(经典)讲义:等比数列及其前n项和
2021年高考数学(理)一轮复习讲义 第6章 第3讲 等比数列及其前n项和
上一页
返回导航
下一页
第六章 数 列
10
二、习题改编 1.(必修 5P54A 组 T8 改编)在 3 与 192 中间插入两个数,使它们同这两个数成等比数列, 则这两个数为________. 解析:设该数列的公比为 q,由题意知, 192=3×q3,q3=64,所以 q=4. 所以插入的两个数分别为 3×4=12,12×4=48. 答案:12,48
上一页
返回导航
下一页
第六章 数 列
30
通项 若数列通项公式可写成 an=c·qn-1(c,q 均是不为 0 的常数,n∈N*),则 公式法 {an}是等比数列 前 n 项和 若数列{an}的前 n 项和 Sn=k·qn-k(k 为常数且 k≠0,q≠0,1),则{an} 公式法 是等比数列
[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选 择题、填空题中的判定. (2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.
上一页
返回导航
下一页
第六章 数 列
21
解决等比数列有关问题的 2 种常用思想
方程的思想 等比数列中有五个量 a1,n,q,an,Sn,一般可以“知三求二”, 通过列方程(组)求关键量 a1 和 q,问题可迎刃而解
等比数列的前 n 项和公式涉及对公比 q 的分类讨论,当 q=1 时,
分类讨论的 思想
上一页
返回导航
下一页
第六章 数 列
16
2.数列{an}的通项公式是 an=an(a≠0),则其前 n 项和 Sn=________.
解析:因为 a≠0,an=an,所以{an}是以 a 为首项,a 为公比的等比数列.当 a=1 时, Sn=n;当 a≠1 时 Sn=a(11--aan).
(经典)讲义:等比数列及其前n项和
(经典)讲义:等比数列及其前n项和1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示.2.等比数列的通项公式设等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1·q n-1.Sn=a1+a1q+a1q2+…+a1q n-1,同乘q得:qS n=a1q+a1q2+a1q3+…+a1q n,两式相减得(1-q)S n=a1-a1q n,∴S n=a1?1-q n?1-q(q≠1).7.1由a n+1=qa n,q≠0并不能立即断言{a n}为等比数列,还要验证a1≠0.7.2在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.8.等比数列的判断方法有:(1)定义法:若an+1an=q(q为非零常数)或anan-1=q(q为非零常数且n≥2且n∈N*),则{a n}是等比数列.(2)中项公式法:在数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列.632++若已“知三求二”.1.,成公比为的公比为q,成等比数列理解例题1:在等比数列中, (1)已知13,2,a q ==求66,a S ;(2)已知1112.7,,,390n a q a =-=-=求n ;(3)已知141,64,a a =-=求q 和4S ;(4)已知3339,22a S ==求1,a q ;分析:在等比数列中有五个重要量1,,,,,n n a a q n S 只要已知任意三个,就可以求出其他两个.其中1a 和q 两个最重要的量,通常要先求出1a 和q . 解:(1)55613296a a q ==⋅=.66161S =(2)n a (3) (4) a S ⎧⎪⎪⎨⎪⎪⎩ (2 2∴ 当知识体验:已知等比数列的五个量1,,,,n n a a q n S 中的任意三个求其他两个时,要用等比数列的通项公式以其及前n 项和公式.理解例题分析: 解法一: 2m m S S ⎧=⎪⎪∴⎨⎪⎪⎩解法二: ②可利用等比数列中连续等段和成等比的性质即性质(1)求解.三、 例题(一) 题型分类全析1.等比数列前n 项和公式的基本运算例1:在等比数列的{}n a 中:31648,216,40,n a a a a S -=-==求公比q ,1a 及n . 思路直现:由已知两个条件,可建立关于1,a q 的方程组,分别解出1,a q 的值,代入n S 即可求出n .本题有关等比数列前n 项和的基本运算的考查.解:由已知可得 总结:在求数列的基本量问题时,把条件转化成基本量解方程是解决数列问题的基本方法.例2 已知数列{}n a 是等比数列,其前n 项和n S ,若3692S S S +=,求该数列的公比q .思路直现:由已知两个条件,可建立关于1,a q 的方程组,分别解出1,a q 的值,代入n S 即可求出n . 解: 若1q =,则1n S na =,36111369S S a a a ∴+=+=,91218S a =,此时3692S S S +≠∴96320q q q --=,即63210q q --=,即33 故2笔记不明确,转化为关于1,a q 的方程组求解. 本题考查了等比数列前n 项和公式的运用和分类讨论的思想.因不知q 的2例3思路直现:解: {n a2,S S ∴故4S 4,S ∴笔记:次k 项和,成等比数列来解决3,n n S S ,例4 首项为1的等比数列的和为思路: 解: q ∴=故8n =阅题笔记:利用等比数列奇、偶项数和的性质简单明了,运算量较低.增根. 本题考查了等比数列的性质. 注意S qS =偶奇这个性质是在项数为偶数这一前提下成立的. 建议:巧用特例,熟记等差等比数列奇偶项的一些性质.3.某些特殊数列的求和例5: (1)已知数列{}n a 的通项公式2n n a n =+,求该数列的前n 项和n S ; (2)已知数列{}n a 的通项公式23n n n a =+,求该数列的前n 项和n S . 解:(1)123n n S a a a a =++++ (2)笔记:例6思路:解:n S 笔记:的前n 考查数列的分组求和问题.例7:(2007天津)在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n N *∈皆成立.思路直现: (1)由递推关系式构造出数列n a n -,并证明其是等比数列. (2)利用分组求和法求出{}n a 的前n 项和. (3)考虑用作差法证明. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n N *∈.本小题考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明 利用递推关所以数列{}n a n -是首项为111a -=,且公比为4的等比数列. (Ⅱ)解:由(Ⅰ)可知14n n a n --=, 14n n a n -∴=+.(Ⅲ)证明:对任意的n N *∈,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n N *∈皆成立.笔记: 本题实际上第一步的证明起到一个提示的作用,即应从递推关系出发构造出n a n -的形式,并证明其为等比数列.例8: (3414n n n n a a b a --⎧=⎪⎪⎨⎪=⎪⎩(I )令n c (II 思路:(1) (II 阅题: 解答本题的方法,应整体考虑.系式证明数列成等比. 利用分组求和法求和 利用作差比较法证明不等式. 建议:学会解题的技巧,有时候题目的四、习题一、选择题1.(2008福建) 设{}n a 是公比为正数的等比数列,若151,16a a ==,则数列{}n a 前7项的和为A.63B.64C.127D.128 2.(2008浙江)已知{}n a 是等比数列,25124a a ==,,则12231n n a a a a a a ++++=A.16(14)n --B.16(12)n --C.32(14)3n --D.32(12)3n --3.(2008海南)设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a = A. 2B. 4C.152 D. 1724.(2007陕西) 各项均为正数的等比数列{}n a 的前n 项和为n S ,若32,14n n S S == 则4n S 等于A.80B.30C. 26D.16 5.(2006辽宁) 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 A.122n +- B. 3n C. 2n D.31n -6.数列11111,2,3,4,24816的前n 项和为( )211n 111n -211n 11n 7.2n ++=B.112n --8.9 15n 712-2. C. 分析:{}n a 为等比数列,352a a q ∴=,311242q q ∴=⋅⇒=设1n n n b a a +=,{}n b ∴是首项为8,公比为14的等比数列.122311218[1()]324(14)1314n n n n na a a a a ab b b -+-+++=+++==--,3. C 分析: 414421(1)1215122a q S qa a q ---===-4. B 分析: {}n a 为等比数列,23243,,,n n n n n n n S S S S S S S ∴---成等比2322()()n n n nnS S S S S -=-即22222(14)(2)6n n n S S S -=-⇒=或24n S =-{}n a 各项均为正数,故2n n S S >,故26n S =,432,4,8,n n S S ∴-成等比,所以4316n n S S -=,430n S ∴=5. D 分析: 解:依题意,()f n 为首项为2,公比为328=的前4n +项和,根据等比数列的求和公式可得D6.C 分析:因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则2212112221(1)(1)(1)22n n n n n n n n n n n n a a a a a a a a a a a a +++++++++=++⇒+=++⇒+=2(12)01n a q q q ⇒+-=⇒=,即2n a =,所以2n S n =,故选择答案C 。
高考数学《等比数列及其前n项和》PPT知识点汇总
A.27
B.36
81 C. 2
D.54
C [公比q=aa43=1182=32,则a6=a4q2=18×322=821.]
2.在等比数列{an}中,a3=
3 2
,S3=
9 2
,则a1,q的值分别为
()
A.6,12
B.6,-12
C.32,1
D.32,1或6,-12
D [由S3=a1+a2+a3=a3(q-2+q-1+1),得 q-2+q-1+1=3,即2q2-q-1=0, 解得q=1或q=-12. 当q=1时,a1=32;当q=-12时,a1=6,故选D.]
本课结束
(1)an=a1qn-1=aq1·qn(q>0,且q≠1),则数列{an}的图象是函数y
=aq1·qx的图象上一系列孤立的点.
(2)Sn=
a11-qn 1-q
=-
a1 1-q
qn+
a1 1-q
(q≠1),若设a=
a1 1-q
,则Sn
=-aqn+a,由此可知,数列{Sn}的图象是函数y=-aqx+a图象上 一系列孤立的点.
(4)在等比数列{an}中,等距离取出若干项也构成一个等比数 列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk.
(5)当q≠-1时,数列Sm,S2m-Sm,S3m-S2m,…成等比数列. (6)若数列{an}的项数为2n,则S偶=S奇·q;若项数为2n+1,则S奇 =a1+S偶·q.
()
(2)三个数a,b,c成等比数列的充要条件是b2=ac.( )
(3)如果数列{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是
等比数列.
()
(4)如果数列{an}为等比数列,则数列{ln an}是等差数列. ()
数列等比数列及其前n项和课件文ppt
通常用符号“{ a_n }”或“a_n”表示。
表示方法
有穷数列和无穷数列
递增数列、递减数列和常数列
等差数列和等比数列
数列的分类
数列的应用
描述数量变化规律
解决实际问题
数学分析、统计学等领域
02
等比数列的定义及性质
等比数列的定义
数学符号表示
等比数列的首项和公比
等比数列的定义
当公比q>1时,数列为递增数列;当0<q<1时,数列为递减数列
前n项和公式的证明
实际应用:等比数列的前n项和公式在实际生活中有广泛的应用。例如,在投资理财中,如果将本金按照一定的年利率进行复利计算,就可以使用等比数列的前n项和公式来计算未来的本金和利息之和。
前n项和公式的应用
04
等比数列的前n项和的实际应用
简单利息
等比数列可以用来计算简单利息,即只考虑本金和利率的情况下,利息随时间线性增长。
等比数列与指数函数的联系
等比数列的通项公式和求和公式与指数函数有密切的联系,可以帮助我们更好地理解指数函数的性质和应用。
等比数列与三角函数的联系
等比数列的项数公式和求和公式与三角函数有一定的联系,可以帮助我们更好地理解三角函数的性质和应用。
与其他数学知识的交叉应用
THANKS
感谢观看
等比数列在金融领域的应用
01
等比数列可以用于计算复利、折旧等金融问题,帮助我们更好地理解金融市场的运行规律。
拓展应用介绍
等比数列在物理领域的应用
02
等比数列可以用于描述指数衰变、放射性衰变等物理现象,帮助我们更好地理解自然界中的规律。
等比数列在计算机领域的应用
03
等比数列可以用于计算机算法设计、数据结构等方面,提高计算机程序的效率和性能。
第20讲等比数列及其前n项和(教师版)
第20讲 等比数列及前n 项和和一,基础知识回顾 1. 等比数列的概念(1) 文字语言:如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.(2) 符号语言:a n +1a n _=q(n ∈N ,q 是等比数列的公比).2. 等比数列的通项公式:设{a n }是首项为a 1,公比为q 的等比数列,则第n 项a n =a 1q n -1.3. 等比中项:若a ,G ,b 成等比数列,则G 为a 和b 的等比中项且G =±ab .4. 等比数列的前n 项和公式(1) 当q =1时,S n =na 1.(2) 当q ≠1时,S n =a 1(1-q n)1-q =a 1-a n q1-q.5. 等比数列的性质:已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *)(1) a n =a m q n -m.(2)若m +n =p +q ,),,,(+∈N q p n m 则a m ·a n =a p ·a q ; (3)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(4)等比数列{a n }中依次每m 项的和仍成等比数列,即S m 、S 2m -S m 、S 3m -S 2m 、…仍成等比数列,其公比为q m(q ≠-1). (5)单调性:⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<00<q <1⇔{a n }是递增数列;⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0q >1⇔{a n }是递减数列;q =1⇔{a n }是常数列;q <0⇔{a n }是摆动数列.二,典例精析题型一:等比数列的基本运算例1:(1)设等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 1=1,a 3=4,S k =63,则k =________.(2)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于__________.【解析】(1)设等比数列{a n }的公比为q ,由已知a 1=1,a 3=4,得q 2=a 3a 1=4.又{a n }的各项均为正数,∴qS k =1-2k1-2=63,∴2k-1=63,解得k =6.(2)(2)设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2,∴S n=1-2n1-2=2n-1. 变式训练1:(1)在等比数列{a n }中,a 3=7,前3项和S 3=21,则公比q 的值为 (2)已知数列{a n }满足2a n +1+a n =0,a 2=1,则数列{a n }的前10项和S 10为【解析】(1)根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7, ①a 1+a 1q +a 1q 2=21, ②②÷①得1+q +q2q2=3. 整理得2q 2-q -1=0,解得q =1或q =-12.(2)∵2a n +1+a n =0,∴a n +1a n =-12.又a 2=1,∴a 1=-2,∴{a n }是首项为-2,公比为q =-12的等比数列,∴S 10=a 1(1-q 10)1-q=-2(1-2-10)1+12=43(2-10-1) 题型二:等比数列的性质 例2:(1)在等比数列{a n }中,各项均为正值,且a 6a 10+a 3a 5=41,a 4a 8=5,则a 4+a 8=________ (2)已知n s 是等比数列{a n }的前n 项和,且,100,102==n n s s 则=n s 3________ 【解析】(1)由a 6a 10+a 3a 5=41及a 6a 10=a 28,a 3a 5=a 24,得a 24+a 28a 4a 8=5,所以(a 4+a 8)2=a 24+2a 4a 8+a 28=41+2×a n >0,所以a 4+a 8=51;(2)因为在等比数列中 n n n n n s s s s s 232,,--仍呈等比数列,又因为,100,102==n n s s 所以7103=n s 。
等比数列及其前n项和讲义-高三数学一轮复习
等比数列及其前n项和一.学习目标1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.体会等比数列与指数函数的关系.二.知识整合1.等比数列的有关概念等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q(q≠0)表示,符号表示为a n+1a n=q(n∈N∗)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时提醒:由a n+1=qa n,q≠0,并不能立即断定{a n}为等比数列,还要验证a1≠0.2.等比数列的有关公式通项公式a n=;推广:a n=a m⋅q n−m(m,n∈N∗)前n项和公式S n={ ,q=1,q≠1提醒:在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情况而导致解题失误.知识拓展:(1)当q≠0,q≠1时,S n=k−k⋅q n(k≠0)是{a n}成等比数列的充要条件,此时k=a11−q.(2)等比数列的单调性当{a 1>0,q >1 或{a 1<0,0<q <1时,等比数列{a n } 是递增数列. 当{a 1>0,0<q <1 或{a 1<0,q >1时,等比数列{a n } 是递减数列. 当q =1 时,等比数列{a n } 是常数列.当q =−1 时,等比数列{a n } 是摆动数列.三.典型例题考点一 等比数列基本量的运算例1(1) 已知等比数列{a n } 的前3项和为168,a 2−a 5=42 ,则a 6= ( )A. 14B. 12C. 6D. 3(2) 已知等比数列{a n } 的前n 项和为S n ,a 1=1 ,a 5=8a 2 ,若S n =31 ,则n = .方法感悟:等比数列基本量运算的解题策略(1)方程思想:等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1 ,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1 和q ,问题便可迎刃而解.(2)分类讨论思想:等比数列{a n } 的前n 项和公式涉及对公比q 的分类讨论,当q =1 时,{a n } 的前n 项和S n =na 1 ;当q ≠1 时,{a n } 的前n 项和S n =a 1(1−q n )1−q =a 1−a n q 1−q .考点二 等比数列的判定与证明例2已知数列{a n } 的首项a 1=12 ,且满足a n+1=a n3−2a n (n ∈N ∗) .(1) 证明:{1a n −1} 是等比数列,并求数列{a n } 的通项公式;(2) 记b n =n (1a n −1) ,求{b n } 的前n 项和S n .变式:已知各项都为正数的数列{a n } 满足a n+1+a n =3⋅2n ,a 1=1 .(1) 若b n =a n −2n ,求证:{b n } 是等比数列;(2) 求数列{a n } 的通项公式.方法感悟:判定等比数列的四种常用方法定义法 若a n+1a n =q (q 为非零常数,n ∈N ∗ )或a n a n−1=q (q为非零常数,且n ≥2 ,n ∈N ∗ ),则{a n } 是等比数列等比中项法 在数列{a n } 中,若a n ≠0 且a n+12=a n ⋅a n+2(n ∈N ∗) ,则{a n } 是等比数列通项公式法 若数列{a n } 的通项公式可以写成a n =c ⋅q n (c ,q均是不为0的常数,n ∈N ∗ )的形式,则{a n } 是等比数列前n 项和公式法 若数列{a n } 的前n 项和S n =k ⋅q n −k (k 为常数,且k ≠0 ,q ≠0 ,q ≠1 ),则{a n } 是等比数列五.达标练习1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =-3,ac =9B .b =3,ac =9C .b =-3,ac =-9D .b =3,ac =-92.已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6= ( )A .14B .12C .6D .33.记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -14.在数列{a n }中,满足a 1=2,a 2n =a n -1·a n +1(n ≥2,n ∈N *),S n 为{a n }的前n 项和.若a 6=64,则S 7的值为( )A .126B .256C .255D .2545. 已知正项等比数列{a n}的首项为1,且4a5,a3,2a4成等差数列,则{a n}的前6项和为( )A. 31B. 3132C. 6332D. 636. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10= 215−25,则k=( )A. 2B. 3C. 4D. 57. 已知等比数列{a n},其前n项和为S n.若a2=4,S3=14,则a3=.8. 已知等比数列{a n}的公比为−1,前n项和为S n,若{S n−1}也是等比数列,则a1=.9.设等比数列{a n}满足a1+a2=4,a3−a1=8. 记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3,则m=.10.已知数列{a n}的前n项和为S n,且满足2S n=−a n+n(n∈N∗). (1)证明:数列{a n−12}为等比数列;(2)求数列{a n−1}的前n项和T n.。
等比数列及其前n项和教学讲义
等比数列及其前n 项和教学讲义1.等比数列的有关概念 (1)等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达:a na n -1=q (n ≥2),q 为常数,q ≠0. (2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab .2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1;可推广为a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q. 3.等比数列的相关性质设数列{a n }是等比数列,S n 是其前n 项和.(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N *.特别地,若2s =p+r ,则a p a r =a 2s ,其中p ,s ,r ∈N *.(2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n (其中b ,p ,q 是非零常数)也是等比数列.(4)S m +n =S n +q n S m =S m +q m S n .(5)当q ≠-1或q =-1且k 为奇数时,S k ,S 2k -S k ,S 3k -S 2k ,…是等比数列,公比为q k .当q =-1且k 为偶数时,S k ,S 2k -S k ,S 3k -S 2k ,…不是等比数列.(6)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n,T 3nT 2n,…成等比数列.(7)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .1.概念辨析(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)如果数列{a n }为等比数列,则数列{lg a n }是等差数列.( )(4)若数列{a n }的通项公式是a n =a n ,则其前n 项和为S n =a (1-a n)1-a.( )(5)若数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列. 答案 (1)× (2)× (3)× (4)× (5)× 2.小题热身(1)在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4 D .±4 答案 C解析 设等比数列{a n }的公比为q ,则q 4=a 7a 3=82=4,q 2=2,所以a 5=a 3q 2=2×2=4.(2)在等比数列{a n }中,已知a 1=-1,a 4=64,则公比q =________,S 4=________.答案 -4 51解析 q 3=a 4a 1=-64,q =-4,S 4=a 1-a 4q 1-q =-1-64×(-4)1-(-4)=51.(3)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和为________.答案 2n -1解析 因为数列{a n }是等比数列,所以a 1a 4=a 2a 3=8. 又a 1+a 4=9,所以a 1,a 4是方程x 2-9x +8=0的两个根. 又因为a 1<a 4,所以a 1=1,a 4=8,所以q 3=a 4a 1=8,q =2.所以数列{a n }的前n 项和S n =1·(1-2n )1-2=2n -1.(4)数列{a n }中a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =________.答案 6解析 因为a 1=2,a n +1=2a n ,所以a n ≠0,故a n +1a n=2.所以数列{a n }是公比为2的等比数列,因为S n =126,所以2(1-2n )1-2=126,所以2n =64,故n =6.题型 一 等比数列基本量的运算1.已知等比数列{a n }满足a 1+a 2=6,a 4+a 5=48,则数列{a n }前8项的和S 8=( )A .510B .126C .256D .512 答案 A解析 由a 1+a 2=6,a 4+a 5=48得⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 3+a 1q 4=48,得a 1=2,q =2,则数列{a n }前8项的和S 8=2(1-28)1-2=510.2.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解 (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n 3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6. 综上,m =6.等比数列的基本运算方法及数学思想(1)等比数列的基本运算方法①对于等比数列问题一般要给出两个条件,可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题.如举例说明1.②对称设元法:一般地,连续奇数个项成等比数列,可设为…,xq ,x ,xq ,…;连续偶数个项成等比数列,可设为…,x q 3,xq ,xq ,xq 3,…(注意:此时公比q 2>0,并不适合所有情况),这样既可减少未知量的个数,也使得解方程较为方便.(2)基本量计算过程中涉及的数学思想方法 ①方程思想,即“知三求二”.②分类讨论思想,即分q =1和q ≠1两种情况,此处是常考易错点,一定要引起重视.③整体思想.应用等比数列前n 项和公式时,常把q n ,a 11-q 当成整体求解.1.等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( ) A.13 B .-13 C.19 D .-19 答案 B解析 当n ≥2时,a n =S n -S n -1=32n -1+r -32n -3-r =8·32n -3, 当n =1时,a 1=S 1=32-1+r =3+r , ∵数列是等比数列,∴当a 1满足a n =8·32n -3, 即8·32-3=3+r =83,即r =-13,故选B.2.(2018·滨海新区期中)已知递增等比数列{a n }的第三项、第五项、第七项的积为512,且这三项分别减去1,3,9后成等差数列.(1)求{a n }的首项和公比;(2)设S n =a 21+a 22+…+a 2n ,求S n .解 (1)根据等比数列的性质,可得a 3·a 5·a 7=a 35=512,解得a 5=8.设数列{a n }的公比为q ,则a 3=8q 2,a 7=8q 2, 由题设可得⎝ ⎛⎭⎪⎫8q 2-1+(8q 2-9)=2(8-3)=10,解得q 2=2或12.∵{a n }是递增数列,可得q >1,∴q 2=2,得q = 2. 因此a 5=a 1q 4=4a 1=8,解得a 1=2. (2)由(1)得{a n }的通项公式为 a n =a 1q n -1=2×(2)n -1=(2)n +1,∴a 2n =[(2)n +1]2=2n +1,可得{a 2n }是以4为首项,公比等于2的等比数列.因此S n =a 21+a 22+…+a 2n =4(1-2n )1-2=2n +2-4. 题型 二 等比数列的判断与证明(2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a nn . (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n .将n =1代入,得a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入,得a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由题设条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a nn =2n -1,所以a n =n ·2n -1.条件探究1 将举例说明条件改为“a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0,且a n >0”,求{a n }的通项公式.解 由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1.条件探究2 将举例说明条件改为“对任意的n ∈N *,有a n +S n =n .设b n =a n -1”,求证:数列{b n }是等比数列.证明 由a 1+S 1=1及a 1=S 1,得a 1=12.又由a n +S n =n 及a n +1+S n +1=n +1,得a n+1-a n+a n+1=1,∴2a n+1=a n+1. ∴2(a n+1-1)=a n-1,即2b n+1=b n.∴数列{b n}是以b1=a1-1=-12为首项,12为公比的等比数列.等比数列的判定方法(1)定义法:若a n+1a n=q(q为非零常数,n∈N*)或a na n-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列.见举例说明(2).(2)等比中项公式法:若数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列.(3)通项公式法:若数列通项公式可写成a n=c·q n(c,q均是不为0的常数,n ∈N*),则{a n}是等比数列.(4)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.提醒:(1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.已知{a n},{b n}都是等比数列,那么()A.{a n+b n},{a n·b n}都一定是等比数列B.{a n+b n}一定是等比数列,但{a n·b n}不一定是等比数列C.{a n+b n}不一定是等比数列,但{a n·b n}一定是等比数列D.{a n+b n},{a n·b n}都不一定是等比数列答案 C解析a n=1,b n=(-1)n,则{a n},{b n}都是等比数列,但{a n+b n}不是等比数列;设等比数列{a n}的公比为p,等比数列{b n}的公比为q,则a n +1b n +1a n b n =a n +1a n ·b n +1b n=pq .所以数列{a n ·b n }一定是等比数列.2.(2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解 (1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n. 由S 5=3132得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.题型 三 等比数列前n 项和及性质的应用角度1等比数列通项的性质1.若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.答案50解析因为等比数列{a n}中,a10·a11=a9·a12,所以由a10a11+a9a12=2e5,可解得a10·a11=e5.所以ln a1+ln a2+...+ln a20=ln (a1.a2.. (20)=ln (a10·a11)10=10ln (a10·a11)=10ln e5=50.角度2等比数列的前n项和的性质2.数列{a n}是等比数列,前2018项中的奇数项之积是1,偶数项之积是m,则数列{a n}的公比为()A.1009m B .m 1009 C .±1009m D .±m 1009答案 A解析 设数列{a n }的公比为q ,由已知得a 1a 3…a 2017=1,a 2a 4…a 2018=m ,则公比q 满足q 1009=m ,解得q =1009m .角度3 等差数列与等比数列的综合3.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q .由题设可得 ⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n . (2)由(1)知a 1=-2,q =-2, 所以S n +1=a 1+a 2+…+a n +a n +1 =a 1+qS n =-2-2S n .S n +2=a 1+a 2+a 3+…+a n +2=a 1+a 2+q 2S n=-2+4+4S n=2+4S n .所以S n +1+S n +2=(-2-2S n )+(2+4S n )=2S n ,所以S n +1,S n ,S n +2成等差数列.1.掌握运用等比数列性质解题的两个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件.(2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如: ①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列.②若公比不为1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .如巩固迁移3.2.牢记与等比数列前n 项和S n 相关的几个结论(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q .①若共有2n 项,则S 偶∶S 奇=q ;②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q 1+q (q ≠1且q ≠-1),S 奇-a 1S 偶=q . (2)分段求和:S n +m =S n +q n S m ⇔q n=S n +m -S n S m(q 为公比).如举例说明3和巩固迁移1.1.(2018·青岛模拟)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且满足a 6,3a 4,-a 5成等差数列,则S 4S 2=( ) A .3 B .9 C .10 D .13答案 C解析 设等比数列{a n }的公比为q ,因为a 6,3a 4,-a 5成等差数列,所以6a 4=a 6-a 5,所以6a 4=a 4(q 2-q ). 由题意得a 4>0,q >0.所以q 2-q -6=0,解得q =3,所以S 4S 2=S 2+q 2S 2S 2=1+q 2=10. 2.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84答案 B解析 设{a n }的公比为q ,由a 1=3,a 1+a 3+a 5=21得1+q 2+q 4=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=a 1q 2+a 3q 2+a 5q 2=(a 1+a 3+a 5)q 2=21×2=42.故选B.3.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16答案 B解析 由题意知公比大于0,由等比数列的性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.设S 2n =x ,则2,x -2,14-x 成等比数列. 由(x -2)2=2×(14-x ),解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列. 又∵S 3n =14,∴S 4n =14+2×23=30.故选B.。
《等比数列前n项和》说课稿(精选10篇)
《等比数列前n项和》说课稿(精选10篇)因为an = a1q^(n-1)这次为您整理了《等比数列前n项和》说课稿(精选10篇),在大家参照的同时,也可以分享一下给您最好的朋友。
《等比数列前n项和》说课稿篇一一、教材分析《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。
等比数列的前n 项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到。
具有一定的探究性。
二、学情分析在认知结构上已经掌握等差数列和等比数列的有关知识。
在能力方面已经初步具备运用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。
在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。
并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。
三、教学目标分析:知识与技能目标:(1)能够推导出等比数列的前n项和公式;(2)能够运用等比数列的前n项和公式解决一些简单问题。
过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。
体会公式探求过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。
情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。
四、重难点的确立《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。
五、教学方法为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。
4.3.2 等比数列的前n项和公式(精讲)(解析版)
4.3.2等比数列的前n项和公式一、等比数列的前n 项和公式已知量首项1a 与公比q首项1a ,末项n a 与公比q公式()()()111111n n na q S a q q q⎧=⎪=-⎨≠⎪-⎩()()11111n n na q S a a qq q ⎧=⎪=-⎨≠⎪-⎩二、等比数列前n 项和的函数特征1、n S 与q 的关系(1)当公比1q ≠时,等比数列的前n 项和公式是()111nn a q S q-=-,它可以变形为1111n n a a S q q q =---,设11aA q=-,则上式可以写成n n S A Aq =-的形式,由此可见,数列{}n S 的图象是函数x y A Aq =-图象上的一群孤立的点;(2)当公比1q =时,等比数列的前n 项和公式是1n S na =,则数列{}n S 的图象是函数1y a x =图象上的一群孤立的点。
2、n S 与n a 的关系当公比1q ≠时,等比数列的前n 项和公式是11n n a a qS q-=-,它可以变形为111n na qS a q q=---设1qA q =--,11aB q=-,则上式可写成n n S Aa B =+的形式,则n S 是n a 的一次函数。
三、等比数列前n 项和的性质1、等比数列{}n a 中,若项数为2n ,则=S q 偶奇S ;若项数为21n +,则1=S a q S -奇偶.2、若等比数列{}n a 的前n 项和为n S ,则n S ,2n n S S -,32n n S S -…成等比数列(其中n S ,2n n S S -,32n n S S -…均不为0).3、若一个非常数列{}n a 的前n 项和()0,0,n n S Aq A A q n N *=-≠≠∈,则数列{}n a 为等比数列。
四、等比数列前n 项和运算的技巧1、在等比数列的通项公式和前n 项和公式中,共涉及五个量:1a ,n a ,n ,q ,n S ,其中首项1a 和公比q 为基本量,且“知三求二”,常常列方程组来解答;2、对于基本量的计算,列方程组求解时基本方法,通常用约分或两式相除的方法进行消元,有时会用到整体代换,如n q ,11a q-都可以看作一个整体。
等比数列及其前n项和
§6.3 等比数列及其前n 项和一、要点梳理1. 等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q (q ≠0)表示. 2. 等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =_______ 3. 等比中项如果三个数x ,G ,y 组成等比数列,那么G 叫做x 与y 的等比中项. 4. 等比数列的常用性质(1)通项公式的推广:a n =a m ·_______,m ∈N +).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则___________。
(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),1{}n a ,{a 2n },{a n ·b n },{}n nab 仍是等比数列.5. 等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .6. 等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为________。
二.随堂练习1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N +,q 为常数)的数列{a n }为等比数列. ( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( ) (3)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列. ( ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( )(5)若{a n }是等比数列,则S 1·S 2·…·S k =0(k ≥2,k ∈N )的充要条件是a n +a n +1=0.( ) (6)设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则Y (Y -X )=X (Z -X )恒成立. ( ) 2. (2013·江西)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .243. (2012·课标全国)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( )A .7B .5C .-5D .-74. (2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.5. (2012·辽宁)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.三、题型归纳:题型一 等比数列的基本运算例1、 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________.变式训练1 (1)在等比数列{a n }中,a 1=1,公比为q ,且|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( )A .9B .10C .11D .12(2)设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q 等于( ) A .3 B .4 C .5 D .6(3)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n }的前5项和为( )A.158或5B.3116或5C.3116D.158 题型二 等比数列的性质及应用例2、(1)在等比数列{a n }中,各项均为正值,且a 6a 10+a 3a 5=41,a 4a 8=5,则a 4+a 8=________.(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.变式训练2、 (1)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A .5 2B .7C .6D .4 2(2)记等比数列{a n }的前n 项积为T n (n ∈N +),已知a m -1·a m +1-2a m =0,且T 2m -1=128,则m的值为()A.4 B.7 C.10 D.12(3)已知S n为等比数列{a n}的前n项和,且S3=8,S6=7,则a4+a5+…+a9=________. 题型三等比数列的判定例3、已知数列{a n}的前n项和为S n,数列{b n}中,b1=a1,b n=a n-a n-1(n≥2),且a n+S n =n.(1)设c n=a n-1,求证:{c n}是等比数列;(2)求数列{b n}的通项公式.变式训练3、设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2.(1)设b n=a n+1-2a n,证明:数列{b n}是等比数列;(2)求数列{a n}的通项公式.题型4、等比数列求和忽视公比q的范围致误例4、(5分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,3,…).则q的取值范围为________.温馨提醒在应用公式S n=a1(1-q n)1-q或S n=a1-a n q1-q求和时,应注意公式的使用条件为q≠1,而当q=1时,应按常数列求和,即S n=na1.因此,对含有字母参数的等比数列求和时,应分q=1和q≠1两种情况进行讨论,体现了分类讨论思想.五、等比数列中的常用方法与技巧1.已知等比数列{a n}(1)数列{c ·a n }(c ≠0),{|a n |},{a 2n },{1a n }也是等比数列. (2)a 1a n =a 2a n -1=…=a m a n -m +1. 2. 判断数列为等比数列的方法(1)定义法:a n +1a n =q (q 是不等于0的常数,n ∈N +)⇔数列{a n }是等比数列;也可用a n a n -1=q (q 是不等于0的常数,n ∈N +,n ≥2)⇔数列{a n }是等比数列.二者的本质是相同的,其区别只是n 的初始值不同.(2)等比中项法:a 2n +1=a n a n +2(a n a n +1a n +2≠0,n ∈N +)⇔数列{a n }是等比数列. 失误与防范1. 特别注意q =1时,S n =na 1这一特殊情况.2. 由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3. 在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.等比数列练习题A 组 (时间:40分钟)一、选择题1. (2012·安徽)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10等于( )A .4B .5C .6D .72. 等比数列{}a n 中,|a 1|=1,a 5=-8a 2.a 5>a 2,则a n 等于( )A .(-2)n -1B .-(-2)n -1C .(-2)nD .-(-2)n3. (2013·课标全国Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13 B .-13C.19D .-194. 一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .105. 数列{a n }中,已知对任意n ∈N +,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 33+…+a 2n 等于( )A .(3n -1)2 B.12(9n -1) C .9n -1 D.14(3n -1) 二、填空题6. 等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________. 7. (2012·江西)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N +,都有a n +2+a n +1-2a n =0,则S 5=________.8. 设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.三、解答题9. 已知等差数列{a n }满足a 2=2,a 5=8.(1)求{a n }的通项公式;(2)各项均为正数的等比数列{b n }中,b 1=1,b 2+b 3=a 4,求{b n }的前n 项和T n .10.数列{a n }的前n 项和记为S n ,a 1=t ,点(S n ,a n +1)在直线y =3x +1上,n ∈N +.(1)当实数t 为何值时,数列{a n }是等比数列;(2)在(1)的结论下,设b n =log 4a n +1,c n =a n +b n ,T n 是数列{c n }的前n 项和,求T n .等比数列练习题B 组(时间:30分钟)1. 已知{a n }是首项为1的等比数列,若S n 是{a n }的前n 项和,且28S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )A.158或4 B.4027或4 C.4027D.1582. (2013·福建)已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n=a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N +),则以下结论一定正确的是 ( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为qm 2D .数列{c n }为等比数列,公比为qm m3. 在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1) (n ≥2,n ∈N +),这个数列的通项公式是_______________________________________________.4. 已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.5. (2013·天津)已知首项为32的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N +),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n ∈N +),求数列{T n }的最大项的值与最小项的值.。
第03讲 等比数列及其前n项和 (精讲)(解析版)-2023年高考数学一轮复习
第03讲 等比数列及其前n 项和(精讲)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析 题型一:等比数列基本量的运算 题型二:等比数列的判断与证明 题型三:等比数列的性质及其综合应用角度1:等比数列的性质角度2:等比数列与等差数列的综合问题第四部分:高考真题感悟1.等比数列的概念 (1)等比数列的定义一般地,如果一个数列从2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0q ≠)表示.数学语言表达:1(2)nn a q n a -=≥,q 为常数,0q ≠. (2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔2G ab =. 2.等比数列的有关公式(1)若等比数列{}n a 的首项为1a ,公比是q ,则其通项公式为11n n a a q -=;可推广为n m n m a a q -=.(2)等比数列的前n 项和公式:当1q =时,1n S na =;当1q ≠时,11(1)11n n n a a q a q S q q--==--.3.等比数列的性质设数列{}n a 是等比数列,n S 是其前n 项和.(1)若m n p q +=+,则m n p q a a a a =,其中,,,m n p q N *∈.特别地,若2m n p +=,则2m n p a a a =,其中,,m n p N *∈.(2)相隔等距离的项组成的数列仍是等比数列,即ka ,k ma +,2k ma +,…仍是等比数列,公比为mq(,k m N *∈).(3)若数列{}n a ,{}n b 是两个项数相同的等比数列,则数列{}n ba ,{}n n pa qb ⋅和{}nnpa qb (其中b ,p ,q 是非零常数)也是等比数列.1.(2022·宁夏·平罗中学高一期中(理))已知2、x 、8成等比数列,则x 的值为( ) A .4 B .4- C .4± D .5【答案】C解:因为2、x 、8成等比数列, 所以228x =⨯,解得4x =±; 故选:C2.(2022·辽宁·辽师大附中高二阶段练习)已知一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了4个伙伴;第2天,5只蜜蜂飞出去,各自找回了4个伙伴,……按照这个规律继续下去,第20天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( ) A .420只 B .520只C . 20554-只D . 21443-只【答案】B第一天一共有5只蜜蜂,第二天一共有2555⨯=只蜜蜂,……按照这个规律每天的蜜蜂数构成以为5首项,公比为5的等比数列则第n 天的蜜蜂数1555n nn a -=⨯=第20天蜜蜂都归巢后,蜂巢中共有蜜蜂数205 故选:B .3.(2022·北京·昌平一中高二期中)2与8的等比中项是( ) A .4 B .5 C .4± D .5±【答案】C设a 为2与8的等比中项,则22816a =⨯=,解得:4a =±. 故选:C.4.(2022·湖北·蕲春县实验高级中学高二期中)已知2是2m 与n 的等差中项,1是m 与2n 的等比中项,则12m n+=( ) A .2 B .4 C .6 D .8【答案】D由题可知24m n +=,21mn =,所以1228m n m n mn++==. 故选:D .5.(2022·全国·高二单元测试)在下列的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x y +的值为( ) 2 4 1 2 x yB .3C .4D .5【答案】A 由题意知表格为 2 4 6 12 3 12132故3222x y +=+=. 故选:A题型一:等比数列基本量的运算例题1.(2022·辽宁·沈阳市第八十三中学高二阶段练习)若等比数列{}n a 满足123a a +=,4581a a +=,则数列{}n a 的公比为( )A .﹣2B .2C .﹣3D .3【答案】D设等比数列{an }的公比为q ,由a 4+a 5=(a 1+a 3)q 3,得3q 3=81,解得q =3, 故选:D .例题2.(2022·江西·上饶市第一中学模拟预测(文))在正项等比数列{}n a 中,1236a a a a =,且416a =,则10a =( ) A .1024 B .960 C .768 D .512【答案】A解:依题意设公比为q ,且10a >、0q >,由1236a a a a =,则33511a q a q =,即221a q =,所以1a q =,因为416a =,所以34116a q q ==,所以2q,所以2n n a =,所以101021024a ==;故选:A例题3.(2022·辽宁·鞍山市华育高级中学高二期中)在等比数列{}n a 中,241a a +=,352a a +=,则公比q =( )A .12 B .2 C .1 D .2-【答案】B设等比数列{}n a 的公比为q ,由()2424351,2+=+=+=a a a a a a q ,解得2q .故选:B.例题4.(2022·全国·模拟预测)已知{}n a 是等比数列,0n a >,1329a a a =,12312323a a a ++=. (1)求{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,求使得1n n S na +≥的正整数n 的所有取值.【答案】(1)3nn a =或9n a =;(2)答案见解析.(1)因为{}n a 为等比数列,所以213229a a a a ==,又0n a ≠,所以29a =.设{}n a 的公比为()0q q >,因为12312323aa a ++=, 所以12329993q q++=,化简得24309q q q-+=,解得3q =或1q =. 当3q =时,2933n nn a -=⨯=.当1q =时,9n a =.(2)当3q =时,()1113312n n n a q S q+--==-. 由1n n S na +≥,得23332n n n +-≥⋅,化简得()9233nn -⨯≥.易知,当5n ≥时,不等式显然不成立,检验可知,满足不等式的正整数n 的所有取值为1,2,3,4.当1q =时,9n S n =,由1n n S na +≥,得()919n n +≥,此时n 的取值为一切正整数. 例题5.(2022·北京二中高二学业考试)已知数列{}n a 是等比数列,142,16a a ==, (1)求数列{}n a 的通项公式及其前n 项和n S ;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,求数列{}n b 的通项公式及其前n 项和n T .【答案】(1)2n n a =,122n n S +=-.(2)1228n b n =-,2622n T n n =-.(1)设数列{}n a 的公比为q ,则41411682a qa -===,得2q ,所以111222n n nn a a q --==⨯=.11(1)2(12)22112n n n n a q S q +--===---.(2)设等差数列{}n b 的公差为d , 33328b a ===,555232b a ===,则5332812532b b d --===-, 所以3(3)812(3)1228n b b n d n n =+-=+-=-,2(161228)6222n n n T n n -+-==-. 方法总结解决等比数列基本量运算的思想方法(1)方程思想:等比数列的基本量为首项1a 和公比q ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等比数列中包含1a ,q ,n ,n a ,n S 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用1a ,q 表示,寻求两者间的联系,整体代换即可求解.(3)分类讨论思想:若题目中公比q 未知,则运用等比数列前n 项和公式时要对q 分1q =和1q ≠两种情况进行讨论.题型二:等比数列的判断与证明例题1.(2022·辽宁·抚顺一中高二阶段练习)已知数列{}n a 的前n 项和为n S ,且342n n S a =-. (1)求{}n a 的通项公式;【答案】(1)212n n a -=(1)当1n =时,1113423S a a =-=,解得12a =. 当2n ≥时,()113334242n n n n n a S S a a --=-=---, 整理得14n n a a -=,所以{}n a 是以2为首项,4为公比的等比数列,故121242n n n a --=⨯=.例题2.(2022·重庆巴蜀中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且231n n S a =-. (1)求数列{}n a 的通项公式; 【答案】(1)13-=n n a(1)当1n =时,1112321S a a =-⇒=, 又231n n S a =-,①当2n ≥时11231n n S a --=-,② ①−②得:1233n n n a a a -=-,即13n n a a -=, ∴数列{}n a 是以1为首项,3为公比的等比数列, ∴ 13-=n n a .例题3.(2022·江西·二模(理))已知正项数列{}n a 的前n 项和为n S ,212S =,且()*,m n m n a a a m n +=∈N .(1)求{}n a 的通项公式;【答案】(1)3n n a =(1)令m =n =1,得221a a =,又21212S a a =+=,解得:13a =或14a =-(负值舍去),令m =1,得11n n a a a +=,所以13n na a +=, 所以{}n a 是以3为首项,3为公比的等比数列,所以3nn a =.证明{}n a 是等比数列 定义法1n na q a +=(n N *∈) (或者1(2)nn a q n a -=≥)等差中项法211(2)n n n a a a n -+=⋅≥判断{}n a 是等比数列{}n a 的通项关于n 的指数函数1n n a cq -=(0c ≠,0q ≠){}n a 的前n 项和 n n S kq k =-(0c ≠,0q ≠,1q ≠)题型三:等比数列的性质及其综合应用角度1:等比数列的性质例题1.(2022·宁夏·平罗中学高一期中(文))已知{}n a 是等比数列,若0n a >,且243546225a a a a a a ++=,则35a a +=( )A .10B .25C .5D .15【答案】C因为{}n a 是等比数列,243546225a a a a a a ++=,所以223355225a a a a ++=,即()23525a a +=,因为0n a >, 所以355a a +=. 故选:C例题2.(2022·江西·九江一中高二阶段练习(理))在正项等比数列{}n a 中,48128a a a =,则22214log log a a +=( ) A .2 B .1C .12D .14【答案】A由4812388a a a a ==,可得82a =则()222142214282228log log log log log log 2222a a a a a a ===+==故选:A例题3.(2022·辽宁沈阳·三模)在等比数列{}n a 中,28,a a 为方程240x x π-+=的两根,则357a a a 的值为( ) A .ππB .π-C .π±D .3π【答案】C解:在等比数列{}n a 中,因为28,a a 为方程240x x π-+=的两根,所以2258a a a π==,所以5a π=± 所以33575a a a a π==±故选:C.例题4.(2022·河南·高二阶段练习(文))在等比数列{}n a 中,2313a a =,则28a a =______.【答案】9设等比数列{}n a 的公比为q ,由2313a a =得:2211()3a q a =,则有4513a a q ==, 所以2285()9a a a ==.故答案为:9例题5.(2022·全国·高三专题练习)在正项等比数列{}n a 中,若484a a =,则22210log log a a +=______. 【答案】2()()2221022102482log log log log log 42a a a a a a +====.故答案为:2例题6.(2022·全国·高二单元测试)等比数列{}n a 中,0n a >且243546225a a a a a a ++=,则35a a +=_______ 【答案】52435462a a a a a a ++()222335535225a a a a a a =++=+=,又等比数列{}n a 中,0n a >, 355a a ∴+=,故答案为:5.角度2:等比数列与等差数列的综合问题例题1.(2022·浙江·杭师大附中模拟预测)数列{}n a 的前n 项和为n S ,数列{}n b 满足()N n n b na n *=∈,且数列{}n b 的前n 项和为(1)2n n S n -+.(1)求12,a a ,并求数列{}n a 的通项公式; 【答案】(1)12a =,24a =,2n n a =(2)证明见解析 (1)由题意得12323(1)2n n a a a na n S n ++++=-+,①当1n =时,12a =;当2n =时,1221222444a a S a a a +=+=++⇒=; 当2n ≥时,1231123(1)(2)2(1)n n a a a n a n S n --++++-=-+-,②①-②得,1(1)(2)2(2)222(2)n n n n n n n na n S n S S n a S a n -=---+=+-+⇒=-≥,当1n =时,12a =,也适合上式,所以()22N n n S a n *=-∈,所以1122n n S a --=-,两式相减得12(2)n n a a n -=≥,所以数列{}n a 是以2为首项,2为公比的等比数列,所以2n n a =.例题2.(2022·江西·南城县第二中学高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-∈N .(1)求数列{}n a 的通项公式; 【答案】(1)13n na =(1)当1n =时,111221a S a =-=,解得:113a =;当2n ≥时,1122211n n n n n a S S a a --=-=--+,即113n n a a -=,∴数列{}n a 是以13为首项,13为公比的等比数列,1133nn n a ⎛⎫∴== ⎪⎝⎭. 例题3.(2022·青海·大通回族土族自治县教学研究室三模(理))若n S 为数列{}n a 的前n 项和,12a =,且()()*121n n S S n +=+∈N .(1)求数列{}n a 的通项公式; 【答案】(1)2n n a =(1)解:因为()121n n S S +=+①,*n ∈N , 当2n ≥时,()121n n S S -=+②,由①②可得()()112121n n n n S S S S +--=+-+, 即12(2)n n a a n +=≥.1n =时,122a a S +==112222S a +=+,又12a =,所以24a =, 所以()*12n n a a n +=∈N ,所以12n na a +=, 所以数列{}n a 是等比数列,且首项为2,公比为2. 所以2n n a =.例题4.(2022·四川·树德中学高一竞赛)已知数列{}n a 的前n 项和为n S ,且满足11a =,()*11n n S a n N +=-∈.(1)求数列{}n a 的通项公式; 【答案】(1)12n na(1)解:由题意,数列{}n a 的前n 项和为n S ,且满足11a =,11n n S a +=-, 当2n ≥时,可得11n n S a -=-,两式相减得1n n n a a a +=-,即12n n a a +=,即12(2,)n na n n N a ++=≥∈, 当1n =时,1211S a a =-=,可得22a =,可得212a a =, 所以数列{}n a 表示首项为11a =,公比为2q的等比数列,所以数列{}n a 的通项公式为1112n n n a a q --==.例题5.(2022·福建省福州格致中学模拟预测)在①()12n n n n a T T n ++=,②23n n n S a +=这两个条件中任选一个补充在下面问题中,并解答下列题目.设首项为2的数列{}n a 的前n 项和为n S ,前n 项积为n T ,且___________. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中是否存在连续三项构成等比数列,若存在,请举例说明,若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)()1n a n n =+(2)不存在,理由见解析 (1)选①:()12nn n n a T T n++=, 即()12nn n a a n++=.∴12n na a n n+=+ 即()()()1211n n a a n n n n +=+++,∴数列()1n a n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是常数列,∴()11211n a a n n =⨯+=,故()1n a n n =+选②:因为()32n n S n a =+,所以2n ≥时,()1131n n S n a --=+, 则()()1321n n n a n a n a -=+-+,即()()111n n n a n a --=+,即111n n a n a n -+=-, 所以()114311221n n n a a n n n n +=⋅⋅⋅⋅⋅⋅=+--, 当1n =时,12a =也满足,所以()1n a n n =+.(2)假设在数列中存在连续三项n a ,1n a +,2n a +成等比数列,那么有212n n n a a a ++=成立, 即()()()()()212123n n n n n n ⎡⎤++=+++⎣⎦成立. 即()()()123n n n n ++=+成立,即20=成立,此等式显然不成立,故原命题不成立,即不存在连续三项n a ,1n a +,2n a +成等比数列例题6.(2022·全国·高二单元测试)在①102nn a a ++=,②1661n n a a +=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.问题:设n S 是数列{}n a 的前n 项和,且14a =,______,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值;若不存在,说明理由.【答案】选①:312n n a -⎛⎫=- ⎪⎝⎭,存在,最大值4;选②:12566n a n =-+,存在,最大值50;选③:217242n n n a -+=,不存在,理由见解析.选①:因为102nn a a ++=,即112n n a a +=-,14a =, 所以数列{}n a 是首项为4、公比为12-的等比数列,1311422n n n a --⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭,当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为81132n⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为14S =; 当n 为偶数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+,且81814323n n S ⎛⎫=-<< ⎪⎝⎭,综上,n S 存在最大值,且最大值为4.选②:因为1661n n a a +=-,即116n n a a +-=-,14a =,所以{}n a 是首项为4、公差为16-的等差数列,()112541666n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭,125066n -+≥,解得25n ≤,240a >,250a =, 故n S 存在最大值,且最大值为25S 或24S ,25252414255026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,n S 的最大值为50. 选③:因为18n n a a n +=+-,所以18n n a a n +-=-, 所以217a a -=-,326a a -=-,…,19n n a a n --=-, 则()()()()()2111221791171622n n n n n n n n n a a a a a a a a ----+---+-=-+-+⋅⋅⋅+-==,因为14a =,所以217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.1.(2022·上海·高考真题)已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是( ) A .若20222021S S >,则数列{}n a 单调递增 B .若20222021T T >,则数列{}n a 单调递增 C .若数列{}n S 单调递增,则20222021a a ≥ D .若数列{}n T 单调递增,则20222021a a ≥ 【答案】DA :由20222021S S >,得20220a >,即202110a q>,则1a 、q 取值同号, 若100a q <<,,则{}n a 不是递增数列,故A 错误;B :由20222021T T >,得20221a >,即202111a q >,则1a 、q 取值同号,若100a q <<,,则数列{}n a 不是递增数列,故B 错误;C :若等比数列11a =,公比12q =,则11()122(1)1212nn nS -==--, 所以数列{}n S 为递增数列,但20222021a a <,故C 错误;D :由数列{}n T 为递增数列,得1n n T T ->,所以1n a >, 即1q ≥,所以20222021a a ≥,故D 正确. 故选:D2.(2022·上海·高考真题)已知数列{}n a ,21a =,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,23S =,求lim n n S →∞; (2)若{}n a 为等差数列,公差为d ,对任意*n ∈N ,均满足2n S n ≥,求d 的取值范围. 【答案】(1)4;(2)[]0,1.(1)解:2123S a a =+=,则12a =,所以,等比数列{}n a 的公比为2112a q a ==, ()1114112n n n a q S q-⎡⎤⎛⎫∴==-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦,因此,()111lim lim lim 44412n nn n n n a q S q →∞→∞→∞-⎡⎤⎛⎫==-⋅=⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦.(2)解:由已知可得()()12222122n n n n a a S n a a n -+==+≥,则2211n a a -+≥, 即()22231a n d +-≥,可得()231n d -≥-. 当1n =时,可得1d ≤;当2n ≥时,则231n -≥,所以,132d n≥-, 因为数列()1232n n ⎧⎫≥⎨⎬-⎩⎭为单调递增数列,而11032n -≤<-,故0d ≥. 综上所述,01d ≤≤.3.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933()3()444n n n a -∴=-⋅=-⋅;4.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式; 【答案】(1)11()3n n a -=,3n nn b =; (1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.。
《等比数列的前 n 项和》 讲义
《等比数列的前 n 项和》讲义在数学的奇妙世界里,等比数列是一个非常重要的概念,而其中等比数列的前 n 项和更是具有重要的地位和广泛的应用。
今天,咱们就来深入探讨一下等比数列的前 n 项和。
首先,咱们得搞清楚啥是等比数列。
等比数列就是从第二项起,每一项与它的前一项的比值等于同一个常数的数列,这个常数就叫做公比,通常用字母 q 来表示(q≠0)。
比如说,数列 2,4,8,16,32……就是一个等比数列,公比 q =2。
那等比数列的前 n 项和是咋算的呢?这就有个公式:当q≠1 时,等比数列的前 n 项和 Sn = a1(1 q^n) /(1 q);当 q = 1 时,Sn = na1 。
这里的 a1 表示等比数列的首项。
咱们来仔细琢磨琢磨这个公式。
先看q≠1 的情况,为啥会有这么个公式呢?咱们假设一个等比数列的首项是 a1 ,公比是 q ,那么它的前 n 项分别是 a1 ,a1q ,a1q^2 ,…… ,a1q^(n 1) 。
前 n 项和 Sn = a1 + a1q + a1q^2 +…… + a1q^(n 1) ①给①式两边同乘 q ,得到:qSn = a1q + a1q^2 + a1q^3 +…… + a1q^n ②用①②,就可以消去很多项,得到:Sn qSn = a1 a1q^n也就是 Sn(1 q) = a1(1 q^n) ,所以 Sn = a1(1 q^n) /(1 q) 。
再看 q = 1 的情况,这时候等比数列就变成了 a1 ,a1 ,a1 ,…… ,前 n 项和显然就是 na1 啦。
接下来,咱们通过几个例子来感受一下这个公式的应用。
例 1:求等比数列 2,4,8,16,…… 的前 5 项和。
这里首项 a1 = 2 ,公比 q = 2 ,n = 5 。
根据公式 Sn = a1(1 q^n) /(1 q) ,可得:S5 = 2×(1 2^5) /(1 2) = 2×(1 32) /(-1) = 62 。
等比数列及其前n项和知识点讲解+例题讲解(含解析)
等比数列及其前n 项和一、知识梳理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数).(2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .证明:(1)当q ≠-1且q ≠0时,A a a a a S n n =++++=...321,n n n n n n n n n n n Aq q a q a q a a a a a S S =+++=++++=-+++ (2123212)n n n n n n n n n n n Aq q a q a q a a a a a S S 222221332221223......=+++=++++=-+++所以S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n(2)当q= -1时,<1>、当n 为奇数时,1a S n=,132,0a S S n n ==1120a a S S n n -=-=-, 11230a a S S n n =-=-所以S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n<2>、当n 为偶数时,032===n n n S S S ,S n ,S 2n -S n ,S 3n -S 2n不能构成等比数列小结:1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n},⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0. 3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列.答案 (1)× (2)× (3)× (4)×2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12.答案 D3.在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 答案 27,814.(2019·天津和平区质检)已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A.2B.4C.92D.6解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2.又∵a 1=1,a 1a 7=a 24=4,∴a 7=4. 答案 B5.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322fC.1225fD.1227f解析 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },则a 8=1227f ,即第八个单音的频率为1227f . 答案 D6.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 6考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.(2)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q .由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1),则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎨⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32.答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q.【训练1】 (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=( ) A.9B.15C.18D.30(2)(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧2S 3=2(a 1+a 1q +a 1q 2)=8a 1+3a 1q ,a 1q 3=16, 解得q =2,a 1=2,所以S 4=2(1-24)1-2=30.(2){a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,则a 2b 2=22=1.答案 (1)D (2)1考点二 等比数列的判定与证明【例2】 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.【训练2】 (2019·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n=4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.考点三 等比数列的性质及应用【例3】 (1)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40B.60C.32D.50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B【训练3】 (1)(2019·菏泽质检)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D.2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.解析 (1)根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)B (2)73数学运算——等差(比)数列性质的应用1.数学运算是指在明析运算对象的基础上,依据运算法则解决数学问题的素养.本系列数学运算主要表现为:理解数列问题,掌握数列运算法则,探究运算思路,求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想.类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;等差中项)(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .【例1】 (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d =________.解析 (1)由a m -1+a m +1-a 2m =0得2a m -a 2m =0,解得a m =0或2.又S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38, 显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5. 答案 (1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).【例2】 (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A.6B.5C.4D.3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18B.-18C.578D.558 解析 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.答案 (1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . 若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q n S m (q 为公比).【例3】 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________. 解析 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160, 所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0.则S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.答案 (1)2 (2)3116三、课后练习1.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T 1>1的n 的最小值为( )A.4B.5C.6D.7 解析 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6. 答案 C 2.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A.(3n -1)2B.12(9n -1)C.9n -1D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B 3.(2019·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=______.解析 ∵{a n }是等比数列,a 3a 11=2a 25,∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q, ∴1-q 4+1-q 12=λ(1-q 8),将q 4=2代入计算可得λ=83.答案 834.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数).(1)试探究数列{a n +λ}是不是等比数列,并求a n ;(2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1; 当λ≠-1时,a 1+λ≠0,所以a n +λ≠0, 所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ.(2)由(1)知a n =2n -1,所以n (a n +1)=n ×2n , T n =2+2×22+3×23+…+n ×2n ,① 2T n =22+2×23+3×24+…+n ×2n +1,② ①-②得:-T n =2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2. 所以T n =(n -1)2n +1+2.。
知识讲解_等比数列及其前n项和_基础
等比数列及其前n 项和 编稿:张希勇 审稿:李霞【学习目标】1.掌握等比数列的定义,理解等比中项的概念;掌握等比数列的通项公式及推导;2.掌握等比数列的性质和前n 项和公式及公式证明思路;会用它们灵活解决有关等比数列的问题;3.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;4.了解等比数列与指数函数的关系. 【要点梳理】要点一、等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(0q ≠),即:1(0)n na q q a +=≠. 要点诠释:①由于等比数列每一项都可能作分母,故每一项均不为0,因此q 可不能是0;②“从第二项起,每一项与它的前一项的比等于同一个常数q ”,这里的项具有任意性和有序性,常数是同一个;③隐含条件:任一项0n a ≠且0q ≠;“0n a ≠”是数列{}n a 成等比数列的必要非充分条件; ④常数列都是等差数列,但不一定是等比数列。
不为0的常数列是公比为1的等比数列; ⑤证明一个数列为等比数列,其依据*1(0)n na q n N q a +=∈≠,.利用这种形式来判定,就便于操作了. 要点二、等比中项如果三个数a 、G 、b 成等比数列,那么称数G 为a 与b 的等比中项.其中G = 要点诠释:①只有当a 与b 同即0ab >时,a 与b 才有等比中项,且a 与b 有两个互为相反数的等比中项. 当a 与b 异或有一个为零即0ab ≤时,a 与b 没有等比中项。
②任意两个实数a 与b 都有等差中项,且当a 与b 确定时,等差中项2a bc +=唯一. 但任意两个实数a 与b 不一定有等比中项,且当a 与b 有等比中项时,等比中项不唯一。
③当0ab >时,a 、G 、b成等比数列2G bG ab G a G⇔=⇔=⇔= ④2G ab =是a 、G 、b 成等比数列的必要不充分条件。
《等比数列的前 n 项和》 讲义
《等比数列的前 n 项和》讲义一、等比数列的定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,通常用字母 q 表示(q≠0)。
例如,数列 2,4,8,16,32,就是一个公比为 2 的等比数列。
二、等比数列的通项公式等比数列的通项公式为:\(a_n = a_1 \times q^{n-1}\),其中\(a_1\)为首项,\(n\)为项数。
通项公式的作用在于,只要知道了等比数列的首项和公比,就可以求出任意一项的值。
三、等比数列的前 n 项和公式推导为了推导等比数列的前 n 项和公式,我们设等比数列\(\{a_n\}\)的首项为\(a_1\),公比为\(q\),其前\(n\)项和为\(S_n\)。
则\(S_n = a_1 + a_2 + a_3 +\cdots + a_n\)\\begin{align}S_n&=a_1 + a_1q + a_1q^2 +\cdots + a_1q^{n-1}\\qS_n&= a_1q + a_1q^2 + a_1q^3 +\cdots + a_1q^n\\\end{align}\用\(S_n\)减去\(qS_n\),可得:\\begin{align}S_n qS_n&=a_1 a_1q^n\\(1 q)S_n&=a_1(1 q^n)\end{align}\当\(q≠1\)时,\(S_n =\frac{a_1(1 q^n)}{1 q}\)当\(q = 1\)时,等比数列变成了常数列,\(S_n = na_1\)四、等比数列前 n 项和公式的应用1、求和计算例 1:求等比数列\(2, 4, 8, 16, 32\)的前 5 项和。
首项\(a_1 = 2\),公比\(q = 2\),项数\(n = 5\)因为\(q≠1\),所以使用公式\(S_n =\frac{a_1(1 q^n)}{1 q}\)\(S_5 =\frac{2(1 2^5)}{1 2} = 62\)例 2:求等比数列\(5, 5, 5, 5, 5\)的前 5 项和。
第3讲 等比数列及其前n项和
解决等比数列有关问题的常用思想方法 (1)方程的思想:等比数列中有五个量a1,n,q,an,Sn,一般可以 “知三求二”,通过列方程(组)求关键量a1和q,问题可迎刃而解. (2)分类讨论的思想:等比数列的前n项和公式涉及对公比q的分类讨 论,当q=1时,数列{an}的前n项和Sn=na1;当q≠1时,数列{an}的前n项 和Sn=a111--qqn=a11--aqnq.
第七章 数列 第3讲 等比数列及其前n项和
1
PART ONE
基础知识整合
1.等比数列的有关概念 (1)定义 如果一个数列从第 01 __2___项起,每一项与它的前一项的比等于 02 _比_同_数_一_列_常_的_数_0_3____(公_不_比_为_,零通),常那用么字这母个q数表列示就,叫定做义等的比表数达列式.为这04个_a_常an_+n_数1_=_叫_q_做. 等 (2)等比中项 如果a,G,b成等比数列,那么 05 ___G___叫做a与b的等比中项,即G 是a与b的等比中项⇔a,G,b成等比数列⇒ 06 __G_2_=__a_b_(_a_b_≠__0_)__.
2.等比数列的有关公式 (1)通项公式:an= 07 _____a_1_q_n-_1_________. (2)前n项和公式:
08 __n_a_1__,q=1,
Sn= 09 ________________= 10
_________,q≠1.
等比数列的常用性质
(1)通项公式的推广:an=am·qn-m(n,m∈N*). (2)若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=a2k.
解析 答案
(2)(2020·海南高考)已知公比大于1的等比数列{an}满足a2+a4=20,a3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(经典)讲义:等比数列及其前n 项和1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示. 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1. 3.等比中项若G 2=a ·b (ab ≠0),那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m ,(n ,m ∈N +).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n ,{a 2n },{a n ·b n },⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 仍是等比数列. (4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 11-q n 1-q =a 1-a n q1-q .【注意】6.利用错位相减法推导等比数列的前n 项和:S n =a 1+a 1q +a 1q 2+…+a 1q n -1,同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n ,两式相减得(1-q )S n =a 1-a 1q n,∴S n =a 11-q n1-q(q ≠1).7.1由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 7.2在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误. 8.等比数列的判断方法有: (1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2且n ∈N *),则{a n }是等比数列.(2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n 〃a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c 〃q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.一、知识梳理1.等比数列前n 项和公式(1)111(1)(1)11(1)n n n a a qa q q S q qna q ⎧--=≠⎪=--⎨⎪=⎩ 探索导引: 求和631242S =++++说明:对于等比数列的前n 项和公式:从方程观点看:由等比数列的前n 项和公式及通项公式可知,若已知1,,,,n n a q n a S 中的三个即可建立方程组求其余两个,即“知三求二”.在运用等比数列的前n 项和公式时,一定要注意讨论公比q 是否为1. 2. 与前n 项和有关的等比数列的性质(1)若等比数列{}n a 中,公比为1q ≠-,依次k 项和232,,,kkkkkS S S S S --成公比为k q 的等比数列.(2)若等比数列{}n a 的公比为q ,且项数为2()n n N *∈,则S q S =偶奇.探索导引: 等比数列{}n a 中,已知,2420,60S S ==,求6S ,并考虑等式226442()()S S S S S -=-是否成立?说明:利用性质(1)可以快速的求出某些和.但在运用此性质时,要注意是232,,,k k k k k S S S S S --成等比数列,而不是23,,,m m m S S S 成等比数列.二、方法(一)等差数列前n 项和公式的应用理解例题1:在等比数列中, (1)已知13,2,a q ==求66,a S ;(2)已知1112.7,,,390n a q a =-=-=求n ;(3)已知141,64,a a =-=求q 和4S ;(4)已知3339,22a S ==求1,a q ;分析:在等比数列中有五个重要量1,,,,,n n a a q n S 只要已知任意三个,就可以求出其他两个.其中1a 和q 两个最重要的量,通常要先求出1a 和q . 解:(1)55613296a a q ==⋅=.6616(1)3(12)189112a q S q --===--.(2)11n n a a q -=,1112.7()6903n n -∴=-⨯-⇒=(3) 341a a q =,364q ∴=-,4q ∴=-144164(4)5111(4)a a q S q ---⨯-===--- (4) 231231329(1)2a a q S a q q ⎧==⎪⎪⎨⎪=++=⎪⎩(1)(2)(2)÷(1)得2213q q q ++= 22101q q q ∴--=⇒=或12q =-当1q =时,132a =,当12q =-时,16a =知识体验:已知等比数列的五个量1,,,,n n a a q n S 中的任意三个求其他两个时,要用等比数列的通项公式以其及前n 项和公式.(二)与等差数列前n 项和有关的性质的应用理解例题2:等比数列{}n a 中12m S =,236,m S =求3m S .分析: 在有关等比数列的问题中, 均可化成有关1a 、q 的关系列方程求解.本题中注意下标的关系,可考虑用等差数列前n 项和的有关性质来简化运算.解法一: 由12m S =,236,m S =可知1q ≠(若1,q =22m m S S =) 1212(1)121(1)36,1m m mm a q S q a q S q ⎧-==⎪-⎪∴⎨-⎪==⎪-⎩解得13m q +=, 12,121m aq q∴==--313(1)841m m a q S q-∴==- 解法二: 232,,m m m m m S S S S S --成等比数列 2322()()m m m m m S S S S S ∴-=- 2336241248m S -=÷=知识体验: 在学习了等比数列前n 项和的有关性质后,我们用其来求解有关等差数列的前n 项和问题.方法提炼:求解该类问题一般有两种方法: ①可化成有关1a 、q 的关系列方程组求解. ②可利用等比数列中连续等段和成等比的性质即性质(1)求解.384m S ∴=三、 例题(一) 题型分类全析1.等比数列前n 项和公式的基本运算例1:在等比数列的{}n a 中:31648,216,40,n a a a a S -=-==求公比q ,1a及n .思路直现:由已知两个条件,可建立关于1,a q 的方程组,分别解出1,a q 的值,代入n S 即可求出n .解:由已知可得2311132641(1)8,1,3,(1)216,a a a q a q a a a q q ⎧-=-==⎧⎪⇒⎨⎨=-=-=⎪⎩⎩ 1(1)13404113n nn a q S n q --∴===⇒=-- 总结:在求数列的基本量问题时,把条件转化成基本量解方程是解决数列问题的基本方法.例2 已知数列{}n a 是等比数列,其前n 项和n S ,若3692S S S +=,求该数列的公比q .思路直现:由已知两个条件,可建立关于1,a q 的方程组,分别解出1,a q 的值,代入n S 即可求出n . 解: 若1q =,则1n S na =,36111369S S a a a ∴+=+=,91218S a =,此时3692S S S +≠1q ∴≠369369111(1)(1)(1)222(1)111a q a q a q q q q q q q---∴+=⋅⇒--=---- ∴96320q q q --=, 即63210q q --=, 即33(1)(21)0q q -+=故3312102q q q +=⇒=-⇒=.笔记:在使用等比数列的前n 项和公式时,一定要注意公式的条件.若题目中不明确,应对q 进行讨论.本题有关等比数列前n 项和的基本运算的考查. 转化为关于1,a q 的方程组求解.本题考查了等比数列前n 项和公式的运用和分类讨论的思想. 因不知q 的值,故对q 进行讨论.2.利用等差数列的性质求和例3:等比数列{}n a 中,267,91S S ==,求4S ?思路直现:注意到,下标的关系,可考虑利用等比数列的性质解决. 解: {}n a 是等比数列, 24264,,S S S S S --成等比 226442()()S S S S S ∴-=-2447(91)(7)S S ∴-=-,故24475880S S --=故428S =或421S =-注意到2212344121221212()10a a a a S a a q a a q S a a a a ++++++===+>++, 42,S S ∴同号,428S ∴=笔记:遇到类似下标成倍数关系的前n 项和问题,一般可考虑用等比数列中依次k 项和232,,,k k k k k S S S S S --成等比数列来解决,可简化计算量.在已知本题考查了等比数列连续等段和成等比的性质. 利用等比数列分段和成等比. 考虑是否两解都满足条件. 建议:已知3,n n S S 求2n S 时,尽量列方程求解,若用3,n n S S ,利用这一性质求2n S 时,要考虑是否会出现增根的问题.例4 已知一个项数为偶数,首项为1的等比数列,其奇数项的和为85,偶数项的和为170,求这个数列的公比及项数.思路: 本题涉及到项数为偶数的等比数列,且奇数项和与偶数项和都已知,由此利用等比数列的性质即可求出公比,进而求其通项. 解:该数列是一项数为偶数的等比数列170285S q S ∴===偶奇,又85170255n S S S =+=+=奇偶1(1)1(12)21255112n n n n a q S q -⋅-===-=--故8n =阅题笔记:利用等比数列奇、偶项数和的性质简单明了,运算量较低.性质应考虑是否会出现增根.本题考查了等比数列的性质.注意SqS =偶奇这个性质是在项数为偶数这一前提下成立的. 建议:巧用特例,熟记等差等比数列奇偶项的一些性质. 3.某些特殊数列的求和例5: (1)已知数列{}n a 的通项公式2n n a n =+,求该数列的前n 项和n S ; (2)已知数列{}n a 的通项公式23n n n a =+,求该数列的前n 项和n S . 解:(1)123n n S a a a a =++++23(21)(22)(23)(2)n n =++++++++23(2222)(123)n n =++++++++2(12)(1)122n n n-+=+- 1(1)222n n n++=-+(2) 123n n S a a a a =++++2233(23)(23)(23)(23)n n =++++++++2323(2222)(3333)n n =+++++++++2(12)3(13)1213n n --=+-- 1322(31)2n n +=-+-=1137222n n +++-笔记:分组求和法适用于某些特殊数列的求和,这些特殊数列的通项是可写成几个等比数列或等差数列的和的形式.例6:已知数列{}n a 的通项公式2n n a n =⋅,求该数列的前n 项和n S ; 思路:写出数列的前n 项和注意其与等比数列形式类似,考虑用推导等比数列求和的方法来求其前n 项和.解:23222322n n S n =+⋅+⋅++⋅2312222(1)22n n n S n n +=+⋅++-⋅+⋅23122222n n n S n +-=++++-⋅1232(2222)n n n S n +=⋅-++++考查数列的分组求和问题.等差等比数列各自分组求和.不同公比的等比数列按公比各自分组求和 建议:熟记几种常见的数列求和类型及其对应方法.考查数列的错位相减法求和的问题。