伺服电机详细计算选型

合集下载

伺服电机的选型和计算

伺服电机的选型和计算

电机的选择:(1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达: FL M =π2式中 M-----电动机轴转距;F------使机械部件沿直线方向移动所需的力;L------电动机转一圈(2πrad )时,机械移动的距离2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。

实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算:z z M h h F M B spSPao P K 211122⎪⎪⎭⎫ ⎝⎛++=ηππ M 1-----等速运动时的驱动力矩(N.mm)π2hF spao K---双螺母滚珠丝杠的预紧力矩(N.mm) Fao------预紧力(N),通常预紧力取最大轴向工作载荷Fm ax的1/3,即F ao =31F m ax当F m ax 难于计算时,可采用F ao =(0.1~0.12))(N C a ; C a -----滚珠丝杠副的额定载荷,产品样本中可查:hsp-----丝杠导程(mm);K--------滚珠丝杠预紧力矩系数,取0.1~0.2;P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=;W 1-----移动部件重力(N),包括最大承载重力;P 1-------有夹板夹持时(如主轴箱)的夹板夹持力;μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ;η1-------滚珠丝杠的效率,取0.90~0.95;MB----支撑轴承的摩擦力矩,即叫启动力矩(N.m),可以从滚珠丝杠专用轴承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题)z 1--------齿轮1的齿数 z2--------齿轮2的齿数最后按满足下式的条件选择伺服电机M M s ≤1Ms-----伺服电机的额定转距(2)惯量匹配计算 为使伺服进给系统的进给执行部件具有快速相应能力,必须选用加速能力大的电动机,亦即能够快速响应的电机(如采用大惯量伺服电机),但又不能盲目追求大惯量,否则由于不能从分发挥其加速能力,会不经济的。

伺服电机详细计算选型

伺服电机详细计算选型
-30 × 0.1 -30× 0.1
)+ )÷ 0.9
由α 2/3000 的速度 - 转矩特性可以看到, 力矩处于断续工作区的外面 据单)。 (故α 2/3000 的力矩是不够的。 )
9.81( Nm )的加速
(见上面的特性曲线和电机的数
如果轴的运行特性 (如, 加速时间) 不变, 就必须选择大电 机。比如,选择α 3/3000 ( Jm 为 0.02 kgf.cm.s ) ,重新计算 加速力矩如下: Ta = 123.7(Kg.cm) = 12.1(Nm) Vr = 2049(min ) 由该式可知, 加速时, 在转速 2049(min ) 时,要求加速力矩 为 12.1 Nm 。由上面的速度 - 力矩特性可以看出, 则法兰盘尺寸已经变为 用α 3/3000 3/3000 , 电机可满足加速要求 (条件 2) 。 由于已将电机换为α
条件 3: 频繁地定位和加 /减速会使电动机发热,此时需要计算出电动机承受的力矩的均方根值 Tc。 Trms ,使其小于电动机的额定力矩 条件 4: 负载波动频繁时,要计算一个工作周期的负载力矩的均方根值 的额定力矩。 条件 5: 电动机以最大切削力矩运行的时间应在允许的范围内(核算 条件 6:负载的惯量要小于电动机本身惯量的 本文譯自“α伺服电动机规格说明书( 择β i 电动机时也可作为参考。 Ton) 。 Tmrs ,使其小于电动机
α电机的选择
进给伺服电机的选择
(摘自 B-65262EN ) 王玉琪 电动机要承受 两种形式的力矩 :恒定的负载转矩和切削力矩(包括摩擦力矩) 力矩。下面介绍这两种力矩的计算方法及在选择电动机时应满足的条件。 ;加 /减速
条件 1: 机床无负载运行时,加在电动机上的力矩应小于电动机的连续额定力矩的 否则,在切削或加减 条件 2: 加( /减)速时间要短,须在电动机的允许范围内。 通常, 负载力矩帮助电动机的减速, 可在相同的时间内完成。 的机械特性的断续区内。 因此, 如果加速能在允许时间内完成的话, 减速也 这样我们只需计算加速力矩, 并在允许时间内核算该力矩在电动机 /速时电动机就可能过热。 50% 以下。

伺服电机和丝杆选型计算

伺服电机和丝杆选型计算

伺服电机和丝杆选型计算1.伺服电机选型计算:伺服电机是一种将电能转化为机械能的装置,它通过电机驱动系统的精确控制,实现对机械位置、转速和力矩的精确控制。

在选型时,需要考虑以下几个方面:1.1额定输出功率:根据机械系统的工作要求和负载要求,确定伺服电机的额定输出功率。

通常,额定输出功率应略大于所需的最大功率。

1.2额定转速:根据工作要求和负载要求,确定伺服电机的额定转速。

通常,额定转速应略大于所需的最大转速。

1.3额定转矩:根据负载的特性和工作要求,确定伺服电机的额定转矩。

通常,额定转矩应略大于所需的最大转矩。

1.4动态响应速度:根据控制系统的要求,确定伺服电机的动态响应速度。

通常,要求动态响应速度能够满足系统的响应时间要求。

1.5额定电压:根据工作环境和电源供应的要求,确定伺服电机的额定电压。

通常,额定电压应与电源供应的电压相匹配。

2.丝杆选型计算:丝杆是一种将旋转运动转化为直线运动的装置,它通常由丝杆和螺母组成。

在选型时,需要考虑以下几个方面:2.1螺距:根据工作要求,确定丝杆的螺距。

螺距是丝杆每转一周所移动的距离,通常用毫米/转表示。

2.2进给速度:根据机械系统的工作要求,确定丝杆的进给速度。

进给速度是丝杆上点的线速度,通常用毫米/秒表示。

2.3进给力:根据工作负载和系统要求,确定丝杆的进给力。

进给力是丝杆在工作过程中所受的力,通常用牛顿表示。

2.4精度等级:根据工作要求,确定丝杆的精度等级。

精度等级决定了丝杆的运动精度,通常用C级、T级等表示。

2.5长度:根据机械系统的工作空间和要求,确定丝杆的长度。

丝杆的长度应能够满足系统的工作范围要求。

伺服电机选型计算方式及注意事项

伺服电机选型计算方式及注意事项

伺服电机选择的时候,首先一个要考虑的就是功率的选择。

一般应注意以下两点:1、如果电机功率选得过小。

就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。

2、如果电机功率选得过大。

就会出现“大马拉小车“现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。

而且还会造成电能浪费。

也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较:P=:F*V/100(其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s)此外。

最常用的是采用类比法来选择电机的功率。

所谓类比法,就是与类似生产机械所用电机的功率进行对比。

具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电机,然后选用相近功率的电机进行试车。

试车的目的是验证所选电机与生产机械是否匹配。

验证的方法是:使电机带动生产机械运转,用钳形电流表测量电机的工作电流,将测得的电流与该电机铭牌上标出的额定电流进行对比。

如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大,则表明所选电机的功率合适。

如果电机的实际工作电流比铭牌上标出的额定电流低70%左右。

则表明电机的功率选得过大,应调换功率较小的电机。

如果测得的电机工作电流比铭牌上标出的额定电流大40%以上。

则表明电机的功率选得过小,应调换功率较大的电机。

实际上应该是考虑扭矩(转矩),电机功率和转矩计算公式。

即T=9550P/n式中:P一功率,kW;n一电机的额定转速,r/min;T一转矩,Nm。

电机的输出转矩一定要大于工作机械所需要的转矩,一般需要一个安全系数。

机械功率公式:P=T*N/97500P:功率单位W;T:转矩,单位克/cm;N:转速,单位r/min。

伺服电机选型的注意事项1、有些系统如传送装置,升降装置等要求伺服电机能尽快停车,而在故障、急停、电源断电时伺服器没有再生制动,无法对电机减速。

伺服电机选型计算

伺服电机选型计算

伺服电机选型计算
1.负载惯量计算
负载惯量是指负载的转动惯量,计算方式为质量乘以质心距离平方。

负载惯性大会对电机的加速度和精度要求产生一定的影响。

伺服电机需要
具备足够的能力来加速和控制负载。

负载惯量的计算公式为:
J=m*r^2
其中,J表示负载的转动惯量,m表示负载的质量,r表示负载的质
心距离。

根据实际情况确定负载的质量和质心距离,可以估算负载的转动惯量。

2.加速度计算
加速度是指负载达到一定速度所需的时间。

加速度较大可以提高生产
效率,但可能会引起震动和噪音。

确定合适的加速度需要根据应用需要进
行权衡。

加速度的计算公式为:
a=(ωf-ωi)/t
其中,a表示加速度,ωf表示最终速度,ωi表示初始速度,t表示
加速时间。

3.扭矩计算
扭矩是伺服电机提供的力矩,其大小决定了电机的最大负载能力。

根据应用需求可以计算出负载所需的最大扭矩。

扭矩的计算公式为:
T=J*α
其中,T表示所需的最大扭矩,J表示负载的转动惯量,α表示加速度。

4.功率计算
功率是指电机输出的机械功率,也是伺服电机选型的一个重要参数。

根据应用需求可以计算出对应负载的最大功率。

功率的计算公式为:
P=M*ω
其中,P表示功率,M表示扭矩,ω表示角速度。

5.速度计算
速度是指电机的转速,根据应用需求可以计算出所需的最大速度。

速度的计算公式为:
V=ω*r
其中,V表示速度,ω表示角速度,r表示负载的质心距离。

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算伺服电机选型及负载转矩计算惯量转矩计算机械制造商在选购电机时担心切削力不够,往往选择较大规格的马达,这不但会增加机床的制造成本,而且使之体积增大,结构布局不够紧凑。

本文以实例应用阐明了如何选择最佳规格电机的方法,以控制制造成本。

一、进给驱动伺服电机的选择1.原则上应该根据负载条件来选择伺服电机。

在电机轴上所有的负载有两种,即阻尼转矩和惯量负载。

这两种负载都要正确地计算,其值应满足下列条件: 1)当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。

2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。

3)电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。

4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。

并应小于电机的连续额定转矩。

5)加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。

通常,当负载小于电机转子惯量时,上述影响不大。

但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。

甚至会使伺服放大器不能在正常调节范围内工作。

所以对这类惯量应避免使用。

推荐对伺服电机惯量Jm和负载惯量Jl之间的关系如下:Jl<5×Jm1、负载转矩的计算负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。

但不论何种机械,都应计算出折算到电机轴上的负载转矩。

通常,折算到伺服电机轴上的负载转矩可由下列公式计算:Tl=(F*L/2πμ)+T0式中:Tl折算到电机轴上的负载转矩(N.M);F:轴向移动工作台时所需要的力;L:电机轴每转的机械位移量(M);To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值(N.M);Μ:驱动系统的效率F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。

伺服基本原理及伺服选型计算

伺服基本原理及伺服选型计算

18
举例计算3
1. 计算折算到电机轴上的负载惯量 重物折算到电机轴上的转动惯量JW = M * ( PB / 2π)2
= 200 * (2 / 6.28)2
= 20.29 kg.cm2 螺杆转动惯量JB = MB * DB2 / 8
= 40 * 25 / 8
= 125 kg.cm2 总负载惯量JL = JW + JB = 145.29 kg.cm2 2. 计算电机转速 电机所需转速 N = V / PB = 30 / 0.02 = 1500 rpm
10
伺服选型原则
• • • • 连续工作扭矩 < 伺服电机额定扭矩 瞬时最大扭矩 < 伺服电机最大扭矩 (加速时) 负载惯量 < 3倍电机转子惯量 连续工作速度 < 电机额定转速
11
举例计算1
已知:圆盘质量M=50kg,圆盘直径 D=500mm,圆盘最高转速60rpm, 请选择伺服电机及减速机。
19
举例计算3
3. 计算电机驱动负载所需要的扭矩 克服摩擦力所需转矩Tf = M * g * µ * PB / 2π / η = 200 * 9.8 * 0.2 * 0.02 / 2π / 0.9 = 1.387 N.m 重物加速时所需转矩TA1 = M * a * PB / 2π / η = 200 * (30 / 60 / 0.2) * 0.02 / 2π / 0.9 = 1.769 N.m 螺杆加速时所需要转矩TA2 = JB * α/ η = JB * (N * 2π/ 60 / t1) / η = 0.0125 * (1500 * 6.28 / 60 / 0.2) / 0.9 = 10.903 N.m 加速所需总转矩TA = TA1 + TA2 = 12.672 N.m

伺服电机选型和编码器选型计算

伺服电机选型和编码器选型计算

伺服电机选型和编码器选型计算1. 引言在设计和选择伺服控制系统时,正确选型电机和编码器是非常重要的。

本文将介绍如何进行伺服电机和编码器的选型计算,帮助您选择适合您应用需求的电机和编码器。

2. 伺服电机选型计算伺服电机的选型计算主要涉及以下几个参数:- 功率需求(单位:瓦特)- 转矩需求(单位:牛米)- 转速需求(单位:转/分钟)根据应用需求,可以通过以下步骤计算伺服电机的选型:1. 确定所需的功率需求。

2. 确定所需的转矩需求。

3. 确定所需的转速需求。

4. 根据伺服电机的技术参数表,选择一个合适的电机型号,其中包括功率、转矩和转速等参数。

3. 编码器选型计算编码器是用于测量和反馈电机转速和位置信息的重要设备。

选取合适的编码器需要考虑以下因素:- 分辨率需求(单位:线数)- 测量精度需求选型计算步骤如下:1. 确定所需的分辨率需求,即每转的线数。

2. 考虑测量精度需求,通常以角度或长度表示。

3. 根据编码器的技术参数表,选择一个合适的编码器型号,其中包括分辨率和测量精度等参数。

4. 总结正确选型伺服电机和编码器对于设计和选择伺服控制系统至关重要。

通过本文介绍的伺服电机和编码器选型计算方法,您可以根据应用需求选择适合的电机和编码器型号,以满足系统的性能和稳定性要求。

在选择过程中,还需注意其他因素,如供电要求、安装尺寸和可靠性等,以获取最佳的控制效果。

请注意,本文只提供了伺服电机和编码器选型计算的基本步骤和考虑因素,具体选型还需根据实际应用需求进行详细分析和评估。

伺服电机选型计算

伺服电机选型计算

伺服电机选型计算引言伺服电机是一种能够精确控制转速、位置和加速度的电机,广泛应用于工业自动化领域。

为了正确选型伺服电机,需要综合考虑多个因素,如负载特性、所需转动速度、加速度和减速度等。

本文将介绍伺服电机的选型计算方法。

1. 伺服电机基本参数在选型计算之前,首先需要了解伺服电机的基本参数,这些参数对于计算非常重要。

常见的基本参数包括:•额定转矩:伺服电机能够连续输出的最大转矩。

•额定转速:伺服电机在额定负载下能够达到的最高转速。

•道数:伺服电机的反馈器件信号周期数量,通常是脉冲或电压。

•分辨率:伺服电机的转子位置检测精度,通常以脉冲数表示。

2. 负载特性分析选型伺服电机的第一步是分析负载特性。

负载特性包括负载转矩和转动惯量。

可以通过以下公式计算负载转矩:负载转矩 = 工作负载 × 工作半径其中,工作负载是指应用中所需的转矩,工作半径是转轴到工作力点的距离。

转动惯量是指负载物体抵抗转动的惯性,可以通过以下公式计算:转动惯量 = 负载质量 × 负载半径²负载质量是指负载物体的质量,负载半径是转轴到负载质心的距离。

3. 加速度计算在伺服电机选型中,需要考虑加速度和减速度,以确保电机能够在规定的时间内达到所需速度。

加速度的计算公式如下:加速度 = (目标速度 - 初始速度) / 时间其中,目标速度是所需达到的最终速度,初始速度是实际启动时的初始速度。

4. 选型计算有了上述参数和计算公式,可以开始具体的选型计算。

选型计算主要包括以下步骤:1.确定工作负载和工作半径。

2.计算负载转矩和转动惯量。

3.确定加速度和减速度的要求。

4.根据负载转矩和转动惯量,选择能够满足要求的伺服电机。

5.检查是否满足速度要求,如果不满足,可以考虑调整加速度和减速度参数。

在具体计算中,还需要考虑一些额外因素,如安全系数、附加负载等。

结论伺服电机选型计算是一项重要且复杂的任务,需要综合考虑多个因素。

通过合理的选型计算,可以确保伺服电机能够满足工作需求,并提供稳定和可靠的运行。

伺服电机选型与计算

伺服电机选型与计算

伺服电机选型与计算
每种型号电机的规格项内均有额定转矩、最大转矩及电机惯量等参数,各参数与负载转矩及负载惯量间必定有相关联系存在,选用电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、机构的重量、机构的运动方式(水平、垂直、旋转)等;运动条件与电机输出功率无直接关系,但是一般电机输出功率越高,相对输出转矩也会越高。

因此,不但机构重量会影响电机的选用,运动条件也会改变电机的选用。

惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的电机输出转矩。

选用伺服电机规格时,依下列步骤进行。

(1)明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

(2)依据运行条件要求选用合适的负载惯最计算公式,计算出机构的负载惯量。

(3)依据负载惯量与电机惯量选出适当的假选定电机规格。

(4)结合初选的电机惯量与负载惯量,计算出加速转矩及减速转矩。

(5)依据负载重量、配置方式、摩擦系数、运行效率计算出负载转矩。

(6)初选电机的最大输出转矩必须大于加速转矩加负载转矩;如果不符合条件,必须选用其他型号计算验证直至符合要求。

(7)依据负载转矩、加速转矩、减速转矩及保持转矩,计算出连续瞬时转矩。

(8)初选电机的额定转矩必须大于连续瞬时转矩,如果不符合条件,必须选用其他型号计算验证直至符合要求。

(9)完成选定。

富士伺服电机选型计算资料

富士伺服电机选型计算资料

(1) 机械系统的种类特点用可变速电机驱动的机械系统, 一般有以下几类。

机构滚珠丝杠(直接连接)用于距离较短的高精度定位。

电机和滚珠丝杠只用联轴节连接, 没有间隙。

电机和滚珠丝杠只用联轴节连接,没有间隙。

滚珠丝杠(减速)选择减速比, 可加大向机械系统传递的转矩。

由于产生齿轮侧隙, 需要采取补偿措施。

由于产生齿轮侧隙,需要采取补偿措施。

齿条和小齿轮用于距离较长的(台车驱动等)定位。

小齿轮转动一圈包含了π值, 因此需要修正。

小齿轮转动一圈包含了π值,因此需要修正。

同步皮带(传送带)与链条比较, 形态上的自由度变大。

主要用于轻载。

皮带轮转动一圈的移动量中包含π值, 因此需要修正。

皮带轮转动一圈的移动量中包含π值,因此需要修正。

将伺服系统用于机械系统中时, 请注意以下各点。

①减速比为了有效利用伺服电机的功率, 应在接近电机的额定速度(最高旋转速度)数值的范围使用。

在最高旋转速度下连续输出转矩, 还是比额定转矩小。

②预压转矩对丝杠加预压力, 刚性增强, 负载转矩值增大。

由预压产生的摩擦转矩, 请参照滚珠丝杠规格书。

③保持转矩升降机械在停止时, 伺服电机继续输出保持力。

在时间充裕的场合, 建议使用保持制动。

机构特点链条驱动多用于输送线上。

必须考虑链条本身的伸长并采取相应的措施。

在减速比比较大的状态下使用, 机械系统的移动速度小。

多用于输送线上。

必须考虑链条本身的伸长并采取相应的措施。

在减速比比较大的状态下使用,机械系统的移动速度小。

进料辊将板带上的材料夹入辊间送出。

由于未严密确定辊子直径, 在尺寸长的物件上将产生误差, 需进行π补偿。

如果急剧加速, 将产生打滑, 送出量不足。

如果急剧加速,将产生打滑,送出量不足。

转盘分度转盘的惯性矩大, 需要设定足够的减速比。

转盘的转速低, 多使用蜗轮蜗杆。

转盘的转速低,多使用蜗轮蜗杆。

主轴驱动在卷绕线材时, 由于惯性矩大, 需要设定够的减速比。

在等圆周速度控制中, 必须把周边机械考虑进来研究。

伺服电机选型计算(自动计算版)

伺服电机选型计算(自动计算版)

负载质量M(kg5·滚珠丝杠节距P(mm10·滚珠丝杠直径D(mm20·滚珠丝杠质量MB(kg3·滚珠丝杠摩擦系数μ0.1·因无减速器,所以G=1、η=11②动作模式的决定速度(mm/s单一变化·负载移动速度V(mm/s300·行程L(mm360·行程时间tS(s 1.4·加减速时间tA(s0.2·定位精度AP(mm0.01③换算到电机轴负载惯量的计算滚珠丝杠的惯量JB= 1.50E-04kg.m2 负载的惯量JW= 1.63E-04kg.m2换算到电机轴负载惯量JL=JW J=G2x(J W+J2+J1 1.63E-04kg.m2L④负载转矩的计算对摩擦力的转矩Tw7.80E-03N.m换算到电机轴负载转矩TL=Tw7.80E-03N.m⑤旋转数的计算转数N N=60V/P.G1800r/min⑥电机的初步选定[选自OMNUC U系列的初步选定举例] 选定电机的转子·惯量为负载的JM≥J L/30 5.42E-06kg.m2 1/30*以上的电机选定电机的额定转矩×0.8TMx0.8>T L0.5096>比换算到电机轴负载转矩大的电机N.m* 此值因各系列而异,请加以注意。

⑦加减速转矩的计算加减速转矩TA0.165N.m⑧瞬时最大转矩、有效转矩的计算必要的瞬时最大转矩为T1T1=TA+TL0.1726N.mT2=TL0.0078N.mT3=TL-TA-0.1570N.m有效转矩Trms为0.095N.m⑨讨论负载惯量JL 1.63E-04kg.m2≦[电机的转子惯量JM有效转矩Trms0.095N.m﹤[电机的额定转矩瞬时最大转矩T10.1726N.m﹤[电机的瞬时最大转矩必要的最大转数N1800r/min≦[电机的额定转数编码器分辨率R=P.G/AP.S1000(脉冲/转U系列的编码器规格为204速度(mm/s3000.210.20.2时间(s初步选择定R88M-U20030(Jm= 1.23E-05 根据R88M-U20030的额定转矩Tm=(N.m≦[电机的转子惯量JM1.23E-05×[适用的惯量比=30]﹤[电机的额定转矩0.5096N.M7.8E-030.637﹤[电机的瞬时最大转矩 1.528 N.M ≦[电机的额定转数 3000 r/min U系列的编码器规格为2048(脉冲/转),经编码器分频比设定至1000(脉冲/转)的情况下使用。

伺服电机的选型计算方法

伺服电机的选型计算方法

伺服电机的选型计算方法止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。

交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

六、速度响应性能不同步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。

交流伺服系统的加速性能较好,以京伺服(KINGSERVO)400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。

综上所述,交流伺服系统在许多性能方面都优于步进电机。

但在一些要求不高的场合也经常用步进电机来做执行电动机。

所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

?1.负载惯量的计算。

由电机驱动的所有运动部件,无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量。

电机轴上的负载总惯量可以通过计算各个被驱动的部件的惯量,并按一定的规律将其相加得到。

1)圆柱体惯量如滚珠丝杠,齿轮等围绕其中心轴旋转时的惯量可按下面公式计算: J=(πγ/32)*D4L(kg cm2)如机构为钢材,则可按下面公式计算: J=*10-6)*D4L(kg cm2) 式中: γ材料的密度(kg/cm2)D圆柱体的直经(cm) L圆柱体的长度(cm)2)轴向移动物体的惯量工件,工作台等轴向移动物体的惯量,可由下面公式得出: J=W*(L/2π)2 (kg cm2)式中: W直线移动物体的重量(kg) L 电机每转在直线方向移动的距离(cm)3)圆柱体围绕中心运动时的惯量如图所示: 圆柱体围绕中心运动时的惯量属于这种情况的例子:如大直经的齿轮,为了减少惯量,往往在圆盘上挖出分布均匀的孔这时的惯量可以这样计算: J=Jo+W*R2(kg cm2)式中:Jo为圆柱体围绕其中心线旋转时的惯量(kgcm2) W圆柱体的重量(kg) R旋转半径(cm)4)相对电机轴机械变速的惯量计算将上图所示的负载惯量Jo折算到电机轴上的计算方法如下: J=(N1/N2)2Jo 式中:N1 N2为齿轮的齿数?2.53.电机加速或减速时的转矩电机加速或减速时的转矩1)按线性加减速时加速转矩计算如下: Ta =(2πVm/60*104) *1/ta(Jm+JL)(1-e-ks。

伺服电机选型计算及案例

伺服电机选型计算及案例

伺服电机选型计算及案例
在进行伺服电机选型计算前,首先需要了解以下参数:
1.力矩要求:根据工作负载计算所需的最大输出力矩。

2.转速要求:根据工作过程中所需的最高转速确定。

3.加速度要求:根据工作过程中的速度变化率来计算。

4.环境条件:包括工作温度、工作湿度等环境因素。

下面以一个简单的案例为例,演示如何进行伺服电机选型计算。

案例:自动化生产线运行速度为60米/分钟,工作台上的工件质量为10千克,需要在0.5秒内从静止加速到最终速度并保持匀速运动。

根据这些要求,我们需要选用合适的伺服电机。

步骤1:计算所需的输出力矩。

根据牛顿第二定律,力矩(扭矩)等于质量乘以加速度。

加速度可以通过速度变化与时间的比值来计算。

加速度a = (60 m/min) / (0.5 s) = 120 m/min² = 2 m/s²
力矩T = (质量m) * (加速度a) = 10 kg * 2 m/s² = 20 Nm
所以我们需要选用至少能提供20Nm的输出力矩的伺服电机。

步骤2:计算所需的最高转速。

最高转速通常需要根据具体工作过程来确定。

在这个案例中,我们假设最高转速为3000 rpm(每分钟转数)。

步骤3:计算所需的加速度。

加速度已经在步骤1中计算过,为2m/s²。

步骤4:确定环境条件。

根据实际工作环境,确定伺服电机所需的环境参数,例如工作温度和湿度范围。

通过以上计算,我们得到了选型参数:输出力矩为20 Nm,最高转速为3000 rpm,加速度为2 m/s²。

伺服电机的选型和计算

伺服电机的选型和计算

电机的选择:(1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达: FL M =π2式中 M-----电动机轴转距;F------使机械部件沿直线方向移动所需的力;L------电动机转一圈(2πrad )时,机械移动的距离2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。

实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算:z z M h h F M B spSPao P K 211122⎪⎪⎭⎫ ⎝⎛++=ηππ M 1-----等速运动时的驱动力矩(N.mm)π2hF spao K---双螺母滚珠丝杠的预紧力矩(N.mm) Fao------预紧力(N),通常预紧力取最大轴向工作载荷Fm ax的1/3,即F ao =31F m ax当F m ax 难于计算时,可采用F ao =(0.1~0.12))(N C a ; C a -----滚珠丝杠副的额定载荷,产品样本中可查:hsp-----丝杠导程(mm);K--------滚珠丝杠预紧力矩系数,取0.1~0.2;P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=;W 1-----移动部件重力(N),包括最大承载重力;P 1-------有夹板夹持时(如主轴箱)的夹板夹持力;μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ;η1-------滚珠丝杠的效率,取0.90~0.95;MB----支撑轴承的摩擦力矩,即叫启动力矩(N.m),可以从滚珠丝杠专用轴承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题)z 1--------齿轮1的齿数 z2--------齿轮2的齿数最后按满足下式的条件选择伺服电机M M s ≤1Ms-----伺服电机的额定转距(2)惯量匹配计算 为使伺服进给系统的进给执行部件具有快速相应能力,必须选用加速能力大的电动机,亦即能够快速响应的电机(如采用大惯量伺服电机),但又不能盲目追求大惯量,否则由于不能从分发挥其加速能力,会不经济的。

伺服电机功率计算选型例子

伺服电机功率计算选型例子
= 50 * 9.8 * 0.6 * 0.06 / 2 / 10 = 0.882 N.m 加速时所需转矩Ta = M * a * (D / 2) / R2 / R1 = 50 * (30 / 60 / 0.2) * 0.06 / 2 / 10 = 0.375 N.m 伺服电机额定转矩 > Tf ,最大扭矩 > Tf + Ta
微信公众号:ACE萦梦工作室
举例计算3
3. 计算电机驱动负载所需要的扭矩 克服摩擦力所需转矩Tf = M * g * µ * PB / 2π / η
= 200 * 9.8 * 0.2 * 0.02 / 2π / 0.9 = 1.387 N.m 重物加速时所需转矩TA1 = M * a * PB / 2π / η
JL=1/2*M1*r12 + 1/2*M2*r12 + M3*r12
M3 M1 r1
r2 M2
微信公众号:ACE萦梦工作室
伺服选型原则
连续工作扭矩 < 伺服电机额定扭矩
瞬时最大扭矩 < 伺服电机最大扭矩 (加速时)
负载惯量
< 3倍电机转子惯量
连续工作速度 < 电机额定转速
微信公众号:ACE萦梦工作室
按照负载惯量 < 3倍电机转子惯量JM的原则
如果选择400W电机,JM = 0.277kg.cm2,则 15625 / R2 < 3*0.277,R2 > 18803,R > 137 输出转速=3000/137=22 rpm,不能满足要求。
如果选择500W电机,JM = 8.17kg.cm2,则 15625 / R2 < 3*8.17,R2 > 637,R > 25 输出转速=2000/25=80 rpm,满足要求。 这微种信公传众号动:AC方E萦式梦工阻作室力很小,忽略扭矩计算。

伺服电机选型计算(自动计算版)

伺服电机选型计算(自动计算版)

负载质量M(kg)5·滚珠丝杠节距P(mm)10·滚珠丝杠直径D(mm)20·滚珠丝杠质量MB(kg)3·滚珠丝杠摩擦系数μ0.1·因无减速器,所以G=1、η=11②动作模式的决定速度(mm/s)单一变化·负载移动速度V(mm/s)300·行程L(mm)360·行程时间tS(s) 1.4·加减速时间tA(s)0.2·定位精度AP(mm)0.01③换算到电机轴负载惯量的计算滚珠丝杠的惯量JB= 1.50E-04kg.m2负载的惯量JW= 1.63E-04kg.m2换算到电机轴负载惯量JL=JW J=G2x(J W+J2)+J1 1.63E-04kg.m2L④负载转矩的计算对摩擦力的转矩Tw7.80E-03N.m换算到电机轴负载转矩TL=Tw7.80E-03N.m⑤旋转数的计算转数N N=60V/P.G1800r/min⑥电机的初步选定[选自OMNUC U系列的初步选定举例]选定电机的转子·惯量为负载的JM≥J L/30 5.42E-06kg.m2 1/30*以上的电机选定电机的额定转矩×0.8TMx0.8>T L0.5096>比换算到电机轴负载转矩大的电机N.m* 此值因各系列而异,请加以注意。

⑦加减速转矩的计算加减速转矩TA0.165N.m⑧瞬时最大转矩、有效转矩的计算必要的瞬时最大转矩为T1T1=TA+TL0.1726N.mT2=TL0.0078N.mT3=TL-TA-0.1570N.m有效转矩Trms为0.095N.m⑨讨论负载惯量JL 1.63E-04kg.m2≦[电机的转子惯量JM有效转矩Trms0.095N.m﹤[电机的额定转矩瞬时最大转矩T10.1726N.m﹤[电机的瞬时最大转矩必要的最大转数N1800r/min≦[电机的额定转数编码器分辨率R=P.G/AP.S1000(脉冲/转)U系列的编码器规格为204速度(mm/s)3000.210.20.2时间(s)初步选择定R88M-U20030(Jm= 1.23E-05根据R88M-U20030的额定转矩Tm=(N.m)≦[电机的转子惯量JM1.23E-05×[适用的惯量比=30]﹤[电机的额定转矩0.5096N.M7.8E-030.637﹤[电机的瞬时最大转矩 1.528N.M≦[电机的额定转数3000r/minU系列的编码器规格为2048(脉冲/转),经编码器分频比设定至1000(脉冲/转)的情况下使用。

数控机床伺服电机的选择计算

数控机床伺服电机的选择计算
总负载惯量JL=j1+ × (Kgm2)
JL Jm×2.5JM:伺服电机的转动惯量
(3)加速扭矩TA
TA= +TF(Nm)
TA Tmax×0.8Tmax:伺服电机最大扭矩
(4)最大切削扭矩Tc
TC= +TF(Nm)
TC Tms×1.5Tms:伺服电机额定扭矩
(5)连续有效负荷扭矩Trms
Trms= TC (Nm)TC:最大切削扭矩D:最大工作率
(2)直连最大切削扭矩Tc
Tc= +TF≈0.16FZ×PB(Nm)
TC≈0.16FZ(千牛)×PB(毫米)
Trms TMS×0.8 Tms:伺服电机额定扭矩
(6)最大负荷持续时间tLON
计算超负荷百分比TC/TMS和最大工作率D,从图表上查出伺服电机允许的最大持续时间tMON
tLON tMONtMON:伺服电机允许持续时间
2.快速估算
(1)加速扭矩TA
TAmin)×(JL+ JM)(10-3Kgm2)
数控机床伺服电机的选择计算
1.选择依据计算
(1)最大速度n
n= × Fg0:g0速率PB:丝杠螺距
Z1:电机侧齿数Z2:丝杠侧齿数
n nmaxnmax:伺服电机最高转速
(2)马达轴上折算负载惯量JL
床鞍滑板和刀架总惯量JT=mT (Kgm2)
马达侧齿轮Z1惯量J1
丝杠侧齿轮Z2惯量J2
丝杠惯量JS= 0.77×103D4L(Kgm2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

负载惯量对电机的控制特性和快速移动的加 后,需要较长的时间达到新指令指定的速度。 负载惯量小于或等于电机的惯量时, 负载惯量为电机的
/ 减速时间都有 指令变化 若机床沿着两
很大影响。 负载惯量增加时, 可能出现以下问题: 电机的惯量应不小 于 3 倍的负载惯量
个轴高速运动加工圆弧等曲线,会造成较大的加工误差。 不会出现这些问题。 若 但是如果加工木制 3 倍以上, 控制特性就会降低。 实际上这 建议负载惯量要小于或等于电机
-30 × 0.1 -30× 0.1
)+ )÷ 0.9
由α 2/3000 的速度 - 转矩特性可以看到, 力矩处于断续工作区的外面 据单)。 (故α 2/3000 的力矩是不够的。 )
9.81( Nm )的加速
(见上面的特性曲线和电机的数
如果轴的运行特性 (如, 加速时间) 不变, 就必须选择大电 机。比如,选择α 3/3000 ( Jm 为 0.02 kgf.cm.s ) ,重新计算 加速力矩如下: Ta = 123.7(Kg.cm) = 12.1(Nm) Vr = 2049(min ) 由该式可知, 加速时, 在转速 2049(min ) 时,要求加速力矩 为 12.1 Nm 。由上面的速度 - 力矩特性可以看出, 则法兰盘尺寸已经变为 用α 3/3000 3/3000 , 电机可满足加速要求 (条件 2) 。 由于已将电机换为α
床其摩擦力矩会大大影响电机的承受的力矩。 。 考虑由切削力引起的滑动表面摩擦力 削力和驱动力通常并不作用在一个公共点上如下图所示。 切削力很大时,造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。
。进给速度会使摩擦力矩变化很大 值,应仔细研究速度变化, 对摩擦力的影响。
假定电机由 NC 控制加 / 减速,计算其加速度。将加速度乘 以总的转动惯量(电机的惯量 速力矩。计算式如下。 + 负载惯量) ,乘积就是加
? 直线加 /减速
T a 是指数曲线上 升的。
Ta = +
Vm 60 Vm 60
× 2π ×
1 ta
× Jm×( 1-e
-ks。 ta
)+
× 2π × 1
1 ta
2 2
圆柱体绕其中心轴回转的惯量可按下式计算:
2
Jb =
πγ 32× 980
Jb γ Db Lb
4 2 D b L b ( kgf.Cm.s )
: 惯量 (kgf.cm.s ) :物体材料的比重( :直径( cm) :长度( cm)
-3 3
3 kg/cm )
2
若物体的材料是铁(其比重为 的近似值为: Jb =0.78 × 10 D b L b 例如 : 滚珠丝杠的 为:
-1 2 -1 2 -1
( 与 Vm 不同 ) (min )
6
α电机的选择
例子: 在下列条件下进行直线加 / 减速: 然后计算
2
电机为α 2/3000。首先计算电机和负载惯量,
-1 -1
加 速 转 矩。 电 机 惯 量 Jm 为 0.0061(kgf.cm.s 2) , Vm 为 3000 (min ) , ta 为 0.1(s),ks 为 30(sec ) , J L =0.0247(kgf.cm.s ) 。 Ta = 3000/60 × 2π× 1/0.1 × 0.0061 ×( 1-e + 3000/60 × 2π× 1/0.1 × 0.0247×( 1-e = 100.1(kgf.cm.) = 9.81(Nm)
α电机的选择
进给伺服电机的选择
(摘自 B-65262EN ) 王玉琪 电动机要承受 两种形式的力矩 :恒定的负载转矩和切削力矩(包括摩擦力矩) 力矩。下面介绍这两种力矩的计算方法及在选择电动机时应满足的条件。 ;加 /减速
条件 1: 机床无负载运行时,加在电动机上的力矩应小于电动机的连续额定力矩的 否则,在切削或加减 条件 2: 加( /减)速时间要短,须在电动机的允许范围内。 通常, 负载力矩帮助电动机的减速, 可在相同的时间内完成。 的机械特性的断续区内。 因此, 如果加速能在允许时间内完成的话, 减速也 这样我们只需计算加速力矩, 并在允许时间内核算该力矩在电动机 /速时电动机就可能过热。 50% 以下。
2 -1 -1
Vm :快速移动时的电机速度 ta Jm Jl ks 1.1 负载力矩和惯量的计算 计算负载力矩 注: 直线运动的工作台 Tm=F ω d (1/ η )+Tf =F(L/2 π )(1/ η )+Tf ω d:电机一转转过的弧 度角。 :加速时间 (s)=0.10 s
:电机的惯量 (kgf.cm.sec ) :负载惯量 (kgf.cm.sec ) :伺服的位置回路增益 (sec )=30 sec
:电机一转物体沿直线的移动距离
4
α电机的选择
例如: 工作台和工件的 算得:
W J = ( 1000/980)× (0.8/2π) = 0.0165(kgf.cm.s ) 2 2
W为 1000kgf,L 为 8mm,则其惯量计
?速度高于或低于电机轴速的物体的惯量 (惯量的折算)
对普通金属加工机床的工作的影响不大, 品或是高速加工曲线轨迹, 的惯量。(条件 6 ) 如果负载惯量比
3 倍的电机惯量大的多, 则控制特性将大大 使用中应避免这样 FANUC 联系。
下降。 此时, 电机的特性需要特殊调整。 大的惯量。若机械设计出现这种情况,请与 1. 2 加速力矩的计算 计算加速力矩:步骤 1 按下述步骤计算加速力矩:
-1 -1 2
130mm × 130mm 。若机床不允许用
× JL ×( 1-e
-ks 。 ta
)÷η
Vr = Vm × {1-
(1- e Ta? ks
-ks。 ta
)}
Ta Vm ta Jm JL Vr Ks η
:加速力矩 (kgf ? cm) :电机快速移动速度 (min ) :加速时间 (sec) :电机的惯量 (kgf.cm.s ) :负载的惯量 (kgf.cm.s ) :加速力矩开始下降的速度 :位置回路的增益 (sec ) :机床的效率
后按一定规则将各物体的惯量加在一起,即可得出总惯量。
注: 1 . J b= ( 1/2) MR
2
M (质量: Kg ) R(半径: cm ) 2 . M=W/g W ( 重量: Kgf) g (重加速度: 980cm/s ) M=(1/g)(1/4) πγ D b L b = (π /4g )γ D b L b 3 . Jb =(π /32g )γ D b4L b
条件 3: 频繁地定位和加 /减速会使电动机发热,此时需要计算出电动机承受的力矩的均方根值 Tc。 Trms ,使其小于电动机的额定力矩 条件 4: 负载波动频繁时,要计算一个工作周期的负载力矩的均方根值 的额定力矩。 条件 5: 电动机以最大切削力矩运行的时间应在允许的范围内(核算 条件 6:负载的惯量要小于电动机本身惯量的 本文譯自“α伺服电动机规格说明书( 择β i 电动机时也可作为参考。 Ton) 。 Tmrs ,使其小于电动机
-1
= 0.9(Nm)
考虑到加 / 减速,可选择α 2.0 Nm ) 。 ? 注
2/3000 (其静止时的额定转矩为
计算力矩时,要注意以下几点: 。 考虑由镶条锁紧力( fg )引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当 小。镶条锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷 一些因素有可能使得滚动接触的 ,丝杠的预应力及其它 Fc 相当大。小型和轻型机 ( Fcf )的增加。切 当
惯量 J0 折算到电机轴上后的计算方法如下: J=(
Z1 Z2
)
×J0 (kgf.cm.s ) :折算前的惯量 (kgf.cm.s )
2
2
J0 ?回转中心偏离轴心的圆柱体的惯量
J = J0+ J0 M R
M 980
*R (kgf.cm.s ) (kgf.cm.s )
2
2
2
:围绕圆柱体中心回转的转动惯量 :物体的重量 (kgf) :回转半径 (cm)
无论是否在切削, 是垂直轴还是水平轴, 的重量,摩擦系数。若坐标轴是垂直轴,
F 值取决于工作台 F 值还与平衡锤有
2
α电机的选择
关。对于水平工作台, 不切削时:
F 值可按下列公式计算:
( 设 Tf= =2kgf.cm=0.2Nm 时。 ) F = μ( W+fg ) 例如: F=0.05 × (1000+50)=52.5 (kgf) Tm = (52.5 × 0.8) / (2 ×π× 0.9)+2=9.4(kgf.cm) 注: L=8mm =0.8cm 切削时 : F = Fc+ μ(W+fg+Fcf) 例如 : F=100+0.05 × (1000+50+30)=154(kgf) Tmc=(154 × 0.8) / (2 ×π× 0.9)+2=21.8(kgf.cm) 即: 电机不带负载和 切削要求。 =2.1(Nm) 为了满足运行条件 在不切削时应大于 1,应根据数据单选择电机,其负载力矩 0.9 ( Nm ) , 最高转速应高于 3000 ( min ) 。
-1 -1 2
加到电机轴上的负载力矩通常由下式算出:
Tm =Biblioteka F× L2πηTm F L Tf :加到电机轴上的负载力矩 :沿坐标轴移动一个部件 (Nm) ( 工作台或刀架 ) 所需的力 (kgf) =P × (Z1/Z2)=8 mm
+ Tf
:电机转一转机床的移动距离
:滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩
。欲得到精确的摩擦力矩
工作台支撑结构 (滑动接触, 滚
相关文档
最新文档