第7章光子学基础

合集下载

微纳光子学从基础到应用

微纳光子学从基础到应用

内容摘要
在本书的第三部分,我们将介绍微纳光子学的未来发展趋势。我们将讨论微纳光子学技术的未来 发展方向,包括更高的精度和更小的尺寸。然后,我们将探讨微纳光子学在未来科技领域的应用 前景,包括、量子计算和生物技术等。我们还将介绍微纳光子学与其他领域的交叉研究,如纳米 材料、纳米生物和纳米医学等。 《微纳光子学从基础到应用》这本书是一本全面介绍微纳光子学的著作,旨在帮助读者深入理解 微纳光子学的原理和应用,以及它在现代科技领域中的重要地位。通过本书的学习,读者将获得 对微纳光子学的深入了解,并能够更好地应用它来解决实际问题。
阅读感受
《微纳光子学从基础到应用》:深入浅出的光子学之旅
当我翻开这本书的时候,我并没有想到它会如此吸引我。作为一个对科学和物 理学有着深厚兴趣的读者,我原本以为这本书会是一本深入且技术性的读物, 然而,我惊喜地发现它以一种非常生动和易于理解的方式介绍了微纳光子学的 各个方面。
《微纳光子学从基础到应用》的内容丰富,覆盖了微纳光子学的各个主要领域。 从微纳光子学的起源和发展,到其在新材料、生物医学、信息科学、能源等各 个领域的应用,这本书都进行了深入浅出的讲解。尤其值得一提的是,这本书 在阐述理论的同时,还非常注重实践和应用,这对于理解微纳光子学的实际应 用非常有帮助。
“未来的微纳光子学将更加注重环保和可持续发展。”这句话让我们看到了微 纳光子学在环保和可持续发展方面的应用前景,也让我们对未来的科技发展充 满期待。
“未来的微纳光子器件将更加智能化和多功能化。”这句话预示着微纳光子器 件未来的发展趋势,也让我们对未来的科技产品充满期待。
《微纳光子学从基础到应用》这本书的精彩摘录不仅让我们深入了解了微纳光 子学的内涵和价值,也让我们看到了科技未来的发展趋势和应用前景。通过这 本书的阅读,我们不仅可以获得丰富的知识,也可以激发我们对科技的热爱和 追求。

《生物医学光子学》课件

《生物医学光子学》课件

光学相干成像技术
总结词
光学相干成像技术利用光的干涉现象,能够无损地观察生物组织的内部结构。
详细描述
光学相干成像技术利用光的干涉现象,通过测量光在生物组织内部不同路径的传播时间,重建组织内 部的折射率分布,从而观察生物组织的内部结构。这种技术具有无损、无创的优点,在眼科、心血管 等领域有广泛应用。
荧光寿命成像技术
研究内容与领域
总结词
生物医学光子学的主要研究内容、领域和应 用方向
详细描述
生物医学光子学的研究内容主要包括光与生 物组织的相互作用、光子在生物组织中的传 输和散射、生物组织的光学成像和光谱分析 等。该学科的研究领域涉及光学显微镜、光 学成像、光谱分析、激光生物学、光热治疗 和光动力治疗等。生物医学光子学的应用方 向非常广泛,包括医学诊断、治疗和基础研
详细描述
光学成像技术利用光的散射、吸收和 荧光等特性,对生物组织进行成像, 可应用于肿瘤、炎症等疾病的早期诊 断。
荧光分子成像与示踪
总结词
通过荧光标记技术对生物分子进行示 踪,研究分子在生命过程中的动态变 化。
详细描述
荧光标记技术利用荧光物质对生物分 子进行标记,通过荧光显微镜观察分 子的动态变化,有助于深入了解生命 过程和疾病发生机制。
深入研究和探索生物组织的光学特性
未来研究将更加深入地探索生物组织的光学特性,为光子检测和成像提供更准确的理论 依据和技术支持。
发展新型光子检测和成像技术
未来将发展新型的光子检测和成像技术,以提高灵敏度和分辨率,满足生物组织和细胞 层面的检测和成像需求。
拓展光子学在生物医学领域的应用范围
随着技术的不断进步和应用需求的不断增加,光子学在生物医学领域的应用范围将不断 拓展,涉及更多的疾病诊断和治疗领域。

现代通信光电子学——光子学

现代通信光电子学——光子学

从学科发展历史看光电子学
在多学科综合发展的推动下,光通信已经形成了产业, 光纤传感技术日趋成熟,半导体逻辑功能器件和光集成 取得了重大进展,光信息处理成了举世瞩目的现代信息 科学的重大研究课题。
光电子学便从现代信息科学领域脱颖而出。随着信息时 代的到来,人们面对的是巨量的信息,要求在有限的时 间内,甚至实时的采集、传输、处理、存储、显示、应 用这些数据,这向微电子学提出了严峻的挑战,微电子 学在实现超高速、超大容量、超低损耗的集成系统方面 遇到了根本的困难。
光电子学
绪论
光电子学是光学和电子学相结合的产物, 是一门交叉学科。 它借助电子学的概念、技术和方法研究光 波的规律和属性,研究光波场与物质中的 电子相互作用及其能量转换的规律。
从学科发展的历史看信息光电子学
光学
研究光波的性质、规律和属性来自几何光学 以射线光学为基础 研究光在均匀介质中的传 播规律,在两种在界面上反射、折射、全反射,在此 基础上发明了放大镜、显微镜、望远镜、照相机等应 用光学仪器;
从学科发展历史看光电子学
光波的频率比微波频率高三个数量级,比无线电波频率 高六个数量级,用光波作为载波,若视频带宽为 5MHz ,那么一路光纤上可以同时播放 100万套电视节目。 一个完整的信息系统,应包括载波光源、信号加载、 信息传输、信号处理与监测解调等基本部分。每一部分 都需要有源无源光电子器件和光电子学技术。因此光通 信是以光电子学为基础的。
从学科发展历史看光电子学
时间是物理学的最基本的物理量之一,随着时间刻 度的细分,秒、毫秒、纳秒、皮秒、飞秒、阿秒 ……,人类可以进入超快过程的研究领域,象光化 合作用、化学中化合物的形成过程以及生命过程等 的研究将在人类面前揭示一个崭新的世界。超短脉 冲技术为人类提供了一个快速“时间探针”。实际 上,梅曼发明的第一台激光器就工作在脉冲状态, 只不过其光脉冲宽度比较宽而已。调Q技术、锁模技 术、光脉冲的放大和压缩技术的发展使人类得到纳 秒乃至飞秒的“时间探针”已经是很容易的事了。

第7章 光子学基础

第7章 光子学基础

第十七章 光子学基础传统光学主要是研究宏观光学特性,如光的折射、反射、成像及光传播时的干涉、衍射和偏振等波动性质,而未去探究其微观的物理原因。

然而随着光学的发展,人们逐渐地注意研究光与物质(包括光子与光子)相互作用的微观特性,以及与这种微观特性相联系的光的产生、传播和探测等过程。

同时,也逐渐注意研究光子承载信息的能力,以及它在承载信息时的处理和变换等基础问题。

现在人们用光子光学(Photon Optics )或光子学(Photonics)来概括这一领域的研究。

光子学在现代科学技术中的作用越来越显重要。

本章结合光电效应,引入光子学中的基本概念和关系式,讨论电磁场的量子化和光子的性质,并介绍两个应用。

第一节 光的量子性一、光电效应与爱因斯坦光子学说(一)光电效应的规律1887年赫兹在题为“关于紫外光对放电的影响”的论文中首先描述了物体在光的作用下释放出电子的现象,这就是通常所说的光电效应。

一般采用图16-1a 的装置观察金属的光电效应。

电极K 和A 封闭在高真空容器内,光经石英小窗照射到金属阴极K 上。

当电极K 受光照射时,光电子被释放出并受电场加速后形成光电流。

实验发现光电流的大小与照射光的强度成正比,照射光中紫外线越强,光电效应越强。

用一定强度和给定频率的光照射时,光电流i 和两极间电位差u 的实验曲线如图16-1b 所示,称为光电流的伏安特性曲线。

当u 足够大时,光电流达到饱和值m I ;当u ≤0u 时光电流停止(0u 称为临界截止电压)。

总结所有的实验结果,得到如下规律:(1) 对某一光电阴极材料而言,在入射光频率不变条件下,饱和电流的大小与入射光的强度成正比。

(2) 光电子的能量与入射光的强度无关,而只与入射光的频率有关,频率越高,光电子的能量就越大。

(3) 入射光有一截止频率0 (称为光电效应的红限)。

在这个极限频率以下,不论入射光多强,照射时间多长,都没有光电子发射。

不同的金属具有不同的红限。

光子学基础报告

光子学基础报告

姓名:曾福江学号:20121002251 班级:075123课程名称:光子学基础任课老师:王宏光学隐身技术1.1基本资料隐形技术(stealth technology),准确的术语应该是“低可探测技术”,即通过研究利用各种不同的技术手段来改变己方目标的可探测性信息特征,最大程度地降低对方探测系统发现的概率,使己方目标,己方的武器装备不被敌方的探测系统发现和探测到。

隐形技术是传统伪装技术的一种应用和延伸,它的出现,使伪装技术由防御性走向了进攻,有消极被动变成了积极主动,增强部队的生存能力,提高对敌人的威胁力。

雷达和通信设备工作时会发出电磁波,表面会反射电磁波,运转中的发动机和其他发热部件会辐射红外线,以及物体(如飞机)会反射照射向它的雷达波,这样,就使武器装备与它所处的背景形成鲜明对比,容易被敌人发现。

通过多种途径,设法尽可能减弱自身的特征信号,降低对外来电磁波、光波和红外线反射,达到与它所外的背景难以区分,从而把自己隐蔽起来。

这就是“低可探测技术”。

隐形技术涉及到电子学、材料学、声学、光学等许多技术领域,是第二次世界大战后的重大军事技术突破之一。

隐形技术包括:雷达隐形、红外隐形、磁隐形、声隐形和可见光隐形等。

很多武器装备,如飞机、导弹、舰船、坦克、战车、水雷、大炮等,都可以采取隐身措施把自己隐蔽起来。

首先出现的是隐形飞机,通过降低雷达截面和减小自身的红外辐射实现隐形。

作为提高武器系统生存能力和突防能力的有效手段,它受到世界各主要军事国家的高度重视,从20世纪50年代开始发展以来,随着技术的发展,从简单的伪装到现代反声、光、电、磁等探测的隐身技术。

现代隐身技术主要包括反雷达探测、反红外探测、反电子探测、反可见光探测和反声波探测等隐身技术,近年来激光制导武器的快速发展,使得反激光探测技术(即激光隐身技术)也成为了各国竞相研究的对象。

1.2隐身技术实现的原理如图,A是某个物体, c是光线,假如来自四面八方不同角度照射到物体A上的光线,当要接近物体A时都自觉的绕过A后,继续沿着光线c原来的传播方向继续前进。

光子学物理基础A

光子学物理基础A

光的传输 光在介质中的传输 各向异性介质 近场光学 光波导和光纤 光脉冲在单模光纤中的传输, 光脉冲在单模光纤中的传输,光孤子 光子的控制和检测 控制光子的各种物理效应(电光、声光、 控制光子的各种物理效应(电光、声光、 磁光、 磁光、光—光) 光 光调制器
§8.3 光双稳和光开关 §8.4 检测光子的各种物理效应 §8.5 检测过程中的噪音 §8.6 光子计数原理 第九章 §9.1 §9.2 光存储和光计算 光存储原理 光子并行处理
参考书: 参考书:
B. E. A. Saleh, M. C. Teich 《Fundamentals of Photonics》(1991) 》 ) Chai Yeh 《Applied photonics》 》 (1995) ) 王忠和、 王忠和、张光寅 光子学物理基础》 《光子学物理基础》 (1998) ) Keigo Iizuka 《Elements of Photonics》 》 (2002) )
c0 n= c
(2-2-1)
(3) 在光介质中,两个空间点 、B两点之间 在光介质中,两个空间点A、 两点之间 的光程定义为: 的光程定义为: B (2-2-2) 光程 = n(r )ds

A
式中积分是沿通过A、B两点的光线进行的。 式中积分是沿通过 、 两点的光线进行的。 两点的光线进行的 (4)光在介质中的传播遵循 光在介质中的传播遵循Fermat原理: 原理: 光在介质中的传播遵循 原理
§ 1.2 光子学的物理基础
QED
Photon
Emission
Q. T. Interaction
Detection
Atom, Molecule, Condensate
Control Conversion

光子学基础知识

光子学基础知识

光子学基础知识光子学是研究光的产生、传播和控制的学科,是光学的一个重要分支。

光子学及其应用在现代科技领域中发挥着重要作用,如通信技术、材料科学、生物医学等。

本文将介绍光子学的基础知识,包括光的性质、光的传播、光的相互作用等内容。

一、光的性质光是一种电磁波,具有波动性和粒子性。

根据电磁谱,光波长范围从红外线到紫外线。

光的波长决定了光的颜色,短波长的光呈蓝色,长波长的光呈红色。

光的粒子性可通过光子来描述。

光子是光的能量量子,具有能量和动量。

光子的能量与光波长成反比,即能量越大,波长越短。

光子的动量与光的频率成正比,即频率越高,动量越大。

二、光的传播光的传播有两种方式:直线传播和衍射传播。

直线传播发生在光在均匀介质中传播时。

在同一介质中,光的传播是直线传播。

当光从一种介质传播到另一种介质时,会发生折射现象。

根据斯涅尔定律,入射角、传播介质的折射率和出射角之间存在一定的关系。

衍射传播发生在光通过边缘或孔径时。

当光通过一个小孔或扩展到一个尺寸与其波长相当的孔径时,光波会发生衍射现象。

衍射使得光以扩展的方式传播,形成衍射图样。

三、光的相互作用光与物质之间存在多种相互作用,包括吸收、反射、折射和散射。

吸收是指当光与物质相互作用时,光的能量被物质吸收并转化为其他形式的能量,如热能。

物质的颜色是由其吸收和反射特定波长的光所决定的。

反射是指光在遇到物体表面时,一部分光被物体表面反射回来。

反射现象使我们能够看到周围的物体。

根据光的入射角和物体表面的性质,反射可以分为漫反射和镜面反射两种。

折射是指光从一种介质传播到另一种介质时,发生方向的改变。

折射现象可通过斯涅尔定律来描述,根据入射角和两种介质的折射率之间的关系。

散射是指光在与物质微观结构相互作用时,改变传播方向并散射到不同的方向。

散射现象是太阳光在大气中形成蓝天和彩虹的原因。

四、光子学的应用光子学在众多领域中有着广泛的应用。

在通信技术中,光纤通信是一种高速传输信号的方法。

《光纤通信基础》习题及答案

《光纤通信基础》习题及答案

光栅技术
第二章部分
2.1、光纤的结构由哪几部分组成?各有什么作用? 答:光纤(Optical Fiber)是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。纤芯的 折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光的传输提供反射 面和光隔离,并起一定的机械保护作用。 2.2、简述光纤的类型包括哪几种以及各自特点? 解:实用光纤主要有三种基本类型: 1)、突变型多模光纤(Step Index Fiber, SIF), 纤芯折射率为 n1 保持不变,到包层突然 变为 n2。这种光纤一般纤芯直径 2a=50~80 μm,光线以折线形状沿纤芯中心轴线方向传播, 特点是信号畸变大。 2)、渐变型多模光纤(Graded Index Fiber, GIF), 在纤芯中心折射率最大为 n1,沿径向 r 向外围逐渐变小,直到包层变为 n2。这种光纤一般纤芯直径 2a 为 50μm,光线以正弦形 状沿纤芯中心轴线方向传播,特点是信号畸变小。 3)、单模光纤(Single Mode Fiber, SMF),折射率分布和突变型光 纤相似,纤芯直径只有 8~10 μm,光线以直线形状沿纤芯中心轴线方向传播。因为这种光 纤只能传输一个模式(两个偏振态简并),所以称为单模光纤,其信号畸变很小。 2.3、色散的产生以及危害? 答:由于光纤中所传信号的不同频率成分, 或信号能量的各种模式成分,在传输过程中, 因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散;光纤色散 的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。 2.4、光缆的结构分类? 答:(1) 层绞式结构:层绞式光缆的结构类似于传统的电缆结构方式,故又称为古典式光缆。 (2) 骨架式结构:架式光缆中的光纤置放于塑料骨架的槽中,槽的横截面可以是 V 形、U 形 或其他合理的形状,槽的纵向呈螺旋形或正弦形,一个空槽可放置 5~10 根一次涂覆光纤。 (3) 束管式结构:束管式结构的光缆近年来得到了较快的发展。它相当于把松套管扩大为整 个纤芯,成为一个管腔,将光纤集中松放在其中。 (4) 带状式结构:带状式结构的光缆首先将一次涂覆的光纤放入塑料带内做成光纤带,然后 将几层光纤带叠放在一起构成光缆芯。 2.5、光缆的种类? 答:根据光缆的传输性能、距离和用途,光缆可以分为市话光缆、长途光缆、海底光缆和用

现代通信光电子学——光子学

现代通信光电子学——光子学

从学科发展历史看光电子学
二十世纪末是光电子产业迅速发展时期,1989年光电子 产业规模~450亿元,1995年增加到700亿美元。2000 年 为 1650 亿 美 元 , 2003 年 , 增 加 到 了 2482 亿 美 元 。 2010年?照此发展,二十一世纪将发展到上万亿的产 业规模。光电子学做为一门学科也必将随之发展和深入 。
教材
现代通信光电子学 (第五版)
亚里夫
时间
授课时间:2010年9月21日——2011年1月11日 答疑时间:临时安排 考试时间:2011年1月18日 授课方式:讲授+自学+讨论
考核方式: 平时成绩(出勤、作业): 50%
期末成绩( 闭卷考试 ) :
50%
第1章 电磁理论 第2章 光波在光学介质中传播 第3章 光波频率变换 第4章 激光光束的电光调制 第5章 激光光束的声光调制 第6章 光探测中的噪声 第7章 光辐射的探测 第8章 光波在光纤中传播 第9章 光波在介质波导中传播
众所周知,当今时代已步入信息时代,在信息社会 中,光信息占人类可获得的信息总量的80%以上。 不能不说光学这个古老的学科正在飞速发展,正在 不断注入新内容。
从学科发展的历史看光电子学
电子学
电子学是在电磁学的基础上发展起来的,是研究电信号 的产生、放大、调制、解调、传输、存储、处理、显示和 应用的学科。二十世纪六十年代,半导体材料的研制成功 ,大大促进了电子学的发展,随着半导体工艺和微电子技 术的发展,电子学、微电子学产业已经成为二十世纪的支 柱产业,人类享受的现代物质文明,很大程度上依赖于电 子学的发展。 。
例如非线性光学效应历来都是在强光作用下在介电材料中才观察到的现象然而到了80年代用弱光激发的象gaas等量子阱半导体材料竟观察到了极强的三阶非线性光学现象从而导致了半导体光学双稳态功能器件的开发正象晶体管的研制成功奠定了微电子学的基础一样光晶体管的研制成功必将促进光电子学的发展和光电子产业的发展再如以前人们把光纤仅仅看作传输光波的介质但是随着光纤物理特性的深入研究发现了光纤的偏振和相敏特性利用这些性质可以发展光纤传感技术利用光纤的非线性和色散特性可以压缩和整形光脉冲形成光孤子在光纤中掺入稀土元素铒镱銩等制成有源光纤可以发展光纤激光器和光纤放大器光纤放大器的研究引起了光纤通信的第二次革命在光纤中掺入光敏材料可以研制光纤光栅这必将促进光通信和光传感技术的发展一种全固化的光子集成回路已经迅速地形成并向人们展现出来

光子学基础

光子学基础

光 纤 通 信
光纤通信使互联网 从初期的军用研究 普及到全社会和千 家万户
通信容量
Gb/s 1000
光纤通信带宽发掘史
波分复用技术!
WDM 点 对点
WDM 点 对点
WDMBandwidth Mining ! WDM全光网?
100
(Multi- Wavelength P to P)
10
1.0
单波长点对点 (Single Wavelength P to P)
1. 光子的特性
(3)光子具有极强的互联能力与并行能力 电子之间有相互作用,它们之间无法交联, 成为限制电子信息处理速率与容量的一个 主要因素。另外,在电子技术中,电子信 息也只能串行提取、传输和处理,这是另 一个限制电子信息处理速率和容量的主要 因素。 光子不带电,具有良好的空间相容性。
1. 光子的特性
2. 光子学的提出
1970年在第九届国际高速摄影会议上,荷兰科学家 Poldervaart首次提出关于光子学的定义规范,他 认为,光子学是“研究以光子为信息载体的科学。 1973年 法国举办了一次国际光子学会议,出版了« 光子学»一书,汇集了半导体激光、材料的非线性 效应等会议论文。 1978年第13届国际高速摄影会议更名为国际高速摄 影和光子学会议。
激光医疗
激光和光纤
(传像光纤和传能量光纤)
可 能帮助找寻到攻 克 危害人类的 心赃病,癌症 等 疾病的方法 激光 诊断, 手术和治 疗: 激光层析造影 激光荧光 诊断 光动力学治疗(PDT)技术 激光 心赃 打孔 激光光纤内窥镜手术
...
量子信息科学
量子力学曾经间接地导致晶体管,激光等的发 明, 但是它并未作为一种“资源”而直接应用. 量子信息学是量子力学“资源” 的直接应用, 是量子力学与信息科学相融合的交叉学科。

深圳大学生物光子学讲义

深圳大学生物光子学讲义

深圳大学生物光子学讲义屈军乐、林丹樱、许改霞、于斌、邵永红等编著深圳大学光电工程学院2010年7月目录第1章绪论 ..................................................................... ...................................... 1 1.1 生物光子学的形成与发展 ..................................................................... .. 1 1.2 本书的内容及结构安排 ..................................................................... (1)第2章光子学与光谱学基础 ..................................................................... ........... 3 2.1 光在界面上的反射和折射 ..................................................................... .. 3 2.2 光的本质—波粒二象性 ..................................................................... ...... 3 2.3 光子的吸收、发射和散射 ..................................................................... .. 42.3.1 吸收与发射 ..................................................................... (4)2.3.2 散射 ..................................................................... .......................... 4 2.4 光波的干涉和衍射 ..................................................................... .............. 4 2.5 分子能级结构与光谱 ..................................................................... . (5)2.5.1 分子能级结构 ..................................................................... .. (5)2.5.2 光谱学基础 ..................................................................... ............... 5 2.6 激光与非线性光学 ..................................................................... .. (6)2.6.1 激光原理 ..................................................................... (6)2.6.2 非线性光学 ..................................................................... (6)第3章生物学基础 ..................................................................... .......................... 8 3.1 生命体的构成 ..................................................................... (8)3.1.1 细胞 ..................................................................... .. (8)3.1.2 组织 ..................................................................... .. (8)3.1.3 器官与系统 ..................................................................... ............... 8 3.2 生物大分子 ..................................................................... . (9)3.2.1 蛋白质 ..................................................................... . (9)3.2.2 核酸 ..................................................................... .......................... 9 3.3 细胞的结构与功能 ..................................................................... .............10 3.4 生物组织及动物模型 ..................................................................... (10)3.4.1 生物组织 ..................................................................... .. (10)3.4.2 动物模型 ..................................................................... .. (10)第4章光与生物体的相互作用 ..................................................................... ......12 4.1 光与生物体相互作用的形式 (12)4.2 光与细胞的相互作用 ..................................................................... (12)4.2.1 细胞中的光吸收 ..................................................................... (12)4.2.2 光致细胞过程 ..................................................................... ..........12 4.3 光与生物组织的相互作用 ..................................................................... .134.3.1 组织对光的吸收 ..................................................................... (13)4.3.2 组织对光的散射 ..................................................................... (13)4.3.3 生物组织与荧光 ..................................................................... (14)4.3.4 光热效应和光声效应 (14)4.3.5 光化学效应 ..................................................................... .. (15)第5章生物光子学成像技术 ..................................................................... ..........16 5.1 光学成像 ..................................................................... ............................16 5.2 光学显微技术 ..................................................................... ....................16 5.3 荧光显微技术 ..................................................................... ....................17 5.4 激光扫描共聚焦显微技术 ......................................................................17 5.5 多光子激发荧光显微技术 ..................................................................... .17 5.6 全内反射荧光显微技术 ..................................................................... .....18 5.7 荧光共振能量转移成像技术 (19)5.8 荧光寿命成像显微技术 ..................................................................... .....19 5.9 光学相干层析成像技术 ..................................................................... .....20 5.10 非线性光学成像技术 ..................................................................... .......20 5.11 生物光子学成像技术的发展趋势 (21)第6章超分辨成像技术 ..................................................................... .................23 6.1 光学显微镜的空间分辨率 ..................................................................... .23 6.2 非远场超分辨荧光显微技术 (23)6.3 远场超分辨荧光显微技术 ..................................................................... .236.3.1 结构光照明超分辨显微技术 (24)6.3.1.1 线性结构光照明超分辨显微技术 (24)6.3.1.2 饱和结构光照明超分辨显微技术 (24)6.3.2 干涉在光学超分辨显微技术中的应用 (24)6.3.2.1 驻波荧光显微技术 (25)6.3.2.2 非相干光干涉照明干涉成像显微技术 (25)6.3.2.3 4Pi显微技术 (2)56.3.3 利用非线性效应突破衍射极限 (26)6.3.3.1 受激发射损耗(STED)显微技术 (26)6.3.3.2 基态损耗显(GSD)微技术 (26)6.3.3.3 可逆饱和荧光跃迁(RESOLFT)显微技术 (26)6.3.4 单分子显微技术 ...........................................................................27 6.4 超分辨显微技术的发展展望 (27)第7章生物光子学中的光谱分析技术 ...............................................................29 7.1 吸收光谱技术 ..................................................................... ....................29 7.2 荧光光谱技术 ..................................................................... ....................29 7.3 拉曼光谱 ..................................................................... ............................30 7.4 荧光相关光谱技术 ..................................................................... .............31 7.5 生物大分子检测 ..................................................................... . (31)第8章其它常见的生物光子学技术 (32)8.1 流式细胞分析技术 ..................................................................... .............32 8.2 生物芯片 ..................................................................... ............................32 8.3 激光光镊技术 ..................................................................... ....................33 8.4 光动力学疗法 ..................................................................... ....................33 8.5 生物光子学中的纳米技术 ..................................................................... .33《生物光子学》讲义 2010年7月编制第1章绪论1.1 生物光子学的形成与发展生物光子学是一门新兴的交叉学科,它将可能给医学和光子应用等学科带来革命性的变化,尤其是在医学诊断和疾病预防等方面。

光电子学教学大纲

光电子学教学大纲

《光电子学》课程教学大纲课程代码:090631008课程英文名称:Optical electronics课程总学时:32 讲课:32 实验:0 上机:0适用专业:光电信息科学与工程大纲编写(修订)时间:2017.10一、大纲使用说明(一)课程的地位及教学目标《光电子学》是光电信息科学与工程专业的一门主干的专业基础课,与多门课程内容相关,在专业课程设置中起着承上启下的作用。

通过本课程的学习,使学生了解光与物质相互作用的基础,激光产生的原理与特性,了解光在介质波导(主要是在光纤)中的传输特性,掌握发光器件的原理与特点,掌握光电转换器件的工作原理及特性等光电子学知识。

使学生在获取光电子学基本知识的过程中,注意理论联系实际,适度介绍光电子学在相关领域中的最新应用。

从而培养学生的理性思维和创新意识,增强学生的工程实践能力,为进一步学习其它专业课程打下良好的基础。

(二)知识、能力及技能方面的基本要求1. 基本知识:通过本课程的学习,使学生了解光与物质相互作用的基础、激光的产生、光在介质波导(主要是在光纤)中的传输特性等光电子学知识,掌握发光器件与光电转换器件等方面的知识。

基本理论和方法:了解激光的产生原理,掌握发光器件与光电转换器件的工作原理的基本原理与方法;3. 基本技能: 掌握相应的计算技能、培养实验技能。

(三)实施说明1.本大纲适用于“光电信息科学与工程”以及相近的诸如光电信息、电子信息等专业的本科生。

作为一个整体,大纲展现了光电子学的基本学科体系,应注意本课程的完整性、系统性、实用性;但部分章节的组合也可作为开设某一专题的选修课使用;2.因教学学时所限,课堂教学要做到突出重点,精讲难点,有针对性地解决理论与实际应用中可能遇到的基本光电子学问题。

教师在授课中可酌情安排各部分的学时,课时分配表仅供参考;3. 对于与其它课程交叉部分的内容,要分工明确,突出本课程在课程设置中的地位、作用与特色,即立足于光电子学涉及到的基本物理效应,重要概念与理论分析方法,器件的工作原理、主要性能特征及应用方向等;4. 注意知识的内在联系与融合贯通,注意采用课堂讲授、讨论、多媒体教学相结合的教学方式,启发学生自学并不断积累学科前沿最新知识,学会独立思考,独立提出问题与独立解决问题的能力。

科学光单元教案

科学光单元教案

科学-光-单元-教案第一章:光的概述教学目标:1. 了解光的定义和特性。

2. 掌握光的传播方式和速度。

3. 理解光的反射和折射现象。

教学内容:1. 光的定义和特性:介绍光是一种电磁波,具有波动性和粒子性。

2. 光的传播方式:讲解光的直线传播和波动传播。

3. 光的速度:介绍光在真空中的速度为299,792,458米/秒。

4. 光的反射和折射现象:解释光的反射定律和折射定律。

教学活动:1. 引入光的定义和特性,引导学生思考光的日常生活中的应用。

2. 通过实验或图片展示,让学生观察光的传播方式和效果。

3. 讲解光的速度,引导学生进行相关计算练习。

4. 通过实验或模拟实验,让学生观察光的反射和折射现象。

第二章:光的折射教学目标:1. 理解折射现象的原理。

2. 掌握折射定律及其应用。

3. 能够计算光的折射角度。

教学内容:1. 折射现象的原理:介绍光从一种介质进入另一种介质时速度改变导致方向改变的现象。

2. 折射定律:讲解斯涅尔定律,即n1sin(θ1) = n2sin(θ2),其中n1和n2分别为两种介质的折射率,θ1和θ2分别为入射角和折射角。

3. 折射定律的应用:介绍透镜和眼镜的制作原理。

4. 计算光的折射角度:引导学生进行折射角度的计算练习。

教学活动:1. 引入折射现象的原理,引导学生思考折射在日常生活中的应用。

2. 通过实验或模拟实验,让学生观察光的折射现象。

3. 讲解折射定律及其应用,引导学生进行相关计算练习。

第三章:透镜和光学仪器教学目标:1. 了解透镜的类型和特性。

2. 掌握透镜的光学性质和应用。

3. 了解常见光学仪器的原理和构造。

教学内容:1. 透镜的类型:介绍凸透镜和凹透镜的定义和特点。

2. 透镜的光学性质:讲解焦距、放大倍数和像距等概念。

3. 透镜的应用:介绍透镜在眼镜、相机和显微镜等光学仪器中的应用。

4. 常见光学仪器的原理和构造:讲解相机、显微镜和望远镜等光学仪器的原理和构造。

教学活动:1. 引入透镜的类型和特性,引导学生思考透镜在日常生活中的应用。

光子学基础

光子学基础

mc/m0 Si GaAs 0.33 0.07
mv/m0 0.5 0.5
2005-1-27
18
等能面
等能面:k空间能量相同的各点构成的曲面 极值在k=0,有效质量各向同性的简单能带,等能 面为球形,即满足下列两式
k2 E (k ) = Ec (0) + 2mc k2 E ( k ) = E v ( 0) − 2mv
2005-1-27
13
E-k关系举例
E
Ec Eg=1.11eV Ev k
Si
[111]
[100]
E
Ec Eg=1.42eV Ev k
GaAs
2005-1-27
[111]
[100]
14
电子和空穴
当T>0K时
热激发……
2005-1-27
15
有效质量(1)
在外力的作用下,
dυ ⎛ 1 ⎞ = ⎜ ⎟F dt ⎝ m ⎠ ⎛ ∂2E ⎜ 2 ⎜ ∂k x 2 ⎛ 1 ⎞ 1⎜ ∂ E 倒有效质量张量 ⎜ ⎟ = ⎜ ⎝m⎠ ⎜ ∂k y ∂k x ⎜ ∂2E ⎜ ⎜ ∂k ∂k ⎝ z x
[
]
上式称为Fermi-Dirac分布。Ef为Fermi能级。
2005-1-27
34
Fermi分布函数的图象
Ef是任何温度下能级占据几率为1/2的能级;也是绝 对零度下被占据能级和空能级之间的分界线
2005-1-27
35
Fermi函数(电子和空穴)
能级E上的平均电子数(或被电子占据的几率) 1 f (E) = exp ( E − E f ) / k BT + 1
2005-1-27
11
半导体中的能带

物理高中知识点总结选修二

物理高中知识点总结选修二

物理高中知识点总结选修二第一章电磁场的基本概念电磁场是指电荷和电流所产生的力场,包括静电场和磁场。

电荷和电流是电磁场的源,它们的存在和运动产生了电场和磁场。

在电磁场中,电场和磁场相互作用,形成了电磁现象。

在电磁场中,电荷和电流受到电场力和磁场力的作用,发生运动。

电荷是物质中的基本粒子,带电粒子产生的物质称作电子,未带电的物质称作中子,而电子与质子所带的电量大小相等,而符号相反,所以质子带正电。

电荷受力为Coulomb力。

单位电量为库仑量。

磁场由磁极造成,包括北极和南极,并且又孤立的磁单极,因此产生磁场的磁力线是环绕磁体的,磁极间的相互作用遵循磁力的叠加原理,磁力的大小遵守库仑定律,则单位磁通量为韦伯。

电磁场存在于空间中,可以通过电荷和电流的产生,可以通过环路定理与Gauss定理应用到电磁中,即可知道磁场的产生,电场的环路可知变化的磁通量,以及电场的闭合曲面则可知外加电荷数目。

第二章电磁感应现象与电磁感应定律电磁感应定律是反映电磁感应现象的定律。

当一磁束的率于闭合导体回路中变化时,产生感应电动势,即法拉第电磁感应定律。

法拉第电磁感应定律可以推导出电磁感应定律。

电磁感应定律的实验研究和理论分析共同揭示了磁场和电场之间的相互转化关系,以及能量的转化问题。

当闭合回路在磁场中有运动时,由于磁通量的变化,就会在回路中产生感应电动势。

电磁感应定律包括法拉第电磁感应定律和楞兹定律。

电磁感应定律的应用有很多,可以用于发电机的工作原理,是电磁学重要的应用之一。

第三章电磁感应现象的应用电磁感应现象的应用有很多,如变压器、感应电炉、感应电动机、电磁波等。

其中变压器是一种基于电磁感应现象而工作的重要设备。

变压器通过变换线圈的匝数和电流强度,实现了电压的升降,广泛应用于电力传输系统中。

感应电炉则是利用感应电动势的原理实现加热材料,广泛应用于冶金、机械制造、化工等各个行业。

感应电动机则是一种利用电磁感应现象工作的电动机,是现代工业中不可或缺的设备。

生物医学光子学

生物医学光子学

叶绿素a、b (高等植物)
叶绿素c、d (藻类)
类胡萝卜素 强光下逸散能量
辅助色素
(高等植物)
(吸收传递光能) 藻胆素
(藻类)
叶绿素吸收光谱
光合色素吸收光谱
5. 光照因素对光合作用的影响
光强对光合作用的影响 表观光合速率为零,称为光补偿点 开始达到光合速率最大值时,称为光饱和点 光抑制--当光合机构接受的光能超过它所能利用的
据上述实验结果,希尔(1960)等人提出双光系统 的概念,把吸收长波光的系统称为光系统Ⅰ(PSⅠ), 吸收短波长光的系统称为光系统Ⅱ(PSⅡ)。
20世纪60年代以后,已能直接分离出PSⅠ和PSⅡ 的色素蛋白复合体颗粒。
爱默生增益效应
4.光合色素
在光合作用的反应中吸收光能的色素称为光合色素。
叶绿素 (光合作用)
折射:入射光的频率接近电子的本征振动频率时, 深入物体内部,引起电子微小振动,传能量给核, 核再使光波以原来频率透出物体。由于速度不同, 在界面处形成一个折点。雨后彩虹。
二. 光合作用
1.光合作用表达式
6CO2+6H2O 绿色植物 C6H12O6+6O2
(1)
叶绿体
CO2+H2O
(CH2O)+O2
2.光反应和暗反应
增大光强对光合作用的影响 闪光照射,光合效率是连续光的200%-400%
需光的光反应不需光的暗反应(碳同化反应),不绝对
3. 两个光系统
20世纪40年代,研究不同光质的量子产额时,发 现大于680nm的远红光虽然仍被吸收,但量子产额急剧 下降,称为红降现象。
1957年,爱默生观察到远红光照射时补加稍短波 长的光(如650nm的光),则量子产额大增,比这两种波 长的光单独照射的总和还要高。这种现象被称为双光 增益效应,或爱默生增益效应。

生物光子学光子学与光谱学基础演示文稿

生物光子学光子学与光谱学基础演示文稿

荧光寿命
荧光寿命表示荧光强度的衰减,是指分子受到光 脉冲激发后返回基态之前在激发态平均停留的时 间,通常小于100ns,它主要依赖于被测荧光团所处的 微环境变化。
一个简单的荧光衰减是单指数的,即
I(t) Ioekt
I(t)是样品受到光脉冲激发后t时刻测量得到的强度, I0是t=0时的强度, k为
2.5 分子能级结构与光谱
• 荧光的量子产额
– 荧光的量子产额是发射光子数与吸收光子数比率的一种量度。 在没有非辐射衰减时,量子产额等于1,即激发态只以辐射(荧 光)过程衰减;
– 定义式:
– 荧光的量子产额是测量分子聚合物中荧光团周围环境的最好手 段。
25
当前第25页\共有72页\编于星期四\19点
• 做拉曼散射前,被测样品无需特殊处理,可直接利用被测样品的自然形态(液 态、固态、胶状);
• 由于可见光波段的激光可以聚焦到微米量级大小,因此可以获得 微米颗粒(比如一个细胞大小)的拉曼光谱;
• 利用与待测分子最大吸收峰相近的激光,通过共振增强拉曼散射,
可以选择性地探测特定的化学片段或亚细胞组分。
2.5 分子能级结构与光谱
• 振动能级光谱
– 拉曼散射:入射和散射光子的能量差为分子振动能级差;
• Stokes拉曼散射:散射光子的频率低于入射光子 (v>v) ,分子从低振动能级跃迁到高振动能级;
• 反Stokes拉曼散射:散射光子的频率高于入射光子 (v<v),分子从较高振动能级跃迁到较低振动能级;
– 振动能级光谱包括:
• 红外光谱(吸收):吸收一个红外或远红外光子会产生振动跃迁;
• 拉曼光谱(散射):通过拉曼散射产生振动跃迁。
nphoton = nvibration
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章光子学基础第十七章光子学基础传统光学主要是研究宏观光学特性,如光的折射、反射、成像及光传播时的干涉、衍射和偏振等波动性质,而未去探究其微观的物理原因。

然而随着光学的发展,人们逐渐地注意研究光与物质(包括光子与光子)相互作用的微观特性,以及与这种微观特性相联系的光的产生、传播和探测等过程。

同时,也逐渐注意研究光子承载信息的能力,以及它在承载信息时的处理和变换等基础问题。

现在人们用光子光学(Photon Optics)或光子学(Photonics)来概括这一领域的研究。

光子学在现代科学技术中的作用越来越显重要。

本章结合光电效应,引入光子学中的基本概念和关系式,讨论电磁场的量子化和光子的性质,并介绍两个应用。

第一节光的量子性一、光电效应与爱因斯坦光子学说(一)光电效应的规律1887年赫兹在题为“关于紫外光对放电的影响”的论文中首先描述了物体在光的作用下释放出电子的现象,这就是通常所说的光电效应。

一般采用图16-1a的装置观察金属的光电效应。

电极K和A封闭在高真空容器内,光经石英小窗照射到金属阴极K上。

当电极K受光照射时,光电子被释放出并受电场加速后形成光电流。

实验发现光电流的大小与照射光的强度成正比,照射光中紫外线越强,光电效应越强。

用一定强度和给定频率的光照射时,光电流i和两极间电位差u的实验曲线如图16-1b所示,称为光电流的伏安特性曲线。

当u足够大时,光电uu流达到饱和值I;当u?时光电流停止(称为临界截止电压)。

总结所有的m00 实验结果,得到如下规律:(1) 对某一光电阴极材料而言,在入射光频率不变条件下,饱和电流的大小与入射光的强度成正比。

(2) 光电子的能量与入射光的强度无关,而只与入射光的频率有关,频率越高,光电子的能量就越大。

,(3) 入射光有一截止频率(称为光电效应的红限)。

在这个极限频率以0下,不论入射光多强,照射时间多长,都没有光电子发射。

不同的integrated energy, chemicals and textile Yibin city, are the three core pillars of the industry. In 2014, the wuliangye brand value to 73.58 billion yuan, the city's liquor industry slip to stabilise. Promoting deep development of integrated energy, advanced equipment manufacturing industry, changning district, shale gas production capacity reached 277 million cubic metres, built the country's first independent high-yield wells and pipelines in the first section, the lead in factory production and supply to the population. 2.1-3 GDP growth figure 2.1-4 Yibin, Yibin city, Yibin city, fiscal revenue growth 2.1.4 topography terrain overall is Southwest, North-Eastern State. Low mountains and hills in the city landscape as the main ridge-and-Valley, pingba small fragmented nature picture for "water and the second land of the seven hills". 236 meters to 2000 meters above sea level in the city, low mountain, 46.6% hills 45.3%, pingba only 8.1%. 2.1.5 development of Yibin landscapes and distinctive feature in the center of the city, with limitations, and spatial structure of typical zonal group, 2012-cities in building with an area of about 76.2km2. From city-building situation, "old town-the South Bank" Center construction is lagging behind, disintegration of theold city is slow, optimization and upgrading, quality public service resources are still heavily concentrated in the old town together. Southbank Centre has not been formed, functions of the service area space is missing. Meanwhile, peripheral group centres service was weak and inadequate accounting for city development, "suspicious" pattern could not be formed. As regards transport, with the outward expansion of cities, cities have been expanding, centripetal city traffic organization has not changed, integrated energy, chemicals and textile Yibin city, are the three core pillars of the industry. In 2014, the wuliangye brand value to 73.58 billion yuan, the city's liquor industry slip to stabilise. Promoting deep development of integrated energy, advanced equipment manufacturing industry, changning district, shale gas production capacity reached 277 million cubic metres, built thecountry's first independent high-yield wells and pipelines in the first section, the lead in factory production and supply to the population. 2.1-3 GDP growth figure 2.1-4 Yibin, Yibin city, Yibin city, fiscal revenue growth 2.1.4 topography terrain overall is Southwest, North-Eastern State. Low mountains and hills in the city landscape as the main ridge-and-Valley, pingba small fragmented nature picture for "water and the second land of the seven hills". 236 meters to 2000 meters above sea level in the city, low mountain, 46.6% hills 45.3%, pingba only 8.1%. 2.1.5 development of Yibin landscapes and distinctive feature in the center of the city, with limitations, and spatial structure of typical zonal group, 2012-cities in building with an area of about 76.2km2. Fromcity-building situation, "old town-the South Bank" Center construction is lagging behind, disintegration of the old city is slow, optimization and upgrading, quality public service resources are still heavily concentrated in the old town together. Southbank Centre has not been formed, functions of the service area space is missing. Meanwhile, peripheral group centres service was weak and inadequate accounting for city development, "suspicious" pattern could not be formed. As regards transport, with the outward expansion of cities, cities have been expanding, centripetal city traffic organization has not changed, 金属具有不同的红限。

相关文档
最新文档