数列的通项公式练习题

合集下载

高中数学_数列练习题

高中数学_数列练习题

数列经典解题思路求通项公式一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2),17164,1093,542,211(3),52,21,32,1解:(1)110-=nn a (2);122++=n nn a n (3);12+=n a n 二、公式法 例1. 等差数列{}na 是递减数列,且432a a a⋅⋅=48,432a a a++=12,则数列的通项公式是( D ) (A) 122-=n a n(B) 42+=n a n(C) 122+-=n an(D) 102+-=n an例2. 已知等比数列{}na 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。

)1()1(1+=⋅+=-q q qq q b nn n当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

三、 叠加法 例3:已知数列6,9,14,21,30,…求此数列的一个通项。

)(52N n na n ∈+=点评:一般地,对于型如)(1n f a an n +=+类的通项公式,只要)()2()1(n f f f +++能进行求和,则宜采用此方法求解。

例4. 若在数列{}n a 中,31=a ,na a n n +=+1,求通项n a 。

na =32)1(+-n n四、叠乘法 例:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。

na n 1=点评:一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ⋅⋅ 的值可以求得时,宜采用此方法。

五、Sn 法利用1--=n n nS S a(n ≥2)例5:已知下列两数列}{na 的前n 项和sn 的公式,求}{na 的通项公式。

数列的通项公式练习题(通项式考试专题)

数列的通项公式练习题(通项式考试专题)

求数列通项公式专题练习1、 设n S 就是等差数列}{n a 得前n 项与,已知331S 与441S 得等差中项就是1,而551S 就是331S 与441S 得等比中项,求数列}{n a 得通项公式2、已知数列{}n a 中,311=a ,前n 项与n S 与n a 得关系就是 n n a n n S )12(-= ,试求通项公式n a 。

3、已知数列{}n a 中,11=a ,前n 项与n S 与通项n a 满足)2,(,1222≥∈-=n N n S S a n n n ,求通项n a 得表达式、4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 得表达式。

5、已知数}{n a 得递推关系为4321+=+n n a a ,且11=a 求通项n a 。

6、已知数列{}a n 得前n 项与S n b n n =+()1,其中{}b n 就是首项为1,公差为2得等差数列,数列{}a n 得通项公式7、已知等差数列{a n }得首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别就是等比数列{b n }得第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }得通项公式;lTsK3。

8、已知数列}{n a 得前n 项与为n S ,且满足322-=+n a S n n )(*N n ∈.(Ⅰ)求数列}{n a 得通项公式;9、设数列{}n a 满足211233333n n n a a a a -++++=…,n ∈*N .(Ⅰ)求数列{}n a 得通项; 10、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 得通项公式。

11、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 得通项公式。

数列求与公式练习1、 设{}n a 就是等差数列,{}n b 就是各项都为正数得等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 得通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭得前n 项与n S .2、(){213}.nn n -⋅求数列前项和3、已知等差数列{}n a 满足:37a =,5726a a +=、{}n a 得前n 项与为n S 、(Ⅰ)求n a 及n S ;(Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 得前n 项与n T 、4、已知等差数列{}n a 得前3项与为6,前8项与为-4。

通项公式专题练习

通项公式专题练习

数列的通项公式的求法训练题一、选择题(每小题5分,共12个小题,共60分)1、若一数列的前四项依次是2,0,2,0,则下列式子中,不能作为它的通项公式的是( )A 、a n = 1-(-1)nB 、a n =1+(-1)n +1C 、2sin 22πn a n = D 、a n =(1-cosn π)+(n -1)(n -2)2、等差数列{a n }中,d 为公差,前n 项 和为s n =-n 2则( )A 、a n =2n-1 d=-2B 、 a n =2n-1 d=2C 、 a n = -2n+1 d=-2D 、 a n = -2n+1 d=23、若数列{}n a 的前n 项和为322+-=n n S n ,那么这个数列的前3项为( )A 、-1,1,3B 、2,1,0C 、2、1、3D 、2、1、64、数列{}n a 中,),1(11100≥+++==-n a a a a a n n ,则当1≥n 时,=n a ( )A 、n2 B 、)1(21+n n C 、12-n D 、12-n5、数列-1,7,-13,19,…的通项公式( )A 、2n-1B 、-6n+5C 、(-1)n ×6n-5D 、(-1)n(6n-5) 6、数列{n a }满足1a =1, 2a =32,且n n n a a a 21111=++- (n ≥2),则n a 等于( ). A 、12+n B 、(32)n -1 C 、(32)n D 、22+n7、在等比数列{a n }中.前n 项的和为s n ,且s n =2n -1则a 12+a 22+···+a n 2等于 ( ) A 、 (2n -1)2 B 、31(2n -1)2 C 、 4n -1 D 、31(4n -1) 8、已知数列{n a }中,)(2,211*+∈+==N n n a a a n n ,则100a 的值是( ) A 、9900 B 、9902 C 、9904 D 、11000 9、已知数列{a n }中,,21,111nnn a a a a +==+则这个数列的第n 项n a 为( )A 、2n-1B 、2n+1C 、121-n D 、121+n 10、已知数列{a n }中,对任意的*∈N n 满足422++=n n n a a a ,且4,273==a a ,则15a 的值是( )A 、8B 、12C 、16D 、32 11、设函数f 定义如下,数列{x n }满足x 0=5,且对任意自然数均有x n+1=f(x n ),则x 2005的值为( )X 1 2 3 4 5 f(x)41352A 、1B 、2C 、4D 、5 12、把正整数按下图所示的规律排序:1→2 5→6 9→10… ↑ ↓ ↑ ↓ ↑ 3 →4 7→8 11…则从2004到2006的箭头方向依次为( )↓ ↑ 2005→ →2005 A 、2005→ B 、 →2005 C 、 ↓ D 、 ↓一、选择题答题卡(请将选择题的答案直接填入下面的表格中) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(每小题4分,共4个小题,共16分)13、12,311+=-=-n n a a a ,则=n a ________________. 14、设数列{na }是首项为1的正数数列,且),3,2,1(0)1(1221 ==+-+++n a a na a n n n n n ,则它的通项公式是_______________.15、设数列{n a }满足)3)((31,313421121≥-=-==---n a a a a a a n n n n ,,则数列{n a }的通项公式为n a =_________________.16、nn n a a a 23,111+==+,则=n a _________________.三、解答题(共24分)17、(12分)写出下列数列的一个通项公式 (1)32-,83,154-,245,356-,… (2) ,,,,17161095421(3)7,77,777,7777, (4)23,45,169,25617,…18已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-= ,试求通项公式n a .19 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

等差数列的通项公式及应用习题

等差数列的通项公式及应用习题

等差数列的通项公式及应用1.已知等差数列的通项公式为a n=-3n+a,a为常数,则公差d=[]2.已知等差数列{a n}中,a8比a3小10,则公差d的值为[]A.2B.-2C.5D.-53.已知数列a,-15,b,c,45是等差数列,则a+b+c的值是[]A.-5B.0C.5D.104.已知等差数列{a n}中,a1+a2+a3=-15,a3+a4=-16,则a1=[]A.-1B.-3C.-5D.-75.已知等差数列{a n}中,a10=-20,a20n=20,则这个数列的首项a1为[]A.-56B.-52C.-48D.-446.已知等差数列{a n}满足a2+a7=2a3+a4,那么这个数列的首项是[]7.已知数列{a n}是等差数列,且a3+a11=40,则a6+a7+a8等于[]A.84B.72C.60D.43[]A.45B.48C.52D.559.已知数列-30,x,y,30构成等差数列,则x+y=[]A.20B.10C.0D.4010.已知等差数列的首项a1和公差d是方程x2-2x-3=0的两根,且知d>a,则这个数列的第30项是[]A.86B.85C.84D.8311.已知等差数列{a n}中,a1+a3+a5=3,则a2+a4=[]A.3B.2C.1D.-112.等差数列{a n}中,已知a5+a8=a,那么a2+a5+a8+a11的值为[]A.aB.2aC.3aD.4a[] A.第21项B.第41项C.第48项D.第49项等差数列的通项公式及应用习题1答案一、单选题1.D2.C3.D4.A5.C7.B8.A9.B10.B11.A12.B13.A14.C15.C16.C17.C18.A19.B20.B21.C二、填空题2.653.1014.28。

数列及等差数列通项训练测试题(含答案)

数列及等差数列通项训练测试题(含答案)

数列及等差数列通项一、单选题(共29题;共58分)1.(2020高一下·元氏期中)数列,,,,…,是其第()项A. 17B. 18C. 19D. 202.(2020高一下·昌吉期中)已知数列,则是这个数列的第()项A. 20B. 21C. 22D. 233.(2020高一下·江西期中)数列,,,,的一个通项公式是()A. B. C. D.4.(2020高二下·宁波期中)古希腊人常用小石头在沙滩上摆成各种形状来研究数.比如:他们研究过图中的, , , ,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的, , , ,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A. 25B. 36C. 81D. 915.(2020高一下·佳木斯期中)数列1,-3,5,-7,9,…的一个通项公式为()A. B. C. D.6.(2020·聊城模拟)数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A. 153B. 190C. 231D. 2767.(2020高二上·吉林期末)在数列2,9,23,44,72,…中,第6项是()A. 82B. 107C. 100D. 838.(2019高一下·天长月考)已知数列1,,,… .…则是这个数列的()A. 第10项B. 第11项C. 第12项D. 第21项9.(2019高二上·榆林期中)数列3,6,12,21,x,48…中的x等于()A. 29B. 33C. 34D. 2810.(2020高一下·吉林期中)2008是等差数列的4,6,8,…中的()A. 第1000项B. 第1001项C. 第1002项D. 第1003项11.(2020高一下·哈尔滨期末)若数列的通项公式为,则此数列是()A. 公差为-1的等差数列B. 公差为5的等差数列C. 首项为5的等差数列D. 公差为n的等差数列12.(2020高一下·江西期中)已知等差数列{a n}中,,则公差d的值为()A. B. 1 C. D.13.(2020高一下·南昌期末)已知数列为等差数列,,,则()A. 39B. 38C. 35D. 3314.(2020高一下·绍兴期末)已知等差数列中,,,则()A. 5B. 6C. 8D. 1115.(2020高一下·嘉兴期中)已知等差数列中,,,则公差()A. -2B. -1C. 1D. 216.(2020高一下·金华期中)已知等差数列的首项为1,公差为2,则的值等于()A. 15B. 16C. 17D. 1817.(2017高一下·张家口期末)已知数列{a n}为等差数列,且a2+a3+a10+a11=48,则a6+a7=()A. 21B. 22C. 23D. 2418.(2020高一下·鸡西期中)已知正项数列的首项为1,是公差为3的等差数列,则使得成立的的最小值为()A. 11B. 12C. 13D. 1419.(2020高一下·宾县期中)等差数列20,17,14,11,…中第一个负数项是( )A. 第7项B. 第8项C. 第9项D. 第10项20.(2019高一下·三水月考)已知数列中,,,则()A. B. C. D.21.(2019高一下·广德期中)已知数列中,,,若,则( )A. 1008B. 1009C. 1010D. 202022.(2019高一下·诸暨期中)在等差数列中,已知则等于()A. 40B. 43C. 42D. 4523.(2019高一下·上海月考)等差数列中,,若存在正整数满足时有成立,则()A. 4B. 1C. 由等差数列的公差决定D. 由等差数列的首项的值决定24.(2017高一下·保定期末)在等差数列{a n}中,若a1、a10是方程2x2+5x+1=0的两个根,则公差d(d>0)为()A. B. C. D.25.(2019高一下·重庆期中)已知数列满足:,,则()A. B. C. D.26.(2019高一下·宁波期中)已知数列满足,那么等于()A. B. C. D.27.(2019高一下·包头期中)已知数列满足要求,,则()A. B. C. D.28.(2019高一下·慈利期中)若数列中, 则这个数列的第10项()A. 28B. 29C.D.29.(2020高一下·大庆期中)已知数列是首项为,公差为d的等差数列,且满足,则下列结论正确的是()A. ,B. ,C.D.二、填空题(共7题;共8分)30.(2020高一下·吉林期中)数列-1,7,-13,19,-25,31…的通项公式________.31.(2020高一下·七台河期中)已知数列中,,,则________.32.(2019高一下·台州期末)已知等差数列满足:,,则公差=________;=________.33.(2019高一下·上海月考)在数列中,,则数列的通项公式为________.34.(2019高一下·上海期中)已知数列中,,,,则________35.在数列中,,且满足,则=________36.(2019高一下·马鞍山期中)正项数列满足,若,,则数列的通项公式为________.三、解答题(共1题;共10分)37.(2019高一下·天长月考)已知数列{an}为等案数列,且公差为d(1)若a15=8,a60=20.求a65的值:(2)若a2+a3+a4+a5=34,a2a5=52,求公差d.答案解析部分一、单选题1.【答案】D【解析】【解答】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故答案为:D.【分析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.2.【答案】D【解析】【解答】由,得即,解得,故答案为:D【分析】利用已知条件结合归纳推理的方法找出规律,从而求出数列通项公式,从而求出是这个数列的第23项。

等差数列通项公式基础训练题(含详解)

等差数列通项公式基础训练题(含详解)
等差数列通项公式基础训练题(含详解)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.等差数列 中,已知 , ,则 ()
A.16B.17C.18D.19
2.设 为等差数列,若 ,则
A.4B.5C.6D.7
3.设数列 是公差为 的等差数列,若 ,则 ()
A.4B.3C.2D.1
4.已知数列 满足 ,且 ,那么 ()
A.8B.9C.10D.11
5.在数列{an}中,若 ,a1=8,则数列{an}的通项公式为()
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)
6.在数列 中, =1, ,则 的值为()
A.99B.49C.101D.102
7.在数列 中, , , ,则 ()
A.6B.7C.8D.9
8.等差数列 中, ,则 ( ).
A.110B.120C.130D.140
9.已知数列 是等差数列, ,则 ( )
A.36B.30C.24 D.1
10.在等差数列 中,若 ,则 ()
A.10B.5C. D.
11.等差数列 满足 ,则其前10项之和为( )
【详解】
根据题意,设 ,数列 是等差数列,
则 , ,
则 ,
即 ;
解可得 ;
故答案为:
【点睛】
本题考查等差数列的性质,关键是求出数列 的通项公式.
19.
【解析】
【分析】
本次考察的是等差数列通项公式的求法。
【详解】

【点睛】
等差数列通项公式除了掌握 ,考生还应掌握

高中数学等差数列的通项公式训练练习题含答案

高中数学等差数列的通项公式训练练习题含答案

高中数学等差数列的通项公式训练练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 在等差数列51、47、43,…中,第一个负数项为()A.第13项B.第14项C.第15项D.第16项2. 已知等差数列{a n},a2=4,a6+a7=6+a9,则公差d=()A.2B.1C.−2D.−13. 已知数列{a n}中,a1=2,a n+1=a n+12(n∈N∗),则a99的值为( )A.48B.49C.50D.514. 在等差数列{a n}中,a1+3a8+a15=60,则2a9−a10的值为( )A.6B.8C.12D.135. 数列{a n}中,若a1=1,a n+1=a n+4,则下列各数中是{a n}中某一项的是()A.2007B.2008C.2009D.20106. 若a≠b,两个等差数列a,x1,x2,b与a,y1,y2,y3,b的公差分别为d1,d2,则d1d2等于()A.3 2B.23C.43D.347. 在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N∗),则a5等于( )A.2 5B.13C.23D.128. 已知等差数列{a n}的公差d为正数,a1=1,2(a n a n+1+1)=tn(1+a n),t为常数,则a n=( )A.2n−1B.4n−3C.5n−4D.n9. 《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸10. 一个首项为,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A. B. C. D.11. 等差数列{a n},a1=0,公差d=1,则a8=________.712. 在等差数列{a n}中,a2=1,a4=5,则a n=________.13. 等差数列{a n}中,若a3+a5=4,则a4=________.14. 已知数列{a n}的前n项和S n=n2−9n,则其通项a n=________.15. 已知等差数列{a n},a n=4n−3,则首项a1为________,公差d为________.16. 《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”.其中“日减功迟”的具体含义是每天比前一天少织同样多的布,则每天比前一天少织布的尺数为________.17. “欢欢”按如图所示的规则练习数数,记在数数过程中对应中指的数依次排列所构成的数列为{a n},则数到2008时对应的指头是________,数列{a n}的通项公式a n=________.(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).18. 表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,则数字70在表中出现的次数为________19. 已知数列的前n项和为,,,则________.20. 已知数列满足,,若,则数列的前n项和________.21. 数列{a n}中,a1=8,a4=2且满足a n+2=2a n+1−a n(n∈N∗),数列{a n}的通项公式________.22. 在等差数列{a n}中,已知a4+a6=28,a7=20,求a3和公差d.23. 数列{a n}是等差数列,a1=f(x+1),a2=0,a3=f(x−1),其中f(x)=x2−4x+2,求通项公式a n.24. 设数列{a n}满足a1=1,a n+1=3a n,n∈N+.(1)求数列{a n}的通项公式及前n项和S n;(2)已知数列{b n}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{b n}的通项公式.25. 已知数列{a n},|b n}满足a1=2,b1=1 ,且当n≥2a n=23a n−1+13b n−1+2b n=1 3a n−1+23b n−1+2(1)令c n=a n+b n,d n=a n−b n ,证明:{c n}为等差数列,{d n}为等比数列;(2)求数列{a n}的通项公式及前π项和S n26. 已知公差不为零的等差数列{a n}各项均为正数,其前n项和为S n,满足2S2=a2(a2+1)且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n+1⋅2a n,求数列{b n}的前n项和为T n.27. 已知公差不为零的等差数列{a n}的前n项和为S n,a3=4,a5是a2与a11的等比中项.(1)求S n;(2)设数列{b n}满足b1=a2, b n+1=b n+3×2a n,求数列{b n}的通项公式.28. 已知递增等差数列{a n}满足a1+a5=4,前3项的积为8,求等差数列{a n}的通项公式.29. 在等差数列{a n}中,已知a5=10,a12=31,求a1,d,a20,a n.30. 已知数列{a n},对于任意n∈N∗,都有a n=n2−bn,是否存在一个整数m,使得当b<m时,数列{a n}为递增数列?这样的整数是否唯一?是否存在最大的整数?31. 在等差数列{a n}中,a2=3,a9=17,求a19+a20+a21的值.32. 在等差数列{a n}中,已知a3=8,且满足a10>21,a12<27,若d∈Z,求公差d的值.33. 已知数列{a n}为等差数列,且a4=9,a9=−6.(1)求通项a n;(2)求a12的值.34. 已知:公差大于零的等差数列{a n}的前n项和为S n,且满足a3a4=117,a2+a5= 22.求数列{a n}的通项公式.35. 设无穷等差数列{a n}的前n项和为S n,求所有的无穷等差数列{a n},使得对于一切正整数k都有S k3=(S k)3成立.36. 在等差数列{a n}中,公差d≠0,己知数列a k1,a k2,a k3,…a kn…是等比数列,其中k1=1,k2=7,k3=25.(1)求数列{k n}的通项公式;(2)若a1=9,b n=√a k n6+√k n2,S n=b12+b22+b32...+b n2,T n=1b12+1b22+1b32...+1b n2,试判断{S n+T n}的前100项中有多少项是能被4整除的整数.37. 设正数数列的前项和为,对于任意,是和的等差中项. (1)求数列的通项公式;(2)设,是的前项和,是否存在常数,对任意,使恒成立?若存在,求取值范围;若不存在,说明理由.38. 记等差数列的前项和,已知.(1)若,求的通项公式;(2)若,求使得的的取值范围.39. 观察下表:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,……问:(1)此表第行的第一个数与最后一个数分别是多少?(2)此表第行的各个数之和是多少?(3)2019是第几行的第几个数?40. 等差数列{a n}中,d=2,a1=5,S n=60,求n及a n.参考答案与试题解析高中数学等差数列的通项公式训练练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】等差数列的通项公式【解析】根据等差数列51、47、43,…,得到等差数列的通项公式,让通项小于0得到解集,求出解集中最小的正整数解即可.【解答】解:因为数列51、47、43,…为等差数列,所以公差d=47−51=−4,首项为51,所以通项a n=51+(n−1)×(−4)=55−4n,所以令55−4n<0解得n>554因为n为正整数,所以最小的正整数解为14,所以第一个负数项为第14项故选B2.【答案】B【考点】等差数列的通项公式【解析】(1)利用等差数列的性质进行解题即可.【解答】解:已知数列{a n}是等差数列,则a2=a1+d=4,a6+a7=2a1+11d=6+a1+8d,解得d=1 .故选B .3.【答案】D【考点】等差数列的通项公式【解析】的等差数列,由此能求出a99.由已知得数列{a n}是首项为a1=2,公差为a n+1−a n=12【解答】(n∈N∗),解:∵在数列{a n}中,a1=2,a n+1=a n+12∴数列{a n}是首项为2,公差为1的等差数列,2∴a99=2+98×1=51.2故选D.4.【答案】C【考点】等差数列的通项公式【解析】由已知条件利用等差数列的通项公式求解.【解答】解:在等差数列{a n}中,∵a1+3a8+a15=60,∴a1+3(a1+7d)+a1+14d=5(a1+7d)=60,∴a1+7d=12,∴2a9−a10=2(a1+8d)−(a1+9d)=a1+7d=12.故选C.5.【答案】C【考点】等差数列的通项公式【解析】利用等差数列的定义判断,再用通项公式求解即可.【解答】解:∵数列{a n}中有a1=1,a n+1=a n+4,∴数列{a n}为等差数列,且a1=1,公差d=4,即通项公式为:a n=4n−3,∵4n−3=2009,4n=2012,∴n=503且n=503是整数.故选C.6.【答案】C【考点】等差数列的通项公式【解析】由a,x1,x2,b为等差数列,根据等差数列的性质得到b=a+3d1,表示出d1,同理由a,y1,y2,y3,b为等差数列,根据等差数列的性质表示出d2,即可求出d1与d2的比值.【解答】解:∵a,x1,x2,b为等差数列,且公差为d1,∴b=a+3d1,即d1=b−a,3∵a,y1,y2,y3,b也为等差数列,且公差为d2,∴b=a+4d2,即d2=b−a,4则d 1d 2=43.故选C 7.【答案】 B【考点】等差数列的通项公式 【解析】 此题暂无解析 【解答】 解:由a n+1=2a nan+2,得1a n+1=a n +22a n=1a n+12,又a 1=1,所以数列{1a n}是以1为首项,12为公差的等差数列, 所以1a 5=1+4×12=3,所以a 5=13.故选B . 8. 【答案】 A【考点】等差数列的通项公式 【解析】根据数列的递推关系式,先求出t =4,即可得到{a 2n−1}是首项为1,公差为4的等差数列,a 2n−1=4n −3,{a 2n }是首项为3,公差为4的等差数列,a 2n =4n −1,问题得以解决. 【解答】解:由题设2(a n a n+1+1)=tn(1+a n ),即a n a n+1+1=tS n ,可得a n+1a n+2+1=tS n+1, 两式相减得a n+1(a n+2−a n )=ta n+1, 所以a n+2−a n =t .由2(a 1a 2+1)=t(1+a 1) 可得a 2=t −1,由a n+2−a n =t 可知a 3=t +1.因为{a n }为等差数列,所以2a 2=a 1+a 3, 解得t =4,故a n+2−a n =4,由此可得{a 2n−1}是首项为1,公差为4的等差数列,a 2n−1=4n −3, {a 2n }是首项为3,公差为4的等差数列,a 2n =4n −1, 所以a n =2n −1. 故选A . 9. 【答案】 B【考点】等差数列的通项公式【解析】从冬至日起各节气日影长设为{a n},可得{a n}为等差数列,根据已知结合前八项和公式和等差中项关系,求出通项公式,即可求解.【解答】由题知各节气日影长依次成等差数列,设为{a n}S n是其前?项和,则尺,所以a5=9.5尺,由题S S=9(a1+a5)24+a7=3a4=31.5所以a4=10.5,所以公差d=a5−a4=−1所以a12=a5+7d=2.5尺.故选:B.10.【答案】C【考点】等差数列的通项公式【解析】设等差数列{a n}的公差为|da4=23+5d,a7=23+6d,又:数列前六项均为正数,第七项起为负数,23+5d>0.23+6d<0−235<d<−236,又…数列是公差为整数的等差数列,d=−4,故选C.【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】1【考点】等差数列的通项公式【解析】直接由等差数列的通项公式求解.【解答】解:在等差数列{a n},由a1=0,公差d=17,得a8=a1+7d=0+7×17=1.故答案为:1.12.【答案】2n−3【考点】等差数列的通项公式【解析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2=1,a4=5,∴{a1+d=1a1+3d=5,解得{a1=−1d=2.∴a n=−1+2(n−1)=2n−3.故答案为2n−3.13.【答案】2【考点】等差数列的通项公式【解析】根据等差数列的定义和性质,结合题意可得2a4=a3+a5=4,由此解得a4的值.【解答】解:∵等差数列{a n}中,a3+a5=4,∴2a4=a3+a5=4,解得a4=2,故答案为:2.14.【答案】2n−10【考点】等差数列的通项公式【解析】利用递推关系a n={S1n=1S n−S n−1n≥2可求数列的通项公式【解答】解:∵S n=n2−9n,∴a1=S1=−8n≥2时,a n=S n−S n−1=n2−9n−(n−1)2+9(n−1)=2n−10 n=1,a1=8适合上式故答案为:2n−1015.【答案】1,4【考点】等差数列的通项公式【解析】根据等差数列的通项公式求出公差d,令n=1求得首项a1.【解答】解:由题意得,等差数列{a n},a n=4n−3,则公差d=4,令n=1得首项a1=1,故答案为:1、4.16.【答案】429等差数列的通项公式【解析】利用等差数列的通项公式求和公式即可得出.【解答】已知数列{a n}为等差数列,其中,a1=5,a n=1,S n=90.,1=5+(n−1)d,设公差为d,则90=n(5+1)2.解得:d=−42917.【答案】食指,4n−1【考点】等差数列的通项公式【解析】注意到数1,9,17,25,,分别都对应着大拇指,且1+8×(251−1)=2001,因此数到2008时对应的指头是食指.对应中指的数依次是:3,7,11,15,,因此数列{a n}是3为首项4为公差的等差数列,根据等差数列的通项公式即可得到答案.【解答】解:∵数1,9,17,25,,分别都对应着大拇指,且1+8×(251−1)=2001,∴数到2008时对应的指头是食指.∵对应中指的数依次是:3,7,11,15,因此数列{a n}的通项公式是a n=3+(n−1)×4=4n−1.故答案为:食指,4n−118.【答案】4【考点】等差数列的通项公式【解析】第1行数组成的数列A1j(j=1, 2,…)是以2为首项,公差为1的等差数列,第j列数组成的数列Aij(i=1, 2,…)是以j+1为首项,公差为j的等差数列,求出通项公式,就求出结果.【解答】第i行第j列的数记为Aij.那么每一组i与j的组合就是表中一个数.因为第一行数组成的数列A1j(j=1, 2,…)是以2为首项,公差为1的等差数列,所以A1j=2+(j−1)×1=j+1,所以第j列数组成的数列Aij(i=1, 2,…)是以j+1为首项,公差为j的等差数列,所以Aij=(j+1)+(i−1)×j=ij+1.所以ij=69=1×69=3×23=23×3=69×1=81.所以表中的数70共出现54,19.【答案】________、1,2n—1【考点】等差数列的通项公式根据a n−1=S n+1−S n ,代入后等式两边同时除以S n+1S n+1.即可得【解答】因为a n−1=S n+1−S n则a n−1+2S n+1S n =0可化简为S n−1−S n +2S n−1S n =0等式两边同时除以S n−1S n可得1S n −1S n+1+2=0.即1S n−1−1S n =2 所以数列为等差数列,首项1S 1=1a 1=1,公差d =2 所以1S n=1+(n −1)×2=2n −1 即S n =12n−1故答案为:12n−1I =加加】本题考查了数列的综合应用,通项公式与前n 项和公式的关系,等差数列通项公式的求法,属于中档题.20.【答案】s _、4”1−4,3【考点】等差数列的通项公式【解析】a n+1n+1−a n n =2,求得an n 的通项,进而求得a n =2n 2,得b n 通项公式,利用等比数列求和即可.【解答】由题为等差数列,a n n =a 11+n −1×2=2na n =2n 2∴ b n =22n ∴ S n =4(1−42)1−4=4n−1−43,故答案为4n+1−43三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】a n =10−2n【考点】等差数列的通项公式【解析】本题考查等差数列通项公式,由条件 a n+2=2a n+1−a n 可得 a n+2−a n+1=a n+1−a n ,从而{a n }为等差数列,利用 a 1=8, a 4=2 可求公差,从而可求数列{a n }的通项公式.【解答】解:由题意, a n+2−a n+1=a n+1−a n ,∴ 数列 {a n } 为等差数列,设公差为d ,由a 1=8,a 4=2 ,得8+3d =2 ,解得d =−2,∴ a n =8−2(n −1)=10−2n .故答案为:a n =10−2n .22.【答案】解:在等差数列{a n }中,∵ a 4+a 6=28,a 7=20,∴ 由题意得{a 3+d +a 3+3d =28①,a 3+4d =20②,由①②解得{a 3=8,d =3.【考点】等差数列的通项公式【解析】利用等差数列的通项公式求解.【解答】解:在等差数列{a n }中,∵ a 4+a 6=28,a 7=20,∴ 由题意得{a 3+d +a 3+3d =28①,a 3+4d =20②,由①②解得{a 3=8,d =3.23.【答案】解:因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即f(x +1)+f(x −1)=0,又f(x)=x 2−4x +2,所以(x +1)2−4(x +1)+2+(x −1)2−4(x −1)+2=0,整理得x 2−4x +3=0,解得x =1,或x =3.当x =1时,a 1=f(x +1)=f(2)=22−4×2+2=−2,d =a 2−a 1=0−(−2)=2,∴ a n =a 1+(n −1)d =−2+2(n −1)=2n −4.当x =3时,a 1=f(x +1)=f(4)=42−4×4+2=2,d =0−2=−2,∴ a n =a 1+(n −1)d =2+(n −1)×(−2)=4−2n .所以,数列{a n }的通项公式为2n −4或4−2n .【考点】等差数列的通项公式【解析】题目给出了一个等差数列的前3项,根据等差中项概念列式a 1+a 3=2a 2,然后把a 1和a 3代入得到关于x 的方程,解方程,求出x 后再分别代回a 1=f(x +1)求a 1,则d 也可求,所以通项公式可求.【解答】解:因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即f(x +1)+f(x −1)=0,又f(x)=x 2−4x +2,所以(x +1)2−4(x +1)+2+(x −1)2−4(x −1)+2=0,整理得x 2−4x +3=0,解得x =1,或x =3.当x =1时,a 1=f(x +1)=f(2)=22−4×2+2=−2,d =a 2−a 1=0−(−2)=2,∴ a n =a 1+(n −1)d =−2+2(n −1)=2n −4.当x =3时,a 1=f(x +1)=f(4)=42−4×4+2=2,d =0−2=−2,∴ a n =a 1+(n −1)d =2+(n −1)×(−2)=4−2n .所以,数列{a n }的通项公式为2n −4或4−2n .24.【答案】解:(1)由题设可知{a n }是首项为1,公比为3的等比数列,所以a n =3n−1,S n =1−3n 1−3=3n −12.(2)设数列{b n }的公差为d ,∵ b 1=a 2=3,b 3=a 1+a 2+a 3=S 3=13,∴ b 3−b 1=10=2d ,∴ d =5,∴ b n =5n −2.【考点】等比数列的前n 项和等比数列的通项公式等差数列的通项公式【解析】(1)判断数列是等比数列,然后求{a n }的通项公式及前n 项和S n ;(2)利用数列的关系求出公差,然后求解通项公式.【解答】解:(1)由题设可知{a n }是首项为1,公比为3的等比数列,所以a n =3n−1,S n =1−3n 1−3=3n −12.(2)设数列{b n }的公差为d ,∵ b 1=a 2=3,b 3=a 1+a 2+a 3=S 3=13,∴ b 3−b 1=10=2d ,∴ d =5,∴ b n =5n −2.25.【答案】解:(1)数列{a n },{b n }满足a 1=2,b 1=1,且 {a n =23a n−1+13b n−1+2b n =13a n−1+23b n−1+2(n ≥2), ∴ a n +b n =(a n−1+b n−1)+4(n ≥2),因为c n =a n +b n ,即c n =c n−1+4(n ≥2),∴ {c n }是首项为a 1+b 1=3, 公差为4的等差数列.且通项公式为c n =3+4(n −1)=4n −1,而a n −b n =(13a n−1−13b n−1)=13(a n−1−b n−1)(n ≥2),因为d n =a n −b n ,即d n =13d n−1(n ≥2), ∴ {d n }是首项为a 1−b 1=1, 公比为13的等比数列.且通项公式为d n =(13)n−1. (2)由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1, 解得a n =12×3n−1+2n −12,∴ S n = 12×[1−(13)n ]1−13+2×n(n+1)2-12n =34−14×3+n 2+n 2. 【考点】由递推关系证明数列是等差数列等差数列与等比数列的综合数列的求和等比数列的通项公式等差数列的通项公式【解析】由题得到a n +b n =(a n−1+b n−1)+4(n ≥2),即可得到c n =c n−1+4(n ≥2),即可知{c n }是首项为a 1+b 1=3, 公差为4的等差数列.而a n −b n =13(a n−1−b n−1)(n ≥2),即可得d n =13d n−1(n ≥2),可知{d n }是首项为a 1−b 1=1, 公比为13的等比数列.由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1,即可得到a n =12×3+2n −12,再利用分组转换求和法即可得解S n .【解答】解:(1)数列{a n },{b n }满足a 1=2,b 1=1,且 {a n =23a n−1+13b n−1+2b n =13a n−1+23b n−1+2(n ≥2), ∴ a n +b n =(a n−1+b n−1)+4(n ≥2),因为c n =a n +b n ,即c n =c n−1+4(n ≥2),∴ {c n }是首项为a 1+b 1=3, 公差为4的等差数列.且通项公式为c n =3+4(n −1)=4n −1,而a n −b n =(13a n−1−13b n−1)=13(a n−1−b n−1)(n ≥2),因为d n =a n −b n ,即d n =13d n−1(n ≥2), ∴ {d n }是首项为a 1−b 1=1, 公比为13的等比数列.且通项公式为d n =(13)n−1. (2)由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1, 解得a n =12×3n−1+2n −12,∴ S n =12×[1−(13)n ]1−13+2×n(n+1)2-12n =34−14×3+n 2+n 2. 26.【答案】解:(1)设等差数列的公差为d ,由题意得{2S 2=a 2(a 2+1),a 22=a 1a 4, 整理{a 12+2a 1d +d 2=3a 1+d ,a 1=d ,解得a 1=d =1,所以a n =n .(2)由(1)得b n =(n +1)2n ,则T n =2×21+3×22+4×23+⋯+(n +1)×2n ,2T n =2×22+3×23+4×24+⋯+(n +1)×2n+1,两式作差整理得,T n =n ⋅2n+1.【考点】等比中项数列的求和等差数列的通项公式【解析】此题暂无解析【解答】解:(1)设等差数列的公差为d ,由题意得{2S 2=a 2(a 2+1),a 22=a 1a 4,整理{a 12+2a 1d +d 2=3a 1+d ,a 1=d ,解得a 1=d =1,所以a n =n .(2)由(1)得b n =(n +1)2n ,则T n =2×21+3×22+4×23+⋯+(n +1)×2n ,2T n =2×22+3×23+4×24+⋯+(n +1)×2n+1,两式作差整理得,T n =n ⋅2n+1.27.【答案】解:(1)由题意可得{a 1+2d =4,(a 1+4d )2=(a 1+d )(a 1+10d ),即{a 1+2d =4,2d 2=a 1d.又因为d ≠0,所以{a 1=2,d =1,所以a n =n +1,所以S n =n (2+n+1)2=n 2+3n 2;(2)由条件及(1)可得b 1=a 2=3.由已知得b n+1−b n =3×2n+1,b n −b n−1=3×2n (n ≥2).所以b n =(b n −b n−1)+(b n−1−b n−2)+⋯+(b 2−b 1)+b 1=3(2n +2n−1+2n−2+⋯+22)+3=3×2n+1−9(n ≥2).又b 1=3满足上式,所以b n =3×2n+1−9.【考点】等比中项数列递推式等差数列的前n 项和等差数列的通项公式【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:(1)由题意可得{a 1+2d =4,(a 1+4d )2=(a 1+d )(a 1+10d ),即{a 1+2d =4,2d 2=a 1d.又因为d ≠0,所以{a 1=2,d =1,所以a n =n +1,所以S n =n (2+n+1)2=n 2+3n 2;(2)由条件及(1)可得b 1=a 2=3.由已知得b n+1−b n =3×2n+1,b n −b n−1=3×2n (n ≥2).所以b n =(b n −b n−1)+(b n−1−b n−2)+⋯+(b 2−b 1)+b 1=3(2n +2n−1+2n−2+⋯+22)+3=3×2n+1−9(n ≥2).又b 1=3满足上式,所以b n =3×2n+1−9.28.【答案】解:∵ 递增等差数列{a n }满足a 1+a 5=4,前3项的积为8,∴ {a 1+a 1+4d =4a 1(a 1+d)(a 1+2d)=8d >0,解得a 1=−4,d =3,∴ 等差数列{a n }的通项公式a n =−4+(n −1)×3=3n −7.【考点】等差数列的通项公式【解析】利用等差数列前n 项和公式列出方程组,求出首项和公比,由此能求出等差数列{a n }的通项公式.【解答】解:∵ 递增等差数列{a n }满足a 1+a 5=4,前3项的积为8,∴ {a 1+a 1+4d =4a 1(a 1+d)(a 1+2d)=8d >0,解得a 1=−4,d =3,∴ 等差数列{a n }的通项公式a n =−4+(n −1)×3=3n −7.29.【答案】解:解法一:∵ a 5=10,a 12=31,则{a 1+4d =10a 1+11d =31⇒{a 1=−2d =3∴ a n =a 1+(n −1)d =3n −5,a 20=a 1+19d =55解法二:∵ a 12=a 5+7d ⇒31=10+7d ⇒d =3∴ a 20=a 12+8d =55,a n =a 12+(n −12)d =3n −5【考点】等差数列的通项公式【解析】此题暂无解析【解答】略30.【答案】解:∵数列{a n},对于任意n∈N∗,都有a n=n2−bn,假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,∴a n+1−a n=[(n+1)2−b(n+1)]−(n2−bn)=2n+1−b>0,∴存在一个整数m,使得当b<m时,数列{a n}为递增数列,且m=2n+1,n∈N∗.满足条件的整数m不是唯一的,但不存在最大值.【考点】等差数列的通项公式【解析】假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,则a n+1−a n=[(n+ 1)2−b(n+1)]−(n2−bn)=2n+1−b>0,由此能求出结果.【解答】解:∵数列{a n},对于任意n∈N∗,都有a n=n2−bn,假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,∴a n+1−a n=[(n+1)2−b(n+1)]−(n2−bn)=2n+1−b>0,∴存在一个整数m,使得当b<m时,数列{a n}为递增数列,且m=2n+1,n∈N∗.满足条件的整数m不是唯一的,但不存在最大值.31.【答案】解:∵等差数列{a n}中,a2=3,a9=17∴d=a9−a29−2=17−37=2∴a20=a2+18d=3+36=39∵a19+a20+a21=3a20=117【考点】等差数列的通项公式【解析】由已知结合公式d=a9−a29−2可求d,然后利用等差数列的性质及通项公式即可求解【解答】解:∵等差数列{a n}中,a2=3,a9=17∴d=a9−a29−2=17−37=2∴a20=a2+18d=3+36=39∵a19+a20+a21=3a20=11732.【答案】解:∵等差数列{a n}中,a3=8,且满足a10>21,a12<27,∴{a1+2d=8a1+9d>21a1+11d<27,∴{8−2d+9d>218−2d+11d<27,解得137<d <199.∵ d ∈Z ,∴ 公差d =2. 【考点】等差数列的通项公式 【解析】由已知条件利用等差数列通项公式能求出公差d 的值. 【解答】解:∵ 等差数列{a n }中,a 3=8,且满足a 10>21,a 12<27, ∴ {a 1+2d =8a 1+9d >21a 1+11d <27,∴ {8−2d +9d >218−2d +11d <27,解得137<d <199.∵ d ∈Z ,∴ 公差d =2. 33.【答案】 解:(1)∵ 数列{a n }为等差数列,且a 4=9,a 9=−6, ∴ {a 1+3d =9a 1+8d =−6,解得a 1=18,d =−3,∴ 通项a n =18+(n −1)×(−3)=21−3n . (2)a 12=21−3×12=−15.【考点】等差数列的通项公式 【解析】(1)利用等差数列通项公式列出方程组,求出首项与公差,由此能求出通项a n . (2)由通项通项a n ,能求出a 12的值.【解答】 解:(1)∵ 数列{a n }为等差数列,且a 4=9,a 9=−6, ∴ {a 1+3d =9a 1+8d =−6,解得a 1=18,d =−3,∴ 通项a n =18+(n −1)×(−3)=21−3n . (2)a 12=21−3×12=−15. 34.【答案】解:在等差数列{a n }中,a 3+a 4=a 2+a 5=22,a 3⋅a 4=117, ∴ a 3,a 4是方程x 2−22x +117=0的两实根, ∵ 公差d >0,∴ a 3<a 4, ∴ a 3=9,a 4=13; 即{a 1+2d =9a 1+3d =13, 解得{a 1=1d =4;∴ 通项公式为a n =1+4(n −1)=4n −3. 【考点】等差数列的通项公式 【解析】根据题意,由a 3+a 4=a 2+a 5,a 3⋅a 4的值求出a 3、a 4;由此求出{a 1=1d =4;即得通项公式a n . 【解答】解:在等差数列{a n }中,a 3+a 4=a 2+a 5=22,a 3⋅a 4=117, ∴ a 3,a 4是方程x 2−22x +117=0的两实根, ∵ 公差d >0,∴ a 3<a 4, ∴ a 3=9,a 4=13; 即{a 1+2d =9a 1+3d =13, 解得{a 1=1d =4;∴ 通项公式为a n =1+4(n −1)=4n −3. 35.【答案】解:若等差数列{a n }满足S k 3=(S k )3则当k =1时,有s 1=s 13,∴ a 1=0或a 1=1或a 1=−1当k =2时,有s 8=s 23,即8a 1+8×72d =(2a 1+d)3(1)当a 1=0时,代入上式得d =0或d =2√7或d =−2√7 ①当a 1=0,d =0时,a n =0,S n =0 满足S k 3=(S k )3此时,数列{a n }为:0,0,0…②当a 1=0,d =2√7时,a n =2√7(n −1),S n =2√7n(n−1)2=√7n(n −1)S 27≠(S 3)3 ∴ 不满足题意③当a 1=0,d =−2√7时,a n =−2√7(n −1),S n =−2√7n(n−1)2=−√7n(n −1)S 27≠(S 3)3 ∴ 不满足题意(2)当a 1=1时,代入上式得d =0或d =2或d =−8 ①当a 1=1,d =0时,a n =1,S n =n 满足S k 3=(S k )3此时,数列{a n }为:1,1,1…②当a 1=1,d =2时,a n =2n −1,S n =n 2 满足S k 3=(S k )3此时,数列{a n }为:1,3,5…③当a 1=1,d =−8时,a n =−8n +9,S n =n(5−4n) S 27≠(S 3)3 ∴ 不满足题意(3)当a 1=−1时,代入上式得d =0或d =−2或d =8 ①当a 1=−1,d =0时,a n =−1,S n =−n满足S k3=(S k)3此时,数列{a n}为:−1,−1,−1…②当a1=−1,d=−2时,a n=−2n+1,S n=−n2满足S k3=(S k)3此时,数列{a n}为:−1,−3,−5…③当a1=−1,d=8时,a n=8n−9,S n=n(4n−5)S27≠(S3)3∴不满足题意∴满足题意的等差数列{a n}有:①0,0,0…②1,1,1…③1,3,5…④−1,−1,−1…⑤−1,−3,−5…【考点】等差数列的通项公式【解析】先由k=1,k=2时,确定首项和公差,再验证每一组解是否符合题意,从而可以找到符合题意的数列【解答】解:若等差数列{a n}满足S k3=(S k)3则当k=1时,有s1=s13,∴a1=0或a1=1或a1=−1d=(2a1+d)3当k=2时,有s8=s23,即8a1+8×72(1)当a1=0时,代入上式得d=0或d=2√7或d=−2√7①当a1=0,d=0时,a n=0,S n=0满足S k3=(S k)3此时,数列{a n}为:0,0,0…=√7n(n−1)②当a1=0,d=2√7时,a n=2√7(n−1),S n=2√7n(n−1)2S27≠(S3)3∴不满足题意=−√7n(n−1)③当a1=0,d=−2√7时,a n=−2√7(n−1),S n=−2√7n(n−1)2S27≠(S3)3∴不满足题意(2)当a1=1时,代入上式得d=0或d=2或d=−8①当a1=1,d=0时,a n=1,S n=n满足S k3=(S k)3此时,数列{a n}为:1,1,1…②当a1=1,d=2时,a n=2n−1,S n=n2满足S k3=(S k)3此时,数列{a n}为:1,3,5…③当a1=1,d=−8时,a n=−8n+9,S n=n(5−4n)S27≠(S3)3∴不满足题意(3)当a1=−1时,代入上式得d=0或d=−2或d=8①当a 1=−1,d =0时,a n =−1,S n =−n 满足S k 3=(S k )3此时,数列{a n }为:−1,−1,−1…②当a 1=−1,d =−2时,a n =−2n +1,S n =−n 2 满足S k 3=(S k )3此时,数列{a n }为:−1,−3,−5…③当a 1=−1,d =8时,a n =8n −9,S n =n(4n −5) S 27≠(S 3)3 ∴ 不满足题意∴ 满足题意的等差数列{a n }有: ①0,0,0… ②1,1,1… ③1,3,5…④−1,−1,−1… ⑤−1,−3,−5… 36.【答案】 解:(1)设{a n }的首项为a 1,公差为d(d ≠0), ∵ a 1,a 7,a 25成等比数列, ∴ (a 1+6d)2=a 1(a 1+24d), ∴ 36d 2=12a 1d ,又d ≠0, ∴ a 1=3d...3分∴ a n =3d +(n −1)d =(n +2)d , 又a k 2a k 1=a 7a 1=9d 3d=3,∴ {a k n }是以a 1=3d 为首项,3为公比的等比数列,∴ a k n =3d ⋅3n−1=d ⋅3n ,∴ (k n +2)d =d ⋅3n (d ≠0), ∴ k n =3n −2(n ∈N ∗).(2)∵ a 1=9,∴ 3d =9,解得d =3,∴ a k n =3n+1, ∴ b n =√a k n 6+√kn2=√3n +√3n −2√2, 则b n 2+1b n2=(b n +1b n)2−2=(√3n +√3n −2√2√3n −√3n −2√2)2−2=2×3n −2,∴ S n +T n =2×3n−1−32−2n =3(3n −1)−2n ,当n 为偶数时:3n−1=(8+1)n 2−1=8n 2+...+C n 2n 2−1⋅8,能被4整除,2n 也能被4整除,∴ S n +T n 能被4整除.当n 为奇数时,S n +T n =3n+1−1−2(n +1), 3n+1−1=(8+1)n+12−1=8n+12+...+Cn+12n+12−1⋅8能被4整除,2(n +1)也能被4整除,∴ S n +T n 能被4整除,∴ {S n +T n }的前100项中有100项是能被4整除的整数.【考点】等差数列的通项公式 【解析】(1)设{a n }的首项为a 1,公差为d(d ≠0),由题意可求得a 1=3d ,于是可求得a n 的关于d 的表达式,再利用a k 2ak 1=a 7a 1=9d3d =3,可求得其公比,继而可求得akn 的关系式,两者联立即可求得数列{k n }的通项公式k n .(2)先求出b n ,进一步求出S n +T n 的通项公式,再利用二项式知识解决整除问题 【解答】 解:(1)设{a n }的首项为a 1,公差为d(d ≠0), ∵ a 1,a 7,a 25成等比数列, ∴ (a 1+6d)2=a 1(a 1+24d), ∴ 36d 2=12a 1d ,又d ≠0, ∴ a 1=3d...3分∴ a n =3d +(n −1)d =(n +2)d , 又a k 2a k 1=a 7a 1=9d 3d=3,∴ {a k n }是以a 1=3d 为首项,3为公比的等比数列,∴ a k n =3d ⋅3n−1=d ⋅3n ,∴ (k n +2)d =d ⋅3n (d ≠0), ∴ k n =3n −2(n ∈N ∗).(2)∵ a 1=9,∴ 3d =9,解得d =3,∴ a k n =3n+1, ∴ b n =√a k n 6+√k n 2=√3n +√3n −2√2, 则b n 2+1b n2=(b n +1b n)2−2=(√3n +√3n −2√2√3n −√3n −2√2)2−2=2×3n −2,∴ S n +T n =2×3n−1−32−2n =3(3n −1)−2n ,当n 为偶数时:3n−1=(8+1)n 2−1=8n 2+...+C n 2n 2−1⋅8,能被4整除,2n 也能被4整除,∴ S n +T n 能被4整除.当n 为奇数时,S n +T n =3n+1−1−2(n +1), 3n+1−1=(8+1)n+12−1=8n+12+...+Cn+12n+12−1⋅8能被4整除,2(n +1)也能被4整除,∴ S n +T n 能被4整除,∴ {S n +T n }的前100项中有100项是能被4整除的整数. 37.【答案】(1)a n =n ;(2)存在实数0≤λ<1符合题意.【考点】等差数列的通项公式 【解析】(1)根据S n 是a n 2和a n 的等差中项可知2S n =a n 2+a n ,且a n >0,则当n ≥2时,有2S n−1=(a n−1)2+a n−1,两式相减并化简即 可求解;(2)由(1)知a n =n ,由题意知,T n =1−(12)n,假设存在常数λ≥0,对任意n ∈N ,使恒成立等价于对任意n ∈N ′1−(12)n−λ(12)n>√λ恒成立整理化简,利用分离参数法求解恒成立问题即可.【解答】(1)由S n 是a n 2和a n 的等差中项可知,2S n =a n 2+a n ,且a n >0 则当n ≥2时,有2S n−1=(a n−1)2+a n−1两式相减可得,2S n −2S n−1=a n 2−a n−12+a n −a n−1即2a n =a n 2−a n−12+a n −a n+1,a n >0,化简可得,a n −a n−1=1(n ≥2) 所以数列{a n }是以1为首项1为公差的等差数列, 所以数列{a n }的通项公式为a n =n(2)由(1)知,a n =n ,因为b n =(12)n,所以数列{b n }的前几项和T n =1−(12)n假设存在常数λ≥0,对任意n ∈N ′,使T n −λ⋅2−a ,√λ恒成立 即对任意n ∈N1−(12)n−λ(12)n>√λ恒成立等价于对任意n ∈N ′1+√A <2n 恒成立即1+√2小于2a 的最小值即可.所以0≤λ<1满足对任意n ∈N ,使T n −λ⋅2−a >√λ恒成立.所以存在这样的实数?,对任意n ∈N ′,使恒成立,实数?的取值范围为0≤λ<1 38.【答案】(1)a n =−2n +8(2){n|1≤n ≤8,n ∈N }【考点】等差数列的通项公式 【解析】(1)由已知可得a 4=0,再根据a 2=4可得a 1,d 的方程组,解得.(2)由(1)可知a 1=−3d ,故可用含d 的式子表示S n 和a n ,列出不等式求解即可. 【解答】(1)设等差数列{a n }的首项为a 1公差为d ;因为等差数列{a n }的前)项和S n 且S 4=S 3.a 4=0,又∵ a 2=4 {a 1+3d =0a 1+d =4,解得{a 1=4d =−2 所以a n =a 2+(n −2)⋅d =−2n +8 (2)因为a 1=−3d >0,所以d <0 所以S n =na 1+n (n−1)2d =−3nd +n (n−1)2da n =a 1+(n −1)⋅d =(n −4)d 因为S n ≥a n ,所以(n 2−n 2−3n)d ≥(n −4)d因为d <0,所以n 2−n2−3n ≤n −4整理得n 2−9n +8≤0,解得1≤n ≤8 所以”的取值范围是{n|1≤n ≤8,n ∈N } 39.【答案】(1)第几行的第一个数是n 2,最后一个数是n 2+2n (2)第八行各个数之和为2n 3+3n 2+n(3)2019是第44行第84个数.【考点】等差数列的通项公式【解析】(1)根据此表的特点可知此表n行的第1个数为n2,第n行共有3+(n−1)×2=2n+ 1个数,依次构成公差为1的等差数列,利用等差数列的通项公式解之即可;(2)直接根据等差数列的前n项和公式进行求解;(3)1936=442×2019×452=2025,所以2019在第44行,然后设2019是此数表的第44行的第k个数,而第44行的第1个数为442,可求出k,从而得到结论.【解答】(1)由表可知,每一行都是公差为1的等差数列,第n行第一个数是n2,每一行比上一行多2个数,第一行有3个数,则第n行有3+(n−1)×2=2n+1个数,所以第一行最后一个数是n2+(2n+1−1)×1=n2+2n(当然也可以观察得出第n行最后一个数为(n+1)2−1)(2)由(1)知,第几行各个数之和为(2n+1)(n 2+n2+2n)2=(2n+1)(n2+n)=2n3+3n2+n(3)因为1936=442<2019<452=2025,所以2019在第44行,设2019是第44行第k个数,则2019=442+(k−1)×1,解得k=84,所以2019是第44行第84个数.40.【答案】解:等差数列{a n}中,d=2,a1=5,S n=60,∵前n项和S n=na1+12n(n+1)d,即5n+12×n(n−1)×2=60;解得n=6,n=−10(舍去);∴通项公式是a n=a1+(n−1)d=5+2(n−1)=2n+3,∴a6=2×6+3=15.∴所求的n=6,a6=15.【考点】等差数列的通项公式【解析】由等差数列的前n项和公式求出n的值,再由通项公式求出a6即可.【解答】解:等差数列{a n}中,d=2,a1=5,S n=60,∵前n项和S n=na1+12n(n+1)d,即5n+12×n(n−1)×2=60;解得n=6,n=−10(舍去);∴通项公式是a n=a1+(n−1)d=5+2(n−1)=2n+3,∴a6=2×6+3=15.∴所求的n=6,a6=15.。

专题02 数列求通项问题 - 学生版

专题02  数列求通项问题 - 学生版

技巧方法专题2 数列求通项问题 解析版一、数列求通项常用方法知识框架二、数列求通项方法【一】归纳法求通项1.例题【例1】由数列的前n 项,写出通项公式: (1)3,5,3,5,3,5,… (2)12,23,34,45,56,… (3)2,52,134,338,8116,…(4)12,16,112,120,130,…【例2】已知数列:,按照从小到大的顺序排列在一起,构成一个新的数列:首次出现时为数列的( ) ()12,,,11k k N k k *⋅⋅⋅∈-k {}n a 1212381,,,,,,,213219⋅⋅⋅则{}n a 通过数列前若干项归纳出数列的一个通项公式,关键是依托基本数列如等差数列、等比数列,寻找a n 与n ,a n 与a n +1的联系.2. 巩固提升综合练习【练习1】由数列的前几项,写出通项公式: (1)1,-7,13,-19,25,… (2)14,37,12,713,916,… (3)1,-85,157,-249,…【练习2】如图是一个三角形数阵,满足第n 行首尾两数均为n ,(),A i j 表示第()2i i ≥行第j 个数,则()100,2A 的值为__________.【二】公式法求通项1.例题【例1】 数列满足,,则( ) A .B .C .D .【例2】已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2. 求证:数列{b n }是等差数列,并求n a . {}n a 112a =()*1111n 11n n N a a +=-∈--10a =91010910111110等差数列:d n a a n )1(1-+=等差数列:等比数列:11-=n n qa a 等比数列:2.巩固提升综合练习【练习1】已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3;(2)证明数列{a n }为等比数列,并求n a .【练习2】已知数列{}n a 和{}n b 满足111112,341,341n n n n a b a b n b a n ++=+==+-=-+()1求证:{}n n a b +是等比数列,{}n n a b -是等差数列; ()2求数列{}n a 和{}n b 的通项公式.【三】累加法求通项1.例题【例1】在数列中,,,则( ) A . B . C .D .{}n a 12a =11ln 1n n a a n +⎛⎫=++ ⎪⎝⎭10a =2ln10+29ln10+210ln10+11ln10+型如a n +1=a n +f (n )的递推公式求通项可以使用累加法,步骤如下: 第一步 将递推公式写成a n +1-a n =f (n );第二步 依次写出a n -a n -1,…,a 2-a 1,并将它们累加起来; 第三步 得到a n -a 1的值,解出a n ;第四步 检验a 1是否满足所求通项公式,若成立,则合并;若不成立,则写出分段形式.累乘法类似.【例2】对于等差数列和等比数列,我国古代很早就有研究成果,北宋大科学家沈括在《梦溪笔谈》中首创的“隙积术”,就是关于高阶等差级数求和的问题.现有一货物堆,从上向下查,第一层有2个货物,第二层比第一层多3个,第三层比第二层多4个,以此类推,记第n 层货物的个数为n a ,则数列{}n a 的通项公式n a =_______,数列(2)n nn a ⎧⎫⎨⎬+⎩⎭的前n 项和n S =_______.2.巩固提升综合练习【练习1】在数列中,,则数列的通项 ________.【练习2】已知数列是首项为,公差为1的等差数列,数列满足(),且,则数列的最大值为__________.【练习3】两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,…,若按此规律继续下去,得数列{}n a ,则1_______(2)n n a a n --=≥;对*n N ∈,_____n a =.【四】累积法求通项1.例题【例1】已知数列{a n }满足a 1=23,a n +1=nn +1a n ,求a n .{}n a 111,21n n a a a n +=-=+n a ={}n b 34-{}n a 12nn n a a +-=*n N ∈137a b =n n b a ⎧⎫⎨⎬⎩⎭11a =25a =312a =422a =型如)(1n f a a nn =+的递推公式求通项可以使用累积法2.巩固提升综合练习【练习1】已知数列{a n }中,a 1=1,a n +1=2n a n (n ∈N *),则数列{a n }的通项公式为( )A.a n =2n -1 B.a n =2n C.(1)22n n n a -=D.222n n a =【五】Sn 法(项与和互化求通项)1.例题【例1】已知数列{}n a 的前n 项和n S ,且23-=nn S ,则=n a .【例2】设数列的前项和,若,,则的通项公式为_____. 【例3】设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =__________. 2.巩固提升综合练习【练习1】在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *),求数列{a n }的通项a n .【练习2】记数列的前项和为,若,则数列的通项公式为______. {}n a n n S 11a =-()*1102n n S a n N +-=∈{}n a {}n a n n S 323n n S a n =+-{}n a n a =11,(1)n n n s a s s n -⎧=⎨->⎩,(n=1)已知S n =f (a n )或S n =f (n )解题步骤:第一步 利用S n 满足条件p ,写出当n ≥2时,S n -1的表达式;第二步 利用a n =S n -S n -1(n ≥2),求出a n 或者转化为a n 的递推公式的形式;第三步 若求出n ≥2时的{a n }的通项公式,则根据a 1=S 1求出a 1,并代入{a n }的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式.如果求出的是{a n }的递推公式,则问题化归为类型二.【练习3】已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .【练习4】设数列{}n a 满足12323...2(n N*)n na a a na ⋅⋅⋅⋅=∈.(1)求{}n a 的通项公式;(2)求数列122n n a +⎧⎫+⎨⎬⎩⎭的前n 项和n S .【练习5】已知数列{}n a 的前n 项和为n S ,112a =,20(2)n n n n S a S a n -+=≥. (1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)若1,32,nn n S n C n n -⎧⎪=+⎨⎪⎩为奇数为偶数,设数列{}n C 的前n 项和为n T ,求2n T .【六】构造法求通项1.例题【例1】已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .【例2】已知数列{a n }满足a n +1=2a n +n ,a 1=2,求数列{a n }的通项公式.【例3】已知数列{a n }满足a n +1=2a n +3×5n ,a 1=6,求数列{a n }的通项公式. 1.型如a n +1=pa n +q (其中p ,q 为常数,且pq (p -1)≠0)可用待定系数法求得通项公式,步骤如下: 第一步 假设将递推公式改写为a n +1+t =p (a n +t ); 第二步 由待定系数法,解得t =qp -1;第三步 写出数列⎭⎬⎫⎩⎨⎧-+1p q a n 的通项公式; 第四步 写出数列{a n }通项公式. 2.a n +1=pa n +f (n )型【参考思考思路】确定()f n →设数列{}1()n a f n λ+→列关系式)]([)1(1211n f a n f a n n λλλ+=+++→比较系数求1λ,2λ→解得数列{}1()n a f n λ+的通项公式→解得数列{}n a 的通项公式【例4】 已知数列满足:,,则 ( )A .B .C .D .2.巩固提升综合练习【练习1】已知数列{a n }满足a n +1=3a n +2,且a 1=1,则a n =________.【练习2】已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的通项公式a n 等于( )A.2nB.n (n +1)C.n2n -1D.n (n +1)2n【练习3】已知非零数列{}n a 的递推公式为11a =,()112n n n n a a a a n N *++=+∈.(1)求证数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列; (2)若关于n 的不等式2221211152111log 1log 1log 1n m n n n a a a ++⋅⋅⋅+<-⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭有解,求整数m 的最小值;(3)在数列()111n n a ⎧⎫+--⎨⎬⎩⎭中,是否一定存在首项、第r 项、第s 项()1r s <<,使得这三项依次成等差数列?若存在,请指出r s 、所满足的条件;若不存在,请说明理由. {}n a 11a =1122(2,)n n n a a n n N --=+≥∈n a =2n n a n =⋅12n n a n -=⋅(21)2n n a n =-⋅1(21)2n n a n -=-⋅【七】其他求通项方法 1.例题【例1】 已知数列满足,,则( ) A .B .C .D .【例2】若数列{a n }中,a 1=3且a n +1=a 2n (n 是正整数),则它的通项公式a n 为________________. 【例3】已知数列满足递推关系:,,则=( ) A .B .C .D .2.巩固提升综合练习【练习1】 已知数列{a n }的前n 项和是S n ,且满足a n +1=11-a n (n ∈N *),211=a ,则S 2 017=( ) 【练习2】 在数列中,已知,,则_______,归纳可知_______.【八】特征根和不动点法求通项(自我提升)1.例题【例1】已知数列满足,求数列的通项.{}n a 113a =111nn n a a a ++=-*()n N ∈2012391a a a a ⋯⋯⋅⋅=3-2-12-13-{}n a 11n n n a a a +=+112a =2018a 12016120171201812019{}n a 12a =()*131nn n a a n N a +=∈+2a =n a ={}n a *12212,3,32()n n n a a a a a n N ++===-∈{}n a n a 一、形如是常数)的数列形如是常数)的二阶递推数列都可用特征根法求得通项,其特征方程为…①若①有二异根,则可令是待定常数) 若①有二重根,则可令是待定常数)再利用可求得,进而求得.21(,n n n a pa qa p q ++=+112221,,(,n n n a m a m a pa qa p q ++===+n a 2x px q =+,αβ1212(,n nn a c c c c αβ=+αβ=1212()(,nn a c nc c c α=+1122,,a m a m ==12,c c n a【例2】已知数列满足,求数列的通项.2.巩固提升综合练习【练习1】设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S .{}n a *12211,2,44()n n n a a a a a n N ++===-∈{}n a n a1.例题【例3】已知数列满足,求数列的通项.【例4】已知数列满足,求数列的通项.{}n a 11122,(2)21n n n a a a n a --+==≥+{}n a n a {}n a *11212,()46n n n a a a n N a +-==∈+{}n a n a 二、形如的数列对于数列,是常数且)其特征方程为,变形为…②若②有二异根,则可令(其中是待定常数),代入的值可求得值.这样数列是首项为,公比为的等比数列,于是这样可求得. 若②有二重根,则可令(其中是待定常数),代入的值可求得值.这样数列是首项为,公差为的等差数列,于是这样可求得. 此方法又称不动点法. 2n n n Aa Ba Ca D++=+2n n n Aa B a Ca D++=+*1,(,,,a m n N A B C D =∈0,0C AD BC ≠-≠Ax B x Cx D+=+2()0Cx D A x B +--=,αβ11n n n n a a c a a ααββ++--=⋅--c 12,a a c n n a a αβ⎧⎫-⎨⎬-⎩⎭11a a αβ--c n a αβ=111n n c a a αα+=+--c 12,a a c 1n a α⎧⎫⎨⎬-⎩⎭1na α-c n a2.巩固提升综合练习【练习2】已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a (1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在?【练习3】).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(211≥-=n a b n n(1)求b 1、b 2、b 3、b 4的值;(2)求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S【练习4】各项均为正数的数列{}n a 中,,,11b b a a ==且对满足q p n m +=+的正整数q p n m ,,,都有=+++)1)(1(m n m n a a a a )1)(1(q p q p a a a a +++,当时,求通项54,21==b a n a .三、课后自我检测1.已知正项数列,则数列的通项公式为( ) A . B .C .D .2.在数列-1,0,211298n n -,,,,…中,0.08是它的第________项. 3.在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.4.已知数列{}n a 中,1512a =-,1(1)3n n n na n a n +=+++,则该数列的通项n a =_______. 5.已知数列{}n a 中,()10a b b =>,()111n n a n N a ++=-∈+则能使n a b =的n 的数值是( ) A .14 B .15 C .16 D .17 6.已知数列{}n a 满足112a =且131n n a a +=+. (1)证明数列12n a ⎧⎫+⎨⎬⎩⎭是等比数列; (2)设数列{}n b 满足11b =,112n n n b b a +-=+,求数列{}n b 的通项公式. {}n a *12(1)()2n n n a a a n N ++=∈{}n a n a n =2n a n =2n na =22n n a =7.已知数列{}n a 的前n 项和为n S ,12a =,1(2)3n n S n a =+. (1)求n a ; (2)求证:121111na a a ++⋯+<.8.已知f (x )=log m x (m >0且m ≠1),设f (a 1),f (a 2),…,f (a n ),…是首项为4,公差为2的等差数列, 求证:数列{a n }是等比数列,并求n a .9.已知数列{}n a 满足:10a =,144n na a +=-,*n N ∈. (1)若存在常数x ,使得数列1n a x ⎧⎫⎨⎬-⎩⎭是等差数列,求x 的值;(2)设2311n n b a a a +=,证明:123n b b b +++<.10.已知数列{}n a 满足:()1231312nn a a a a +++⋅⋅⋅+=-,*n N ∈. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足31log n n b a +=,求11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .11.数列{}n a ,*n N ∈各项均为正数,其前n 项和为n S ,且满足221n n n a S a -=.(1)求证数列{}2n S 为等差数列,并求数列{}n a 的通项公式;(2)设4241n n b S =-,求数列{}n b 的前n 项和n T ,并求使()2136n T m m >-对所有的*n N ∈都成立的最大正整数m 的值.12.已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<.13.已知数列{}n a 满足:11a =,()*121n n a a n +=+∈N(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:()()n12ˆ111*4441N n b b b b n a n ---⋅⋯⋯=+∈,证明:{}nb 是等差数列.(3)证明:()*122311232n n a a a n nn a a a +-<++⋯+<∈N .14.在平面直角坐标系中,点(,)n n A n a 、(1,0)n B n -和(,)n C n t (*,n N t ∈为非零常数),满足1//n n A A +n n B C ,数列{n a }的首项为1a =1,其前n 项和用n S 表示. (1)分别写出向量1n n A A +和n n B C 的坐标; (2)求数列{n a }的通项公式;(3)请重新设计的n A 、n C 坐标(点n B 的坐标不变),使得在1//n n A A +n n B C 的条件下得到数列{n b },其中n b =nS n.15.已知点11,3⎛⎫ ⎪⎝⎭是函数()xf x a =(0a >且1a ≠)的图象上一点,等比数列{}n a 的前n 项和为()f n c -,数列{}()0n n b b >的首项为c ,且前n 项和n S 满足()112n n n n S S S S n -+-=+≥.(1)求数列{}n a 和{}n b 的通项公式; (2)若数列11n n b b +⎧⎫⎨⎬⎩⎭前n 项和为n T ,问使得10002015n T >成立的最小正整数n 是多少?。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。

解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。

)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。

等差数列的通项公式及应用习题

等差数列的通项公式及应用习题

等差数列的通项公式及应用习题1.已知等差数列{a n }中,a2=2,a5=8,则数列的第10项为()A.12 B.14 C.16 D.182. 已知等差数列前3项为-3,-1,1,则数列的第50项为()A.91 B.93 C.95 D.973. 已知等差数列首项为2,末项为62,公差为4,则这个数列共有A.13项B.14项C.15项D.16项4. 已知等差数列的通项公式为a n=-3n+a,a为常数,则公差d=5. 已知等差数列{a n}中,a1=1,d=3,那么当a n=298时,项数n等于A.98 B.99 C.100 D.1016. 在等差数列{a n }中,若a3=-4,a5=11,则 a11等于A.56 B.18 C.15 D.457. 在等差数列{a n} 中,若a1+a2=-18,a5+a6=-2,则30是这个数列的A.第22项B.第21项C.第20项D.第19项A.45 B.48 C.52 D.5511. 已知数列a,-15,b,c,45是等差数列,则a+b+c的值是A.-5 B.0 C.5 D.1012. 已知等差数列{a n }中,a1+a2+a3=-15,a3+a4=-16,则a1= A.-1 B.-3 C.-5 D.-713. 已知等差数列{a n }中,a10=-20,a20n=20,则这个数列的首项a1为A.-56 B.-52 C.-48 D.-44二、填空题1. 等差数列7,11,15,…,195,共有__________项.2. 已知等差数列5,8,11,…,它的第21项为_________.3. 已知等差数列-1,-4,-7,-10,…,则-301是这个数列的第______项.4. 已知等差数列{a n}中,a4=10,a8=22,则a10=_____________.。

高中数学 数列通项公式专题(含详细答案)

高中数学 数列通项公式专题(含详细答案)

B.
㘴 ‸㘴
D.
㘴 t㘴
24. 数列 满足

t

,则使得
的最大正整数 为

A. ‸
B.
25. 已知数列 ,如果 ,

列,那么 等于
A.
B.
C. 晦 ,,
D. ‴ , 是首项为 ,公比为 的等比数
C.
D.
26. 数列 则晦 A. ‴
的首项为 , 为等差数列,且 B.
t
C. 晦
.若则 D.
,‸ ,
27. 等比数列 A.
65. 已知 的前 项和
t ,则 t t t ‴
A.
B. ‸
C.
D. ‸
66. 已知
log t t ,我们把使乘积
间 ‴㘴 ‴ 内所有的劣数的个数为
A.
B. 晦
t t 为整数的数 称为“劣数”,则在区
C. 晦
D. ‴
67. 已知数列 A.
满足

‴t t t
B. t
C.
,则当
时, 等于 D.
68. 已知数列 的前 项和为 ,且
,且
A.
B.
C.
的前 项的“均倒数”为 D.
π,则 tan D.
95. 设数列 A. ‴㘴
的前 项和为 ,且满足 t B. ‴㘴 t
,则 的取值范围是
C. 㘴
D. 㘴 t
96. 已知函数
log t t 㘴
D. 的通项公式
等于
A.
B.
C.
D.
72. 设数列 A.
73. 设数列 A.
的前 项和为 .若
B.
t

高三数学常见递推数列通项公式的求法典型例题及习题

高三数学常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题【典型例题】[例1] b ka a n n +=+1型。

(1)1=k 时,}{1n n n a b a a ⇒=-+是等差数列,)(1b a n b a n -+⋅=(2)1≠k 时,设)(1m a k m a n n +=++∴m km ka a n n -+=+1 比较系数:b m km =-∴1-=k b m ∴}1{-+k b a n 是等比数列,公比为k ,首项为11-+k b a ∴11)1(1-⋅-+=-+n n k k b a k b a ∴1)1(11--⋅-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。

(1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。

例:已知}{n a 满足11=a ,)1(11+=-+n n a a n n 求}{n a 的通项公式。

解: ∵111)1(11+-=+=-+n n n n a a n n ∴n n a a n n 1111--=--112121---=---n n a a n n213132---=---n n a a n n …… 312123-=-a a 21112-=-a a对这(1-n )个式子求和得:n a a n 111-=-∴n a n 12-=(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴A B k An k ka a n n --+-+=+)1()1(1∴⎩⎨⎧=--=-b A B k a A k )1()1(解得:1-=k a A ,2)1(1-+-=k a k b B ∴}{B An a n ++是以B A a ++1为首项,k 为公比的等比数列∴11)(-⋅++=++n n k B A a B An a∴B An k B A a a n n --⋅++=-11)(将A 、B 代入即可 (3)nq n f =)((≠q 0,1) 等式两边同时除以1+n q 得q q a q k qa n n n n 111+⋅=++ 令n n n q a C =则q C q k C n n 11+=+∴}{n C 可归为b ka a n n +=+1型[例3] n n a n f a ⋅=+)(1型。

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

数列通项公式的典型例题

数列通项公式的典型例题

故 a n = 6n -1
9
例6已知数列 { a n } 的前 n 项和为 S n = 3 n + 1, 已知数列 , 求 an 解:当 n = 1 时,a 1 = S 1 = 4 当 n ≥ 2 时 , a n = S n - S n -1 = 3 n - 3 n -1 = 2×3 n -1 ×
n =1 4 故 a n = n −1 n≥ 2 2⋅3
10
4.累加法 4.累加法
一般地, 的通项公式, 一般地,对于型如 an+1-an=f(n)的通项公式, 的通项公式 只要f(n)能进行求和,则宜采用此方法求解。 能进行求和, 只要 能进行求和 则宜采用此方法求解。
已知数列{a 中 例 已知数列 n}中,a1=1,an-an-1=n,求数 求数 的通项公式。 列{an}的通项公式。 的通项公式
例4. {an }的前n和为sn , 求 {an }的通项公式 (1) sn = 3n + 2n;(2) sn = 3 + 1
2 n
8
典型例题
例5: : 已知数列 { a n } 的前 n 项和为 S n = 3n 2 + 2n, , 求 an 解:当 n = 1 时,a 1 = S 1 = 5 当 n ≥ 2 时,a n = S n -S n -1 = 6n -1
12
5.叠乘法 也称累乘法、累积法) 5.叠乘法 (也称累乘法、累积法)
an + 1 = f ( n) 对于型如: 类的通项公式, 对于型如: an 类的通项公式,当 f(1)·f(2) f(2)·…·f(n)的值可以求得时,宜采用此方法。 f(n)的值可以求得时 f(1) f(2) f(n)的值可以求得时,宜采用此方法。

求数列通项公式提升练习题(附答案和方法归纳)

求数列通项公式提升练习题(附答案和方法归纳)

数列11、 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

2、 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

3、 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

4、 已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

5、 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

6、 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项 公式。

数列2 1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a3、已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项4、已知在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a5、 已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。

6、已知数列{}n a 中,11=a,22=a ,n n n a a a 313212+=++,求na7、已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .8、已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a9、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。

数列专项练习题大题

数列专项练习题大题

数列专项练习题大题1. 一个等差数列的首项是1,公差是3。

求数列的第10项是多少?解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。

对于这个题目,a1=1,d=3,n=10。

代入公式计算,可得:a10 = 1 + (10-1) * 3 = 1 + 9 * 3 = 28所以数列的第10项是28。

2. 一个等比数列的首项是2,公比是5。

求数列的第6项是多少?解析:根据等比数列的通项公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。

对于这个题目,a1=2,r=5,n=6。

代入公式计算,可得:a6 = 2 * 5^(6-1) = 2 * 5^5 = 2 * 3125 = 6250所以数列的第6项是6250。

3. 一个递推数列的首项是1,规律是每一项都是前一项的平方。

求数列的第5项是多少?解析:根据递推数列的规律,可以列出数列的前几项:1, 1^2,(1^2)^2, ((1^2)^2)^2, (((1^2)^2)^2)^2可以观察到规律,每项都是前一项的平方。

所以第5项就是前一项的平方的平方的平方的平方。

计算过程如下:1^2 = 1(1^2)^2 = 1^2 = 1((1^2)^2)^2 = (1^2)^2 = 1(((1^2)^2)^2)^2 = ((1^2)^2)^2 = 1所以数列的第5项是1。

4. 一个等差数列的首项是3,末项是11。

求数列的公差和项数。

解析:对于这个题目,已知数列的首项和末项,可以使用公式an = a1 + (n-1)d来求解。

代入已知的值,即3 = 3 + (n-1)d,然后化简得到:0 = (n-1)d由于等差数列的公差是非零的常数,所以只有当n-1=0时,等式才成立。

也就是n=1。

所以数列的公差是0,项数是1。

5. 一个等比数列的首项是2,前三项的和是14。

求数列的公比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。

已知数列{}n a 中,3
1
1=
a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。

已知数}{n a 的递推关系为43
2
1+=
+n n a a ,且11=a 求通项n a 。

在数列{}n a 中,11=a ,22=a ,n n n a a a 3
1
3212+=
++,求n a 。

已知数列{n a }中11=a 且1
1+=+n n n a a a (N n ∈),,求数列的通项公式。

已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列.
(1)求数列{}a n 的通项公式;
已知等差数列{a n }的首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }的通项公式;
已知数列}{n a 的前n 项和为n S ,且满足
322-=+n a S n n )(*N n ∈.
(Ⅰ)求数列}{n a 的通项公式;
设数列{}n a 满足2
1
123333
3
n n n a a a a -++++=
…,n ∈*
N . (Ⅰ)求数列{}n a 的通项;
数列{}n a 的前n 项和为n S ,11a =,*
12()n n a S n +=∈N .
(Ⅰ)求数列{}n a 的通项n a ;
已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >
,n b =(*n ∈N ),且{}n b 是以q 为公比的等比数列.
(I )证明:2
2n n a a q +=;
(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列;
设数列{a n }的前项的和S n =
3
1(a n -1) (n *
∈N ). (Ⅰ)求a 1;a 2; (Ⅱ)求证数列{a n }为等比数列.
已知二次函数()y f x =的图像经过坐标原点,其导函数为
'()62f x x =-,数列{}n a 的
前n 项和为n S ,点(,)()n n S n N *
∈均在函数()y f x =的图像上. (Ⅰ)求数列{}n a 的通项公式;
已知数列{}n a 的前n 项和S n 满足2(1),1n
n n S a n =+-≥. (Ⅰ)写出数列{}n a 的前3项;,,321a a a (Ⅱ)求数列{}n a 的通项公式.
8. 已知数列}a {n 满足n n 1n 23a 2a ⋅+=+,2a 1=,求数列}a {n 的通项公式。

已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

已知数列}a {n 满足3a 132a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

已知数列}a {n 满足3a a 5)1n (2a 1n n 1n =⋅+=+,,求数列}a {n 的通项公式。

14. 已知数列}a {n 满足6a 53a 2a 1n n 1n =⋅+=+,,求数列}a {n 的通项公式。

17. 已知数列}a {n 满足4
13n n a a +=,7a 1=,求数列}a {n 的通项
公式。

相关文档
最新文档