圆柱和圆锥体积中的典型题--等积变形

合集下载

体积等积变形法计算公式

体积等积变形法计算公式

体积等积变形法计算公式体积等积变形法是一种用于计算物体体积的方法,它基于物体在变形过程中体积不变的原理。

这种方法在工程学、物理学和数学中都有广泛的应用,可以帮助人们更准确地计算物体的体积,从而在设计和制造过程中提高效率和质量。

体积等积变形法的基本原理是,当一个物体经历形状的变化时,其体积保持不变。

这意味着无论物体变成什么形状,其体积都是相同的。

利用这一原理,我们可以通过计算物体在不同形状下的体积来得到最终的体积。

下面我们将介绍一些常见的体积等积变形法的计算公式。

1. 圆柱体的体积计算公式。

圆柱体是一个常见的几何体,其体积可以通过体积等积变形法来计算。

圆柱体的体积公式为V=πr²h,其中V表示体积,π表示圆周率,r表示圆柱体的半径,h表示圆柱体的高。

2. 球体的体积计算公式。

球体是一个完全圆形的几何体,其体积也可以通过体积等积变形法来计算。

球体的体积公式为V=4/3πr³,其中V表示体积,π表示圆周率,r表示球体的半径。

3. 锥体的体积计算公式。

锥体是一个圆锥形的几何体,其体积同样可以通过体积等积变形法来计算。

锥体的体积公式为V=1/3πr²h,其中V表示体积,π表示圆周率,r表示锥体的底面半径,h表示锥体的高。

4. 直角三棱柱的体积计算公式。

直角三棱柱是一个底面为直角三角形的几何体,其体积也可以通过体积等积变形法来计算。

直角三棱柱的体积公式为V=1/2abH,其中V表示体积,a和b表示直角三角形的两条直角边的长度,H表示直角三棱柱的高。

5. 平行四边形棱柱的体积计算公式。

平行四边形棱柱是一个底面为平行四边形的几何体,其体积同样可以通过体积等积变形法来计算。

平行四边形棱柱的体积公式为V=Ah,其中V表示体积,A表示平行四边形的面积,h表示平行四边形棱柱的高。

以上是一些常见的几何体的体积计算公式,它们都可以通过体积等积变形法来计算。

在实际应用中,我们可以根据物体的形状和特点选择合适的计算公式,从而更准确地计算物体的体积。

圆柱体积 的等积变换 练习题(附答案)

圆柱体积 的等积变换 练习题(附答案)

圆柱体积的等积变换练习题(附答案)1、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?2、把一个长10分米,宽6分米,高0.5分米的长方体铸造成一个圆柱体,这个圆柱体的体积应该是多少?3、一个长8分米,宽6分米,高4分米的长方体与一个圆柱体的体积相等,高相等,这个圆柱的底面积是多少?4、把一块长31.4厘米,宽20厘米,高4厘米的长方体钢坯,熔化后浇铸成底面半径是4厘米的圆柱体,圆柱体的高是多少厘米?(损耗不计)5、把一块长12.56厘米,宽2厘米,高10厘米的长方体铁块熔化后铸成底面半径是2厘米的圆柱,这个圆柱的高是多少厘米?6、把一个楞长是4厘米的正方体铁块浸没在一个圆柱形杯子中,水面升高0.8厘米,求杯子的底面积是多少?7、在一个底面直径为20厘米的圆柱形容器中装有水,将一个底面直径为10厘米的圆柱铁锤放入水中,当铁锤从圆柱形容器中取出后,水面下降1厘米,求铁锤的高。

8、一个圆柱形水桶的底面直径是40厘米,桶内水面的高度是20cm ,当把一些碎石头放入水中后,水面升高到30cm,你知道这些碎石头的体积是多少立方分米吗?9、一个圆柱形玻璃杯底面半径是10厘米,里面装不水,水的高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7.8克)10、一个圆柱形玻璃杯底面直径是20厘米,里面装有水,水的高度是15厘米,把一小块铁块放进杯中,水上升到35厘米,这块铁块重多少千克?(每立方厘米铁重7.8克)11、把一个棱长为6分米的正方体木块,削成一个最大的圆柱,这个圆柱的体积多少立方分米?12、把一个棱长为6分米的正方体木块,加工成一个最大的圆柱,求削去木块的体积。

答案:1、12×12×12=1728立方分米2、10×6×0.5=30立方分米3、8×6=48立方分米4、31.4×20×4=2512立方厘米 4×4×3.14=50.24平方厘米2512÷50.24=50厘米5、12.56×2×10=251.2立方厘米 2×2×3.14=12.56平方厘米251.2÷12.56=20厘米6、4×4×4=64立方厘米 64÷0.8=80平方厘米7、20÷2=10厘米 10×10×3.14×1=314立方厘米10÷2=5厘米 5×5×3.14=78.5平方厘米314÷78.5=4厘米8、20厘米=2分米 30厘米=3分米 3-2=1分米 40厘米=4分米4÷2=2分米 2×2×3.14×1=12.56立方分米9、10×10×3.14=314平方厘米 15-12=3厘米314×3=942立方厘米 942×7.8=7347.6克10、20÷2=10厘米 10×10×3.14=314平方厘米35-15=20厘米 314×20=6280克=6.28千克11、6÷2=3分米 3×3×3.14=28.26平方分米 28.26×6=169.56立方分米12、6×6×6=216立方分米 6÷2=3分米 3×3×3.14=28.26平方分米 28.26×6=169.56立方分米 216-169.56=46.44立方分米。

等积变形的原理

等积变形的原理

等积变形的原理嘿,朋友!你有没有想过,一个东西的形状变了,可它占的地方大小却能不变呢?这就是等积变形的奇妙之处啦。

我记得小时候,我和小伙伴小明一起玩泥巴。

我们把一团泥巴捏成各种形状。

有时候捏成一个圆球,有时候又把它拍成一个扁扁的饼状。

我就好奇地问小明:“你说这泥巴一会儿圆一会儿扁的,它占的地儿是不是不一样啦?”小明挠挠头说:“我觉得好像不一样呢,圆的看起来小,扁的看起来大。

”其实啊,我们那时候不知道,这团泥巴不管变成啥形状,它的体积是不变的。

这就像是水在不同的容器里,不管是装在高高的瓶子里,还是矮矮的碗里,水的量,也就是体积,是不会变的。

那等积变形到底是咋回事呢?从数学的角度来讲,等积变形是基于一些基本的几何原理的。

比如说,对于一个长方体,它的体积公式是长×宽×高。

如果我们把这个长方体压一压,让它变矮了,但是同时它可能就会变长或者变宽,这样一调整,长×宽×高的结果,也就是体积,还是原来那个数。

这就好比是一群小动物住在房子里,房子的空间大小是固定的,要是把房间的高度降低一点,那房间的长度或者宽度就得变一变,好让小动物们住的地方还是那么大。

再看看圆柱和圆锥。

圆柱的体积是底面积×高,圆锥的体积是1/3×底面积×高。

要是我们把一个圆柱的材料用来做圆锥,你会发现这个圆锥肯定要比圆柱高很多,而且底面积也会有变化。

这就像把一堆沙子,原本堆成一个像圆柱那样的小沙堆,现在要把它重新堆成一个圆锥形状的沙堆,那这个圆锥沙堆肯定要比原来的圆柱沙堆高很多,而且底面的大小也不一样了,但是沙子的总体积是不变的呀。

我还有个朋友小红,她在做手工的时候也碰到了等积变形的事儿。

她用一些彩色的卡纸做立体图形。

她先做了一个正方体的小盒子,然后又想把这个正方体盒子改造成一个三棱柱的盒子。

她就很担心,这纸就这么多,能做成三棱柱吗?我就跟她说:“你放心吧,只要你在做的过程中没有多剪纸也没有少剪纸,那这个三棱柱的体积就和正方体的体积是一样的。

人教版数学六年级下册体积的等积变形

人教版数学六年级下册体积的等积变形

人教版数学六年级下册第三单元《圆柱与圆锥》“等积变形”教学预案永川区望城路小学何开莲教材分析数学六年级下册第三单元《圆柱与圆锥》是整个小学阶段最后一个“几何与图形”的内容。

包括圆柱圆锥的认识、圆柱的表面积、圆柱的体积和圆锥体积。

圆柱、圆锥是人们在生产、生活中经常遇到的几何形体。

教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。

几何知识一向是小学生学习的难点。

特别是圆柱的表面积、圆柱圆锥体积的应用问题更是让学生忘而却步。

造成这种现象的原因除了计算复杂繁琐外,就是学生对立体图形的空间思维能力差。

不能根据文字叙述想象立体图形的样子,找不到解题的关键。

我的思考本次教研主题是“提高立体图形空间思维能力”。

围绕这个主题,我确定从“等积变形”思想方法来落实。

“等积变形”是小学阶段要渗透落实的重要思想方法之一。

生活中大量存在其身影。

在实际生活中有些物质如金属、橡皮泥、或装在容器里的液体等,可以通过熔铸、锻造、重塑或更换容器等改变原来的形状,在这个变换的过程中物体的形状发生了变化,体积不变,这就是形体的“等积变形”。

围绕“等积变形”,我设计“面积变形”和“体积变形(重点)”两个内容。

“面积变形”是为了使计算简便。

“体积变形”设计为稍复杂的体积变形:不规则物体体积计算(看图计算)和未完全浸没(解决问题)。

利用“化曲为直”、“动画重现”“割补剪拼”、“移花接木”“数形结合”等方式,让学生体会转化思想在数学中的广泛应用,提高学生的立体图形空间观念。

教学目标1.优化圆柱体表面积计算公式,能够解决稍复杂的体积的“等积变形”问题。

2.在不同情境中,找准“形变”与“体积不变”的关系,在变化中找不变的量,抓住解决问题的关键,从而正确解决实际问题。

3.发展空间观念,提高学生立体图形空间思维能力。

体会转化的思想价值。

教学重、难点重点:运用多种方法通过“等积变形”解决实际问题。

难点:在不同题目情境中,找准不变的量,抓住“等积”这一解题关键。

(word完整版)圆柱圆锥常见题型归纳训练题,推荐文档

(word完整版)圆柱圆锥常见题型归纳训练题,推荐文档

圆柱圆锥常见题型归纳训练题一、公式转换圆柱和圆锥的关系:1. 等底等高的情况下,圆柱体积是圆锥体积的倍。

2. 等底等高的情况下,圆锥体积是圆柱体积的。

3. 等底等高的情况下,圆锥体积比圆柱体积少。

4. 等底等高的情况下,圆柱体积比圆锥体积多倍。

5. 圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。

6. 圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。

基本题型a求表面积:1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米?4逆推求高一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。

二,切割拼接问题,表面积增加或减少1.基本公式:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πR2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4Rh基本题型1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?2,把长为20分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3.圆柱长2米,把它截成相等的4段后,表面积增加了18.84平方厘米,求每段的体积是多少?4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?5、把两个底面直径都是4厘米,长都是4分米圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?6、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?三.放入或拿出物体,水面上升或下降。

圆柱与圆锥的等积变形(课件)北师大版六年级下册数学

圆柱与圆锥的等积变形(课件)北师大版六年级下册数学

度。
S底=3.14×52=78.5(cm2)
V圆锥=13×3.14×62h×=130 76.8÷78.5
= 37.68×10 =4.8(cm)
=376.8(cm3)
答:圆柱内水面的高度为4.8厘米。
变式1: 在一个底面直径是8厘米,高10厘米的圆柱 形量杯内放入一些水,水面高是8厘米。把 一个小球浸没在量杯里,水满后还溢出 12.56克。求小球的体积。(每立方厘米水 重1克)
分析:放入小球前水的高度是8cm,还没达到量 杯的高度,放入小球后,水满溢出,水不仅升高 了10-8=2(cm),还有水溢出,
溢出水的体积:12.56÷1=12.56(cm³)
3.14×(8÷2)²×(10-8)+12.56
=100.48+12.56 =113.04(cm³)
答:小球的体积是113.04cm³。
1250 20 100(0 毫升)
5 厘米
20 5
答:瓶内有饮料1000毫升。
20
厘 米
8、把一个正方体木块削成一个最大的圆 锥。正方体木块的棱长是6 dm,被削 去部分的体积是多少立方分米?
63-
1 3
×3.14×(6÷2)2×6=159.48(dm3)
答:被削去部分的体积是159.48 dm3。
半径:15.7÷3.14÷2=2.5(dm) 体积:3.14×2.5²×2=39.25(dm³) 高:39.25×3÷10=11.775(dm)
答:圆锥的高是11.775 分米。
3、把一个体积是282.6立方厘米的铁块熔
铸成一个底面半径是6厘米的圆锥形机器零
件,求圆锥零件的高。
282.6÷(3.14×62× 1 )
3-2.4= 0.6(分米)

等积变形应用题

等积变形应用题

等积变形应用题等积变形应用题一“等积变形”是以形状改变而体积不变为前提.等积变形类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积).二练习题1、用直径为4cm的圆钢(截面为圆形的实心长条钢材)铸造3个直径为2cm,高为16cm的圆柱形零件,则需要截取多长的圆钢?2、某铜铁厂要锻造长、宽、高分别为260mm、150 mm、130 mm的长方体毛坯,需要截取地面积为130 mm2的方钢多长?3、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?4、将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆柱形水桶里,问这时水的高度是多少?5、一个直径为1。

2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。

6、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长2厘米、宽4厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?7 某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离.8 有一个圆柱形铁块,底面直径为20厘米,高为26厘米,把它锻造成长方体毛胚,若使长方体的长为10π厘米,宽为13厘米,求长方体的高。

9 用一个底面半径为5厘米的圆柱形储油器,油液中浸有钢珠,若从中捞出546π克钢珠,问液面下降了多少厘米?(1立方厘米钢珠7.8克)10 小圆柱的直径是8厘米,高6厘米,大圆柱的直径是10厘米,并且它的体积是小圆柱体体积的2。

5倍,则大圆柱的高是多少厘米?11 一个长、宽、高分别是9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔化成一个圆柱体,其底面直径为20厘米,请求圆柱体的高(π取3。

圆柱和圆锥体积中的典型题等积变形

圆柱和圆锥体积中的典型题等积变形
北师大版小学数学六年级下册第一单元
圆柱和圆锥中的典型题
讲解:
【例1】把一块高为9cm的圆锥形钢坯浸在一个底面 积为28.26cm2的圆柱形水桶内,水面上升了2cm,这 个圆柱形钢坯的底面积是多少平方厘米?
解:上升的水的体积: 26.26×2=50.24(cm3)
圆锥的底面积: 50.24 ×3÷9=18.84( cm2)
答:这个圆锥形钢坯的底面积是18.84 圆锥形零件有多 高?(单位:cm,结果保留整数)
·10
正方体零件熔铸成圆柱形零件
10 10
10 4
长方体零件熔铸成圆锥形零件
10 20
14
10
【例2】如图,圆柱形零件有多高?圆锥形零件有多 高?(单位:cm,结果保留整数)
5
正方体零件熔铸成圆柱形零件
10 10
解:正方体的体积: 10×10×10=1000(cm3)
圆柱的底面积: 3.14×52 =78.5(cm3)
圆柱的高: 1000 ÷78.5 ≈13(cm) 答:圆柱形零件的高是13厘米。
本内容仅供参考,如需使用,请根据自己实际情况更改后使用!
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步

专题25《体积的等积变形》—小升初数学专题突破试卷(含答案)通用版

专题25《体积的等积变形》—小升初数学专题突破试卷(含答案)通用版

小升初数学精选真题汇编集训(全国通用)专题25《体积的等积变形》一、认真想一想,选出正确的答案1.(2020·綦江)把一个高为30cm的圆锥形容器盛满水,倒入和它等底的圆柱形容器里,水面的高度是()cm。

A. 10B. 30C. 60D. 902.(2020·惠阳)将一个圆柱体铝块熔铸成圆锥体,它的()不变。

A. 体积B. 表面积C. 底面积D. 侧面积3.(2019·株洲)一个底面直径是6cm的圆柱形容器中盛有一些水,现将一个圆锥形铁块完全浸没在水中,水面上升了x cm(水无溢出)。

这个圆锥形铁块的体积是()cm3.A. 36πxB. 12πxC. 9πxD. 3πx4.(2019·商丘)把一块长方体钢坯铸造成一根直径为6dm的圆柱形钢筋,钢筋的长度是()dm。

A. 7.5B. 10C. 155.(2018·开州)如图所示是测量一颗玻璃球体积的过程:(1)将300cm3的水倒进一个容量为500cm3的杯子中;(2)将4颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出。

根据以上过程,推测这样一颗玻璃球的体积的范围为()。

A. 20cm3以上,30cm3以下B. 30cm3以上,40cm3以下C. 40cm3以上,50cm3以下D. 50cm3以上,60cm3以下二、认真思考,填写正确的答案6.(2020·兴化)一个无盖长方体玻璃金鱼缸长是8分米,宽4分米,高6分米;制作这个金鱼缸至少要玻璃________平方分米,这个金鱼缸(玻璃厚度忽略不计)装满水约是________升,将这些水全部倒入底面积24平方分米的圆柱形容器,水面高度是________分米。

7.(2020·兴化)如图,把一个底面周长是25.12分米、高10分米的圆柱体切拼成一个近似的长方体。

这个长方体的表面积是________平方分米,体积是________立方分米。

圆柱圆锥练习等积变形

圆柱圆锥练习等积变形

8、一个圆锥形沙堆,占地面积为15平方米, 高2米,把这堆沙铺在宽8米的路上,平 均厚度5厘米,能铺路多少米?
2厘米=0.02米
a×0.2= 10×π×0.4 a= 62.8
6、一个长方体钢坯,长50厘米,宽20厘 米,高10厘米,铸造成一个底面直径是 20厘米的圆柱形钢柱,高多少厘米? (得数保留整数)
7、一个棱长为5分米的正方体油桶装满油, 倒入一个底面积是10平方米的圆柱形油桶 中,正好倒满,这个油桶高多少分米?
解:设圆锥的高为h。 体积不变:圆柱体积 圆锥体 h=6
3、一个圆锥形沙堆底面直径8米,高12分 米,把这些沙子铺在一条长31.4米,宽8米 的道路上,能铺多厚?
解:设能铺h米厚。 体积不变:长方体体积=圆锥体积
10×π×8×h= 16×π×0.4 8÷2=4米 12分米=1.2米 10×π×8×h= 16×π×0.4 5×h= 0.4 h= 0.08
等积变形问题
1、一辆货车箱是一个长方体,它的长是4 米,宽是1.5米,高是4米,装满一车沙, 卸后沙堆成一个高是1.5米的圆锥形,它的 底面积是多少平方米?
沙的体积不变
2、把一个底面积是12.56平方分米,高是 4.5分米的圆柱形钢材熔铸成一个底面直 径是6分米的圆锥,这个圆锥的高是多少 分米?
4、一个圆锥形沙堆,底面积是3.6平方米, 高是3米。将这堆沙装在一个底面积是2.4 的圆柱形沙坑里,能装多高?
解:设能铺h米厚。 体积不变:圆柱体积=圆锥体积
5、一个圆锥形沙堆,底面积是31.4平方米, 高是1.2米。用这堆沙在10米宽的公路上, 铺上2厘米厚的路,能铺多少米长?
解:设能铺a米长。 体积不变:长方体体积=圆锥体积

【典型例题系列】六年级数学下册典型例题系列之第一单元圆柱与圆锥提高篇(二)(原卷版)北师大版

【典型例题系列】六年级数学下册典型例题系列之第一单元圆柱与圆锥提高篇(二)(原卷版)北师大版

六年级数学下册典型例题系列之第一单元圆柱与圆锥提高篇(二)(原卷版)编者的话:《六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第一单元圆柱与圆锥提高篇(二)。

本部分内容主要选取圆柱与圆锥单元较有难度的题型,也是期末考试常见的考点考题,建议把该部分作为本章核心内容进行讲解,一共划分为十一个考点,欢迎使用。

【考点一】圆柱与长方体、正方体的等积转化问题一。

【方法点拨】等积转化问题,关键在于找到题目中的体积不变量,再根据体积不变解决问题。

【典型例题】把一个长、宽、高分别是9厘米、7厘米、3厘米的长方体铅块和一个棱长是5厘米的正方体铅块,铸成一个圆柱。

这个圆柱的底面直径是20厘米,高是多少厘米?【对应练习1】15cm,高为6cm的圆柱形铁块熔铸成一个长为5cm、宽为4cm 把一个底面积为2的长方体铁块,铸成的长方体铁块高多少cm?【对应练习2】下图中的圆柱与长方体的体积相等。

这个圆柱的高是多少分米?(单位:dm)【对应练习3】如下图所示,要在实验室铸造出一个无盖的青铜盒子,盒子的外形是一个长方体,内部挖空,外部尺寸长为30cm,宽为15cm,高为10cm,壁和底部的厚度都为1cm。

现有一份形状为圆柱的实心青铜材料,其底面直径为10cm,高为20cm。

若熔化该青铜材料,能铸造出这样的青铜盒子吗?通过计算说明。

【考点二】圆柱与长方体、正方体的等积转化问题二。

【方法点拨】等积转化问题,关键在于找到题目中的体积不变量,再根据体积不变解决问题。

【典型例题】甲圆柱形瓶子中有2厘米深的水。

乙长方体瓶子里水深6.28厘米。

将乙瓶中的水全部倒入甲瓶,这时甲瓶的水深多少厘米?(如图)【对应练习1】甲圆柱体容器是空的,乙长方体容器中水深6.28厘米,要将容器乙中的水全部倒入甲容器,这时水深多少厘米?【对应练习2】下图中,圆柱形(甲)瓶子里有2厘米深的水。

热点:关于立体图形的等积变形问题-2024年小升初数学(解析版)

热点:关于立体图形的等积变形问题-2024年小升初数学(解析版)

热点:关于立体图形的等积变形问题一、填空题。

1在一个长20分米、宽9分米、高7分米的长方体容器内注入3.6分米深的水,然后放入一个棱长为6分米的正方体铁块,则水位上升了()分米。

【答案】0.9【分析】水的水位只有3.6分米,则可以将水看成一个长20分米、宽9分米、高3.6分米的长方体,则水的体积是=长×宽×高。

放入正方体方块虽然水位上升了,但是水的体积没有发生改变。

但是底面积发生可改变。

现在水的高度=水的体积÷底面积。

注意:求的是水位上升的高度。

水位上升的高度=现在水的高度-开始水的高度。

【详解】20×9×3.6=648(立方分米)20×9-6×6=180-36=144(平方分米)648÷144=4.5(分米)4.5-3.6=0.9(分米)则水位上升了0.9米。

2把一个底面是半径4分米、高是6分米的圆柱体铁块,熔铸成一个底面半径是3分米的圆锥体,这个圆锥体的高是()分米,体积是()立方分米。

【答案】32301.44【分析】根据题意可知,把一个圆柱体铁块熔铸成一个圆锥体,铁块的形状变了,但体积不变;先根据圆柱的体积公式V=πr2h,求出这个铁块的体积,也就是圆锥的体积;再根据圆锥的高h=3V÷S,求出这个圆锥体的高。

【详解】铁块的体积:3.14×42×6=3.14×16×6=50.24×6=301.44(立方分米)圆锥的底面积:3.14×32=3.14×9=28.26(平方分米)圆锥的高:301.44×3÷28.26=904.32÷28.26=32(分米)这个圆锥体的高是32分米,体积是301.44立方分米。

3一个密闭的长方体容器,它的长、宽、高分别是10cm、10cm、20cm,容器如图1放置时,容器内水的高度是10cm。

6.6.2柱、锥、台的体积(等积变换求三棱锥的体积)课件(北师大版)

6.6.2柱、锥、台的体积(等积变换求三棱锥的体积)课件(北师大版)
北师大(2019)必修2
§ 6.6.2柱、锥、台的体积
(专题课:等积变换求三棱锥的体积)
总的原则
对于三棱锥的体积问题,可以任选一面
作底面,然后求出已知该底面对应的
高.转换原则是换底高易求或底面放在
已知几何体的某一面上.
使用的原则
利用等积法不仅可以求三棱锥 的体积,
还可以求点到平面的距离及直线与平面
1
3
1
3
三棱锥 − 的体积 = × × = ×
3
.故选A.
6
3
×
4
12 × 2 =
环节三
最值背景下
1.如图,AB是半圆O的直径,点C在半圆上运动(不
与A,B重合),PA⊥平面ABC,若AB=2,二面角 −
− 等于 60∘ ,则三棱锥 − 体积的最大值

1
− = − = ×
3
1
2 1
× 1 = × × ×
3
2 2

×
2
2
1
×1=
2
12
1
3
= ×

2
1
2
× ×
在棱长为1的正方体中,E是棱BC上的一点,
则三棱锥D1-B1C1E的体积等于
1−1 1 = −111
1 1
1
2
= × ×1 ×1=
1
3 1
其体积为 x x
3 2
2
3
= ,
12
3
1
,底面积为 ,故
2
2
2.正方体(长方体)中合理选择底面易求三棱锥的体积
1.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F

等积变形

等积变形

解:圆柱形玻璃杯装不下。
设圆柱形瓶内的水面还有x厘米高, 5 2 则剩余水的体积为 ( ) x立方厘米 。 2
根据题意,列方程得
6 2 5 2 5 2 ( ) 10 ( ) x ( ) 18 2 2 2
整理得 90 + 6.25x =112.5 解得 x = 3.6 经检验,符合题意。 答:圆柱形玻璃杯装不下,圆柱形瓶内的 水面还有3.6厘米高。
2.分析:
圆柱形瓶内装满水,则水的体积为:
5 2 ( ) 18 112 .5 (立方厘米) 2
圆柱形玻璃杯的容积为: 6 2 ( ) 10 90 (立方厘米) 2 因此:水的体积大于杯的容积。 可见:圆柱形玻璃杯装不下,圆柱 形瓶内仍剩余部分的水。
注意到:在变形过程中水的总体积保持不变。 所以可得到相等关系: 玻璃杯里的水的体积 + 圆柱形瓶内剩余 水的体积 = 圆柱形瓶内装满水的体积
ห้องสมุดไป่ตู้
用直径为4cm 的圆钢锻造一个重580克的 零件毛坯,如果这种钢每立方厘米重7.8克, 那么应截取这种圆钢多长?(精确到0.1 , π取3.14)
用一根直径12厘米的圆柱形铅柱,铸造10只直
径12厘米的铅球,问应截取多长的铅 柱? 4 3 ( 球的体积= 3 π R )
要铸造一个零件毛坯,其上部是底面直径为 6 cm ,高是2cm 的圆锥体;下部是直径和 高度都是6 cm 的圆柱体。问需要熔解多长 截面边长为4cm 的正方形长方体钢锭?
等积变形问题
榆树市第二实验中学西校一年 数学组:马成树
1、 长方体的体积公式是什么? 2 、 圆柱体的体积公式是什么? 3、 圆锥体体积公式是什么?
例1、
将底面直径为200毫米的圆柱形水桶 中的满桶水倒入一个内部长、宽、高 分别为314毫米、200毫米、80毫米 的长方体铁盒,正好倒满。求圆柱水 桶的水高(π取3.14)

等积变形习题

等积变形习题

六年级奥数解析(七十)形体的等积变形[ 2013-3-21 2:57:00 | By: spring ]4推荐《奥赛天天练》第42讲《形体的等积变形》。

在实际生活中有些物质如金属、橡皮泥、或装在容器里的液体等,可以通过重塑或更换容器等改变原来的形状,在这个变换的过程中物体的形状发生了变化,体积不变,这就是形体的等积变形。

本专题学习,需要学生熟练掌握并能灵活运用长方体、正方体、圆柱、圆锥的体积计算公式。

解答此类问题的关键是抓住题中隐藏的等量关系:物体在改变形状的过程中体积不变,即形状发生改变前后物体的体积相等。

《奥赛天天练》第42讲,模仿训练,练习1【题目】:在底面半径是10厘米的圆柱形杯中装有7厘米高的水,把一小块铁浸入水中,这时水面上升到9厘米,问这块铁块的体积有多大?【解析】:这块铁块的体积就是圆柱形杯中上升的那部分水的体积(即底面半径为10厘米,高为2厘米的圆柱形体积):3.14×102×(9-7)=628(立方厘米)。

《奥赛天天练》第42讲,模仿训练,练习2【题目】:有甲、乙两个容器如图所示,(长度单位:厘米),先将甲容器注满水,然后将水倒入乙容器,求乙容器的水深。

【解析】:先求出倒入甲容器的水的体积:3.14×62×10×1/3=376.8(立方厘米)再用水的体积除以乙容器的底面积,求出乙容器的水深:378.6÷(3.14×42)=7.5(厘米)。

注:此类习题列综合算式,先约分再计算,可以使计算更加简洁。

《奥赛天天练》第42讲,巩固训练,习题1【题目】:把一块长19厘米,宽5厘米,高3厘米的长方体铝块和一个棱长为7厘米的正方体铝块熔铸成一个底面周长为31.4厘米的圆柱形的铝块,求圆柱形铝块的高是多少厘米?【解析】:熔铸成的圆柱形铝块的体积就等于长方体铝块和正方体铝块的体积之和:19×5×3+73=628(立方厘米)用圆柱形铝块的体积除以它的底面积,可以求出它的高为:628÷[3.14×(31.4÷3.14÷2)2]=8(厘米)。

人教版数学6年级下册 第3单元(圆柱和圆锥)专项训练《等积变形》(含答案)

人教版数学6年级下册 第3单元(圆柱和圆锥)专项训练《等积变形》(含答案)

人教版六年级数学下册第三单元专项训练《等积变形》(含答案)1.把一个圆柱底面平均分成若千个扇形,沿高切开拼成一个近似长方体。

这个长方体的宽是4厘米,高是20厘米,这个圆柱的体积是多少?2.把一个棱长是8分米的正方体铁块熔铸成一个底面直径是10分米的圆柱,这个圆柱的高大约是多少?(得数保留一位小数)3.一个圆柱形水池装满水,它的底面积是12.56平方米,深3米,将水池的水全部倒入一个长8米、宽3米、深2米的长方体水池,长方体的水面高是多少米?4.把一个棱长8分米的正方体木块加工成一个最大的圆柱,圆柱的体积是多少立方分米?5.一个圆柱体,如果把它的高截短2厘米,它的表面积就减少94.2平方厘米,这个圆柱体的体积减少多少立方厘米?6.将一个底面直径是20厘米,高为12厘米的金属圆锥体,全部浸没在直径是20厘米的圆柱形水槽中,水槽水面会升高多少厘米?7.一个圆锥形沙堆,底面积12.56平方米,高1.2米。

用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?8.一个圆锥形沙堆,底面积是24平方米,高是1.8米。

用这堆沙子去填一个长7.5米、宽4米的长方体沙坑,沙坑里沙子的厚度是多少厘米?9.把一个长、宽、高分别是7厘米、3厘米、9厘米的长方体铁块和一个棱长是5厘米的正方体铁块,熔铸成一个底面直径是10厘米的圆柱,这个圆柱的高是多少?10.机灵狗有一块体积是753.6立方厘米的绿色橡皮泥,它用这块橡皮泥捏成了等底等高的一个圆柱体和一个圆锥体。

则这个圆柱体体积是多少立方分米?11.在底面半径为5厘米、高为18厘米的圆柱形玻璃缸中,放入一个底面半径3厘米、高为10厘米的圆锥形铅块,放水将铅块全部淹没。

当铅块取出后,玻璃缸中的水面下降了多少厘米?12.学校的跳远沙池长6.28米,宽2米,学校运来一堆沙子(堆放如图)。

如果把这些沙子均匀地铺在跳远沙池中,可以铺多厚?13.把一个棱长6分米的正方体木块削成一个最大的圆锥,需要削去多少立方分米的木头?14.把一个长是10厘米,宽和高都是5厘米的长方体铁块和一个棱长是4厘米的正方体铁块,一起熔铸成一个底面周长是314厘米的圆柱。

等积变形

等积变形

2.分析:
圆柱形瓶内装满水,则水的体积为:
5 2 ( ) 18 112 .5 (立方厘米) 2
圆柱形玻璃杯的容积为: 6 2 ( ) 10 90 (立方厘米) 2 因此:水的体积大于杯的容积。 可见:圆柱形玻璃杯装不下,圆柱 形瓶内仍剩余部分的水。
注意到:在变形过程中水的总体积保持不变。 所以可得到相等关系: 玻璃杯里的水的体积 + 圆柱形瓶内剩余 水的体积 = 圆柱形瓶内装满水的体积
2
6
4
x
6
在一个底面直径5厘米、高18厘米的圆柱 形瓶内装满水,再将瓶内的水倒入一个 底面直径6厘米、高10厘米的圆柱形玻璃 杯中,能否完全装下?若装不下,那么 瓶内水面还有多高?若未能装满,求杯 内水面离杯口的距离?
本节课你学会了什么?
列一元一次方程解决有关等积变形问题 形状改变而体积不变 等量关系是 :
1、一块长、宽、高分别为4厘米、3 厘米、2厘米的长方体橡皮泥,要用 它来捏一个底面半径为1.5厘米的圆 柱,它的高是多少?(精确到0.1厘 米,π=3.14)
:
变形前的体积=变形后的体积

有关圆柱、 圆锥、球等体积变换问题 中,经常给的条件是直径,而公式中的是 半径,不注意这一点就会犯错误。

/ 在线人工时彩计划
是头脑清醒至极。他壹各人开始东拉西扯地说咯半天别痛别痒の闲话,两各诸人、壹各格格全都老老实实地洗耳恭听,除咯排字琦偶尔有壹搭没壹搭地表各态以外,几乎就是王爷 壹各人负责清唱独角戏。过咯将近有四盏茶の功夫,王爷总算是止住咯他の话匣子,对排字琦说道:“好咯,时辰也别早咯,您早些歇息,爷那就走咯。”说着他就起咯身,红莲 赶快将他の披风拿来,替他系好。王爷都起身告辞咯,水清当然没什么继续留在那里の道理,于是她也赶快起咯身,月影服侍水清,吴嬷嬷伺候悠思。今天已经到咯二月初二,天 气逐渐回暖の季节,三各人都没什么戴雪帽,只是系咯披风,所以没壹会儿三各主子全部穿戴整齐,于是壹并出咯门。排字琦是那院子の主人,自然是要将王爷恭送到院门口。到 咯院门口,排字琦赶快跟王爷道别:“妾身恭送爷,那就麻烦妹妹送壹送爷咯。”“姐姐放心,妹妹记得。”朗吟阁离霞光苑很近,怡然居在王府の最里端,但是那两各院子别在 壹各方向,假设水清要送王爷,完全是先向北将他送到书院,自己再折向南,重新路过霞光苑才能回到怡然居。所以水清の话音刚壹落下,王爷就开口道:“您也别用送爷咯,那 么近の路,两步就到咯。您自己也多加小心,月影,吴嬷嬷,您们精心服侍好您家主子。”壹番话说完,还别待水清表态,他径自壹人掉头就走咯。既然他已经发咯话,水清只能 是恭敬别如从命,于是怀抱着悠思,和月影、吴嬷嬷两各人壹起往自己の院子方向走去。今晚真是壹各好天气,虽然还是初春时节,乍暖还寒,但是今天那各初春の夜晚,没什么 寒风,没什么冷霜,空气中飘荡着迎春花の清香,真是神清气爽。水清再壹抬头,果然,新月如钩,星光灿烂,真是壹各令人享受の迷人时刻!于是水清放慢咯脚步,壹边贪恋地 享受那迷人の初春夜,壹边安抚着失魂落魄の小格格。悠思今天对她の阿玛很别满意。他都没什么向她投来关注の目光,也没什么与她说上壹句贴心の话,阿玛那是怎么咯?怎么 跟上壹次の阿玛完全别壹样咯呢?就在悠思撅着小嘴壹声别吭地生着闷气,就在水清高高兴兴地享受着难得の惬意时光,她们主仆四人走到咯松溪。第壹卷 第640章 松溪松溪其 实别是壹条溪流,而是壹片很小の湖水,因为湖岸种咯壹片很茂密の松林,所以那各松溪指の是松林蜿蜒如溪流,而别是说湖水如溪水。当初刚嫁进王府の时候,水清第壹次听到 那各地方被命名为松溪,她当即就明白咯此溪非彼溪,同时对王爷高超の起名艺术赞别绝口。虽然那各时候,她对他壹丁点儿の好感都没什么,但是就事论事,那各松溪确实让水 清对王爷の学识刮目相看。此时,她们主仆四人壹行遛遛达达地行至松溪,闻着空气中の松针味道,真是令人心旷神怡。就在水清她们享受那难得の惬意时光之际,猛听身后传来 急促の脚步声,月影立即回身,同时将手中の灯笼往前递咯递,企图照得更远壹些,以便能够看清来人,但情急之下仍是禁别住脱口而出:“是谁?”“是爷。”秦顺儿の声音在 回复月影。壹听秦公公说王爷过来咯,主仆四人赶快退立壹旁,行礼请安。来到她们身边の果然是王爷,他将几各人叫起之后,直接从水清の手中接过咯悠思。那各意外の惊喜将 小格格高兴得别知所措起来,除咯甜甜地对他叫咯壹声阿玛之后,伶牙俐齿の悠思竟然也有语塞の时候。看着他の宝贝女儿壹脸惊喜、壹脸娇羞,他の心中真是比吃咯蜜还甜。于 是忍别住在她娇嫩の小脸上结结实实地亲咯壹下。那壹下可是别得咯,受宠若惊の悠思即刻扑倒在他の怀中,两只小手紧紧の搂着他の脖子,半天都别愿松开,生怕壹松开手,她 の阿玛就会飞走咯,再也见别到似の。他何尝别是格外享受那种全新の父女亲情?前面三各格格,有两各是未足满月即殇,而锦茵格格出生の时候,他那各阿玛才十七岁,他自己 还是壹各大男孩,哪里懂得享受父女亲情?当他已是人到中年の时候,悠思格格の到来,立即就将他の父爱潜能充分地激发出来,在他终于
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例2】如图,圆柱形零件有多高?圆锥形零件有多 高?(单位:cm,结果保留整数)
4 20 10
14
长方体零件熔铸成圆锥形零件
解:长方体的体积: 20×10×4=800(cm3) 圆锥的底面积: 3.14×(14÷2)2 =153.86(cm2) 圆锥的高: 800 ×3 ÷153.86 ≈16(cm) 答:圆锥形零件的高是16厘米。
【例2】如图,圆柱形零件有多高?圆锥形零件有多 高?(单位:cm,结果保留整数)
10
·
正方体零件熔铸成圆柱形零件
10
10
10
4 10
长方体零件熔铸成圆锥形零件
14
20
【例2】如图,圆柱形零件有多高?圆锥形零件有多 高?(单位:cm,结果保留整数)
5
10
正方体零件熔铸成圆柱形零件
10
10
解:正方体的体积: 10×10×10=1000(cm3) 圆柱的底面积: 3.14×52 =78.5(cm3) 圆柱的高: 1000 ÷78.5 ≈13(cm) பைடு நூலகம்:圆柱形零件的高是13厘米。
北师大版小学数学六年级下册第一单元
圆柱和圆锥中的典型题
讲解:数学老师
【例1】把一块高为9cm的圆锥形钢坯浸在一个底面 积为28.26cm2的圆柱形水桶内,水面上升了2cm,这 个圆柱形钢坯的底面积是多少平方厘米?
解:上升的水的体积: 26.26×2=50.24(cm3) 圆锥的底面积: 50.24 ×3÷9=18.84( cm2) 答:这个圆锥形钢坯的底面积是18.84 平方厘米。
相关文档
最新文档