有限个项并不改变级数的敛散性.定理12.4 在收敛级数的项中任意加括号,既不改变级数的收+++u u u n 21,,,:}{21u u u u n n ∑∞=1n n u u n u u u S n n ++=21}{S n }{S n S S n n =∞→lim S u n n =∑∞=1}{S n S S r n n -=敛性,也不改变它的和. 三、分类1、等比级数(几何级数):2、--p 级数:)0(11>∑∞=p nn p3、正项级数: 若0≥n u ,则称∑n u 为正项级数4、一般级数:任意 ,则称∑n u 为一般级数 三、等比级数收敛性的判别法等比级数(几何级数) ,1<q 时,级数收敛 1≥q 时,级数发散四、--p 级数收敛性判别法:--p 级数)0(11>∑∞=p nn p(1)当10≤<p 时,级数发散 (2)当1>p 时,级数收敛 例:∑21n为p-级数,p=2>1,显然此级数是收敛的. 五、正项级数收敛性的判别法(1)比较原则:设∑n u 与∑n v 是两个正项级数,若(1) 当+∞<<10时,两级数同时收敛或同时发散; (2) 当0=l 且级数∑n v 收敛时,级数∑n u 也收敛; (3) 当+∞=l 且级数∑n v 发散时,级数∑n u 也发散;+++-q a aq a n 1qq a S n n --=1)1()1(≠q ⎪⎩⎪⎨⎧-=∞→发散q a S n n 1lim +++-q a aq a n 1 +++u u u n 21例: 判别级数∑n 1sin 的敛散性解:由于 111sinlim =∞→nn n ,根据比较原则,及调和级数∑n 1发散,所以级数∑n1sin 也发散.(2)比式判别法(极限形式)若∑n u 为正项级数,且lim q u u nn =+1则 (1)当1<q 时,级数∑n u 也收敛;(2)当1>q 时,或+∞=q 时,级数∑n u 发散;注:当1=q 时,)比式判别法不能对级数的敛散性作出判断,因为它可能是收敛的,也可能是发散的.例如,级数∑21n与∑n 1,它们的比式极限都是1lim1=+∞→n n n u u 但∑21n是收敛的,而∑n 1是发散的. (3)根式判别法(极限形式)若∑n u 为正项级数,且1lim =∞→n nn u 则 (1)当1<l 时,级数收敛 (2)当1>l 时,级数发散注:当1=l 时,根式不能对级数的敛散性作出判断例如,级数∑21n 与∑n 1,二者都有1lim =∞n nn u ,但∑21n是收敛的,而∑n 1是发散的.但∑21n 是收敛的,而∑n 1是发散的. 例:判别级数()∑-+nn212的敛散性 解:由于232123lim lim 122122==-∞→-∞→m m m m m m u u 612321lim lim 212212==+∞→+∞→mm m m m m u u 故用比式判别法无法判定此级数的敛散性,现在用根式判别法来考察这个级数,由于 2123lim lim 2222==∞→∞→m m m m m m u 2121limlim12121212==++∞→++∞→m m m m m m u 所以21lim =∞→n n n u 由根式判别法知原级数收敛.(4)积分判别法:设f 是[)+∞,1上非负递减函数那么正项级数∑)(n f 与非正常积分⎰+∞1)(dx x f 同时收敛或同时发散; 例:讨论级数∑∞=2)(ln 1n pn n 的敛散性 解:研究非正常积分⎰∞+2)(ln px x dx,由于 ⎰⎰⎰∞+∞+∞+==2ln 22)(ln )(ln )(ln p p p udu x x d x x dx当1>p 时收敛1≤p 时发散,由积分判别法级数∑∞=2)(ln 1n pn n 在1>p 时收敛1≤p 时发散(5)拉贝判别法(极限形式)若∑n u 为正项级数,且r u u n nn n =-+∞→)1(lim 1存在,则(1)当1>r 时,级数∑n u 收敛;(2)当1<r 时,级数∑n u 发散; (3)当1=r 时拉贝判别法无法判断.例:讨论级数(),)2(421231∑⎪⎪⎭⎫⎝⎛⋅⋅-⋅⋅⋅⋅sn n 当3,2,1=s 时的敛散性解:无论3,2,1=s 哪一个值,级数(),)2(421231∑⎪⎪⎭⎫⎝⎛⋅⋅-⋅⋅⋅⋅sn n 的比式极限都有1lim1=+∞→nn n u u 所以用比式判别法都无法判别此级数的敛散性,现在应用拉贝判别法来讨论,当1=s 时,由于)(2122)22121()1(1∞→→+=++-=-+n n n n n n u u n n n 所以级数是发散的. 当2=s 时,由于)(1)22()34(])2212(1[)1(221∞→→++=++-=-+n n n n n n n u u n n n 这时,拉贝判别法也无法对此级数作出判断, 当3=s 时,由于)(23)22()71812(])2212(1[)1(3231∞→→+++=++-=-+n n n n n n n n u u n n n所以级数收敛. 六、一般级数收敛性的判别法(1)级数∑∞=1n n u 若0lim ≠∞→n n u ,则此级数发散.例:判断级数∑++nnn 2222的敛散性解:由于 1)2(lim 122=+⋅++∞→nx nn ,所以原级数发散(2)(基本判别法)如果正项级数的部分和数列具有上界,则此级数收敛.例:判定正项级数()()()112111n n n a a a a ∞=+++∑的敛散性.分析:本题无法直接使用定义、柯西判别法、达朗贝尔判别法,或比较判别法以及其他的判别法进行判断,因此可选用基本定理进行判断. 解 记()()()12111nn n a u a a a =+++,则()()()()()()()()()121211211111111111nn n n n a u a a a a a a a a a -==-+++++++++级数的前n 项和()()()112111111n n k k n S u a a a ===-<+++∑所以原级数的部分和数列有上界,于是原级数收敛.(3)柯西收敛准则级数∑∞=1n n u 收敛的充要条件:,,0N n ∈∃>∀ε当)(N m n m ∈>时,N p ∈∀有:ε<+⋅⋅⋅+++++m p m m u u u 21例:证明级数∑21n的收敛 证明:由于||21p m m m u u u ++++⋯++=222)(1)2(1)1(1p m m m +⋯++++ <))(1(1)2)(1(1)1(1p m p m m m m m +-++⋯+++++=)()()(pm p m m m m m+--++⋯++-+++-1112111111 =p m m +-11<m1 因此,对任给正数ε ,取]1[ε=N ,使得当m>N 及任意自然数p ,由上式就有||21p m m m u u u ++++⋯++<m1<ε 由柯西收敛准则推得级数∑21n是收敛的. (4)绝对收敛定义法:若级数∑n u 各项绝对值所组成的级数∑n u 收敛,则原级数∑n u 收敛; 例:⋯++⋯++=∑!!2!2n n nnαααα的各项绝对值所组成的级数是⋯++⋯++=∑!||!2||||!||2n n nn αααα应用比式判别法,对于任意实数α都有1||lim ||||lim1+=∞→+∞→n u u n nn n α=0 因此,所考察的级数对任何实数α都绝对收敛.(5)莱布尼兹判别法:若交错级数()),2,1,0(11⋅⋅⋅=>-+∑n u u n n n 满足下述两个条件:(1)数列{}n u 单调递减; (2)0lim =∞→n n u则级数()),2,1,0(11⋅⋅⋅=>-+∑n u u n n n 收敛.例:考察级数∑∞=+-111)1(n n n的敛散性.解:因为∑∑∞=+=-111|1)1(|n n nn 发散,不满足绝对收敛定义,而此级数满足莱布尼茨条件,故收敛.(6)阿贝耳判别法:设级数∑n n b a 若{}n a 为单调有界数列,且级数∑n b 收敛,则级数∑n n b a 收敛.例:讨论级数∑+-nnn xx n 1)1( (x>0)的敛散性. 解:对于数列{n n x x +1 } 来说,当x>0时,0<nn x x +1<n nxx =1 又⎪⎩⎪⎨⎧>>≤<≤++=++=++++++1,110,1111)1(11111111x x xx x n n nn n n xx n n x x x x即数列 {nn xx +1 } 是单调有界的,又 ∑-n n)1( 收敛, 由阿贝尔判别法知道级数收敛.(7)狄利克雷判别法:设级数∑n n b a 若{}n a 单调递减,且0lim =∞→n n a 又级数的部分和数列有界,则级数∑n n b a 收敛.例: 证明:若数列{n a } 具有性质:⋯≥≥⋯≥≥n a a a 21 ,0=∞→n n a lin 则级数∑nx a n cos 对任何x )2,0(π∈都收敛.证明:因为)cos 21(2sin 21∑=+nk kx x=])21sin()21[sin()2sin 23(sin2sin x n x n x x x --+++-+ =x n )21sin(+当x )2,0(π∈时,02sin ≠x 故有:2sin2)21sin(cos 211x n kx n k +=+∑= 所以级数∑nx cos 的部分和数列当x )2,0(π∈时有界,由狄利克雷判别法得级数∑nx a n cos 收敛.以上方法是常见的方法,接下来我们来看由比较原则衍生出的几种不常见的方法。

相关文档
最新文档