信息论与编码期中试卷及答案
信息论与编码试题集与答案(新)
一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。
信息论与编码试题集与答案
1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 -1.6 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。
4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。
5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。
6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。
输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。
7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。
若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。
四、计算题1.已知(),X Y 的联合概率(),p x y 为: 求()H X ,()H Y ,(),H X Y ,();I X Y解: (0)2/3p x == (1)1/3p x == (0)1/3p y == (1)2/3p y == ()()(1/3,2/3)H X H Y H ===0.918 bit/symbol(),(1/3,1/3,1/3)H X Y H ==1.585 bit/symbol ();()()(,)I X Y H X H Y H X Y =+-=0.251 bit/symbol2.某系统(7,4)码)()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验位与信息位的关系为:231013210210c m m m c m m m c m m m=++⎧⎪=++⎨⎪=++⎩ 01X Y011/31/301/3(1)求对应的生成矩阵和校验矩阵; (2)计算该码的最小距离;(3)列出可纠差错图案和对应的伴随式; (4)若接收码字R =1110011,求发码。
信息论与编码试题集与答案
一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成 客观信息和主观信息 。
人们研究信息论的目的是为了 高效、可靠、安全 地交换和利用各种各样的信息。
信息的 可度量性 是建立信息论的基础。
统计度量 是信息度量最常用的方法。
熵 是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生 概率的对数 来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
信息论与编码考试题(附答案版)
1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码考试题(附答案版)
1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln (2πⅇσ2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码试卷及答案
一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是 0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于,对信源进行等长的无失真二进制编码,则编码长度至少为 3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关三、(5)居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高米以上的,而女孩中身高米以上的占总数的一半。
假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示“大学生”这一事件,B表示“身高以上”这一事件,则P(A)= p(B)= p(B|A)= (2分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=*= (2分)I(A|B)== (1分)四、(5)证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)-H(XY) 证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; (2分)同理()()()X Y H Y H Y X I -=; (1分) 则()()()Y X I Y H X Y H ;-= 因为()()()X Y H X H XY H += (1分) 故()()()()Y X I Y H X H XY H ;-+=即()()()()XY H Y H X H Y X I -+=; (1分)五、(18’).黑白气象传真图的消息只有黑色和白色两种,求:1) 黑色出现的概率为,白色出现的概率为。
专升本《信息论与编码》_试卷_答案
专升本《信息论与编码》_试卷_答案专升本《信息论与编码》⼀、(共48题,共150分)1. H(X)____________0,⼩概率事件对熵的贡献____________,确定事件的信息量____________0。
(6分)标准答案:1. >= ;2. ⼩;3. =;2. 确定信道的H(Y/X) ____0,H(X/Y) ____0。
(4分)标准答案:1. =;2. ;3. 霍夫曼编码可以编出不同的码,这些码的平均码长________,.编码效率________,码长⽅差________。
(6分)标准答案:1. ⼀样;2. ⼀样;3. 不⼀定⼀样;4. N个独⽴并联的信道,每个信道的信道容量为C,为了达到总的信道容量NC,所有信道的输⼊要________________,.所有信道的输⼊概率分布是各⾃信道的________________。
(4分)标准答案:1. 相互独⽴;2. 最佳分布;5. 通信系统中的编码器包括____________________,____________________,____________________。
(6分)标准答案:1. 信源编码器;2. 纠错编码器;3. 调制器;6. 率失真函数R(D)的最⼤值为________________,最⼩值为________________。
(4分)标准答案:1. H(X);2. 0;7. 某事件的概率为p(x),则⾃信息量为()。
(2分)A.-p(x)B.1/ p(x)C.-log p(x)D.log p(x)标准答案:C8. 有事件x,y,I(x)=2 bit,I(x/y)=1 bit,则互信息量I(x;y)的值为()。
(2分)A.1 bitB.2 bitC.3 bitD.4 bit标准答案:A9. 下列关于条件熵的结论,不成⽴的是()(2分)A.H(X/Y)C.H(X/Y)标准答案:B10. 使I(X;Y)=0成⽴的条件是(): (2分)A.X和Y相互独⽴B.H (X) =H(Y)C.X和Y的概率分布相同标准答案:A11. 以下关于离散⽆记忆信源(熵为H(X))的结论,不正确的是(): (2分)A.是平稳信源B.其N次⽆记忆扩展信源的熵是NH(X)C.其极限熵⼤于H(X)标准答案:C12. 以下关于信道容量C和信息传输率R间的关系,正确的是(): (2分)A.C RB.C=RC.C R 标准答案:A13. 某信源有8个符号,其信源熵为2.4 bit,进⾏⼆元定长编码(不扩展),则其编码效率⾄少可达()(2分)A.80%B.85%C.90%D.95%标准答案:A14. 在准对称信道中,要达到信道容量,要求(): (2分)A.信源和信宿的概率分布⼀致B.信源为等概分布C.信宿为等概分布标准答案:B15. 在信道编码中,简单重复编码可以(): (2分)A.减⼩但降低了信息传输率B.提⾼了信息传输率,但增⼤了PEC.减⼩并提⾼了信息传输率标准答案:A16. ⼆元码C={(000),(011),(101),(110),该码的最⼩码距是():。
信息论与编码期中试卷及答案
信息论与编码期中试题答案一、(10’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为 3 。
二、(10')判断题(1)信息就是一种消息。
(⨯)(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(√)(3)概率大的事件自信息量大。
(⨯)(4)互信息量可正、可负亦可为零。
(√)(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。
(⨯)(6)对于固定的信源分布,平均互信息量是信道传递概率的下凸函数。
(√)(7)非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。
(⨯)(8)信源变长编码的核心问题是寻找紧致码(或最佳码)。
(√)(9)信息率失真函数R(D)是关于平均失真度D的上凸函数. ( ⨯)三、(10')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示“大学生”这一事件,B表示“身高1.60以上”这一事件,则P(A)=0.25 p(B)=0.5 p(B|A)=0.75 (5分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=0.75*0.25/0.5=0.375 (4分)I(A|B)=-log0.375=1.42bit (1分)四、(10')证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)-H(XY) 证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; (4分)同理()()()X Y H Y H Y X I -=; (2分) 则()()()Y X I Y H X Y H ;-= 因为()()()X Y H X H XY H += (2分) 故()()()()Y X I Y H X H XY H ;-+=即()()()()XY H Y H X H Y X I -+=; (2分)五、(30’).黑白气象传真图的消息只有黑色和白色两种,求:1) 黑色出现的概率为0.3,白色出现的概率为0.7。
信息论与编码试题集与答案
一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位一般有比特、奈特和哈特。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是∞。
15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。
17、离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍。
18、离散平稳有记忆信源的极限熵,。
19、对于n元m阶马尔可夫信源,其状态空间共有 nm 个不同的状态。
信息论与编码考试答案
B 卷答案一、设有一离散无记忆信源,其概率空间为⎥⎦⎤====⎢⎣⎡=⎥⎦⎤⎢⎣⎡8141418343213210x x x x P X (1)求每个符号的自信息量;(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 22 3 210},求该消息序列的自信息量及平均每个符号携带的信息量。
解:(1)每个符号携带的自信息量:I(0)=-log3/8=1.42bit, I(1)=-log1/4=2bit I(2)=-log1/4=2bit, I(3)=-log1.8=3bit (2)消息序列的自信息量:I=14I(0)+13I(1)+12I(2)+6I(3)=87.8bit 平均每个符号携带的信息量为 I/n=87.8/45=1.95比特/符号 二、某信源有8个符号{1u ,···,8u },概率分别为21,41,81,161,321,641,1281,1281,试编成000,001,010,011,100,101,110,111的码。
(1)求信源的符号熵H(U); (2)求这种码的编码效率;(3)求出相应的香农码和费诺码; (4)求该码的编码效率。
解: (1)H(U)=i i ip p261log ∑=-=1.984(bit/符号)(2)编码效率LU H )(=η=66.15﹪平均码长∑==81i ii Lp L =1.984编码效率LX H )(=η=100﹪平均码长∑==81i ii Lp L =1.984编码效率LX H )(=η=100﹪ 三、有四个符号a ,b ,c ,d 对应概率分别为p(a)=21,p(b)=41,p(c)=81,p(d)=81,对序列S=abda 做算术编码。
解:设起始状态为空序列φ,则A(φ)=1,C(φ)=0,递推得 C(a,b,d,a)=0.010111 A(a,b,d,a)=0.0000001 因此编码的码字为010111 四、某线性二进制码的生成矩阵为G=⎢⎢⎢⎣⎡011100111100101011100⎥⎥⎥⎦⎤,求: (1)用系统码[I ︱P]的形式表示G ;(2)计算该码的校验矩阵H ;(3)列出该码的伴随式表; (4)计算该码的最小距离。
信息论与编码试题集与答案(新)Word版
一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。
信息论与编码试卷及答案
信息论与编码试卷及答案一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X 的熵的N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关二、(9')判断题(1)信息就是一种消息。
(?)(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(√)(3)概率大的事件自信息量大。
(?)(4)互信息量可正、可负亦可为零。
(√)(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。
(?)(6)对于固定的信源分布,平均互信息量是信道传递概率的下凸函数。
(√ )(7)非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。
( ? )(8)信源变长编码的核心问题是寻找紧致码(或最佳码),霍夫曼编码方法构造的是最佳码。
(√ )(9)信息率失真函数R(D)是关于平均失真度D 的上凸函数. ( ? )三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
信息论与编码考试试题
信息论与编码考试试题一、选择题(每题 5 分,共 30 分)1、以下关于信息熵的说法,错误的是()A 信息熵是对信息不确定性的度量B 信息熵越大,信息量越大C 信息熵只与信源的概率分布有关D 信息熵的值可以为负数2、设信源符号集为{A, B, C, D},对应的概率分别为 1/2, 1/4, 1/8, 1/8,则该信源的熵为()A 175 比特/符号B 15 比特/符号C 125 比特/符号D 2 比特/符号3、无失真信源编码的平均码长()信源熵。
A 小于B 大于C 等于D 以上都有可能4、在哈夫曼编码中,出现概率越大的符号,编码长度()A 越长B 越短C 不确定D 与概率无关5、以下哪种编码是唯一可译码()A 00, 01, 10, 11B 0, 10, 11C 0, 00, 1D 0, 01, 106、对于一个离散无记忆信道,其信道容量与()有关。
A 输入概率分布B 输出概率分布C 转移概率矩阵D 以上都是二、填空题(每题 5 分,共 30 分)1、信息论的奠基人是__________。
2、若信源的概率分布为 P(X) ={02, 03, 01, 04},则信源的熵为__________比特/符号。
3、香农第一定理指出,对于离散无记忆平稳信源,当信源熵小于信道容量时,可以通过编码实现__________传输。
4、已知某二元对称信道的错误概率为 01,则其信道容量为__________比特/符号。
5、一个码组为{000, 111, 010, 101},其最小码距为__________。
6、线性分组码的监督矩阵与生成矩阵之间满足__________关系。
三、简答题(每题 10 分,共 20 分)1、简述信息熵的物理意义,并举例说明。
信息熵是用来度量信息不确定性的一个重要概念。
它反映了信源输出符号的平均不确定性。
物理意义在于,熵越大,说明信源的不确定性越大,需要更多的信息来消除这种不确定性。
例如,抛硬币的结果只有正反两面,其概率各为 05。
信息论与编码试题集与答案(新)Word版
信息论与编码试题集与答案(新)Word版一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位一般有比特、奈特和哈特。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是∞ 。
15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍。
信息论与编码习题答案
信息论与编码习题答案信息论与编码是通信和数据传输领域的基础学科,它涉及到信息的量化、传输和编码。
以下是一些典型的信息论与编码习题及其答案。
# 习题1:信息熵的计算问题:给定一个随机变量X,其可能的取值为{A, B, C, D},概率分别为P(A) = 0.3, P(B) = 0.25, P(C) = 0.25, P(D) = 0.2。
计算X的熵H(X)。
答案:H(X) = -∑(P(x) * log2(P(x)))= -(0.3 * log2(0.3) + 0.25 * log2(0.25) + 0.25 *log2(0.25) + 0.2 * log2(0.2))≈ 1.846# 习题2:信道容量的计算问题:考虑一个二进制信道,其中传输错误的概率为0.01。
求该信道的信道容量C。
答案:C = log2(2) * (1 - H(error))= 1 * (1 - (-0.01 * log2(0.01) - 0.99 * log2(0.99))) ≈ 0.98 nats# 习题3:编码效率的分析问题:一个编码器将4位二进制数字编码为8位二进制码字。
如果编码器使用了一种特定的编码方案,使得每个码字都具有相同的汉明距离,求这个编码方案的效率。
答案:编码效率 = 信息位数 / 总位数= 4 / 8= 0.5# 习题4:错误检测与纠正问题:给定一个(7,4)汉明码,它能够检测最多2个错误并纠正1个错误。
如果接收到的码字是1101100,请确定原始的4位信息位是什么。
答案:通过汉明码的生成矩阵和校验矩阵,我们可以计算出接收到的码字的校验位,并与接收到的码字的校验位进行比较,从而确定错误的位置并纠正。
通过计算,我们发现原始的4位信息位是0101。
# 习题5:数据压缩问题:如果一个文本文件包含10000个字符,每个字符使用8位编码,如何通过霍夫曼编码实现数据压缩?答案:首先,我们需要统计文本中每个字符的出现频率。
信息论与编码试卷及答案2
信息论与编码试卷及答案2篇一:信息论与编码试卷及答案一、概念简答题(每题5分,共40分)1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?2.简述最大离散熵定理。
对于一个有m个符号的离散信源,其最大熵是多少?3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系?4.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理。
5.写出香农公式,并说明其物理意义。
当信道带宽为5000Hz,信噪比为30dB时求信道容量。
6.解释无失真变长信源编码定理。
7.解释有噪信道编码定理。
8.什么是保真度准则?对二元信源时率失真函数的和?,其失真矩阵,求a>0二、综合题(每题10分,共60分)1.黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为,白色出现的概率为。
给出这个只有两个符号的信源X的数学模型。
假设图上黑白消息出现前后没有关联,求熵;2)假设黑白消息出现前后有关联,其依赖关系为:,,求其熵;,,2.二元对称信道如图。
;1)若,,求和;2)求该信道的信道容量和最佳输入分布。
3.信源空间为曼码,计算其平均码长和编码效率。
,试分别构造二元和三元霍夫4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。
5.已知一(8,5)线性分组码的生成矩阵为。
求:1)输入为全00011和10100时该码的码字;2)最小码距。
6.设某一信号的信息传输率为/s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz。
试求:(1)无差错传输需要的最小输入功率是多少?(2)此时输入信号的最大连续熵是多少?写出对应的输入概率密度函数的形式。
一、概念简答题(每题5分,共40分)1.答:平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
信息论与编码期中考试答案(2013-2014-I)
《信息论与编码》期中考试答案1. 香农在《通信的数学理论》中提出“通信的基本问题”是什么?(5分)答:通信的基本问题就是在一点重新准确地或近似地再现另一点所选择的消息。
2. 消息、信号、信息三者关系;用货车、集装箱、青花瓷瓶分别指代前面的三者。
(10分)答:1、消息是信息的携带者,信息包涵于消息中;2、消息不一定含有信息;3、信号是消息的载体,消息是信号的具体内容;货车:信号,集装箱:消息,青花瓷瓶:信息;3. 信息的最基本特征。
(5分)答:不确定性;4. 概率论与随机过程各自研究对象的区别。
(10分)答:概率论只是单纯研究事件发生的概率;而随机过程是放在随时间变化的过程中研究事件发生的概率及其相互关系;5. 编码器主要包括信源编码器和信道编码器,试用两个字分别描述信源编码器和信道编码器各自的作用。
(5分)答:信源编码器:高效/有效;信道编码器:可靠;6. 概率论中相互独立与互不相容的区别,两者各自针对的对象是什么。
(10分)答:相互独立:事件A的出现对于事件B的出现概率没有影响,且事件B的出现对于事件A的出现概率也没有影响;互不相容:事件A与事件B不能同时发生;相互独立:针对概率,互不相容:针对集合;7. 马尔可夫随机过程的无后效性、平稳性,试解释。
(10分)答:无后效性:f(t0)已知,f(t> t0)的条件概率与t0之前的状态无关,只与t0—t之间的状态有关;即f(t)的条件概率只受就近时刻状态的影响。
平稳性:条件概率与转换前后的状态及转换时间有关,与起始时刻无关。
8. 先验概率与后验概率的含义。
(10分)答:先验概率:事件未传输之前的已经具有的概率,与是否传输无关;后验概率:已知接收事件的条件下,判断发送事件的概率;9. 不确定度与自信息量的联系与区别。
(10分)答:不确定度与自信息量数值、单位相同;区别:不确定度表征事件的本身性质,与是否传输无关;自信息量表示事件发生后观察者得到的消除不确定度需要的信息量;不确定度强调传输前,自信息量强调传输后,经过通信系统的传输过程。
信息论与编码期中考试答案
《信息论与编码》期中考试答案1. 香农在《通信的数学理论》中提出“通信的基本问题”是什么?(5分)答:通信的基本问题就是在一点重新准确地或近似地再现另一点所选择的消息。
2. 消息、信号、信息三者关系;用货车、集装箱、青花瓷瓶分别指代前面的三者。
(10分)答:1、消息是信息的携带者,信息包涵于消息中;2、消息不一定含有信息;3、信号是消息的载体,消息是信号的具体内容;货车:信号,集装箱:消息,青花瓷瓶:信息;3. 信息的最基本特征。
(5分)答:不确定性;4. 概率论与随机过程各自研究对象的区别。
(10分)答:概率论只是单纯研究事件发生的概率;而随机过程是放在随时间变化的过程中研究事件发生的概率及其相互关系;5. 编码器主要包括信源编码器和信道编码器,试用两个字分别描述信源编码器和信道编码器各自的作用。
(5分)答:信源编码器:高效/有效;信道编码器:可靠;6. 概率论中相互独立与互不相容的区别,两者各自针对的对象是什么。
(10分)答:相互独立:事件A的出现对于事件B的出现概率没有影响,且事件B的出现对于事件A的出现概率也没有影响;互不相容:事件A与事件B不能同时发生;相互独立:针对概率,互不相容:针对集合;7. 马尔可夫随机过程的无后效性、平稳性,试解释。
(10分)答:无后效性:f(t0)已知,f(t> t0)的条件概率与t0之前的状态无关,只与t0—t之间的状态有关;即f(t)的条件概率只受就近时刻状态的影响。
平稳性:条件概率与转换前后的状态及转换时间有关,与起始时刻无关。
8. 先验概率与后验概率的含义。
(10分)答:先验概率:事件未传输之前的已经具有的概率,与是否传输无关;后验概率:已知接收事件的条件下,判断发送事件的概率;9. 不确定度与自信息量的联系与区别。
(10分)答:不确定度与自信息量数值、单位相同;区别:不确定度表征事件的本身性质,与是否传输无关;自信息量表示事件发生后观察者得到的消除不确定度需要的信息量;不确定度强调传输前,自信息量强调传输后,经过通信系统的传输过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码期中试题答案
一、(10’)填空题
(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是 0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为 3 。
二、(10')判断题
(1)信息就是一种消息。
(⨯)
(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(√)
(3)概率大的事件自信息量大。
(⨯)
(4)互信息量可正、可负亦可为零。
(√)
(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。
(⨯)
(6)对于固定的信源分布,平均互信息量是信道传递概率的下凸函数。
(√)
(7)非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。
(⨯)
(8)信源变长编码的核心问题是寻找紧致码(或最佳码)。
(√)
(9)信息率失真函数R(D)是关于平均失真度D的上凸函数. ( ⨯ )
三、(10')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?
解:设A表示“大学生”这一事件,B表示“身高1.60以上”这一事件,则
P(A)=0.25 p(B)=0.5 p(B|A)=0.75 (5分)
故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=0.75*0.25/0.5=0.375 (4分)
I(A|B)=-log0.375=1.42bit (1分)
四、(10')证明:平均互信息量同信息熵之间满足
I(X;Y)=H(X)+H(Y)-H(XY)
证明:
()()()()()()()()()()
Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j
i j i Y i j i X Y i j i j i -=⎥⎦
⎤⎢⎣⎡---==∑∑∑∑∑∑log log log
; (4分)
同理
()()()X Y H Y H Y X I -=; (2分)
则
()()()Y X I Y H X Y H ;-=
因为
()()()
X Y H X H XY H += (2分)
故 ()()()()Y X I Y H X H XY H ;-+=
即
()()()()XY H Y H X H Y X I -+=; (2分)
五、(30’).黑白气象传真图的消息只有黑色和白色两种,求:
1) 黑色出现的概率为0.3,白色出现的概率为0.7。
给出这个只有两个符号的信源X 的数学模型。
假设图上黑白消息出现前后没有关联,求熵()X H ;
2) 假设黑白消息出现前后有关联,其依赖关系为
,,
,,求其熵()X H ∞。
3)分别求上述两种信源的冗余度,比较它们的大小并说明其物理意义。
解:1)信源模型为 (4分)
(6分)
2)由题意可知该信源为一阶马尔科夫信源。
(2分)
由
(4分)
得极限状态概率
(2分)
(2分)
3)
119.02log )(121=-
=X H γ (4分) 447.02log )(122=-
=∞X H γ (4分)
12γγ>。
说明:当信源的符号之间有依赖时,信源输出消息的不确定性减弱。
而信源冗余度正是反映信源符号依赖关系的强弱,冗余度越大,依赖关系就越大。
(2分)
六、(10')一个信源含有三个消息,概率分布为p 1=0.2,p 2=0.3,p 3=0.5,失真函数矩阵为 求:D max ,D min , R(D max ),R(D min ) p 1=0.2,p 2=0.3,p 3=0.5 在给定的失真函数矩阵中,对每一个x i 找一个最小的d ij 然后求 R(D max )=0,
R(D min )=R(0)=H max (x)=[0.2log0.2+0.3log0.3+0.5log0.5
七、(10')有一信源它有四种可能的输出,其概率分布如下图所示,表中给出了对应的码A 、B 、
C 、
D 和
E 。
1)求这些码中哪些是唯一可译码。
2)求哪些是非延长码(即时码)3)对所有唯一可译码求出其平均码长和编码效率?
码E 符号出现的概率
码A 码B2 码C 码D
0 1/2 00 0 0 0
01
1/4 01 01 10 10 001 1/8 10 011 110 110
[]421032201d ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦)15.033.02.01;3.032.02;25.003.042.0(m in 1...2,1max ⨯+⨯+⨯⨯+⨯⨯+⨯+⨯==∑==n i ij i m j d p D min ()min j
i ij y i D p x d =∑
111 1/8 11 0111 1110 111
解:
1、唯一可译码为A、B、C、D
2、即时码为A、C、D
3、信源熵H(X)= 1.75 bit/符号
A码平均码长为2 bit/符号,效率为87.5%
B码平均码长为1.875 bit/符号,效率为93.75%
C码平均码长为1.875 bit/符号,效率为93.75%
D码平均码长为1.75 bit/符号,效率为100%。