五年级奥数解方程资料带答案

合集下载

五年级上册数学培优奥数讲义-第11讲列方程解决问题2

五年级上册数学培优奥数讲义-第11讲列方程解决问题2

第11讲列方程解决问题2知识装备在列方程解应用题中,设未知数时,有时可直接设,即求什么设什么,有时直接设难以解决问题,这时就需要间接设。

间接设时,一定要找准所设未知量,这样才能简化问题,列出方程。

初级挑战1爸爸现在50岁,儿子现在14岁,问几年前爸爸的年龄是儿子年龄的5倍?思路引领:根据题意,设年前爸爸的年龄是儿子年龄的5倍,找出等量关系式为: ,再列方程求解。

答案:解:设x年前爸爸的年龄是儿子的5倍。

5×(14-x)=50-x70-5x=50-x70-5x+5x=50-x+5x4x+50=704x=20x=5答:5年前爸爸的年龄是儿子年龄的5倍。

能力探索1女儿今年6岁,母亲今年38岁。

几年后母亲的年龄是女儿的3倍?答案:解:设x年后母亲的年龄是女儿的3倍。

3(6+x)=38+x18+3x=38+x18+3x-18=38+x-183x=20+x3x-x=20+x-x2x=20x=10答:10年后母亲的年龄是女儿的3倍。

初级挑战2王冬有存款500元,张华有存款300元。

王冬每月存50元,张华每月存90元。

张华要赶上王冬,需要几个月的时间?思路引领:本题难点在于找等量关系式。

根据“张华要赶上王东”可知,若干个月之后,张华的存款要等于王东的存款,这就是我们要找的等量关系式。

答案:解:设需要x个月,张华的存款能赶上王东的存款。

500+50x=300+90x500+50x-50x=300+90x-50x40x+300=50040x=200x=5答:需要5个月时间。

能力探索2有两堆煤,甲堆煤有4.5吨,乙堆煤有6吨,每天从甲堆煤中运0.2吨给乙堆煤,问几天后乙堆煤的吨数是甲堆煤吨数的2倍?答案:解:设x天后乙堆煤的吨数是甲堆煤吨数的2倍。

6+0.2x=2×(4.5-0.2x)6+0.2x=9-0.4x6+0.2x+0.4x=9-0.4x+0.4x6+0.6x=90.6x=3x=5答:5天后乙堆煤的吨数是甲堆煤吨数的2倍。

高斯小学奥数五年级上册含答案_解方程与解方程组

高斯小学奥数五年级上册含答案_解方程与解方程组

第七讲解方程与解方程组L 23.4.5.6.7.&9章章章章章章章足章章 田米分广功输不程股 方粟衰少商均盈方勾方程迪个茗词,區©见于虫国占代算粘农九■皐算术蓟韦屮所有的數乍问履被分为九 a 分别是消田丄二・w知瓠少广■尅功氛均输孤盈人疋4加冲.勾脸魚壽…=T中和T WMoll靑N N4中行O IIIII I MIII 右仃川—=>中汙o仙I左轩三冊mi =nr左中若O 0 II =o lllll ir =o 1 i Mil =m =>左 行 o O lirr inn中行o lll 是 ・育幷列、井排之竜口■方程"就足潮e若林武子 (肛“枉“)片排地列出.由 此可见."方穿”在古语中更 多地是青方程绳"in o Os S 石 17 O IIIlllll II I I=1111 =nr書川o o勿电行0^^葺与方程有关的知识和方法.相信同学们已经会解简单的一元一次方程. 下面我们先对相关的概念做一个简要的复习.我们将用等号“=”连接,表示相等关系的式子,叫做等式•而方程就是含有未知数的等式.等式有两个基本性质:等式性质 1 :等式两边加上或减去「-个数,结果仍相等.如果a b,那么a c b等式性质2:等式两边乘上一个数,或除以一个不为0的数,结果仍相等如果a b,那么a c b如果a b,那么-bc0 .c c利用等式的性质我们可以解一些简单的方程•首先我们来看一下一元一次方程. 所谓一元一次方程就是只含有一种未知数且未知数的最高次数是1的方程.在解一元一次方程的时候,我们需要将含有未知数的项一起算,也就是合并同类项. 有的时候,当含有未知数的项不在等式同一侧时,我们还需要将这样的项从等式的一侧移动到另一侧,也就是所谓的移项. 注意方程中的每一项都包括数值与符号两部分,移项的时候要改变符号.例题1.解下列方程:(1)4x 3 3x 8 ; (2) 15 3x 19 4x ; (3) 12 3x 7x 18 .【分析】移项的时候记得要变号哦.有的时候,方程如果含有括号,我们要先去括号.去括号的时候特别要注意的是,如果括号前面是减号,去掉括号后,原有的项要変号.方程这个词,最早见于我国古代算书《九章算术》•可见人们在很早以前就已经掌握了3x ; (2) 5 6x 17 9x; (3) 10 2x 5x 11 .例题 2.解下列方程:(1)5x3(19 x 65 ; (2) 7x (3x 2)22 .【分析】去括号的时候也要注意符号(1) 16 2( x 4) 3x ;( 2)18 (3x 6) x .对于更为复杂的一元一次方程,还可能含有分母,这个时候我们要先去分母.例题3.解下列方程:【分析】以第一个方程为例,等号左边的分母是 2,要去掉它需要左右两边都乘 2或2的倍 数•而要消掉右边的分母需要左右两边都乘3或3的倍数,那只需要都乘多少就可以了?通过前面的练习,相信同学们对于一元一次方程有了进一步认识. 下面我们总结一下一元一次方程的一般解法:(1) 去分母(如果有分母):等号两边同时乘以各分母的最小公倍数; (2) 去括号(如果有括号):由内向外去括号; (3)移项:把含有未知数的项移到等号的一边(通常是左边) ,已知数移到等号的另一边;(4)合并同类项:把方程两边分别合并,化简成 axb a 0的形式;(5) 系数化1:在方程两边同除以未知数系数 a ,得到方程的解x b;a(6 )把得到的解代回原方程检验.一元一次方程我们已经会解了, 在解决实际问题的过程中我们还会遇到需要设两个未知(1)3x 5 27x 53x 1 8x 2(2)(1)数的情形.也就是可能要解二元一次方程.所谓二元一次方程就是方程中含有两种未知数,且未知数的次数是1•解决二元一次方程的关键就是将两个未知数变为一个未知数,也就是所谓的消元.加减消元法是比较常用的消元方法•该方法的步骤和要点可总结如下:1.若有某个未知数,它前面的系数在两个方程中恰好相反或者相同, 个数,将其凑出可以加减消元的形式;【分析】熟练掌握一元一次方程的解法,向更高的难度进发吧!就可以通过把两个方程相加或者相减的方法消去该未知数; 如果没有上述特点,可以通过等式两边同乘以一2. 解消元后得到的一元一次方程;3. 把得到的解带入原方程中,求出另一个未知数;4. 代回原方程检验.注意:最后方程的解要写成a的形式. b例题4.解下列方程组:x 2y 3 x (1) ; (2)3x 4y 29 2x 2y5y 16【分析】加减消元法掌握好了吗?解下列方程组:(1)2x 3y5y 32(2)x 3y 72x 7y 15例题5.解方程: (1) 2y4y; (2)笔13 : (3) x2 3x 5 x x 228例题6. 解下列方程组:【分析】解二元一次方程组最基本的想法就是“消元” ,想想看,对于这两个题目是消x 还是消 y 更好做?应用方程和方程组可以解决应用题、 几何、数论等各种类型的题目, 同学们在后续的学 习中就会体会到方程的强大威力.1)9x 2y 20 3x 5y 12)5x 2y 16 2x 3y 13方程的来历方程这个名词,最早见于我国古代算书《九章算术》•《九章算术》是在我国东汉初年编 定的一部现有传本的、 最古老的中国数学经典著作. 书中收集了 246个应用问题和其他问题的解法,分为九章,方程”是其中的一章•这一章里的所谓“方程”,是指一次方程组•其中有一个问题实际上就是求解三元一次方程组:3x 2y z 39 ① 2x 3y z 34 ②x 2y 3z 26 ③古代是将它用算筹布置起来解的•如下图所示,图中各列由上而下列出的算筹表示X 、y 、z 的系数与常数项.一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程.三川1 =TTT1上述方程的概念,在世界上要数 《九章算术》中的“方程”章最早出现•其中解方程组 的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产.这一成就进一步证明:中华民族是一个充满智慧和才干的伟大民族.作业1. 求下列方程的解: (1) x 6 15; (2) 3x 5 17 •作业2. 求下列方程的解: (1) 5x 8 3x 20 ; (2) 6 5x 8x 20 • 作业3. 求下列方程的解: (1) 3x 2(15 x ) 45; (2) 9x 2(2x 2) 19 作业4.解方程:3x 76x 745作业5.解下列方程组: (1)x 4y 0/ 、 5x 4y 33• (2) J•3x y 265x 3y 19右行lll H I中行H 川!左行 I第七讲解方程与解方程组答案:(1) 5; (2) 4; (3) 3.答案:(1) 4; (2) 5.答案:(1) 5; (2) 6.答案:(1) X 2 ; (2) x :. y 2 y 2答案:(1) 7 ; (2) 4; (3) 5.3“宀x 2 x 2答案:(1) ; (2) .y 1 y 3答案:(1) 2; (2) 4; (3) 3.答案:(1)8; (2) 6.答案:(1)9; (2) 1.答案:(1)X 11x 4(2)y 2y 1例题1.例题2.例题3.例题4.例题5.例题6.练习1.练习2.练习3.练习4.作业1. 答案:(1) 21;(2) 4.作业2. 答案:(1) 6;(2) 2 简答:提示,注意移项的时候要改变符号.作业3. 答案:(1) 15;(2) 3 简答:提示,去括号的时候注意括号前面是减号,去掉括号要变号.作业 4. 答案: 7 简答:首先要去分母,方程两边同时乘以 20 即可.简答:提示,第一个方程组采用代入消元法较为方便,第二个方 程组采用加减消元法较为方便.作业5. 答案:(1)x。

高斯小学奥数五年级上册含答案_列方程解应用题

高斯小学奥数五年级上册含答案_列方程解应用题

第二十四讲 列方程解应用题章 童童s 章章章足e 章 田米分广功输不程股 方粟裒少商均盈方勾 **■■¥«■♦■-12 34 5 6 7 89T5L T R1]^^W45«扎HJfJmSE 帀有带野学口u 播寸为n 大 H , ^jfis方三氐覃工皐.負井氐少广韋-貝期章.更*章、屋宀足瓠丹匹“.爼应星.吾:J1s W 11*厅□■!1F咅WIDW!"申祁T TV・0t£n 11■理.J1■昭时■求A 晰歼皈于"而•方*曲事• i . 4::刊"-31 .. e ■w UWBM 干中氏于 (S1 -#■ I ffi K3JB. ■方■"在古话中炉 冬曲星H 力艸母.中6:I Taf l■■1+#o m— K u<JCW M—+A o IWtO NII W頁O B1I中打c w o n£_n D£f f w11 so w —«■生产中的很多实际问题•其思想如图所示:列方程解应用题的方法和步骤步骤要求要注意的问题审题读懂题目、弄清题意、找出能够表示应用题全部含义的相等关系,分清已知数和未知数审题是分析解题的过程,解题程序中不用体现出来设元①设未知数②把所求的量用未知数表示③把各个量用含未知数的式子表示出来①设未知数一般是冋什么,就直接设什么,即直接设元②直接设兀有困难,可以间接设兀③设未知数时,必须写清未知数的单位列方程根据等量关系列出方程方程两边所用的单位需一致解方程解出这个方程的解,求出未知数的值如果是间接设元,求出的未知数还需要利用其他算式得到所求的量检验把方程的解代入方程检验,或根据实际问题进行检验检验的步骤在解题程序中不用写出来方程的解要符合实际情况,否则无解作答写出答案,作出结论这一步在列方程解应用题中必不可少,是一种规范要求方程是分析和解决问题的一种很有用的数学工具, 利用方程我们可以解决生活、学习和练一练F来我们就来看看如何用一元一次方程解应用题.例题1.一次考试,小高比萱萱高6分,但是比卡莉娅低3分,他们3人的平均分为91分.请问: 小高考了多少分?「分析」列方程的第一步是设未知数,本题中应该设什么为x?练习1.甲数比乙数的3倍还少6,两数的平均数是43.那么乙数是多少?例题2.阿范和阿统吃饺子,阿范一共要吃90个,而阿统一共要吃100个.如果阿范每分钟吃3个饺子,阿统每分钟吃5 个饺子,经过若干分钟后,阿范剩下的饺子数比阿统剩下的饺子数的2 倍少5 个.请问:这时阿范和阿统各吃了多少个饺子?「分析」如果设吃的饺子数为x,方程就会很不好列.不妨换个角度,设经过的时间为x分钟.练习2.箱子里有红、白两种玻璃球,红球数比白球数的3 倍多2 只.每次从箱子里取出7 只白球和1 5只红球.经过若干次以后,箱子里剩下3只白球和53只红球.那么箱子里原有红、白球各多少个?例题3.给某班分苹果,第一组每人3 个,第二组每人4 个,第三组每人5个,第四组每人6 个.已知第二组和第三组共有22 人,第一组人数是第二组的2 倍,第三组和第四组人数相等,总共分出去230个苹果.问该班一共有多少人?「分析」刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂. 题目中虽然有四个组,但这四组人数之间有很多联系. 如果某一组的人数知道了,其他各组的人数也就知道了. 根据这一点,我们可以设出其中一组的人数,列方程求解.练习3.司机小王身上带有1 元、2 元、5 元、10 元四种面值的纸币共82 元,其中1 元与2 元纸币共22张,5 元和10元纸币共7张,2元纸币的张数是5元纸币张数的2.5倍.问:小王身上有多少张10元纸币?看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会: 原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少. 只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.有些应用题中,如果只设一个未知数,有些未知量要表示出来就会比较困难. 这时就需要设两个未知数,列二元一次方程组来解题.例题4.墨莫去超市里买了一些士力架和德芙,共重266克,共花了30元•已知士力架每块3元,德芙每块2元.每块士力架35克,每块德芙14克.那么墨莫各买了多少块士力架和德芙?「分析」假设买了x块士力架,y块德芙,那么这两个未知数满足哪些等量关系?练习4.王老师抓了一群外星人,其中火星人有2个头3个脚,金星人有3个头5个脚,王老师数了数,发现总共有34个头、54个脚.那么请问王老师分别抓了多少个火星人和金星人?例题5.一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是1,那5么原分数是多少?「分析」设原来的分子是x,那原来的分母就是122 x •再由另外一个已知条件,不难列出方程求解.例题6.如下图的短除式所示,一个自然数被8除余1,所得的商被8除也余1,第二次所得的商被8除后余7,最后得到的商是a.同时这个自然数被17除余4,所得的商被17除余15,最后得到的商是a的2倍.求这个自然数.「分析」所求的自然数8 .. 、山-•、、/ 第一次商这是一个带余除法的问题,蕴含着等量关系:所求的自然数……余417 入第次商——……余152a被除数=除数商+余数.利用这一等量关系以及图中的两个短除式, 式). 不难用字母a表示出原来的自然数(有两种不同表示方多送几份牛奶最近,动物们流行喝鲜奶,都在鲜奶公司定了份牛奶,鲜奶公司每天派小狗早早和巧巧送鲜奶到东西大街,早早负责送东边的住户,巧巧负责送西边的住户,两边住户数目一样多。

五年级数学下册奥数50题、附解析及参考答案

五年级数学下册奥数50题、附解析及参考答案

五年级数学下册奥数50题、附解析及参考答案一、工程问题1.甲乙两个水管单独开,注满一池水需要20小时和16小时。

丙水管单独开,排一池水要10小时。

如果水池没水,同时打开甲乙两水管,5小时后再打开排水管丙,问水池注满还需要多少小时?答:甲水管每小时注入1/20的水量,乙水管每小时注入1/16的水量,丙水管每小时排出1/10的水量。

在5小时内,甲乙两水管共注入了5/20+5/16=19/40的水量,水池中水量为19/40.再打开丙水管后,每小时水池中的水量减少1/10-1/20-1/16=3/80,所以注满整个水池还需要(1-19/40)/(3/80)=16小时。

2.修一条水渠,甲队单独修需要20天完成,乙队单独修需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低。

甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?答:设甲队合作x天,乙队合作XXX,则有以下两个方程:20x/(5/4)+30y/(10/9)=1.(甲、乙两队合作完成1个单位的工程)20x/(5/4)+(30-y)/(1/3)=16.(甲、乙两队合作16天完成工程)解得x=8,y=6,所以两队需要合作8天。

3.一件工作,甲、乙合做需4小时完成,乙、XXX做需5小时完成。

现在先请甲、XXX做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?答:设甲、乙、丙每小时完成的工作量分别为a、b、c,则有以下三个方程:2(a+c)+6b=1.(甲、乙、丙合作完成1个单位的工作)4(a+b)=1.(甲、乙合作完成1个单位的工作)5(b+c)=1.(乙、丙合作完成1个单位的工作)解得a=1/20,b=1/60,c=1/12,所以乙单独做完这件工作需要6b=6/60=1/10小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

高斯小学奥数五年级上册含答案_列方程解应用题

高斯小学奥数五年级上册含答案_列方程解应用题

第二十四讲列方程解应用题---------------------------------------------------------------------方程是分析和解决问题的一种很有用的数学工具,利用方程我们可以解决生活、学习和生产中的很多实际问题.其思想如图所示:实际问题设未知数列方程数学问题(方程)解方程实际问题的答案检验列方程解应用题的方法和步骤数学问题的解步骤审题设元要求读懂题目、弄清题意、找出能够表示应用题全部含义的相等关系,分清已知数和未知数①设未知数②把所求的量用未知数表示③把各个量用含未知数的式子表示要注意的问题审题是分析解题的过程,解题程序中不用体现出来①设未知数一般是问什么,就直接设什么,即直接设元②直接设元有困难,可以间接设元出来列方程根据等量关系列出方程③设未知数时,必须写清未知数的单位方程两边所用的单位需一致解方程检验作答解出这个方程的解,求出未知数的值把方程的解代入方程检验,或根据实际问题进行检验写出答案,作出结论如果是间接设元,求出的未知数还需要利用其他算式得到所求的量检验的步骤在解题程序中不用写出来方程的解要符合实际情况,否则无解这一步在列方程解应用题中必不可少,是一种规范要求(练一练用含有字母的式子填空:1. (1)x 的 5 倍:_______; 2)x 的 k 倍:_______;2. 一块橡皮的单价是 x 元,笔盒的单价是橡皮的单价的 8 倍,那么笔盒的单价是_______元;3. 一辆摩托车的速度是 v 千米/小时,那么它 t 小时行驶的路程为_______千米;4. 某商店原有 5 袋大米,每袋大米为 x 千克,上午卖出 3 袋,下午又购进同样包装的大米 4 袋,进货后这个商店有大米_______千克.选择合适的量设为未知数,并列出方程:5. 环形跑道一周长 400 米,沿跑道跑多少圈,可以跑 3000 米?6. 一个梯形的下底比上底多 2 厘米,高是 5 厘米,面积是 40 平方厘米.求上底.7. 甲种铅笔每枝 0.3 元,乙种铅笔每枝 0.6 元,用 9 元钱买了两种铅笔共 20 枝,两种铅笔各买了多少枝?下来我们就来看看如何用一元一次方程解应用题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - 例题 1.一次考试,小高比萱萱高 6 分,但是比卡莉娅低 3 分,他们 3 人的平均分为 91 分.请问: 小高考了多少分?「分析」列方程的第一步是设未知数,本题中应该设什么为 x ?练习 1.甲数比乙数的 3 倍还少 6,两数的平均数是 43.那么乙数是多少?例题2.阿范和阿统吃饺子,阿范一共要吃90个,而阿统一共要吃100个.如果阿范每分钟吃3个饺子,阿统每分钟吃5个饺子,经过若干分钟后,阿范剩下的饺子数比阿统剩下的饺子数的2倍少5个.请问:这时阿范和阿统各吃了多少个饺子?「分析」如果设吃的饺子数为x,方程就会很不好列.不妨换个角度,设经过的时间为x分钟.练习2.箱子里有红、白两种玻璃球,红球数比白球数的3倍多2只.每次从箱子里取出7只白球和15只红球.经过若干次以后,箱子里剩下3只白球和53只红球.那么箱子里原有红、白球各多少个?例题3.给某班分苹果,第一组每人3个,第二组每人4个,第三组每人5个,第四组每人6个.已知第二组和第三组共有22人,第一组人数是第二组的2倍,第三组和第四组人数相等,总共分出去230个苹果.问该班一共有多少人?「分析」刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂.题目中虽然有四个组,但这四组人数之间有很多联系.如果某一组的人数知道了,其他各组的人数也就知道了.根据这一点,我们可以设出其中一组的人数,列方程求解.练习3.司机小王身上带有1元、2元、5元、10元四种面值的纸币共82元,其中1元与2元纸币共22张,5元和10元纸币共7张,2元纸币的张数是5元纸币张数的2.5倍.问:小王身上有多少张10元纸币?------------------------------------------------------------------------------------------看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会:原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少.只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.有些应用题中,如果只设一个未知数,有些未知量要表示出来就会比较困难.这时就需一个分数,分子与分母的和是 122,如果分子、分母都减去19,得到的分数约简后是 ,那所求的自然数 ……余 4 第一次商……余 1 17 第一次商 ……余 15 第二次商 ……余 7 2a要设两个未知数,列二元一次方程组来解题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题 4.墨莫去超市里买了一些士力架和德芙,共重 266 克,共花了 30 元.已知士力架每块 3 元, 德芙每块 2 元.每块士力架 35 克,每块德芙 14 克.那么墨莫各买了多少块士力架和德芙? 「分析」假设买了 x 块士力架,y 块德芙,那么这两个未知数满足哪些等量关系?练习 4.王老师抓了一群外星人,其中火星人有 2 个头 3 个脚,金星人有 3 个头 5 个脚,王老师数了 数,发现总共有 34 个头、54 个脚.那么请问王老师分别抓了多少个火星人和金星人?例题 5.15么原分数是多少?「分析」设原来的分子是 x ,那原来的分母就是 122 - x .再由另外一个已知条件,不难列 出方程求解.例题 6.如下图的短除式所示,一个自然数被 8 除余 1,所得的商被 8 除也余 1,第二次所得的商被 8 除后余 7,最后得到的商是 a .同时这个自然数被 17 除余 4,所得的商被 17 除余 15,最 后得到的商是 a 的 2 倍.求这个自然数.8 所求的自然数……余 1 1788a「分析」这是一个带余除法的问题,蕴含着等量关系: 被除数=除数 ⨯ 商+余数 .利用这 一等量关系以及图中的两个短除式,不难用字母 a 表示出原来的自然数(有两种不同表示方 式).“多送几份牛奶最近,动物们流行喝鲜奶,都在鲜奶公司定了份牛奶,鲜奶公司每天派小狗早早和巧巧送鲜奶到东西大街,早早负责送东边的住户,巧巧负责送西边的住户,两边住户数目一样多。

五年级奥数.应用题.不定方程与不定方程组的解法(ABC级).教师版

五年级奥数.应用题.不定方程与不定方程组的解法(ABC级).教师版
(3)余数性质的应用(和、差、积的性质及同余的性质)
(1)利用整除及奇偶性解不定方程
(2)不定方程的试值技巧
(3)学会解不定方程的经典例题
一、利用整除性质解不定方程
【例 1】求方程2x-3y=8的整数解
【考点】不定方程
1【解析】方法一:由原方程,易得2x=8+3y,x=4+ y,因此,对y的任意一个值,都有一个x与之对应,并且,此时x与y的值必定满足原方程,故这样的x与y是原方程的一组解,即原方程的解可表为: ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无穷多组解.
【答案】
【巩固】解方程 ,(其中x、y均为正整数)
【考点】不定方程
2【解析】方法一: ,4y是4的倍数,和89除以4余1,所以7x除以4余1(7÷4≡3),可以看成3x除以4余1,根据这个情况用余数的和与乘积性质进行判定为(x<13)
x=1,3x=3,3÷4≡3(舍)
x=2,3x=6,6÷4≡2(舍)
【答案】
【例 7】解不定方程 (其中x、y、z均为正整数)
【考点】不定方程【难度】3星【题型】解答
1【解析】根据等式的性质将第一个方程整理得 ,根据消元思想与第二个式子相减得 ,根据等式的性质两边同时除以2得: ,根据等式性质 为4的倍数,100为4的倍数,所以 为4的倍数,所以 为4的倍数试值如下
方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8成立,y必为偶数,
当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。
【答案】无穷多个解
【巩固】求方程2x+6y=9的整数解
【考点】不定方程
2【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但2 9,因此,不论x和y取什么整数,2x+6y都不可能等于9,即原方程无整数解.

五年级奥数题及答案解析

五年级奥数题及答案解析

1.某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析与解答】通过前两个已知条件,我们可以求出火车的车速和火车的车身长。

(342—234)÷(23—17)= 18(米)车速18×23—342 = 72(米)车身长两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程÷速度和 = 相遇时间”,可以求出两车错车需要的时间。

(72 + 88)÷(18 + 22)= 4(秒)答:两车错车而过,需要4秒钟。

2.(年龄问题)3年前哥哥与弟弟的年龄比为3:1,2年后哥哥和弟弟的年龄比为5:2,问哥哥和弟弟现在的年龄和为多少?【分析与解答】用方程组解,设哥哥和弟弟现在的年龄分别为a和b,则有:(a-3):(b-3)=3:1(a+2):(b+2)=5:2解方程组得:a=48,b=18,所以兄弟两人的年龄和是64。

答:哥哥和弟弟现在的年龄和是64。

3.甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则两人在乙动身2个半小时后相遇;若乙先出发2小时,则在甲动身3小时后两人相遇。

求甲乙两者的速度。

【分析与解答】设甲行走的速度为x km/h,乙行走的速度为y km/h.根据题意得:2x+2.5(x+y)=362y+3(x+y)=36解得:x=6y=3.6答:甲的速度为6千米/时,乙的速度为3.6千米/时.4.有一条长500米的环形跑道,甲乙两人同时从跑到上的某一点出发,如果反方向而跑,则1分钟后相遇,如果同向而跑,则10分钟后追上,已知甲比乙跑的快,问:甲乙两人每分钟各跑多少米?【分析与解答】500÷1=500米/分钟【速度和】【相遇问题】500÷10=50米/分钟【速度差】【追击问题】(500+50)÷2=275米/分钟【甲的速度】(500-50)÷2=225米/分钟【乙的速度】答:甲每分钟跑275米,乙每分钟跑225米.5.某校班级学生.男生占全班总人数的7/15,现在调走1名男生,现在男生占全班人数的5/11,求现在全班有多少人?【分析与解答】男生占全班总人数的7/15,就是说男的占7份,女的占8份,共15份.抓住女生为不变量,总数是女生的15/8;现在男生占全班人数的5/11,就是说男的占5份,女的占6份,共11份.抓住女生为不变量,总数是女生的11/6:1对应15/8-11/6 =1÷﹙15/8-11/6﹚=24人现在的:24×11/6=44人6.甲、乙两车同时从A地出发开往B地。

小学五年级上学期数学培优奥数讲义(全国通用)-第9讲 解方程(含答案)

小学五年级上学期数学培优奥数讲义(全国通用)-第9讲  解方程(含答案)

第9讲解方程知识与方法1、含有未知数的等式叫方程。

2、解方程是依据等式的性质而进行的。

3、等式的性质:(1)等式两边同时加上或减去同一个数,左右两边仍然相等;(2)等式两边同时乘或除以同一个不为0的数,左右两边仍然相等。

初级挑战1解下列方程。

8x+5x=182思路引领:左边两项都含有x,可先用乘法分配律合并,再根据等式性质解方程。

答案:8x+5x=182解: 13x=18213x÷13=182÷13x=14能力探索1解下列方程。

(1)23x-12x=12.1 (2)43x+22x=(25+40)×3答案:(1)23x-12x=12.1 (2)43x+22x=(25+40)×3解:23x-12x=12.1 解: 65x=65×311x=12.1 65x÷65=65×3÷6511x÷11=12.1÷11 x=3x=1.1初级挑战2解下列方程。

(1)165-2x=23 (2)(161-17)÷x=48思路引领:(1)当减数含有未知数时,同样可利用等式性质,在等式两边加上相同的未知数,使方程变为一般形式,再根据等式性质求解。

(2)当除数含有未知数时,也可利用等式性质,在等式两边乘上相同的未知数,使方程变为一般形式,再根据等式性质求解。

能直接计算的要先计算出来。

答案:(1)165-2x=23 (2)(161-17)÷x=48解:165-2x+2x=23+2x解:144÷x=482x+23=165 144÷x×x=48x2x+23-23=165-23 48x=1442x=142 48x÷48=144÷482x÷2=142÷2 x=3x=71能力探索2解下列方程。

(1)(6.7+1.7)÷x=1.4 (2)7.9×12-x=27.4答案:解: 8.4÷x=1.4 解: 94.8-x=27.48.4÷x×x=1.4×x 94.8-x+x=27.4+x8.4=1.4x 94.8=27.4+x1.4x=8.4 27.4+x-27.4=94.8-27.41.4x÷1.4=8.4÷1.4 x=67.4x=6中级挑战1解下列方程。

五年级奥数行程问题(三)列方程解行程问题

五年级奥数行程问题(三)列方程解行程问题

,乙每分钟走45米。经过几分钟B地在甲、乙两人之间的中点处?
2,东、西两镇相距60千米。甲骑车行完全程要4小时,乙骑车行完全程要5小时。现在两人 同时从东镇到西镇去,经过多少小时后,乙剩下的路程是甲剩下路程的4倍?
3,老师今年32岁,学生今年8岁。再过几年老师的年龄是学生的3倍?
例4: 快、慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米。途中快车 因故停留3小时,结果两车同时到达B地。求A、B两地间的距离。
分析与解答:
因为这位同学在前一半时间跑步的速度大于后一半时间跑步的速度,所以前一半时间所跑的 路程一定大于半圈180米,即在跑前半圈时的速度都是每秒5米,跑前半圈要用180÷5=36秒 。如果再求出跑一圈的时间,就能求出跑后半圈的时间了。为了方便计算,我们假设他按题 中跑法跑了2圈。
解:设跑一圈用X秒,则跑二圈共跑720米。 5X+4X=720 解得 X=80 80-36=44(秒) 答:他后一半路程用了44秒。
五年级奥数行程问题(三)列方 程解行程问题
专题分析:
很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。 方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟 悉的数量关系。因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知 数,根据自己最熟悉的等量关系列出方程,方便解题。
好好学习
解:设乙车开出X小时和甲车相遇。
38×(X+0.5)+42X=259
解得
X=3
答:乙车开出3小时后和甲车相遇。
练习一
1,甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。1小时后,货车从乙地开出,每 小时行62千米。货车开出几小时后与客车相遇?

小学五年级奥数第10课《列方程解应用题》试题附答案

小学五年级奥数第10课《列方程解应用题》试题附答案

小学五年级上册数学奥数知识点讲解第10课《列方程解应用题》试题附答案第十讲列方程解应用题列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.而找出等量关系又在于熟练运用数量之间的各种已知条件.掌握了这两点就能正确地列出方程。

列方程解应用题的一般步骤是:①弄清题意,找出已知条件和所求问题;②依题意确定等量关系,设未知数X;③根据等量关系列出方程;④解方程;⑤检验,写出答案。

例1列方程,并求出方程的解。

①与减去一个数,所得差与1.35加上苧的和相等,求这个数。

5O例2已知篮球、足球、排球平均每个36元.篮球比排球每个多10元,足球比排军每个多8元,每个足球多少元?例3妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果,如果每天吃6个,则又少8个苹果.问:妈妈买回苹果多少个?计划吃多少天?例4甲、乙、丙、丁四人共做零件270个.如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?(这是设间接未知数的例题)例6一块长方形的地,长和宽的比是5:3,长比宽多24米,这块地的面积是多少平方米?例7某县农机厂金工车间有77个工人.已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种重件3个。

但加工3个甲种零件,1个乙种妻侔和9个丙种零件才恰好配成一套.问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套?答案例1列方程,并求出方程的解。

①?减去一个数,所得差与1.35加上;的和相等,求这个数。

5O解:设这个数为x∙则依题意有11 2713--X=——+一3 206112713X20^^T,3χβ20检验:把X=2代入原方程,左边=3,-京=32,与右边相等,所以X=220 32060 20 是原方程的解。

小学五年级奥数方程应用题100道及答案完整版

小学五年级奥数方程应用题100道及答案完整版

小学五年级奥数方程应用题100道及答案完整版题目1商店有一批苹果,卖出180 千克后,剩下的是卖出的4 倍,商店原来有苹果多少千克?设商店原来有苹果x 千克,则:x - 180 = 4×180,解得x = 900 千克。

题目2小明和小红共有邮票100 张,如果小明给小红10 张,两人的邮票就一样多,小明和小红原来各有多少张邮票?设小明原来有x 张邮票,小红原来有y 张邮票,则:x + y = 100,x - 10 = y + 10,解得x = 60,y = 40。

题目3果园里有苹果树和梨树共360 棵,苹果树的棵数是梨树的 3 倍,苹果树和梨树各有多少棵?设梨树有x 棵,苹果树有3x 棵,则:x + 3x = 360,解得x = 90,3x = 270。

题目4学校买了一批篮球和足球,篮球的个数是足球的2 倍,篮球比足球多18 个,篮球和足球各有多少个?设足球有x 个,篮球有2x 个,则:2x - x = 18,解得x = 18,2x = 36。

题目5甲乙两车同时从相距480 千米的两地相对而行,甲车每小时行45 千米,5 小时后两车相遇,乙车每小时行多少千米?设乙车每小时行x 千米,则:(45 + x)×5 = 480,解得x = 51。

题目6书架上有两层书,上层书的本数是下层的3 倍,如果从上层拿60 本到下层,两层书的本数就一样多,上下层原来各有多少本书?设下层原来有x 本书,上层原来有3x 本书,则:3x - 60 = x + 60,解得x = 60,3x = 180。

题目7鸡兔同笼,共有头30 个,脚86 只,鸡和兔各有多少只?设鸡有x 只,兔有y 只,则:x + y = 30,2x + 4y = 86,解得x = 17,y = 13。

题目8妈妈买了5 千克苹果和3 千克香蕉,一共花了40 元,苹果每千克6 元,香蕉每千克多少元?设香蕉每千克x 元,则:5×6 + 3x = 40,解得x = 10/3 元。

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)列方程解应用题(行程问题)相遇是行程问题的基本类型,在相遇问题中可以用速度×时间=路程的公式求解全程。

下面我们来看几个例子。

例1:AB两地相距352千米。

甲乙两辆汽车从A、B两地相对开出。

甲车每小时行36千米,乙车每小时行44千米。

乙车因有事,在甲车开出32千米后才出发。

求出两车相遇需要多少小时?分析解答:为了求出两车相遇的时间,需要找到速度和、时间和和总路程之间的关系式。

根据已知条件,可以设相遇时间为X小时,列出方程:36+44)×x+32=352解方程得到X=4,因此两车相遇需要4小时。

练题:甲乙两地相距300千米,客车从甲地开往乙地,每小时行40千米。

1小时后,货车从乙地开往甲地,每小时行60千米。

货车出发几小时后与客车相遇?例2:甲乙两人从A、B两地相向而行,甲每分钟行52米,乙每分钟行48米。

两人走了10分钟后交叉而过,且相距64米。

甲从A地到B地需要多少分钟?分析解答:为了求出甲从A地到B地需要的时间,需要知道A、B两地的路程和甲的速度。

设A、B两地相距X米,则可以列出方程:52+48)×10-X=64解方程得到X=936,因此甲从A地到B地需要18分钟。

练题:从A地到B地,水路比公路近40千米。

上午8时,一艘轮船从A地驶向B地,3小时后一辆汽车从A地到B地,它们同时到达B地。

轮船的速度是每小时24千米,汽车的速度是每小时40千米。

求A地到B地水路、公路是多少千米?例3:XXX和XXX分别从一座桥的两端同时相向出发,往返于两端之间。

XXX每分钟走60米,XXX每分钟走75米。

经过6分钟两人第二次相遇,这座桥长多少米?分析解答:第一次相遇就是行了一个全程,第二次相遇就是行了三个全程。

设这座桥长X米,则可以列出方程:3X=(60+75)×6解方程得到X=270,因此这座桥长270米。

小学五年级数学思维训练(奥数)《巧解方程》讲解及练习题(含答案)

小学五年级数学思维训练(奥数)《巧解方程》讲解及练习题(含答案)

巧解方程专题简析:学习解方程。

首先,我们要对方程进行观察,将能够先计算的部分先计算或合并,使其化简,然后再求出x的值。

例1:解方程:6x+9x-13=17分析与解答方程左边的6x与9x可以合并为15x,因此,可以将原方程转化成15x-13=17,从而顺利地求出方程的解。

解:6x+9x-13=17,15x-13=1715x=30x= 2随堂练习:解方程7.5x-4.1x+1.8=12例2 解方程:8x-16=4x分析与解答方程胡两边都有X,运用等式的性质,我们先将方程两边同时减去4x,然后再方程两边同时加上16变为8x-4x=16.8x-16=4x解:8x-4x=164x= 16x=4随堂练习:解方程10x-7=4.5x+20.5 16-2x=6x例3 解方程:4(4x-11)=3(22-2x)分析与解答第一步先运用乘法分配律去掉括号;第二步,运用等式的性质,便未知数和已知数分别在等号的两边;第三步把等号两边的未知数与数合并;第四步求出方程的解4(4x-11)=3(22-2x)解:16x-44=66-6x 去括号16x+6x=66+44 等式的性质22x=110x=5随堂练习解方程7(2x-6)=84 15(22-x)+2=68x例4 解方程:x÷3=(2x-11) ÷5分析与解答我们先根据等式的性质,在方程的两边同时乘3和5的最小公倍数,然后再运用前面的方法进行求解。

解:x÷3×15=(2x-11)÷5×155x=3(2x-11)5x=6x-33x=33随堂练习:解方程:2x÷3=(2x-5)÷2 (3x-0.5)÷2=2x÷3拓展应用1、解方程5x+0.7x-3x=10-1.92、解方程7(2x-6)=843、解方程5(x-8)=3x4、解方程5.9x-9=4.2x+2.95、解方程9(2x-3)-2=5(2x-1)6、解方程:x÷5+0.5=x÷47、在下面的□内填入相同的数,使等式成立。

高斯小学奥数五年级上册含答案_列方程解应用题

高斯小学奥数五年级上册含答案_列方程解应用题

第二十四讲列方程解应用题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 方程是分析和解决问题的一种很有用的数学工具,利用方程我们可以解决生活、学习和生产中的很多实际问题.其思想如图所示:列方程解应用题的方法和步骤练一练用含有字母的式子填空:1.(1)x的5倍:_______;(2)x的k倍:_______;2.一块橡皮的单价是x元,笔盒的单价是橡皮的单价的8倍,那么笔盒的单价是_______元;3.一辆摩托车的速度是v千米/小时,那么它t小时行驶的路程为_______千米;4.某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米_______千克.选择合适的量设为未知数,并列出方程:5.环形跑道一周长400米,沿跑道跑多少圈,可以跑3000米?6.一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米.求上底.7.甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?下来我们就来看看如何用一元一次方程解应用题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -例题1.一次考试,小高比萱萱高6分,但是比卡莉娅低3分,他们3人的平均分为91分.请问:小高考了多少分?「分析」列方程的第一步是设未知数,本题中应该设什么为x?练习1.甲数比乙数的3倍还少6,两数的平均数是43.那么乙数是多少?例题2.阿范和阿统吃饺子,阿范一共要吃90个,而阿统一共要吃100个.如果阿范每分钟吃3个饺子,阿统每分钟吃5个饺子,经过若干分钟后,阿范剩下的饺子数比阿统剩下的饺子数的2倍少5个.请问:这时阿范和阿统各吃了多少个饺子?「分析」如果设吃的饺子数为x,方程就会很不好列.不妨换个角度,设经过的时间为x分钟.练习2.箱子里有红、白两种玻璃球,红球数比白球数的3倍多2只.每次从箱子里取出7只白球和15只红球.经过若干次以后,箱子里剩下3只白球和53只红球.那么箱子里原有红、白球各多少个?例题3.给某班分苹果,第一组每人3个,第二组每人4个,第三组每人5个,第四组每人6个.已知第二组和第三组共有22人,第一组人数是第二组的2倍,第三组和第四组人数相等,总共分出去230个苹果.问该班一共有多少人?「分析」刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂.题目中虽然有四个组,但这四组人数之间有很多联系.如果某一组的人数知道了,其他各组的人数也就知道了.根据这一点,我们可以设出其中一组的人数,列方程求解.练习3.司机小王身上带有1元、2元、5元、10元四种面值的纸币共82元,其中1元与2元纸币共22张,5元和10元纸币共7张,2元纸币的张数是5元纸币张数的2.5倍.问:小王身上有多少张10元纸币?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会:原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少.只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.有些应用题中,如果只设一个未知数,有些未知量要表示出来就会比较困难.这时就需要设两个未知数,列二元一次方程组来解题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.墨莫去超市里买了一些士力架和德芙,共重266克,共花了30元.已知士力架每块3元,德芙每块2元.每块士力架35克,每块德芙14克.那么墨莫各买了多少块士力架和德芙? 「分析」假设买了x 块士力架,y 块德芙,那么这两个未知数满足哪些等量关系?练习4.王老师抓了一群外星人,其中火星人有2个头3个脚,金星人有3个头5个脚,王老师数了数,发现总共有34个头、54个脚.那么请问王老师分别抓了多少个火星人和金星人?例题5.一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是15,那么原分数是多少?「分析」设原来的分子是x ,那原来的分母就是122x -.再由另外一个已知条件,不难列出方程求解.例题6.如下图的短除式所示,一个自然数被8除余1,所得的商被8除也余1,第二次所得的商被8除后余7,最后得到的商是a .同时这个自然数被17除余4,所得的商被17除余15,最后得到的商是a 的2倍.求这个自然数.「分析」这是一个带余除法的问题,蕴含着等量关系:⨯被除数=除数商+余数.利用这一等量关系以及图中的两个短除式,不难用字母a 表示出原来的自然数(有两种不同表示方式).a 所求的自然数 8……余1 第一次商 8 ……余1 8第二次商 ……余7 2a 所求的自然数 17……余4 第一次商 17……余15多送几份牛奶最近,动物们流行喝鲜奶,都在鲜奶公司定了份牛奶,鲜奶公司每天派小狗早早和巧巧送鲜奶到东西大街,早早负责送东边的住户,巧巧负责送西边的住户,两边住户数目一样多。

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案18列方程解应用题 (二)

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案18列方程解应用题 (二)

年 级五年级 学 科 奥数 版 本 通用版 课程标题 列方程解应用题 (二)列方程解决实际问题,难度往往不在“解”,而在“列”。

练习的时候应着重思考如何列好方程。

一般来讲,问什么就设什么。

有的时候打破这个常规,可能得到更美观的方程。

有的题目设好了未知数,会发现无论如何也求不出未知数是多少。

这可能是因为无论未知数是多少,题目所问的数量总是不变的。

合理设置未知数:“甲、乙两班人数之比为12:13”,设未知数可以设甲班12x 人,乙班13x 人。

这样x 是一个整数。

如果设甲班x 人,乙班1312x 人,就产生了“x 是12的倍数”这个奇怪的条件,不利于解题,还有可能出现求不出未知数的情形。

“某人去学校时速4公里,回家时速3公里,求平均速度。

”设路程为x 公里,224/743x x x ===+总路程平均速度公里小时总时间这个未知数x 是求不出来的。

例1 兄弟两人每月收入之比为4:3,支出钱数之比为18:13,他们每月都结余360元,求兄弟两人月收入分别为多少?分析与解:设兄弟两人支出钱数分别为18,13x x 。

(18360):(13360)4:3180x x x ++== 兄弟两人月收入分别为3600元、2700元。

例2 某工厂生产一种产品,只要成本下降6.4%,利润率就会提高8个百分点,求原利润率。

分析与解:前后售价没变,设一开始利润率为x ,则之后利润率变成0.08x +。

原成本100元,现成本93.6元。

100(1)93.6(1.08)x x ⨯+=⨯+0.17x =原利润率为百分之十七。

例3 一位牧羊人赶着一群羊去放牧,跑掉一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9:7;过了一会儿跑走的公羊又回到羊群,却又跑掉了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7:5。

这群羊原来有多少只?分析与解:设跑掉一只公羊时,公羊与母羊分别为9x 只,7x 只。

第二次数羊的时候公羊与母羊分别为(9x +1)只,(7x -1)只。

小学五年级奥数第10课列方程解应用题试题附答案-精品

小学五年级奥数第10课列方程解应用题试题附答案-精品

小学五年级上册数学奥数知识点讲解第1()课《列方程解应用题》试题附答案第十讲列方程解应用题列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.而找出等量关系又在于熟练运用数量之间的各种已知条件.掌握了这两点就能正确地列出方程。

列方程解应用题的一般步骤是:①弄清题意,找出己知条件和所求问题;②依题意确定等量关系,设未知数X;③根据等量关系列出方程;©解方程;⑤检验,写出答案。

例1列方程,并求出方程的解。

①?减去一个数,所得差与 1.35加上孝的和相等,求这个数。

56例2已知篮球、足球、排球平均每个36元.篮球比排球每个多10元,足球比排谏每个多8元,每个足球多少元?例3妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果,如果每天吃6个,则又少8个苹果.问:妈妈买回苹果多少个?计划吃多少天?例4甲、乙、丙、丁四人共做零件270个,如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?(这是设间接未知数的例题)例6一块长方形的地,长和宽的比是5:3,长比宽多24米,这块地的面积是多 少平方米?例7某县农机厂金工车间有77个工人.已知每个工人平均每天可以加工甲种零 件5个或乙种零件4个,或丙种零件3个。

但加工3个甲种零件,1个乙种零件和9 个丙种零件才恰好配成一套.问:应安排生产甲、乙、丙种零件各多少人时, 才能使生产的三种零件恰好配套?答案例1列方程,并求出方程的解。

①?减去一个数,所得差与1.35加上:的和相等,求这个数。

3 o解:设这个数为x.则依题意有2713一十一206112713T-20-T ,320,检验:把x=2代入原方程,左边=3"-嘉=3楼,与右边相等.所以/U 5NUOUZU 是原方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档