第五章 刚体力学基础习题课(第三讲)13
第五章 刚体力学习题课
m1
m1 g T = m1a Tr = J 解: a = r v0 at = 0 m1 g 1 2 代入J= mr 有a = = 6.32m / s 2 2 m1 m 2 v0 t = = 0.0095s t
r O
T
a
m1
m1 g
【例】自测提高(15)如图5-23所示,转轮A、B可 分别独立地绕光滑的固定轴O转动,它们的质量 分别为mA=10 kg和mB=20 kg,半径分别为rA和 rB.现用力fA和fB分别向下拉绕在轮上的细绳且使 绳与轮之间无滑动.为使A、B轮边缘处的切向加 速度相同,相应的拉力fA、fB之比应为多少?(其 1 2 J A = m A rA 中A、B轮绕O轴转动时的转动惯量分别为 2 1 2 和 J B = mB rB ) B r
解:(1)设当人以速率v沿相对圆盘转动相反的方向走动时, 圆盘对地的绕轴角速度为ω,则人对地的绕轴角速度为
w = w
v 1 R 2 =w 2v R (1)
视人与盘为系统,所受对转轴合外力矩为零,系统的角动量 守恒,设盘的质量为M,则人的质量为M/10,有:
2 2 1 M R 1 M R 2 2 MR w0 = MR w w 10 2 2 10 2 2
600
解:机械能守恒(主要零势点选取) 1 1 2 2 mghc = J w ( J = ml ) 2 3
l 1 mg (1 cos q ) = J w 2 2 2 3g w= = 3 (rad / s) 2l
例题5-3一轻绳跨过两个质量均为m、半径均为r的均匀圆盘 状定滑轮, 绳的两端分别挂着质量为m和2m的重物,如图52a所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮 的转动惯量均为 .将由两个定滑轮以及质量为m和2m的重物 组成的系统从静止释放,求两滑轮之间绳内的张力.
《刚体力学基础习题》课件
03 刚体的转动惯量
CHAPTER
转动惯量的定义与计算
转动惯量的定义
转动惯量是描述刚体转动惯性大小的物理量,其大小与刚体的质量分布和转轴的 位置有关。
转动惯量的计算
对于给定的刚体,可以通过积分计算其转动惯量,对于规则刚体,也可以通过公 式直接计算。
刚体的动量矩
动量矩的定义
动量矩是描述刚体转动动量的物理量 ,其大小等于刚体的动量与转动轴到 质心距离的乘积。
转动惯量与动量矩习题解析
转动惯量
01
描述物体转动惯性大小的物理量,与物体的质量分布和旋转轴
的位置有关。
动量矩
02
描述物体转动动量大小的物理量,等于物体质量与速度矢量的
乘积。
动量矩守恒
03
在没有外力矩作用的情况下,物体的动量矩保持不变。
谢谢
THANKS
04 刚体的动力学应用
CHAPTER
刚体的平动与转动
刚体的平动
刚体在空间中沿某一确定直线作等距离的移动,这种运动称为刚体的平动。
刚体的转动
刚体绕某一定点转动,这种运动称为刚体的转动。
刚体的定点运动
01
刚体的定点运动是指刚体绕通过 某一定点的转轴转动,其上任意 一点都绕该转轴作圆周运动。
02
刚体的定点运动可以分为定轴转 动、定平面转动和定点转动三种 类型。
转动动力学方程
T=Iβ(其中T为扭矩,I为转动惯量,β为角加速度)
复合运动动力学方程
需要将平动和转动动力学方程联立求解。
02 刚体转动的基本定理
CHAPTER
角动量定理
总结词
描述刚体转动时,力矩与角动量变化 量之间的关系。
详细描述
刚体力学基础习题课
刚体的动量矩
刚体的进动和章动
第五章
进动的定义和计算
进动是指刚体绕自身某定点作角速度矢量沿着垂直于该定点轴的平面内的圆周运动。
进动的角速度矢量可以表示为$omega = omega_0 + alpha times omega_0$,其中$omega_0$是初始角速度矢量,$alpha$是进动角速度矢量。
平动刚体的动能和动量分别为 (E = frac{1}{2}mv^2) 和 (p = mv),其中 m 为刚体的质量,v 为刚体的速度。
平动刚体的特征
平动刚体的运动规律
平动刚体的动能和动量
刚体的转动
转动刚体上任意两点的连线在运动过程中始终保持长度不变,但可以形成不同的角度。转动刚体的角速度和角加速度是矢量。
进动的角速度矢量的大小和方向可以通过向量的外积运算计算得出,即$|omega| = |omega_0| sqrt{1 + alpha^2}$,$tan theta = frac{alpha}{1 + alpha^2}$,其中$theta$是进动角。
章动的定义和计算
章动的角位移矢量的大小和方向可以通过向量的外积运算计算得出,即$|theta| = |theta_0| + frac{1}{2} |beta| t^2$,$tan varphi = frac{beta t}{2 |theta_0|}$,其中$varphi$是章动角。
01
静态平衡是稳定的,只要刚体受到微小的扰动,它就会恢复到原来的平衡状态。
刚体的平衡稳定性
03
刚体在静态平衡状态下,其重心位置保持不变,且各方向上的力矩平衡。
刚体的平衡状态
02
刚体的动态平衡
大学物理 第5章 刚体力学基础习题课
2
1
M d
(3)功率:
d dA M M N dt dt
3
2015-7-3
5.冲量矩和动量矩 (力矩对时间的积累效应) (1) 冲量矩
元冲量矩:Mdt 力矩乘以力矩所作用的时间。 力矩在t1→t2内总冲量矩:
(2) 角动量(动量矩)
t2
t1
Mdt
刚体对固定转动轴的角动量,等于它对该轴的转动惯 量和角速度的乘积。
2iiijmr????22ddjrmrv????三习题基本类型ddt??????22ddddtt??????vr????2nar????tar????vr??ov定定轴p?zr0t?????20012tt?????????????????22002????????专业资料201931092平行轴定理若有任一轴与过质心的轴平行相距为d刚体对其转动惯量为j则有jjcmd2
θ
14
y
NA A
NB
B
l
F 无平动: F
i i
由刚体的平衡条件:
ix
0 N B F kl cos 0 NA W
iy
θ W
原长
无转动: x
M
i
iz
0
(O) F
2 将NB的值代入 W 2kl sin
若以A为转轴,选力矩⊙为 正,则 N B l sin W l cos 0
刚体力学基 础
习题课
2015-7-3
1
刚体力学基础
一、基本概念 1.刚体及其平动、转动、定轴转动 理想化的力学模型 特性:特殊的质点系(牛顿力学) 2.转动惯量
刚体对定轴的转动惯量等于刚体中每个质点的质量 与这一质点到转轴的垂直距离的平方的乘积的总和。
第五章刚体力学参考答案
一、选择题[ C ]1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .图5-18参考答案:设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB .对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB[ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为 41mg cos θ. (B)为21mg tg θ. (C) 为 mg sin θ. (D) 不能唯一确定.[ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-8m图5-11参考答案:把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。
设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0[ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.参考答案:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:0=Rmv-J ω 可得结论。
大学物理上册课件:第五章刚体力学基础
5.1.2、刚体定轴转动的角量描述 定轴转动只有两个转动方向。 规定 ox 轴逆时针转动为正方向,反之为负方向。
角位置: (t) 刚体定轴转动的运动学方程。
角位移: 2 1
平均角速度: =
t
角速度: (矢量)
=d
dt
y
rP•
•P
A
O S A
x
角加速度: (矢量)
z
o
ri
i 1
mi
则:
Ek转
1 2
J 2
o
注意:转动动能实质与平动动能相同,表达式不
Ek转
1 2
m vc2
1 2
J 2
5.2.2、转动惯量的计算:描述刚体转动惯性大小的物理量。
1、定义:刚体对转轴的转动惯量:
n
J miri 2 i 1
J r 2 d m V
SI单位:kg . m
大 小 :M Z rF sin Fd Ft r
d=rsinθ 称为力F 对转轴的力臂。
方向: 由右手螺旋定则确定。
Mr FZ有o两个方向,可用正o负表Fr示。
MZ 0
MZ 0
MZ
z
o rp
F
d
•
o
z
r
Ft P
F
d
•
Fn
2、F不在转轴平面内
把F 分解为径向Fr 、横向Ft ①Fr 对转轴的力矩为零;
5.2定轴转动刚体的功和能
5.2.1、刚体的动能
平动动能 : Ek平 转动动能 : Ek转
i i
1 2
mi v i2
1 2
mi
v
i
5第五章-刚体力学基础
①总质量; ②质量分布; ③转轴位置。
上页 下页 返回 退出
2. 转动惯量J
(1)质点 J mr2
r1
m1 O
(2)质点系 J miri2
i
例:J m1r12 +m2r22
r2
m2
(3)刚体 dJ dm r2
J dJ
r dm
上页 下页 返回 退出
dl
dm
dS
dV
线分布 面分布 体分布
一、力矩的功 M 1 2
dA F dr Fdscos Fdssin F sin rd Md
d
r
dr
F
A dA 2 Md 1
功率 P dA Md M
dt dt
上页 下页 返回 退出
二、 刚体的转动动能
第i个质点
Ek
1 2
J2
Eki
1 2
mi vi 2
1 2
mi
ri
2
2
上页 下页 返回 退出
三、 动量矩守恒定律的应用
当 M合外 0 时,L 恒量
讨论:
(1)动量矩守恒条件:
M外 0 或 M内 M外
(2)也适用于非刚体,是自然界最普遍规律之一
J 恒量 J , J ,
上页 下页 返回 退出
上页 下页 返回 退出
上页 下页 返回 退出
z
F
M rF 0
上页 下页 返回 退出
§1、2 刚体的转动定律
一、刚体和刚体的运动
1. 刚体: 形状、大小不变的理想模型。 2. 刚体的运动: (1)平动。 看作质点。
上页 下页 返回 退出
(2)转动。 定轴; 非定轴(瞬时轴)。
5《学习指南 试题精解》 第五章 刚体力学
第5章 刚体力学5.1 本章要求:1、通过质点在平面内的运动情况理解角动量、动量矩和角动量守恒定律,了解转动惯量的概念;2、理解刚体的定轴转动的转动定律和刚体在定轴转动情况下的角动量定理和角动量守恒定律;3、能应用角动量定理和角动量守恒定律解简单的刚体运动的力学问题。
5.2 内容提要1、质点的角动量v r m P r L ⨯=⨯=;2、质点的角动量定理作用于质点的冲量矩等于质点的角动量的增量。
积分形式00L L d dt LL tt -==⎰⎰ ,微分形式dtd M =外 3、角动量守恒定律如果某一固定点,质点所受合外力矩为零,则此质点对该固定点的角动量矢量保持不变。
则0=dtLd , ∑=ii L L = 常矢量 4、刚体物体内任意两点间的距离在外力作用下始终保持不变,从而其大小和形状都保持不变的物体,称为刚体。
刚体也是物体的一种理想模型。
5、平动 刚体运动时,连接刚体中任意两点的直线始终保持它的方位不变。
这种运动称为刚体的平动或平移。
6、转动刚体运动时,如果刚体内各点都绕同一直线作圆周运动,这种运动称为刚体的转动;这一直线称为转轴。
如果转轴相对于所取的参考系是固定不动的,就称为定轴转动。
如果转轴上一点静止于参考系,而转动的方位在变动,这种转动称为定点转动。
刚体的一般运动,可以看作平动和转动所合成。
7、质心质心是与质点系的质量分布有关的一个代表点,它的位置在平均意义上代表着质点分布的中心。
对于有许多质点组成的系统,如果用i m 和i r 表示第i 个质点的质量和位矢,用c r 表示质心的位矢,则有Mrm r iii c ∑=,式中∑=ii m M 为质点系的总质量。
质心位置的坐标为:Mzm z M ym y M xm x iii c iii c iii c ∑∑∑===,,。
对于质量连续性分布的物体,质心的位矢为⎰=Mrdmr c其坐标为⎰⎰⎰===zdm Mz ydm M y xdm M x c c c 1,1,1。
第五章 刚体力学基础习题课(第三讲)13
r 0 0
v0
v
10
④对于非刚体,即转动惯量变化。角动量守 恒的表达 式:
ห้องสมุดไป่ตู้
dL d ( J ) J d dJ 0
若动作后角速度增加,则与d 同向,所以
J d dJ 0 J0 ln ln J 0
固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴00转动设大小圆柱的半径分别为r和r质量分别为m和m绕在两柱体上的细绳分别与物体m1和物体m2相连m1和m2则挂在圆柱体的两侧如图所示设r020mr010mm4kgm10kgm1m22kg求柱体转动时的角加速度及两侧绳中的张力
大学物理(一) 主讲:陈秀洪 第五章 刚体力学基础习题课(第三讲) 一、小结 二、 例题
s
m x1 g L
x2
x
13
2.固定在一起的两个同轴均匀圆柱体可绕其光滑的水 平对称轴00′转动,设大小圆柱的半径分别为R和r, 质量分别为M和m,绕在两柱体上的细绳分别与物体 m1和物体m2相连,m1和m2则挂在圆柱体的两侧,如图 所示,设R =0.20m,r =0.10m,m=4kg,M=10kg, m1=m2=2kg,求柱体转动时的角加速度及两侧绳中的 张力。 T1 T2 o o 解:受力分析如图
解:机械能守恒:
mg L 1 1 ( mL2 ) 02 0 2 2 3
0 (1)
v
L
碰撞:角动量守恒,机械能守恒. 1 2 1 2 ( mL ) 0 mLv ( mL ) (2) 3 3 1 1 2 2 1 2 1 1 2 2 ( mL ) 0 mv ( mL ) 2 3 2 2 3 1 3 gL 解得: v 2
大学物理第五章刚体力学
v0
3
4J
4Ml
mv
例3 、如图所示,将单摆和一等长的匀质直杆悬挂在 同一点,杆的质量m与单摆的摆锤相等。开始时直杆
自然下垂,将单摆的摆锤拉到高度h0,令它自静止状
态下垂,于铅垂位置和直杆作弹性碰撞。求碰撞后直杆
下端达到的高度h。
l l
m
ho
h’
a
解:碰撞前单摆摆锤的速度为
c hc
h=3h0/2
b
L
mv
v o m o• L
(A) 2v 3L
(B) 4v 5L
(C) 6v 7L
8v (D) 9L
以顺时针为转动正方向
两小球与细杆组成的系统 对竖直固定轴角动量守恒
L
mv
v o m o• L
由 Lmv+Lmv=2mL2+J
及 J= mL2/3
可知正确答案为 [ C ]
6.如图所示,一均匀 细杆长为 l ,质量为 m,平放在摩擦系数
速度。
用功能定理重解该题
取起始位置为零势能参考点 O
0 mgl sin / 2 1 J2
2
A mg
3g sin
l
?棒端A的速度 vA 3gl sin
例2.已知:均匀直杆m,长为l,初始水平静止,
轴光滑,AO4l 。 求:杆下摆角后,角速度 ?
解:杆+地球系统, ∵只有重力作功,∴ E守恒。
1 (1 ml 2 ) 2 1 mgl(1 cos )
23
2
3
arccos23
例4、一飞轮以角速度0绕轴旋转,飞轮对轴的
转动惯量为J1,另一静止飞轮突然被啮合到同一 个轴上,该飞轮对轴的转动惯量为前者的两倍。 啮合后整个系统的角速度 (1/3)0 .
刚体力学基本习题课
特点
碰撞前后,系统的总动量守恒, 但总机械能减少,减少的机械能 转化为内能等其他形式的能量。
典型例子
两个质量不等的小球以不同的速 度正碰,碰撞后它们以不同的速 度继续运动,且系统的总动能减
少。
06
刚体力学中的守恒定律
动量守恒定律
定律内容
一个系统不受外力或所受外力之和为零,这个系统的总动量保持 不变。
度和角加速度。
02
刚体绕定轴转动的动力学描述
刚体绕定轴转动时,受到的外力矩等于刚体对转轴的转动惯量与角加速
度的乘积。
03
刚体绕定轴转动的微分方程
根据动力学描述,可以建立刚体绕定轴转动的微分方程,进而求解刚体
的角速度、角加速度等转动参数。
04
刚体的平衡
刚体平衡的条件
合外力为零
刚体所受的所有外力的矢量和必 须为零,即刚体处于静态平衡。
均匀性假设
刚体内各点的密度相同。
各向同性假设
刚体在各个方向上的物理性质 相同。
小变形假设
在外力作用下,刚体只发生微 小的弹性变形,且变形量与外
力成正比。
02
刚体的运动学
刚体的平动
描述刚体平动的物理量
01
位置矢量、位移、速度、加速度。
刚体平动的运动学方程
02
根据初始条件和运动规律建立。
刚体平动的特点
质点系动量矩定理的表述
质点系对某点的动量矩的变化率等于作用在质点 系上所有外力对该点的力矩的矢量和。
3
质点系动量矩定理的应用
通过分析质点系的受力情况和转动情况,可以求 解质点系的角速度、角加速度等转动参数。
刚体绕定轴的转动微分方程
01
刚体绕定轴转动的运动学描述
《物理学基本教程》课后答案第五章刚体的转动
第五章 刚体的转动5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m /s 1.23m /s 15.017.811=⨯==r ωv222121n m /s 10.0m /s 15.017.8=⨯==r ωam /s .6130m /s 075.017.822=⨯==r ωv222222n m /s .015m /s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=B A r 1 r 2图5-3则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r t 5-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+= AA 2B图5-45-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑R图5-5 fF T1 F T2(a) (b)图5-6轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得αJ M R F F =--f T2T1)()(1f T2T1M J R F F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.m αF ’T1 F T1m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得a m F g m 1T11=-a m g m F 22T230sin =︒-α2T2T121)(mR R F F =- 由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压F图5-8力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωW J m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M 5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F =(1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωmR J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t 00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由v 0 ︒45 (a) (b) 图5-12静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg xT1aF ’T1m m g(a) (b)图5-13在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R 00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有 ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅=啮合后机械能为 2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅=则机械能损失为 A图5-141202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 m m R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受-F图5-17到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得 388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θv mm ’g图5-18︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。
刚体力学第3讲刚体力学小结与习题课
(2)
3
完全1m弹m性x碰2撞m1前x21后m动l能213相m等2l 2:
??? (3)
2
23
(2)+(3) 解出 x 3 l / 3
或小球自下落至碰撞完毕,整个过程中小球、杆、
地球系统旳机械能守恒:
mgx(1 cos )
1
(1
ml 2 )
2
(3´)
(1)+(2)+(3´)一样可解出 2 3
例7:空心圆环可绕竖直轴 AC 自由转动,其转动惯量
mv
mv 0
质点系t 动量定理
t0
其中
Fdt
P
P P0
mv
动量守恒定律 当合外力为 0时
P0 P
转动
冲量矩 角动量
t
t0
刚体 质点
M dt
L Lr
J
P
角动量定t 理
Mdt t0
L
L0
角动量守恒定律 当合外力矩 为0时
L0 L
二 经典例题分析
处理力学问题旳措施
1.拟定研究对象; 2.受力分析; 3.建立坐标系或要求正向,或选择0势点; 4.拟定始末两态旳状态量; 5.应用定理、定律列方程求解; 6.有必要时进行讨论。
M 外 0 系统的角动量守恒.
R /2
Ro
v
(1)开始系统的角动量为
m
12 R
2
0
1 2
M
R 20
后来:
m
1 4
R
2
mE
1 2
M
R 2 ME
mE ME mM 21 M R 2 0 / 40
R /2
Ro
v
第五章 刚体力学基础 动量矩参考答案
第五章 刚体力学基础 动量矩班级______________学号____________姓名________________一、选择题1、力kNj i F )53(+=,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩大小为 ( B )(A)m kN ⋅-3; (B )m kN ⋅29; (C)m kN ⋅19; (D)m kN ⋅3。
2、圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ⋅。
由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。
圆柱体损失的动能和所受力矩的大小为( D ) (A)80J ,80m N ⋅;(B)800J ,40m N ⋅;(C)4000J ,32m N ⋅;(D)9600J ,16m N ⋅。
3、 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( D )(A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。
4、如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。
绳的两端分别系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。
将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力。
( D )(A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。
5、一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面上。
若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为0ω,则棒停止转动所需时间为 (A )(A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。
6、关于力矩有以下几种说法,其中正确的是 ( B )(A )内力矩会改变刚体对某个定轴的角动量(动量矩); (B )作用力和反作用力对同一轴的力矩之和必为零;(C )角速度的方向一定与外力矩的方向相同;(D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。
第5章刚体力学习题课解析
[例3]一物体组。其中滑轮A可随m的下降而上升。两滑轮的质 量均为M ,且均匀分布,半径为R ,绳子的质量及轴上的摩擦不 计。试求:m下降的加速度及绳中的张力。
解:选取地面为参考系,隔离动滑轮A、 定滑轮B 和物体m,分析受力。规定 物体运动方向为正方向。
对物体 m 应用牛顿第二定律,得:
B
o
m1
T3
M2
T3
R1
T1
a 1 R1 2 R2
T1 T1, T2 T2 , T3 T3
联立得:
2( m1 m2 ) g a 2 (m1 m2 ) M1 M 2
4m1m2 g m1 ( M1 M 2 ) g T1 m1 g m1a 2( m1 m2 ) M1 M 2
4m1m2 g m2 ( M1 M 2 ) g T2 m2 g m2a 2( m1 m2 ) M1 M 2
1 4m1m2 g m1 M 2 g m2 M1 g T3 m2 ( g a ) M 2a 2 2(m1 m2 ) M1 M 2
联立上式求解,得:
11mMg T1 8m 7 M
(14m 4 M ) Mg T2 8m 7 M
(5m 3 M ) Mg T3 8m 7 M
[例4]已知m 1 ,m 2 ,M1 ,M2 ,R1 ,R 2 且m 1 > m 2 。 求:m 2的加速度和张力T1 ,T2 ,T3 解:设m 2 的加速度大小为a ,方向向上, m 1 的加速度大小也为a ,方向向下。 分析m1、m2 受力。由牛顿第二定律:
b
a
F dr
b
a
M d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r
0
x1
s
m x1 g L
m x2 g L
m ( M r ) g L
x2
x
12
m m m m x1 g T1 x1a1 (1); x 2 g T2 x 2 a 2 (2) L L L L 1 m 2 2 T2r T1r ( Mr r r ) (3); T1 T1;T2 T2 (4)
0
(3)
15
对于(2)式,也可从如下得到: 设碰撞时间为: t 对小球由质点的动量定理:
0.
0
v
f
L
f
ft mv
对棒由角动量定理:
f LΔt J (J0 )
1 J mL2 3
f f
1 2 1 2 mLv mL mL 0 3 3
v0
v
10
④对于非刚体,即转动惯量变化。角动量守 恒的表达 式:
dL d ( J ) J d dJ 0
若动作后角速度增加,则与d 同向,所以
J d dJ 0 J0 ln ln J 0
dJ d J 0 J0
o
r
(2)质点系的角动量: 质点系内部所有质点对某一定点的角动量,即:
L ( ri Pi ) ( ri mi v i )
i i
(3)刚体作定轴转动的角动量: 作定轴转动的刚体,其 内部所有质点绕轴做半径 不等的圆周运动,具有相 同的角速度:
0
z
大学物理(一) 主讲:陈秀洪 第五章 刚体力学基础习题课(第三讲) 一、小结 二、 例题
1
一、小结 1、刚体定轴转动的描述
(t )
2
v i Ri
d dt
d dt
v i Ri ω
Ri
z
z
0
i
v ain Ri 2 ai Ri Ri
1
2
2
r
(1)质点的角动量 L r mv 大小 L rmv sin
7、 刚体绕定轴转动的动能定理 2 1 1 2 2 A Md J 2 J1 1 2 2 8、角动量
x
o
L
L
v
m y
v
r
p
m
6
质点以角速度ω作半径为r 的 圆运动,相对圆心的角动量大 小: L mr 2 J
解:机械能守恒:
mg L 1 1 ( mL2 ) 02 0 2 2 3
0 (1)
v
L
碰撞:角动量守恒,机械能守恒. 1 2 1 2 ( mL ) 0 mLv ( mL ) (2) 3 3 1 1 2 2 1 2 1 1 2 2 ( mL ) 0 mv ( mL ) 2 3 2 2 3 1 3 gL 解得: v 2
2 2 v g(2 3 )( m l 2ma )( m l 3ma ) 6 ma
18
例2:长为L的匀质细棒,一端悬于O点,自由下垂, 紧接 O点悬一单摆,轻质摆绳的长为 L,摆球的质量为 m,单摆从水平位置由静止开始自由下摆,与细杆作完 全弹性碰撞,碰后单摆停止。 求:(1) 细杆的质量; (2) 细杆摆动的最大角度θ m 解:球下摆机械能守恒 1 2 O L mv mgL (1) 球与细杆作完全弹性碰撞 (2) 角动量守恒: mvL J 1 1 2 2 ( 3) 机械能守恒: mv J 2 2 1 L 2 杆摆动机械能守恒: J Mg (1 cos ) 2 2 1 1 J ML2 解得: M 3m cos 3 3
2
v
( 4)
19
例题3、一均匀圆盘,质量为M,半径为R,可绕铅直轴 自由转动,开始处于静止状态,一个质量为m的人,在 圆盘上从静止开始沿半径为r的圆周走动,如图所示. 求当人走完一周回到盘上原位置时,圆盘相对于地面 转过的角度. 解: 设人对盘的速率为 vr , 圆盘绕轴的角速度为 人对地速度为 v vr r R r 由人、圆盘组成的系统对铅 直轴角动量守恒 vr 1 2 m(vr r )r MR 0 v 2 mrv r 解得 : 1 2 mr MR 2 2
J
即:J 0 0 J
例如:花样滑冰运动员。 问题:花样滑冰运动员由伸臂到收臂动能 如何变化?
11
二、 例题
刚体力学习题课(14) 1.质量为M的匀质圆盘,可以绕通过盘中心垂直于 盘的固定光滑轴转动,绕过盘的边缘挂有质量为m, 长为 L的匀质柔软绳索 (如图),设绳与圆盘无相对滑 动,试求当圆盘两侧绳长之差为 S时,绳的加速度的 大小。 解:受力分析如图: T2 N
.
20
mrv r 1 2 mr MR 2 2 d 初始 : t 0, 0 0 由于 : dt t t mrv r dt dt 1 0 0 2 mr MR 2 2 t mr R r v r dt 1 2 2 0 mr MR 2 2mr 2 vr 1 v mr 2 MR 2 2 式中:负号表示人走动的方向与圆盘转动的方向相反.
M M1 M2 M3
4
3、转动惯量 2 2 J Δm j r j , J m r dm
j
转动惯量的决定因素为: 总质量;质量分布;转轴的位置。 物理意义:转动惯性的量度 . 转动惯性的计算方法 质量离散分布刚体的转动惯量
2 j j 2 1 1 j
J Δm r m r m r
2 2 2
2 j j 2
质量连续分布刚体的转动惯量
J Δm r m r d m
j
dm
:质量元
5
M J 4、转动定律 M与β具有:同轴性、同时性、同方向性。 1 z 2 5、转动动能 Ek J
6、力矩的功
A Md
0
z
J11 J 22 ( J1 J 2 )
9
③质点和刚体,角动量守恒表达式为:
r mv0 J0 r mv J rmv 0 rmv J
o
m
注意: v0、v 是质点速度在
转动平面内的分量。
r 0 0
.
21
例4:一根长为l,质量为m的匀质细杆,一端与光滑 的水平轴相连,可在竖直平面内转动,另一端固定 一质量也是m的小球,且小球半径R<<l。设杆由水平 位置自由释放。
1 2 2 mva ( m l ma ) 3 3mva m' l 2 3ma 2
a
m vm
'
射入竿后,以子弹、细杆和地球为系统 ,机械能守恒 . l 1 1 2 2 2 ( m l ma ) mga(1 cos 30) m g (1 cos 30 ) 2 3 2
直于转轴方向的两个分量
其中 Fz 对转轴的力 矩为零,故 F 对转轴的 力矩
1)若力 F 不在转动平面内,把力分解为平行和垂
F Fz F
沿Z轴的分量
z
k Fz
F
M z k r F
O
r
F
M z rF sin
2)合力矩等于各分力矩的矢量和
2 L a a1 a2 r (5) L r x1 x2 (6) s x2 x1 (7)
smg 解得: a M (m ) L 2 T2 N a2
T1
a1
r
0
x1
T2 T1 m m x2 g ( M r ) g L L
s
m x1 圆柱体可绕其光滑的水 平对称轴00′转动,设大小圆柱的半径分别为R和r, 质量分别为M和m,绕在两柱体上的细绳分别与物体 m1和物体m2相连,m1和m2则挂在圆柱体的两侧,如图 所示,设R =0.20m,r =0.10m,m=4kg,M=10kg, m1=m2=2kg,求柱体转动时的角加速度及两侧绳中的 张力。 T1 T2 o o 解:受力分析如图
z
0
7
Lz ( mi ri ) J z i 矢量式: Lz J z
2
9、角动量定理: (1)质点系角动量定理 t2 L2 dL M 外dt dL L2 L1 M
dt
外
t1 L1
(2)刚体定轴转动角动量定理
dLz Mz dt
8
条件: M z
0
结论: Lz J z 常量 定轴转动角动量守恒定律讨论: ①单个刚体,角动量守恒 Lz J z 即: =C 刚体作惯性转动。 ②多个刚体,角动量守恒表达式 为: Li J ii C
1 0
z 1
J1
J2 2 2 0
t2
t1
M z dt Lz 2 Lz1
10、角动量守恒定律 (1)质点系角动量守恒定律 条件 : M外 0 结论 : L Li ri mi vi 常矢量
i i
(2)刚体定轴转动角动量守恒定律
条件: M z
0
结论: Lz J z 常量
解得:
oM
2
R
mgt h 2m M
63.2( m )
T T
m mg
17
例1、 一长为 l , 质量为 m 的竿可绕支点O自由 转动 . 一质量为 m、速率为 v 的子弹射入竿内距支 点为 a 处,使竿的偏转角为30º . 问子弹的初速率为 多少 ? 解 把子弹和竿看作一个系统 .子 o 30 弹射入竿的过程系统角动量守恒