任意角三角函数的定义精品PPT课件

合集下载

任意角的三角函数课件

任意角的三角函数课件
在学习任意角的三角函数之前,我们需要了解一些基础知识,包括弧度制和 角度制以及正弦函数、余弦函数、正切函数的定义。
• 弧度制与角度制 • 三角函数的基本性质
任意角的三角函数
在这一部分,我们将深入研究弧度制下和角度制下的任意角三角函数,包括它们的定义、图像和周期性。
实际应用
三角函数在几何、物理和工程等领域有广泛的应用,我们将探讨它们在不同领域中的具体应用。 • 三角函数在几何中的应用 பைடு நூலகம் 三角函数在物理中的应用 • 三角函数在工程中的应用
总结
本课程介绍了任意角的三角函数的基本知识和实际应用,希望能够帮助大家 深入理解和应用三角函数。
• 本课程的主要内容 • 三角函数的重要性 • 继续学习三角函数的建议
任意角的三角函数ppt课件
这是一份关于任意角的三角函数的PPT课件,通过图文并茂的方式介绍任意角 的三角函数的基本知识和实际应用。
引言
任意角是指不限制在标准位置的角度,研究任意角的三角函数可以帮助我们 深入理解三角函数的性质和应用。
• 什么是任意角? • 为什么需要研究任意角的三角函数?
基础知识

任意角的三角函数-课件1PPT课件一等奖新名师优质课获奖比赛公开课

任意角的三角函数-课件1PPT课件一等奖新名师优质课获奖比赛公开课

m5
m5
m ________.
(4)若角 旳终边过点 Pa,8,且 cos 3 ,
5
则 a ________.
(5)角 旳终边在直线 y 2x上,求 旳六个三
角函数值.
正弦上为正, 余弦右为正, 正切余切一三正, 其他为负不为正
例2:
1、判断下列各三角函数旳符号 A.260 B. 4 C. 672 10 D.11 3
2、若sin 0且 tan 0,那么是第几象限角?
3、已知是第三象限角,试判定: sin( cos ) cos(sin )的符号
练习:
(1)若角 终边上有一点P 3,0,则下列函数值不
§1.2.1 任意角旳三角函数
设 是任意角, 旳终边上任意一点 P旳坐标是x,y,
当角 在第一、二、三、四象限时旳情形,它与原点
旳距离为 r ,则 r x 2 y 2 x2 y2 0 .
任意角旳三角函数
1、定义:
①比值 y 叫做 旳正弦,记作sin ,即 sin y .
r
r
x
②比值
叫做
旳余弦,记作cos ,即cos
Байду номын сангаас
x

r
r
③比值 y 叫做 旳正切,记作tan,即 tan y .
x
x
④比值 x 叫做 旳余切,记作cot ,则 cot x .
y
y
⑤比值 r 叫做 旳正割,记作sec ,则 sec r .
x
x
⑥比值 r 叫做 旳余割,记作csc ,则csc r .
y
y
我们把正弦、余弦,正切、余切,正割及余割都 看成是以角为自变量,以比值为函数值旳函数,以上 六种函数统称三角函数.

高中数学《任意角三角函数的定义》课件

高中数学《任意角三角函数的定义》课件

二 用有向线段表示三角函数
例3求出的各三角函数在各象限内的符号可用图5.2-6来直观表示:
(1)
(2)
图5.2-6
(3)
请用三角函数的定 义说明正弦、余弦、正 切在各个象限内的符号.
二 用有向线段表示三角函数
例 4 设sin θ <0且tan θ >0,确定θ是第几象限的角. 解 因为sin θ<0,
过点P作x轴的垂线,垂足为D,则在
Rt△OPD中,三边OP,OD,DP之长分别
为r,x,y.
由锐角三角函数的定义有:
sin y ,cos x ,tan y .
r
r
x
图5.2-1

用比值定义三角函数
若在角α的终边OM上另取一点P′(x′,y′),按照同样的方法构造直角三角形, 由相似三角形的知识可以知道:对于确定的角α,上述三个比值不会随点P在α的 终边上的位置的变化而变化.因此,把锐角放在直角坐标系中,锐角的三角函数 (正弦、余弦、正切)可以用终边上不同于原点的任意一点的坐标来表示.
将DP看作有方向的线段,D为起点,P为终点:当它指向y轴的正方向时,取
正实数值y;当它指向y轴的负方向时,取负实数值y;当它的长度为0时,取零
值.在所有的情况下都有
DP=y=sin α.
由于直角坐标系内点的 坐标与坐标轴的方向有关, 以坐标轴的方向来规定有向 线段的方向,使得它们的取 值与点P的坐标一致.
解 x=4,y=-3,则r= 42 32 =5,
所以 sin y 3 3 ,
r5 5
cos x 4 ,
r5
tan y 3 3 .
x4 4
图5.2-3

用比值定义三角函数

中职数学7.2任意角的三角函数的定义ppt课件

中职数学7.2任意角的三角函数的定义ppt课件
终边上的位置如何,这三个比值都是定值,只
依赖于 的大小,与点 P 在 角 终边上的位
置无关.
Page 4
于是我们有如下定义:
设角 的终边上的任意一点P(x,y),点 P 到原点
的距离为 r.
比值
x
叫做角 的余弦.记作
r
cos x r
比值
y
叫做角 的正弦.记作
r
sin y r
y
比值 叫做角 的正切.记作
斜边邻边cos斜边对边sin邻边对边任意角三角函数的定义已知终边与两个半径不同的同心圆的交点则由相似三角形对应边成比例得由于点pp在同一象限内所以它们的坐标符号相同因此得所以当角不变时不论点p终边上的位置如何这三个比值都是定值只依赖于的大小与点p终边上的位置无关
三角

三角

三角
5锐角三角函数定义(正弦,余弦,正切)
对边
B
sin A 斜边




邻边 cos A 斜边
A 邻边 C
对边 tan A 邻边
思考 角的范围已经推广,那么我们如何定义
任意角 的三角函数呢?
Page 2
任意角三角函数的定义
已知 是任意角,P(x,y),P' (x',y')是角 的
教材P138,练习 A 组,练习B 组.
Page 18
S3 求值 根据三角函数定义,求出角 的三角函数值.
Page 7
例 1 已知角 终边经过点 P(2,-3)如图,
求角 的三个三角函数值.
y
解 已知点 P(2, -3),则
O
r OP 22 32 13.
sin y 3 3 13; r 13 13

任意角三角函数的定义课件(共29张PPT)

任意角三角函数的定义课件(共29张PPT)

调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
所以当α不变时,这三个比值 x , y , y ,不论点P在α的
rrx
终边上的位置如何,它们都是定值,只依赖于α的大小,
数学
基础模块(上册)
第五章 三角函数
5.2.1任意角三角函数的定义
人民教育出版社
第五章 三角函数 5.2.1 任意角三角函数的定义
学习目标
知识目标 能力目标
理解锐角三角函数、任意角的三角函数(余弦函数、正弦函数、正切函数) 的概念.理解单位圆、三角函数线(正弦线、余弦线、正切线)的概念
学生运用分组探讨、合作学习,掌握正弦、余弦与正切在各象限的符号特征, 明确利用三角函数线求解角的正弦、余弦和正切值的方法,提高学生的数学 运算能力
2
2
2
巩固练习,提升素养 在在活初初动中中3,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
例3 求 5 正弦、余弦和正切值.
6
解 如图5-11所示,在的终边上取点P,使OP=2.作

cos x 2 2 13 ,
r 13 13
tan
y x
3 2
.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 2 求下列各角的正弦、余弦和正切值. (1)0;(2)π;(3) 3 .

任意角的三角函数PPT优秀课件

任意角的三角函数PPT优秀课件

2.确定下列三角函 符数 号值 :的
(1)sin256;
(2)cos(406);
23
(3)tan .
3
3.角 的终边 P (上 m ,5)且 ,有 co 一 sm (点 m 0),
13
求 sin co 值 s.
小结: 1.任意角的三角函数的定义; 2.三角函数的定义域; 3.正弦、余弦、正切函数的值在各象限的符号.
1.2.1任意角的三角函数(1)
问题1:你能回忆一下初中里学过的锐角三角函数(正弦, 余弦,正切)的定义吗?
在RtPO中 M
如何 将POM 放到平面直角 坐标系中?
sin PM
P
OP
co sOM OP
tanPM OM

O
M
锐角三角函数
问题2:将POM 放到平面直角坐, 标系中
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
(1)cos 7 ; (2)sin4(6)5; (3)tan11 .
12
3
解: (1) 7 是第二象限角 co, s7所 0.以
12
12
(2) 因为 4652360225,即465是第三象限角,所 sin(465)0.
(3) 因为 1125,即11 是第四象 ,所限 以角

任意角的三角函数PPT课件

任意角的三角函数PPT课件
当角 的终边在 轴上时,正弦线、正切线分别 变成一个点;
这几条与单位圆有关的有向线段 叫做角 的正弦线、余弦线、正切线.
当角 的终边在 轴上时,余弦线变成一个点,正切线不存在.
三角函数的一种几何表示
尊若片天率怔威芋耸眉夸猜柜黍行器摧躇除肮石介桓傻咋但甚展泻殊埋谤任意角的三角函数PPT课件任意角的三角函数PPT课件
于是, θ为第三象限角
蔑少低猛交螟质沃檄响体统氦假苹怪汝美皱躬屠秦踌酿摊占苇黎瓷僵扼豫任意角的三角函数PPT课件任意角的三角函数PPT课件
例5 求下列三角函数值
(1) cos(9π/4)
(2)tan(-11π/6)
解:
cos(9π/4)= cos(π/4+2π)= cosπ/4=
tan(-11π/6)= tan(π/6-2π)= tanπ/6=
sin(α+k*360)=sinα
cos(α+k*360)=cosα
tan(α+k*360)=tanα
k∈z
公式一
终边相同角的同一三角函数值相等
公式作用:
把求任意角的三角函数转化为求0°~360°角的三角函数
(3) tan(-672 °)
(4)tan(11π/3)
因为tan(-672 °)=tan(48-2*360 °)=tan48 °
解:
“ ” 证明必要性
显然成立 ;
“ ” 证明充分性
因为①式 sinθ<0成立,
所以θ角的终边可能位于第三或第四象限,也可能位于y轴负半轴上;
因为②式 tanθ>0 成立,
所以θ角的终边可能位于第一或第三象限;
因为①式 ②式 都成立, 所以θ角的终边只能位于第三象限;

高中数学精品课件:任意角三角函数

高中数学精品课件:任意角三角函数
段 AT 为正切线
答案
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P的位置无关.( √ ) (3)角 α 终边上点 P 的坐标为(-12, 23),那么 sin α= 23,cos α=-12; 同理角 α 终边上点 Q 的坐标为(x0,y0),那么 sin α=y0,cos α=x0.( × ) (4)α∈(0,π2),则 tan α>α>sin α.( √ ) (5)α 为第一象限角,则 sin α+cos α>1.( √ )
B.k·360°+94π(k∈Z)
C.k·360°-315°(k∈Z) D.kπ+54π(k∈Z) 解析 与94π的终边相同的角可以写成 2kπ+94π(k∈Z) ,
但是角度制与弧度制不能混用,所以只有答案C正确.
1 2 3 4 5 解析答案
3. 已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长
解析答案
(2)已知扇形的周长为10 cm,面积是4 cm2,求扇形的圆心角:

2R+Rα=10 由题意得12α·R2=4
⇒Rα==81,
R=4, (舍去),α=12.
故扇形圆心角为12.
解析答案
(3)若扇形周长为20 cm,当扇形的圆心角α为多少弧度时,这个 扇形的面积最大? 解 由已知得,l+2R=20. 所以 S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25, 所以当R=5时,S取得最大值25, 此时l=10,α=2.
返回
练出高分
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

人教版数学《任意角的三角函数》讲授(共23张PPT)教育课件

人教版数学《任意角的三角函数》讲授(共23张PPT)教育课件
sin 120 0 ? cos 150 0 ? tan 315 0 ?
一、任意角的三角函数
思考1:为了研究方便,我们把锐角α放到直角坐标系中, 在角α的终边上取一点P(a,b),那么,sinα,cosα, tanα的值分别P 如何表示?
O
y
a
b
M
OP r
x
a2 b2
sin MP b
之 前 有 个 网友 说自己 现在紧 张得不 得了, 获得了 一个大 公司的 面试机 会,很 不想失 去这个 机会, 一天只 吃一顿 饭在恶 补基础 知识。 不禁要 问,之 前做什 么去了 ?机会 当真就 那么少 ?在我 看来到 处都是 机会, 关键看 你是否 能抓住 。运气 并非偶 然,运 气都是 留给那 些时刻 准备着 的人的 。只有 不断的 积累知 识,不 断的进 步。当 机会真 的到来 的时候 ,一把 抓住。 相信学 习真的 可以改 变一个 人的运 气。 在 当 今 社 会, 大家都 生活得 匆匆忙 忙,比 房子、 比车子 、比票 子、比 小孩的 教育、 比工作 ,往往 被压得 喘不过 气来。 而另外 总有一 些人会 运用自 己的心 智去分 辨哪些 快乐或 者幸福 是必须 建立在 比较的 基础上 的,而 哪些快 乐和幸 福是无 需比较 同样可 以获得 的,然 后把时 间花在 寻找甚 至制造 那些无 需比较 就可以 获得的 幸福和 快乐, 然后无 怨无悔 地生活 ,尽情 欢乐。 一位清 洁阿姨 感觉到 快乐和 幸福, 因为她 刚刚通 过自己 的双手 还给路 人一条 清洁的 街道; 一位幼 儿园老 师感觉 到快乐 和幸福 ,因为 他刚给 一群孩 子讲清 楚了吃 饭前要 洗手的 道理; 一位外 科医生 感觉到 幸福和 快乐, 因为他 刚刚从 死神手 里抢回 了一条 人命; 一位母 亲感觉 到幸福 和快乐 ,因为 他正坐 在孩子 的床边 ,孩子 睡梦中 的脸庞 是那么 的安静 美丽, 那么令 人爱怜 。。。 。。。

任意角的三角函数 课件

任意角的三角函数   课件


y
__x_____叫做α的正切,记作tan α,即tan α=
义 正切
y
____x___(x≠0)
正弦、余弦、正切都是以角为自变量,以单位 三角
圆上的点的坐标或坐标的比值为函数值的函 函数
数,将它们统称为三角函数
● 2.正弦、余弦、正切函数在弧度制下的定义域
三角函数 sin α cos α
tan α
题型二 三角函数在各象限的符号问题
● 【例2】 (1)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定位于( )

A.第一象限 B.第二象限

C.第三象限 D.第四象限

解析 由sin θ<0,可知θ的终边可能位于第三象限或第四象限,也可能与y轴的正半轴重
合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边只能位于第四象限.故选
解 由题意,设点 A 的坐标为(x,35),所以 x2+(35)2=1,
解得 x=45或-45.
3 当 x=45时,角 α 在第一象限,tan α=54=34;
5
3 当 x=-45时,角 α 在第二象限,tan α=-545=-34.
● 方向2 含参数的三角函数定义问题 ● 【例1-2】 已知角α的终边过点P(-3a,4a)(a≠0),求2sin α+cos α的值.
同一
sinα+k·2π=__s_in__α__, 2.式子表示:cosα+k·2π=_c_o_s__α__,其中k∈Z.
tanα+k·2π=__ta_n__α__,
方向 1 三角函数定义的直接应用 【例 1-1】 在平面直角坐标系中,角 α 的终边与单位 α.

任意角三角函数定义PPT共50页

任意角三角函数定义PPT共50页

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
任意角三角函数定义
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
三角函数在各象限的符号如下图所示:
y
++ -o - x
sin
y
-+
-o + x
cos
y
-+ +o - x
tan
记忆口诀:Ⅰ全正,Ⅱ正弦,Ⅲ正切,Ⅳ余 弦
12
3.根据三角函数的定义,确定它们的定 义域
三角函数
定义域
sin
cos
tan
R
R
2
k
(k
Z
)
练习1 确定下列各三角函数值的符号:
O
A1,0 x
使比值有意义的角的集合
即为三角函数的定义域.
例 1 已知角 终边经过点 P(2,-3)如图,
求角 的三个三角函数值.
y
解 已知点 P(2, -3),则
O
r OP 22 32 13.
sin y 3 3 13;
r 13 13
cos x 2 2 13;
r 13 13
设 是一个任意角,它的终边与单位圆交于点 P(x, y)
y 那么:(1) 叫做角 的正弦,记作sin ,即sin y ;
x (2) 叫做角 的余弦, 记作 cos ,即 cos x ;
y
x (3) 叫做角
的正切,记作 tan ,即 tan y (x 0) 。
x
y
Px, y﹒
所以,正弦,余弦,正切都是以角 为自变量,以单位圆上点的坐标或坐 标的比值为函数值的函数,我们将他 们称为三角函数.
三角

三角

三角
任意角的三角函数的定义
1
初中锐角三角函数定义(正弦,余弦,正切)
B




A 邻边 C
对边 sin A 斜边
邻边 cos A 斜边
对边 tan A 邻边
思考 角的范围已经推广,那么我们如何定义
任意角 的三角函数呢?
2
任意角三角函数的定义
已知 是任意角,P(x,y),P' (x',y')是角
Study Constantly, And You Will Know Everything. The More You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的,所以不要放弃 ,坚持就是正确的。
Whቤተ መጻሕፍቲ ባይዱn You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
tan y 3 .
x2
x
P(2,-3)
7
于是我们有如下定义:
设角 的终边上的任意一点P(x,y),点 P 到原
点的距离为 r.
x
比值 叫做角 的余弦.记作
r
cos x r
y
比值 叫做角 的正弦.记作
r
sin y r
y
比值 叫做角 的正切.记作
x
tan y x
8
依照上述定义,对于每一个确定的角 ,都分
演讲人:XXXXXX 时 间:XX年XX月XX日
别有唯一确定的三角函数值与之对应,所以这三个
对应关系都是以角 为自变量的函数,分别称作角 的余弦函数、正弦函数和正切函数.
9
三角函数求值
计算三角函数值的步骤:
S1 画角 在直角坐标系中,作转角 ;
S2 找点 在角的终边上任找一点P,使 OP =r, 并量出该点的纵坐标和横坐标;
S3 求值 根据三角函数定义,求出角 的三角函数值.
的终边与两个半径不同的同心圆的交点, 则由相似三角形对应边成比例得
x x y y y y , ,
r r r r x x
由于点 P,P 在同一象限内,
所以它们的坐标符号相同,因此得
y P
r P' y
r' y'
O x' x x
x x ,y y ,y y. r r r r x x
3
所以当角 不变时,不论点 P 在角
10
例 2 试确定三角函数在各象限的符号.
解 由三角函数的定义可知,
sin = y ,角 终边上点的纵坐标 y 的正、负 r
与角 的正弦值同号;
cos = x ,角 终边上点的横坐标 x 的正、负 r
与角 的余弦值同号;
tan = y ,则当 x 与 y 同号时,正切值为正, x
当 x 与 y 异号时,正切值为负.
的终边上的位置如何,这三个比值都是定值,
只依赖于 的大小,与点 P 在 角 终边上
的位置无关.
4
1.锐角三角函数(在单位圆中)
若 OP r 1,则
以原点O为圆心,以单位长度为半径的圆,称为单位圆.
y
P(a, b)
1
x
o
M
sin
MP OP
b
cos
OM OP
a
tan
MP OM
b a
2.任意角的三角函数定义
(1)
sin( π ) 4

(2)
cos130 ;
(3)tan
4π . 3
解 (1) 因为 π 是第四象限角,所以 sin( π ) <0.
4
4
(2) 因为 130 是第二象限角,所以 cos 130 <0.
(3) 因为 4 π 3
是第三象限角, 所以 tan 4 π 3
>0.
14
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量
相关文档
最新文档