5-高聚物的力学性能(下)
高分子物理----高分子的力学性能
一般刻痕试样的冲击强度小于这一数值为脆性断裂,大
于这一数值时为韧性断裂。但这一指标并不是绝对的,
例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有
很高的冲击强度。
7.1 玻璃态与结晶态聚合物的力学性质
2. 高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子 内的化学键,分子间的范德华力与氢键。
7.2 高弹态聚合物的力学性质
加入增塑剂虽然可以降低Tg,但有利条件,因此选
用增塑法来降低Tg必须考虑结晶速度增大和结晶形成的 可能性。
7.2 高弹态聚合物的力学性质
(2)共聚法
共聚法也能降低聚合物的Tg,如:PS的主链上带有体 积庞大的苯基,聚丙烯腈有强极性腈基存在,Tg都在室温 以上,只能作为塑料和纤维使用,如果用丁二烯分别与苯 乙烯和丙烯腈共聚可得丁苯橡胶和丁腈橡胶,使Tg下降。 例如:丁苯30,Tg=-53℃,丁腈26,Tg=-42℃。
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸
聚合物的力学性能
为伸展,产生强迫高弹变形。
也就是在外力的作用下,非晶聚合物中本来被冻结的链段被强迫运动,
使高分子链发生伸展,产生大的形变。但由于聚合物仍处于玻璃态,当外
力移去后,链段不能再运动,形变也就得不到回复,只有当温度升至Tg附
近,使链段运动解冻,形变才能复原。
若链段运动的松弛时间与外力作用速率相适应,材料在断裂
前可发生屈服,出现强迫高弹性,表现为韧性断裂
若外力作用时间越短,链段的松弛跟不上外力作用速率,为
使材料屈服需要更大的外力,材料的屈服强度提高,材料在断裂
前不发生屈服,表现为脆性断裂
所以,降低温度与提高外力作用速率有同样的效果,
这是时-温等效原理在高分子力学行为中的体现。
的冷拉,由于局部的高度拉伸应变(1000%),造成了很大的横
向收缩,这种局部的收缩要大于材料整体的横向收缩,结果在局
部性的取向链束或片层间形成一定的空的体积,并在表面上出现
凹槽。也可以发生在材料内部形成内银纹。
精选课件
27
第八章 聚合物的力学性能
3.产生银纹的结果:
①银纹可发展成裂缝,使材料的使用性能降低。
强
度
B
=A ,断裂强度
Mn
分子量
精选课件
33
第八章 聚合物的力学性能
②取向与结晶的影响
结晶度增加,强度增加韧性下降以PE为例。
聚乙烯强度与结晶度的关系
性形变(plastic deformation )(强迫高弹形变)、应变硬化四
个阶段
精选课件
11
第八章 聚合物的力学性能
σ
B
Y
σ
高聚物的力学性能
• 线型非晶聚合物的流动 Newtonian flow
假定高聚物服从牛顿流动定律,则有:
e III = s 0
• 全部蠕变为三部分应变之和
t
h
æ tö et = e I + e II + e III = s 0 ç J0 + Jey ( t ) + ÷ = s 0 Jt hø è
1 B
泊松比 Poisson's ratio
• 材料受拉伸或压缩力时,材料会发生变形,而其横向变形
量与纵向变形量的比值,就是泊松比 • 在均匀各向同性材料中,剪切模量G、杨氏模量E 和泊松比 ν三个量中只有两个是独立的,它们之间存在以下关系:
E G= 2 (1 + u )
不同材料的泊松比
材料名称 锌 钢 泊松比 0.21 0.25~0.35 材料名称 玻璃 石料 泊松比 0.25 0.16~0.34
*
G1 (w ) =
J1 (w ) J
* 2
G2 (w ) =
J 2 (w ) J
J(t)是恒定应力下 的蠕变柔量
• 聚合物的蠕变柔量范围达几个数量级,蠕变实验时间也由
数十到数百小时,一般采用双对数作图。恒定温度下高聚 物蠕变柔量J(t)随时间t变化的双对数图有如下图所示形状:
η:推迟时间,高聚物玻璃化转变的表征参数
• 上图可以看出,随着推迟时间η与加载时间相对尺度的不同,
高聚物或像一块弹性固体(加载时间远小于η),或是一个 黏弹固体(加载时间与η同数量级)。或像一块橡胶甚至液 体(加载时间大于η和远大于η)。 • 高聚物的推迟时间强烈依赖于温度,η随温度的升高而减小, 时间和温度对高聚物力学性能的影响存在着等当性。
5. 高聚物的力学性能
L
L
N
H
(1)温度
(1)
(3)
应力
(2)
(4)
应变
(2)应变速率
(1)
(3)
应力
(2)
(4)
应变
强迫高弹形变的定义
处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生
的较大应变,移去外力后形变不能回复。若将试样温度
升到其 Tg 附近,该形变则可完全回复,因此它在本质上 仍属高弹形变,并非粘流形变,是由高分子的链段运动 所引起的。 这种形变称为强迫高弹形变。
Stress
Yield stress
(4)断裂强度 (5)断裂伸长率 (6)断裂韧性
Strain
以应力应变曲线测定的韧性
d
量纲=Pam/m=N/m2 m/m= J/m3
材料在屈服点之前发生的断裂称为脆性断裂 brittle fracture ; 在屈服点后发生的断裂称为韧性断裂 ductile fracture 。
5.1.2细颈
1)细颈的形成原因
本质:剪切力作用下发生塑性流动 A0 F F
F
F
Fn F α F 正应力 0 A0 切向力 A Fs
A0 斜截面面积 A sin
F
法向力 Fn=F·sinα
Fs=F·cosα
A
法应力: n Fn 0 sin 2 切应力: S FS 0 sin cos 1 0 sin 2
A
plastic deformation 塑性形变
Strain hardening 应变硬化
A E A
O
A y
B
图 非晶态聚合物在玻璃态的应力-应变曲线
高聚物的力学性能
●相对分子质量及分布对强度的影响
规律:强度随相对分子质量的增大而增加,分布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。
●低分子掺合物对强度的影响
规律:低分子物质的加入降低强度。
▓实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。
●交联对强度的影响
规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。
▓实例橡胶的适度交联。
●结晶对强度的影响
规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。
▓实例缓慢降温有利形成大球晶,淬火有利形成小球晶。
●取向对强度的影响
规律:取向能增加取向方向上材料的强度。
§5高聚物的力学性能
特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。
对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二相;两种高聚物溶解行为上相似,有利于相互黏着。
若三条件达不到,加入第三组分。
效果:原脆性高聚物的冲击强度提高5~10倍。
高聚物的力学性能
●相对分子质量及分布对强度的影响
规律:强度随相对分子质量的增大而增加,分布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。
●低分子掺合物对强度的影响
规律:低分子物质的加入降低强度。
▓实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。
●交联对强度的影响
规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。
▓实例橡胶的适度交联。
●结晶对强度的影响
规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。
▓实例缓慢降温有利形成大球晶,淬火有利形成小球晶。
●取向对强度的影响
规律:取向能增加取向方向上材料的强度。
§5高聚物的力学性能
特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。
对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二相;两种高聚物溶解行为上相似,有利于相互黏着。
若三条件达不到,加入第三组分。
效果:原脆性高聚物的冲击强度提高5~10倍。
聚合物的力学性能
回缩 dL < 0 dS > 0 δQ > 0 ,回缩吸热
二、橡胶弹性的统计理论
热力学分析只能给出宏观物理量之间的关 系,利用统计理论,可以通过微观的结构参数, 求得高分子熵值的定量表达式,进而导出熵变与 宏观的应力—应变关系。
研究步骤: 1)运用构象统计计算形变时单个柔性链的构象熵
§1-2 常用的几种力学强度
当材料所受的外力超过材料的承受能力时, 材料就发生破坏。机械强度是衡量材料抵抗外力 破坏的能力,是指在一定条件下材料所能承受的 最大应力。
根据外力作用方式不同,主要有以下三种:
(i)抗张强度
衡量材料抵抗拉伸破坏的能力,也称拉伸强度。
P
在规定试验温度、湿度和 实验速度下,在标准试样上 宽度b 厚度d 沿轴向施加拉伸负荷,直至 试样被拉断。
σ 大球晶
小球晶
σ 高结晶度
ε
低结晶度
ε
第二节:高弹态聚合物的力学性质
橡胶材料是重要的高分子材料之一,在Tg以上, 处于聚合物特有的高弹性力学状态。高弹性无疑是 这类材料显著的特征或说独特的性质,是材料中一 项十分难得的可贵性能,被广泛用于各个领域,其 作用是不可替代的。
橡胶的分子结构和高弹性的本质长期以来一直 受到人们的注视和研究;提高橡胶的耐寒性和耐热 性即扩大橡胶的使用范围,成了人们新的课题。
泊松比
<0.5
拉伸时的比容
增加
弹性模量 Kg/cm2
104 ~2x106
升温时的E
E↓
形变速度
与应力同时产生
形变对T的依赖性
很少
本质
能弹性
1000%或更高 变热 冷却
~0.5 不改变 20 ~200 E↑
高聚物的力学性能
2
)应变落后于应力
2
对polymer——粘弹材料的力学响应介于弹性与粘性之间, 应变落后于应力一个相位角。 0
2
频率相关性能
载荷随时间而交替变化,材料性能由于黏滞效应 而频率相关,存在能量耗散
弹性固体,应变与应力同相作正弦 波的变化,没有能量损耗
理想黏性流体,应变滞后相位 / 2
滞后时间为 / 2
材料受外力作用时的形变行为: 理想的弹性固体服从虎克定律——形变与时间无关
瞬间形变,瞬间恢复 理想的粘性液体服从牛顿定律——形变与时间成线性关系 高聚物:
分子运动 强烈地依赖于温度和外力作用时间
宏观力学性能
粘弹性的力学模型:
如一个符合虎 克定律的弹簧 能很好的描述 理想弹性体:
一个具有一块平板浸没在一个充 满粘度为,符合牛顿流动定律的 流体的小壶组成的粘壶,可以用 来描述理想流体的力学行为.
形变性能 Deformation
弹性 Elasticity
普弹性 高弹性 High elasticity
粘性 Viscosity
线性粘弹性
静态 Static
粘弹性
Linear viscoelasticity
viscoelasticity
动态 Dynamic
非线性粘弹性
Non-Linear viscoelasticity
弹性材料
t1 t 2 t1 t 2
黏弹性材料
t1 t2
=const.
应力松弛 等时应力~应变曲线
蠕变
• 蠕变——在恒定载荷(或应力)作用下,
应变随时间而逐渐增加的过程或现象图1 理想弹性体(瞬时蠕变)普弹形变
从分子运动的角度解释: 材料受到外力的作用,链内的键长和 键角立刻发生变化,产生的形变很小, 我们称它普弹形变.
高聚物结构与性能的关系
高聚物结构与性能的关系1.高聚物的结构根据研究单元的不同分类,聚合物的结构可分为两类:一类是聚合物的链结构,即分子内的结构,即研究分子链中原子或基团之间的几何排列;另一种是聚合物的分子聚集结构,即分子间结构,它研究每单位体积内许多分子链的几何排列。
对于高分子材料而言,链结构只是间接影响其性能,而分子聚集结构是直接影响其性能的因素。
1.1聚合物链结构高聚物的链结构包括近程结构和远程结构。
近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。
聚合物链结构是决定聚合物基本性能的主要因素。
由于不同的链结构,各种聚合物的性能完全不同。
例如,聚乙烯柔软易结晶,而聚苯乙烯坚硬易碎,不能结晶;等规聚丙烯在室温下为固态结晶,无规聚丙烯在室温下为粘性液体。
1.2高聚物的聚集态结构聚合物的分子聚集结构包括结晶态、非晶态、液晶态、取向态等;聚合物的分子聚集结构是在加工成型过程中形成的,是决定聚合物产品使用性能的主要因素。
即使具有相同链结构的同一聚合物具有不同的加工条件,其模制产品的使用性能也会非常不同。
例如,晶体取向度直接影响纤维和薄膜的机械性能;不同的晶体尺寸和形态会影响塑料制品的冲击强度、开裂性能和透明度。
因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。
研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。
2.高聚物结构与力学性能的关系2.1链结构与力学性能的关系不同的聚合物,具有不同的分子结构,必然会表现出不同的材料性质。
聚集乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二酯、聚碳酸酯、聚丙烯腈、环氧树脂和聚二甲基硅氧烷(硅橡胶)等等都是不同分子结构的高聚物,它们或是晶态高聚物,或是非晶态高聚物,或是橡胶,或是不溶不熔的热固性树脂,这些都是一般人都知道的常识。
高聚物的高聚物的力学状态和玻璃化转变(第3章部分内容)
1.玻璃态
T<Tg
(2)力学特征:形变量小(0.01 ~1%),模量高(109 ~1010Pa)。
形变与时间无关,呈普弹性。
(1)运动单元:键长、键角的改变或小尺寸单元的运动。
T d
T f
T g
2.玻璃化转变区(1)链段运动逐渐开始
(2)形变量ε增大,模量E降低。
T d
T f
T g
3.高弹态
T g ~T f
(1)运动单元:链段运动
(2)力学特征:高弹态
形变量大,100-1000﹪
模量小,105-107Pa T d
T f
T
g
4.粘流转变区
(2)形变量加大,模量降低,宏观上表现为流动
(1)整链分子逐渐开始运动,
T d
T f
T g
5.粘流态
T f ~T d
(2)力学特征:形变量更大
模量更低
流动
(3)T 与平均分子量有关
(1)运动单元:整链分子产生相对位移T d
T f
T g
T f
图5-9 高聚物的比容-压力曲线图5-10 高聚物的tanδ-lgν曲线
33。
高聚物的物理性能
第五章 高聚物的物理性能第一节 高聚物的物理状态高聚物的聚集态结构,根据链结构的规整性和能否结晶可分为两类: 结晶性高聚物(有规则排列)非结晶性高聚物(无规则排列)链段运动——使高聚物具有高弹性高聚物热运动具有两重性整个分子链运动——使高聚物象液体一样具有粘流性热-机械曲线——形变-温度曲线:表示高聚物材料在一定负荷下,形变大小与温度的关系曲线。
按高聚物的结构可以分为:线型非晶高聚物形变-温度曲线结晶态高聚物形变-温度曲线 其他类型的形变-温度曲线三种一、线型非晶态高聚物的物理状态1.形变-温度曲线A B C D ET b T g 温度(℃) T fT b -脆化温度;T g -玻璃化温度;T f -粘流温度可分为五个区A 区(玻璃态):内部结构类似玻璃,大分子不能运动,链段也不能运形变(%)动,在除去外力后,形变马上消失而恢复原状,可逆形变称为普弹性形变。
C 区(高弹态或橡胶态):除了普弹形变外,主要发生了大分子的链段位移(取向)运动。
但整个大分子间并未发生相对位移,形变也可以消除,所以是可逆的弹性形变。
E 区(粘流态或塑化态):当施加负荷时,高聚物象粘性液体一样,发生分子粘性流动,大分子能运动,链段也能运动,形变不能自动全部消除,这种不可逆特性,称为可塑性。
B 区和D 区:为过渡区。
其性质介于前后两种状态之间。
玻璃态物理力学三态高弹态 (是一般非晶态高聚物所共有的)粘流态2.非晶态高聚物三种物理状态的力学行为特征和形变机理3.三态之间的转变随温度的变化而逐渐变化过程 玻璃态 ⇔高弹态⇔ 粘流态 4.注意问题1/ T g 是大分子链段能运动的最低温度,高弹态的出现是链段运动的产物。
2/ T g 与柔性的关系:柔性大,T g 低,反之。
刚性大,T g 高。
3/ T g 与T f 的使用价值T g 是塑料、纤维的最高使用温度T f 是橡胶的最低使用温度,也是高聚物成型加工温度。
5.线型非晶态高聚物的物理力学状态与相对分子质量的关系不同相对分子质量的聚苯乙烯的热-机械曲线二、结晶态高聚物的物理状态晶态高聚物的形变-温度曲线 1-一般相对分子质量 2-相对分子质量很大1/ 结晶态高聚物按成型工艺条件的不同可以处于晶态和非晶态。
第八章聚合物的力学性能
橡胶拉伸-回缩和拉伸-压缩循环应力-应变曲线
表征滞后现象参数:储存模量、损耗模量(或复数模 量)损耗角正切
四、粘弹性力学模型
理想模型:理想弹簧和理想粘壶 理想弹簧:代表符合虎 克定律的理想固体
E / D
应力松弛过程总形变恒定,有:
d 1 d 0 dt E dt
d E dt
(t) 0et /
t = 0-τ,有: 0 / e 0.370
2、伏伊特模型
结构:由一个理想弹黄与一 σ1
E
ησ2
个理想粘壶并联而成,如图
1 2
定义:高分子材料在交变应力作用下,形变落后于应力 的现象
橡胶轮胎应力和应变随时间的变化曲线,如图 滞后现象,如图
原因:高分子材料也是一个松弛过程
影响因素: 1.) 化学结构; 2.) 外力作用频率、温度等
对聚合物性能的影响:
1.) 如果使用的聚合物发生了滞后现象,则在每一个循 环中都要消耗功-力学损耗;这种消耗功转变成热 能释放出来,会导致聚合物本身的温度升高,从而 影响材料的使用寿命;
晶态聚合物的拉伸: 晶态聚合物典型的应力-应变曲线,如图
未经拉伸的晶态聚合物中,其微晶排列是杂乱的, 拉伸使得晶轴与外力方向不同的微晶熔化,分子链沿 外力方向取向再重排结晶,使得取向在熔点以下不能 复原,使得产生的形变也不能复原,但加热到熔点附 近形变能复原,因此晶态聚合物的大形变本质上也属 高弹性
0
E0
0
E
1
exp
t
高分子材料力学性能
曲线3:宾汉流体
D、触变性流体:t延长,粘度迅速下降; (例:重防腐涂料中的应用)
震凝性流体:反之
一、高聚物的流动性
§5.1 力学性能
1、第一牛顿区 2、第二牛顿区
一、高聚物的流动性
§5.1 力学性能
2、与结构的关系 (η、 Tf 、非牛顿性 )
解缠能力
1)分子量:
分子量越大,粘度越大, Tf 越高, 非牛顿性越大
4)粘弹模型 : 建立模型--模拟曲线--得到参数
理想粘壶+理想弹簧
分子运 动
并联
串联
Kelvin 模型 描述蠕变
Maxwell模型 描述应力松弛
三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
银纹化过程
裂缝
4)分子间作用力: 越大: 四 屈服、强度与断裂
一Tf 越定高,的粘度温越高度, 、一定的拉伸速度下,观察应力随应
变的变化曲线 5
ΔV= 0
柔性越大,Tf 越低, 非牛顿性越大(粘度对剪切的敏感性大)
相比较而言
2、力学强度 不同力学要求如何选材?
3、强度与结构的关系 明显的松弛过程--时间依赖性
弯曲形变较小时的载荷与挠度
• 抗冲击强度 (韧性) σi=W/bd (kJ/m2)
2、力学强度
§5.1 力学性能
四屈服、强度与断裂
2) 理论强度》 实际强度,σ实=(1/100~1/1000 )σ理 而模量接近 原因:缺陷(裂缝、结构的不均一性)
3)强度理论: • 应力集中: • Griffith表面能理论 (脆性材料)
聚合物材料的力学性能
聚合物具备高弹性的条件是在室温下为非晶体, 且其玻璃化转变温度远低于室温。 具备高弹性时,聚合物链结构上应具有下列特征: ①链非常长,并有很多弯; ②室温下链段在不停地运动; ③每二、三百个原子就有一处交联连接。 聚合物的高弹性在工程上常用于要求减振和密 封性的场合。
三、聚合物在粘流态下的变形
t>tf时,聚合物处于粘流状态。 聚合物分子链在外力作用下可进行整体相对滑 动,呈粘性流动,导致不可逆永久变形。 粘流态拉伸应力-应变曲线如曲线d,在应力很 小时,就发生较大的变形。
聚合物不能得到完全的晶体结构,实际上是晶区与非晶区 同时存在。 聚合物的结晶程度用晶体所占总体的质量分数表示,称为结 晶度。聚合物的结晶度通常小于98。电镜观察表明,高分子单 晶为折叠链结构(图9-6)。分子链折叠排列整齐有序,致密度较 高,分子间作用力较大。
图9—6
聚合物结晶态结构示意图
非晶态结构的高分子链多呈无规则线团 形态,为分子链近程有序,其中局部可以存 在高分子链折叠区。
二、高分子链的近程结构——构型
定义:由化学键所固定的几何形状—— 指高分子链的化学组成、键接方式和立体构 型等。
由一种结构单体合成的,故该类聚合物 又称为均聚物。如聚乙烯。 由两种以上结构单体聚合而成的聚合物 称为共聚物。如丁苯橡胶是丁二烯和苯乙烯 的共聚物。
丁苯橡胶主要应用于制作轮胎,还用于机械制 品、制鞋、地板材料、粘结剂等。
聚合物与低分子材料的特点(区别)
材料\特点 高分子材料 低分子材料 <500 不可分割 整个分子或原子 大部分或完全结晶较小 固定 气,液,固三态
相对分子质量 104~106 分子可否分割 可分割成短链 热运动单元 结晶程度 分子间力 熔点 物理状态 链节,链段,整链等多重热运动单元 非结晶态或部分结晶态 加合后可大于主键力 软化温度区间 只有液态和固态(包括高弹态)
第七章 高聚物的力学性质(修改2)
⑴. 简单拉伸
(7-1) (7-2)
(7-3)
(7-4)
式中,F是垂直于截面积大小相等方向相反的两个作用力;l0为 材料起始的长度;l为变形后材料的长度;ε为拉伸应变;ζ为应力; A0为材料起始的横截面积;A为在拉力F的作用下,材料变形后 真实的截面积;δ为真应变。
⑵. 简单剪切
偏斜角θ 的正切定义为切应变:
④ T>Tg,高弹态,不出现
屈服点,出现很大的高弹 形变
2. 玻璃态高聚物的强迫高弹形变 玻璃态高聚物在大的外力作用下发生很大的形变称 为强迫高弹形变。
影响强迫高弹形变的因素:
⑴.外力的大小 玻璃态高聚物,外力作用的松弛时间η与应力ζ的关 系:
⑵.温度的影响
脆化温度:其是一个特征温度,用 Tb 表示,当温 度低于 Tb 时,玻璃态高聚物不能发生强迫高弹形变, 而必定发生脆性断裂,因此称 Tb 为脆化温度。 玻璃态 高聚物只有在 Tb ~ Tg 之间的温度范围内,才能在外力 作用下实现强迫高弹形变,而强迫高弹形变又是塑料 具有韧性的原因,因此 Tb 是塑料使用的最低温度。 ⑶.外力作用速度的影响
在试样上施加压缩载荷至其破裂(脆性材料)或产生 屈服现象(非脆性材料)时,原单位横截面上所能承 受的载荷称为压缩强度。
压缩强度:
压缩模量:
压缩模量等于拉伸模量
一般而言,塑性材料抵抗拉伸应力能力强,而脆性材 料抵抗压缩应力能力强。
3. 弯曲强度(也称为挠曲强度)
在两支点间的试样上施加集中载荷,使试样变形直至 破裂时的载荷称为弯曲强度。
ζβn = ζ0 cos2β= ζ0 sin2α ζβs = ζ0 sin2β/2= -ζ0 sin2α/2
ζαn + ζβn = ζ0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 拉伸速率
同一高聚物,在一定温度,不同拉伸速率下的应力应变曲线如下图所示:
所用应变速率(mm/min)注明 在曲线上
不同应变速率下的拉伸应力-应变曲 线(到屈服点为止)
随着拉伸速率的提高,高聚物的屈服应力σY 和拉伸强度都相应提高。所以,拉伸速率↑和 T↓对应力-应变性质的影响是等效的。其中, 屈服应力对应变速率具有更大的依赖性。
拉伸试样示意图
从试验测得的应力、应变数据可以绘制出应 力-应变曲线,如下图所示:
应力-应变曲线示意图
(一)玻璃态高聚物的应力-应变曲线
1 特征及分析
典型的玻璃态高聚物试样当温度在Tg以下几十度的 范围内以一定速率被单轴拉伸时,其应力-应变曲线 如下图所示:
曲线上A点之前,σ-δ关系 服从虎克定律,所以A点为 弹性极限点, Y点称为屈服点,经过此点 后,应力不再增加,材料 仍能继续发生一定的伸长。
聚合物材料的破坏可能是高分子主链的化学键断裂或是 高分子分子间滑脱或分子链间相互作用力的破坏。 高分子分子间滑脱或分子链间相互作用力的破坏。 化学键拉断
15000MPa
理论值
分子间滑脱
5000MPa
破坏分子间 作用力
氢键 500MPa 范德华力 100MPa
3 脆韧转变温度Tb
(三)影响高聚物拉伸强度的因素
第四节 高聚物的拉伸、断裂和强度
一 玻璃态和结晶高聚物的拉伸
应力-应变实验通常在张力F的作用下进行。试样,如下图, 沿纵轴方向以均匀的速率被拉伸,直到断裂为止。试验时, 测量加于试样上的载荷和相应标线间长度的改变∆l=l-l0,如 果试样的初始截而积为A0,标距的原长为l0,应力σ和应变ε 分别有下式 表示:
玻璃态高聚物典型的应力-应变曲线
曲线最后一段表明增加应 变需要增大应力,直至试 样断裂。B点为断裂点
2 影响因素 (1)外因—温度、拉伸速率 ① 温度 温度不同,同一高聚物的应力-应变曲线形状 也不同,如下图所示:
曲线(1):T<<Tg,应力随 应变成正比地增加,最后,应 变不到10%就发生断裂。 曲线(2):温度略微升高以后, 出现了一个转折点Y,即屈服点。
冲击强度σi是衡量材料韧性的一种指标,通常定义 为试样受冲击载荷作用折断或断裂时单位截面积所 吸收的能量。
W σi = bd
W-冲断试样所消耗的功W b,d-冲断试样的厚度和宽度
影响高聚物冲击强度的因素为以下两大 类:
1 高分子的结构 ① 极性基团密度或取代基团大小
② 分子链支化程度
③ 适度交联 ④ 高聚物的结晶度 ⑤ 球晶的大小 ⑥ 适当的双轴取向的聚合物 ⑦ 适量增塑剂的加入
结晶高聚物拉伸过程应力-应变曲 线及试样外形变化示意图
颈部分逐渐缩短,直至整个试样完全变 细。
C.应力几乎不变而应变不断增加, 但总的应变值随高聚物不同而不 同。 ③ A.成颈后的试样重新被均匀拉 伸 B.须进一步增大应力,才能使 微晶间或者分子间发生位移,最
结晶高聚物拉伸过程应力-应变曲 线及试样外形变化示意图
2 温度和外力作用速度
①温度对材料的冲击强度影响很大。 T↑→冲击强度↑ ②外力作用速度 作用时间↑,相当于温度↑。
影响冲击强度的因素
后导致分子链的断裂以致材料破 坏。
应力-应变曲线的类型Types stress应力-应变曲线的类型Types of stress-strain curve
软-硬:模量
强-弱:屈服强度 韧-脆:断裂能
二 高聚物的断裂与强度
(一)高聚物的断裂 1 断裂的概念 材料所受的应力达到某个临界值时,材料分 裂成两部分或几部分,称为断裂。 2 断裂的形式 A.脆性断裂 B.韧性断裂
(二)晶态高聚物的应力-应变曲线
典型的末取向晶态高聚物在单轴拉伸时的应 力-应变曲线如下图所示,它比玻璃态高聚物 的拉伸曲线具有更为明显的转折,整个曲线 可分为三段:
①拉伸初期,σ↑很快而ε ↑很小,σ随ε 线性↑,符合虎克定律,它代表普弹形 变 ② A.达Y点后进入拉伸的第二阶段,Y 点后,试样的截面积突然变得不均匀, 出现一个或几个“细颈”。 B.细颈与非细颈部分的截面积分别 维持不变,而细颈部分不断扩展;非细
影响高聚物实际强度的因素很多,总的来说可以分 为两类: 与材料本身有关的,包括高分子的化学结构、分子 量及其分布、支化和交联、结晶与取向、增塑剂、 共混、填料、应力集中物等; 与外界条件有关的,包括温度、作用力的速度等。
1 高聚物本身结构的影响
(1)增加高分子的极性或形成氢键可使强度↑ (2)主链含有芳杂环的高聚物>脂肪族主链的 (3)支化 (4)交联 (5)分子量
从应力-应变曲线及端口形式对两者加以区别:
(二)高聚物的强度 1 强度的概念
2 高聚物的理论强度
从分子结构的角度来看,高聚物之所以具有抵抗外 力破坏的能力,主要靠分子内的化学键合力和分子 间的范德华力和氢键。
高聚物断裂的微观过程归结为三种,如下图所示: 高聚物断裂的微观过程归结为三种,如下图所示: 材料的断裂方式
玻璃态高聚物在不同温度下的应 力-应变曲线
曲线(4):温度升至T>Tg,试样 进入高弹态,在不大的应力下便可发 展高弹形变(呈现一段较长的平台), 曲线不再出现屈服点,试样断裂前, 应力又出现急剧上升。
T↑,材料变的软而韧,断裂强度↓,断裂伸长率↑; T↓,材料逐步变的硬而脆,断裂强度↑,断裂伸长 率↓
2 结晶和取向的影响
(1)结晶 A.结晶度 B.球晶尺寸 C.由伸直链组成的纤维状晶体,其抗拉性能较折叠链 晶体优越得多。 (2)取向
3 应力集中物的影响 4 增塑剂的影响 5 填料的影响 6 共聚和共混的影响
7 外力作用速度和温度的影响
(1)外力作用速度 )
(2)温度 )
(四)影响高聚物冲击强度的因素
总的来说,拉伸速率对强迫高弹形变的影响 为: A.太快:强迫高弹形变来不及发生或得不到 充分发展 B.太慢:可能发生一部分粘性流动,形变无 法恢复 C.适中:产生强迫高弹形变
(2)内因—结构 产生强迫高弹性的必要条件是:高聚物具有 可运动的链段。但是,强迫高弹性又不同于 一般的高弹性。后者要求高分子链柔顺性好, 而前者则要求高分子链不能太柔顺。
玻璃态高聚物在不同பைடு நூலகம்度下的应 力-应变曲线
应力在Y点处达极大值。过了Y 点,应力降低,应变增大,直 至试样断裂,但总应变≤20% (如曲线(2)所示)。
曲线(3):温度升至Tg以下几十度 的范围内时,屈服点之后,试样在不 增加外力或者外力增加不大的情况下, 能发生很大的应变,然后应力又增加, 直至断裂