三角函数诱导公式一-四
(完整版)三角函数诱导公式总结
三角函数诱导公式与同角的三角函数【知识点1】诱导公式及其应用公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-)公式五: sin(2π-α) = cos α; cos(2π-α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π+α) =- sin α.公式七: sin(32π-α)=- cos α; cos(32π-α) = -sin α.公式八: sin(32π+α) = -cos α; cos(32π+α) = sin α.公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角一、前四组诱导公式可以概括为:函数名不变,符号看象限公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变例1、求值(1)29cos()6π= __________. (2)0tan(855)-= _______ ___. (3)16sin()3π-= __________.的值。
求:已知、例)sin(2)4cos()3sin()2cos( ,3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos2例4、下列各式不正确的是【 】A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .32m例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】A .5B .-5C .6D .-6例7、试判断sin(2)cos()(9tan (5)2αππααπαπα-+⎛⎫+- ⎪⎝⎭··cos 为第三象限角)符号 例8、化简3sin(3)cos()cos(4)25tan(3)cos()sin()22πααππαπαπααπ-⋅-⋅+-⋅+⋅-例9、已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(α--α-πα-π+α-π例10、若1sin()3πθ-=,求[]cos()cos(2)33cos()1cos sin()cos()sin()22πθθππθθθπθπθπ+-+--⋅-⋅--+的值.提示:先化简,再将1sin 3θ=代入化简式即可.例11、若α例12、设)(x f 满足(sin )3(sin )4sin cos ,(||)2f x f x x x x π-+=⋅≤,求)(x f 的表达式.例13、设222sin()cos()cos()()31sin cos()sin ()22f παπαπααπαπαα+--+=+++-+,1sin 2α≠-,求23()6f π-的值.【知识点2】同角的三角函数的基本关系式 同角三角函数的基本关系式有两个: ①平方关系: sin 2α + cos 2α= ②商数关系:=ααcos sin 例14、化简cos α1-sin α1+sin α+sin α1-cos α1+cos α(π<α<3π2)得【 】A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α 例15、若cos(π6-α)=m (|m |≤1),则sin(23π-α)的值为【 】A .-mB .-m 2 C.m2 D .m例16、1+2sin (π-3)cos (π+3)化简的结果是【 】A .sin3-cos3B .cos3-sin3C .±(sin3-cos3)D .以上都不对 例17、tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+a )的值为【 】A .m +1m -1 B.m -1m +1C .-1D .1 例18、已知)1(,sin <=m m α,παπ<<2,那么=αtan 【 】A 21m m- B 21m m-- C 21mm-± D m m 21-±例19、若角α的终边落在直线0=+y x 上,则ααααcos cos 1sin 1sin 22-+-的值等于【 】 A 2 B 2- C 2-或2 D 0例20、已知3tan =α,23παπ<<,那么ααsin cos -的值是【 】 A 231+-B 231+-C 231-D 231+ 例21、已知A 为锐角,lg(1+cos A )=m ,lg 11-cos A=n ,则1g sin A 的值为【 】A .m +1nB .12(m -n )C.12(m +1n ) D.12(m -1n)例22、已知角α的终边经过点)60cos 6,8(0--m P ,且54cos -=α,则m 的值为【 】 A .21 B .21-C .23-D .23 例23、(2011年高考江西卷)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-552,则y= . 例24、已知)0(32cos sin πθαα<<=+,求θtan 精选试题1、以下四个命题中,正确的是【 】A .在定义域内,只有终边相同的角的三角函数值才相等B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+23π<α<2k π,k ∈Z } 2、sin34π·cos 625π·tan 45π的值是【 】A .-43B .43C .-43D .433、已知()21sin -=+πα,则()πα7cos 1+的值为【 】A .332 B . -2 C . 332- D . 332± 4、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π【 】 A 、21-B 、21C 、23-D 、235、若(),2,53cos παππα<≤=+则()πα2sin --的值是【 】 A . 53 B . 53- C . 54 D . 54-6、已知cos78°约等于0.20,那么sin66°约等于【 】A .0.92 B.0.85 C.0.88 D.0.957、已知343tan ,,2,cos 2322πππααπα+=∈+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且则的值是【 】A .35-B .35C .45D .45-8、22222sin 1sin 2sin 3sin 89sin 90︒+︒+︒++︒+︒=9、已知3cos()5πα+=-,322παπ<<,则tan()2πα-=10、若1sin()22πα-=-,则tan(2)πα-=________. 11、已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan =.12、 已知cos()63πα-=25cos()sin ()66ππαα+--的值.提示:把56πα+化成()6ππα--,进而利用诱导公式求解.。
三角函数的诱导公式
三角函数的诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cotcot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数诱导公式及推导
三角函数诱导公式及推导-CAL-FENGHAI.-(YICAI)-Company One1三角函数诱导公式:所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
常用公式:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)= tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)= cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα推算公式:3π/2 ±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαsin(3π/2-α)=-cosαcos(3π/2+α)=sinαcos(3π/2-α)=-sinαtan(3π/2+α)=-cotαtan(3π/2-α)=cotαcot(3π/2+α)=-tanαcot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
完整版)三角函数诱导公式总结
完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。
以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。
以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。
2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。
另外,还有一个规律是:奇变偶不变,符号看象限。
也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。
例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。
例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。
三角函数诱导公式大全
三角函数诱导公式大全三角函数诱导公式是数学中的重要内容,常用的诱导公式有以下几组:公式一:对于任意角α,终边相同的角的同一三角函数的值相等,即sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan (2kπ+α)=tanα,cot(2kπ+α)=cotα。
公式二:对于任意角α,π+α的三角函数值与α的三角函数值之间的关系,即sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα。
公式三:对于任意角α,α与-α的三角函数值之间的关系,即sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα。
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系,即sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα。
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系,即sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanα,cot(2π-α)=-cotα。
公式六:对于π/2±α与α的三角函数值之间的关系,即sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π/2-α)=cosα,cos (π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα。
为了更好地记忆这些公式,可以使用以下口诀:奇变偶不变,符号看象限。
具体来说,对于k·π/2±α(k∈Z)的个三角函数值,当k是偶数时,得到α的同名函数值,函数名不改变;当k是奇数时,得到α相应的余函数值,即sin→cos,cos→sin,tan→cot,cot→tan。
三角函数诱导公式全集
三角函数诱导公式全集三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
三角函数的诱导公式【六公式】
)/ )
九倍角
sin9A=(sinA*(-3+4*sinA^2 )* ( 64*sinA^6-96*sinA^4+36*sinA^2-3 ))
cos9A=(cosA*(-3+4*cosA^2 )* ( 64*cosA^6-96*cosA^4+36*cosA^2-3 ))
tan9A=tanA* ( 9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8 ) / (1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8 )
例. c^3=c*c^2=c* (1-s^2 ), c^5=c*(c^2 ) ^2=c* ( 1-s^2 ) ^2 )
特殊公式
(sina+sin θ) * ( sina- sin θ) =sin (a+θ) *sin ( a- θ)
证明:(sina+sin θ) *( sina- sin θ) =2 sin[ (θ +a)/2] cos[(a - θ)/2] *2 cos[ (θ +a)/2] sin[(a- θ) /2]
tan (α +β+γ) =(tan α+tan β+tan γ - tan α· tan β· tan γ) / (1- tan α· tan β - tan β· tan γ - tan α· tan γ)
(α +β+γ≠π /2+2k π,α、β、γ≠π /2+2k π)
积化和差的四个公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
三角函数的诱导公式
角的三角函数值.
思考: 给定一个角α. (1)角π-α、π+α的终边与角α的终边有什么关 系?它们的三角函数之间有什么关系? (2)角-α的的终边与角α的终边有什么关系?它们的 三角函数之间有什么关系?
-的终边
+的终边
y
r =1
α O
α的终边
P1(x, y)
cos180 cos 180
cos180 cos,
所以
原式
cos sin
sin cos
1.
讨论:你能归纳一下把任意角的三角函数转化成锐角三角函 数的步骤吗?
任意负角的 三角函数
用公式三或一
任意正角的 三角函数
用公式一
锐角的三 角函数
用公式二或四
0~2 的角的
三角函数
1. 三角函数诱导公式的推导过程,理解 “函数名不变,符号看象限”
【思路分析】 由题目可获取以下主要信息:
①已知的都是含有角 α 加上一个常量的函数值;
②待求的是含有角α加上一个常量的函数值.
解答本题中的(1)可先利用诱导公式化简角求值.
π (2)注意 3 +α
与
α-53π之间的关系.
π (3)关注 6 +α
与76π+α
之间的关系.
题型三 化简 例 4 化简: (1)sin(-α)cos(-α-π)tan(2π+α);
=-sin4π3 =-sinπ+π3 =sinπ3 =
3 2.
(2)cos269π=cos4π+5π6 =cos5π6 =cosπ-π6
π =-cos 6 =-
3 2.
(3)tan(-855°)=-tan855°=-tan(2×360°+135°)
高中数学必修4三角函数常考题型:三角函数的诱导公式(一)
三角函数的诱导公式(一) 【知识梳理】1.诱导公式二(1)角π+α与角α的终边关于原点对称.如图所示.(2)公式:sin(π+α)=-sin_α.cos(π+α)=-cos_α.tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32. 【类题通法】利用诱导公式解决给角求值问题的步骤【对点训练】求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=22×32-32×12-1=6-3-44. 题型二、化简求值问题【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). (1)[解析]cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1. [答案] 1(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1. 【类题通法】利用诱导公式一~四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切.【对点训练】化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ). 解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ. 题型三、给角(或式)求值问题【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( ) A .1B .-1 C.13 D .-13(2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值. (1)[解析] ∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z ,∴sin(α+2β)=sin [(α+β)+β]=sin(π+β)=-sin β=-13. [答案] D(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角. ∴α-55°是第三象限角.sin(α-55°)=-1-cos 2(α-55°)=-223. ∵α+125°=180°+(α-55°),∴sin(α+125°)=sin [180°+(α-55°)]=-sin(α-55°)=223. 【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】已知sin(π+α)=-13,求cos(5π+α)的值.解:由诱导公式得,sin(π+α)=-sin α,所以sin α=13,所以α是第一象限或第二象限角.当α是第一象限角时,cos α= 1-sin 2α=223,此时,cos(5π+α)=cos(π+α)=-cos α=-223.当α是第二象限角时,cos α=-1-sin 2α=-223,此时,cos(5π+α)=cos(π+α)=-cos α=223.【练习反馈】1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255 B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55.2.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( ) A .-35 B.35C .±35 D.45解析:选B sin α=-45,又α是第四象限角,∴cos(α-2π)=cos α=1-sin 2α=35.3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=________.解析:∵tan(5π+α)=tan α=m ,∴原式=-sin α-cos α-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1m -1. 答案:m +1m -14.cos (-585°)sin 495°+sin (-570°)的值是________. 解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-25.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫α+5π6的值. 解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6= -cos ⎝⎛⎭⎫π6-α=-33.。
三角函数的诱导公式
三角函数的诱导公式公式一:sin(α+k·)=sinα cos(α+k·)=cosαtan(α+k·)=tanα其中k∈Z.公式二:sin(+α)=-sinα cos(+α)=-cosαtan(+α)=tanα公式三:sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanα公式四:sin(-α)=sinαcos(-α)=-cosαtan(-α)=-tanα总结:α+k·2(k∈Z),-α,±α的三角函数,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
公式五:sin(-α)=cosα cos(-α)=sinα公式六:sin(+α)=cosα cos(+α)=-sinα总结:±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.重、难点知识归纳及讲解(一)利用诱导公式可以把任意角的三角函数转化为锐角三角函数,即:例1、求值:.例2、设的值为()A.B. C.-1 D.1(二)同角三角函数关系式在求值、化简、证明中的应用.1、已知角α的某一三角函数值,可求出α的其余三角函数值.例3、已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.2、利用同角三角函数关系式进行化简:化简结果的基本要求(1)函数个数尽可能少;(2)次数尽可能低;(3)项数尽可能少;(4)尽可能地去掉根号;(5)尽可能地不含分母;(6)能求出值的要求出值来.例4、若sinαcosα<0,sinαtanα<0,化简:.3、利用同角关系式进行三角恒等式的证明.证明三角恒等式的方法较多,既可由一边证向另一边,也可先证得另一个等式成立,从而得出要证的等式,还可用比较法证明等,关键是要依题而定。
例5、证明:.练习1.若,则的值为().A. B. C. D.2.和的终边关于轴对称,则下列各式中正确的是()A. B.C. D.3.的值等于().A.B.C.D.4.的值是()A.B.C.D.5.在△中,下列各表达式为常数的是().A.B.C. D.6.如果,那么是()A. B. C. D.7.的值为()A.B.C.D.8.已知且是第四象限角,则 =()A .B .C .D .9.如果 ,且,则 可以是( ). A .B .C .D .10.已知 是方程 的根,那么 的值等于( ).A .B .C .D .11. 为整数,化简 所得结果是( ) A . B .C .D .12.,则的值为( )A .0B .1C .-1D .13.若,则等于( )A .B .C .D .14、已知sin 5α=,则44sin cos αα-的值为( ) A .15-B .35-C .15D .3515、0203sin 702cos 10--=( )A. 12B. 2C. 2D.2。
三角函数的8个诱导公式三角诱导公式顺口溜
三角函数的8个诱导公式三角诱导公式顺口溜
三角函数在各象限的符号口诀是一全正,二正弦,三正切,四余弦。
三
角函数诱导公式口诀函数名不变,符号看象限;奇变偶不变,符号看象限。
下面是具体的函数公式以及推导公式,大家要牢记。
三角函数的诱导公式
三角函数的基本公式
公式一:任意角α与-α的三角函数值之间的关系:sin(-α)
=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式二:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式四:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)
=-cotα
公式五:π/2±α与α的三角函数值之间的关系:sin(π/2+α)
=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)
=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)
=cotαcot(π/2-α)=tanα
推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)。
三角函数的诱导公式
cos
sin
cos
sin
【总一总★成竹在胸】
口诀:奇变偶不变,符号看象限
意义: k (k Z)的三角函数值
2 1)当k为偶数时,等于的同名三角函数值,前面加上 一个把 看作锐角时原三角函数值的符号; 2)当k为奇数时,等于的异名三角函数值,前面加上 一个把 看作锐角时原三角函数值的符号;
三角函数线:用有向线段的数量来表示。
y
y MP sin MP (正弦线) r OP
x OM cos OM (余弦线) r OP
O
P
T
M
A
x
y AT tan AT (正切线) x OA
上节
回顾
三角函数的诱导公式一:
sin 2k sin
课堂
0
例题
例1:求三角函数值:
2 解 : (1) cos225 cos(180 45 ) cos45 2 11 3 (2) sin sin(4 ) sin 3 3 3 2
11 16 1cos 225 ; 2sin ; 3sin( ); 4 cos 2040 0 3 3
提升
训练
【例 4】 在△ABC 中,若 sin(2π-A)=- 2sin(π- B), 3cosA=- 2cos(π-B),求△ABC 的三内角.
2 3 (2)当 cosA=- 2 时,cosB=- 2 . 又 A、B 是三角形内角, 3 5 ∴A=4π,B=6π,不合题意. π π 7 综上知,A=4,B=6,C=12π.
高一年级理科数学卢
上节
回顾
设是 一 个 任 意 角 , 的 终 边 上 任 意 一 点 P ( x , y )(除 端 点 外 ), 它 与 原 点 的 距 离 是 r (r x y 0), 那 么:
三角函数诱导公式一到六
三角函数诱导公式一到六三角函数诱导公式是一种重要的数学工具,其涵盖了众多的基础公式以及核心概念,从而有助于数学学习者的深入学习。
该公式一为:正负sinθ±cosθ=±1,其中sinθ为正弦值,cosθ为余弦值。
这引出了正负概念,也就是指可以通过对正弦值和余弦值的取反来将角度的正负值改变,从而得到正确的表达。
该公式二为:sin2θ=2sinθcosθ,其中sin2θ为双角函数,也就是2倍角函数,指的是由角θ的正弦值和余弦值的乘积组成的2倍角函数。
它提出了双角函数的一个重要概念,即可以把一个角度的正弦函数进行双倍化,从而得到一个新的函数。
该公式三为:sin3θ=3sinθ-4sinθcosθ,其中sin3θ为三角函数,即3倍角函数,指的是由角θ的正弦值、余弦值及乘积组成的三倍角函数。
它强调了可以由角度构成的函数可以三倍放大,从而获得新的函数。
该公式四为:sinθcosθ=½sin2θ,其中sinθcosθ表示乘积函数,即正弦值与余弦值的乘积,½sin2θ则表示双角函数,也就是正负sin2θ的一半。
它告诉我们正弦值与余弦值的乘积可以等价于双角函数的一半,从而实现数学的运算计算。
该公式五为:sin2θcosθ=½sin3θ,其中sin2θcosθ表示乘积函数,即正弦值与余弦值的积,½sin3θ则表示三倍角函数,也就是正负sin3θ的一半。
它告诉我们正弦值与余弦值的积可以等价于三角函数的一半,从而得到更精准的运算结果。
最后,该公式六为:cos2θ-sin2θ=cos2θ,其中cos2θ为双角余弦函数,表示双倍角度的余弦值,sin2θ则表示双角正弦函数,即2倍角度的正弦值。
它指出,通过对双角余弦值和双角正弦值求差可以获得双角余弦值,从而将数学运算结果进行计算。
总之,三角函数诱导公式既展现了微积分中潜藏着的深奥理论,又展示了反复出现的有用方法,为人们打开了一扇数学思维的大门,著作既为学习者提供了强大、有效的科学方法,又能够为数学实践带来巨大的收获。
三角函数诱导公式一览表
三角函数诱导公式一览表公式一:设α为任意角,终边相同的角的同一三角函数的值相等:1、sin(2kπ+α)=sinα2、cos(2kπ+α)=cosα3、tan(2kπ+α)=tanα4、cot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:1、sin(π+α)=-sinα2、cos(π+α)=-cosα3、tan(π+α)=tanα4、cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:1、sin(-α)=-sinα2、cos(-α)=cosα3、tan(-α)=-tanα4、cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:1、sin(π-α)=sinα2、cos(π-α)=-cosα3、tan(π-α)=-tanα4、cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:1、sin(2π-α)=-sinα2、cos(2π-α)=cosα3、tan(2π-α)=-tanα4、cot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:1、sin(π/2+α)=cosα2、cos(π/2+α)=-sinα3、tan(π/2+α)=-cotα4、cot(π/2+α)=-tanα5、sin(π/2-α)=cosα6、cos(π/2-α)=sinα7、tan(π/2-α)=cotα8、cot(π/2-α)=tanα公式七:3π/2±α与α的三角函数值之间的关系:1、sin(3π/2+α)=-cosα2、cos(3π/2+α)=sinα3、tan(3π/2+α)=-cotα4、cot(3π/2+α)=-tanα5、sin(3π/2-α)=-cosα6、cos(3π/2-α)=-sinα7、tan(3π/2-α)=cotα8、cot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
苏教版三角函数的诱导公式(一~四)
1.2.3三角函数的诱导公式第1课时三角函数的诱导公式(一~四)一、诱导公式(一)终边相同的角的诱导公式(公式一):sin(α+2kπ)=sin_α(k∈Z);cos(α+2kπ)=cos_α(k∈Z);tan(α+2kπ)=tan_α(k∈Z).思考1:终边相同角的三角函数值之间有什么关系?[提示]相等.二、诱导公式(二)终边关于x轴对称的角的诱导公式(公式二):sin(-α)=-sin_α;cos(-α)=cos_α;tan(-α)=-tan_α.思考2:角-α的终边与单位圆的交点与角α的终边与单位圆的交点有何关系?[提示] 关于x 轴对称. 三、诱导公式(三)终边关于y 轴对称的角的诱导公式(公式三): sin(π-α)=sin_α; cos(π-α)=-cos_α; tan(π-α)=-tan_α. 四、诱导公式(四)终边关于原点对称的角的诱导公式(公式四): sin(π+α)=-sin_α; cos(π+α)=-cos_α; tan(π+α)=tan_α.1.(1)sin 25π6=________;(2)cos 9π4=________; (3)tan ⎝ ⎛⎭⎪⎫-7π4=________.(1)12 (2)22 (3)1 [(1)sin 25π6=sin ⎝ ⎛⎭⎪⎫4π+π6 =sin π6=12.(2)cos 9π4=cos ⎝ ⎛⎭⎪⎫2π+π4=cos π4=22.(3)tan ⎝ ⎛⎭⎪⎫-7π4=tan ⎝ ⎛⎭⎪⎫-2π+π4=tan π4=1.]2.(1)sin ⎝ ⎛⎭⎪⎫-π3=________;(2)cos 330°=________;(3)tan 690°=________.(1)-32 (2)32 (3)-33 [(1)sin ⎝ ⎛⎭⎪⎫-π3=-sin π3=-32.(2)cos 330°=cos(360°-30°)=cos(-30°)=cos 30°=32. (3)tan 690°=tan[2×360°+(-30°)]=tan(-30°) =-tan 30° =-33.]3.(1)sin 5π6=________;(2)cos 34π=________; (3)tan 1 560°=________.(1)12 (2)-22 (3)-3 [(1)sin 5π6=sin ⎝ ⎛⎭⎪⎫π-π6=sin π6=12. (2)cos 3π4=cos ⎝ ⎛⎭⎪⎫π-π4=-cos π4=-22.(3)tan 1560°=tan(4×360°+120°)=tan 120°=tan(180°-60°) =-tan 60°=-3.]4.(1)sin 225°=________;(2)cos 7π6=________; (3)tan 10π3=________. (1)-22 (2)-32(3)3 [(1)sin 225°=sin(180°+45°)=-sin 45°=-22.(2)cos 7π6=cos ⎝ ⎛⎭⎪⎫π+π6=-cos π6=-32.(3)tan 10π3=tan ⎝ ⎛⎭⎪⎫2π+π+π3=tan ⎝ ⎛⎭⎪⎫π+π3=tan π3=3.]给角求值【例1】 求下列各三角函数式的值:(1)sin(-660°);(2)cos 27π4;(3)2cos 660°+sin 630°; (4)tan 37π6·sin ⎝⎛⎭⎪⎫-5π3. 思路点拨:利用诱导公式先把任意角的三角函数化为锐角三角函数,再求值. [解] (1)因为-660°=-2×360°+60°, 所以sin(-660°)=sin 60°=32.(2)因为27π4=6π+3π4,所以cos 27π4=cos 3π4=-22. (3)原式=2cos(720°-60°)+sin(720°-90°) =2cos 60°-sin 90°=2×12-1=0. (4)tan 37π6·sin ⎝ ⎛⎭⎪⎫-5π3=tan ⎝ ⎛⎭⎪⎫6π+π6·sin ⎝ ⎛⎭⎪⎫-2π+π3=tan π6·sin π3=33×32=12.利用诱导公式求任意角的三角函数值的步骤:1.求下列各三角函数式的值:(1)sin 1 320°;(2)cos ⎝ ⎛⎭⎪⎫-31π6;(3)tan(-945°).[解] (1)sin 1 320°=sin(4×360°-120°) =sin(-120°)=-sin(180°-60°)=-sin 60°=-32.(2)cos ⎝ ⎛⎭⎪⎫-31π6=cos ⎝ ⎛⎭⎪⎫-6π+5π6=cos ⎝ ⎛⎭⎪⎫π-π6=-cos π6=-32. (3)tan(-945°)=-tan 945°=-tan(225°+2×360°)=-tan 225° =-tan(180°+45°)=-tan 45°=-1. 化简求值【例2】 化简:(1)cos (-α)tan (7π+α)sin (π-α);(2)sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°).思路点拨:利用诱导公式一,二,三,四将函数值化为角α的三角函数值或锐角的三角函数值,再约分化简.[解] (1)cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1.(2)原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1.三角函数式的化简方法:(1)利用诱导公式,将任意角的三角函数转化为锐角的三角函数. (2)常用“切化弦”法,即表达式中的切函数通常化为弦函数. (3)注意“1”的变式应用:如1=sin 2α+cos 2α=tan π4.2.sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)(k ∈Z ). [解] 当k =2n (n ∈Z )时, 原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α·(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时, 原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α·(-cos α)=-1.综上,原式=-1. 给值求值问题[探究问题]1.“α-15°”与“165°+α”间存在怎样的关系?你能用“α-15°”表示“165°+α”吗?提示:由165°+α-(α-15°)=180°可知165°+α=180°+(α-15°). 2.若tan(α-15°)=-1,则tan(165°+α)等于多少?提示:由探究1可知tan(165°+α)=tan[180°+(α-15°)]=tan(α-15°)=-1. 【例3】 求值.(1)已知sin ⎝ ⎛⎭⎪⎫π3+α=-12,求sin ⎝ ⎛⎭⎪⎫α-5π3的值;(2)已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫7π6+α的值.思路点拨:(1)⎝ ⎛⎭⎪⎫π3+α-⎝ ⎛⎭⎪⎫α-5π3=2π;(2)⎝ ⎛⎭⎪⎫7π6+α-⎝ ⎛⎭⎪⎫π6+α=π. [解] (1)∵⎝ ⎛⎭⎪⎫α+π3-⎝ ⎛⎭⎪⎫α-5π3=2π,∴sin ⎝ ⎛⎭⎪⎫α-5π3=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π3-2π=sin ⎝ ⎛⎭⎪⎫α+π3=-12. (2)∵⎝ ⎛⎭⎪⎫α+7π6-⎝ ⎛⎭⎪⎫α+π6=π,∴cos ⎝ ⎛⎭⎪⎫7π6+α=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫α+π6=-cos ⎝ ⎛⎭⎪⎫π6+α=-33.对于给值求值问题,要注意观察题目条件中的角与所求问题中的角之间的联系,然后选择恰当的诱导公式进行转化,一般采用代入法求值.提醒:设法消除已知式与所求式之间的种种差异是解决问题的关键.教师独具1.明确各诱导公式的作用这四组诱导公式的记忆口诀是“函数名不变,符号看象限”.其含义是诱导公式两边的函数名称一致,符号则是将α看成锐角时原角所在象限的三角函数值的符号.α看成锐角,只是公式记忆的方便,实际上α可以是任意角.1.已知sin(θ+π)<0,cos(θ-π)>0,则角θ的终边落在( ) A .第一象限 B .第二象限 C .第三角限D .第四象限B [由sin(θ+π)=-sin θ<0⇒sin θ>0,cos(θ-π)=-cos θ>0⇒cos θ<0,由⎩⎨⎧sin θ>0,cos θ<0,可知θ是第二象限角.] 2.(2019·全国卷Ⅰ)tan 255°=( ) A .-2- 3B .-2+ 3C .2- 3D .2+ 3[答案] D3.代数式sin 120°cos 210°的值为________.-34 [由诱导公式可得,sin 120°cos 210°=sin 60°×(-cos 30°)=-32×32=-34.]4.已知sin(π+α)=35,且α是第四象限角,求cos(α-2π)的值. [解] ∵sin(π+α)=35, ∴sin α=-35, 又α是第四象限角, ∴cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫-352=45, ∴cos(α-2π)=cos α=45.。
三角函数诱导公式大全
三角函数诱导公式大全三角函数是数学中重要的一类函数,由于其广泛应用于几何、物理、工程等领域,深受学生和研究人员的关注。
三角函数的诱导公式是求解三角函数值的重要方法,它们能够将某些特定角度的三角函数值转化为其他角度的三角函数值。
本文将介绍三角函数诱导公式的常见形式和应用。
一、基本诱导公式:1. 正弦函数的诱导公式:已知角α,β满足α+β=π/2,则sinα = cosβ。
例如:sin30° = cos(90°-30°) = cos60° = 1/2。
2. 余弦函数的诱导公式:已知角α,β满足α+β=π/2,则cosα = sinβ。
例如:cos45° = sin(90°-45°) = sin45° = 1/√2。
3. 正切函数的诱导公式:已知角α,β满足α+β=π/4,则tanα = cotβ。
例如:tan30° = cot(45°-30°) = cot15°。
4. 余切函数的诱导公式:已知角α,β满足α+β=π/4,则cotα = tanβ。
例如:cot60° = tan(90°-60°) = tan30° = 1/√3。
二、倍角诱导公式:1. 正弦函数的倍角诱导公式:sin2α = 2sinαcosα。
例如:sin60° = 2sin30°cos30° = 2×(1/2)×(√3/2) = √3/2。
cos2α = cos²α - sin²α。
例如:cos60° = cos²30° - sin²30° = (√3/2)² -(1/2)² = 1/4。
3. 正切函数的倍角诱导公式:tan2α = (2tanα) / (1 - tan²α)。
诱导公式总结大全
诱导公式1所谓三角函数诱导公式,就就是将角n·(π/2)±α得三角函数转化为角α得三角函数。
公式一: 设α为任意角,终边相同得角得同一三角函数得值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二: 设α为任意角,π+α得三角函数值与α得三角函数值之间得关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三: 任意角α与 -α得三角函数值之间得关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四: 利用公式二与公式三可以得到π-α与α得三角函数值之间得关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五: 利用公式一与公式三可以得到2π-α与α得三角函数值之间得关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六: π/2±α与α得三角函数值之间得关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号瞧象限。
“奇、偶”指得就是整数n得奇偶,“变与不变”指得就是三角函数得名称得变化:“变”就是指正弦变余弦,正切变余切。
(反之亦然成立)“符号瞧象限”得含义就是:把角α瞧做锐角,不考虑α角所在象限,瞧n·(π/2)±α就是第几象限角,从而得到等式右边就是正号还就是负号。
一全正;二正弦;三两切;四余弦这十二字口诀得意思就就是说: 第一象限内任何一个角得四种三角函数值都就是“+”; 第二象限内只有正弦就是“+”,其余全部就是“-”; 第三象限内只有正切与余切就是“+”,其余全部就是“-”; 第四象限内只有余弦就是“+”,其余全部就是“-”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新知探究
题型探究
感悟提升
诱导公式一~四
新知导学
新知探究
题型探究
感悟提升
温馨提示:公式一~四可概括如下:k·2π+α(k∈Z),π+α,- α,π-α的三角函数值,等于α的同名函数值,前面加上一个把α 看成锐角时原函数值的符号,即“函数名不变,符号看象 限”(把α视为锐角).
互动探究 探究点1 诱导公式中的角α只能是锐角吗? 提示 角α不仅仅是锐角,可以是任意角.
=
-1-sin2s7i0n°7+0°ccooss7700°°=|ccooss
70°-sin 70°-sin
70°| 70°
=scions
70°-cos 70°-sin
7700°°=-1.
新知探究
题型探究
感悟提升
[规律方法] 三角函数式的化简方法:
(1)利用诱导公式,将任意角的三角函数转化为锐角的三角函
新知探究
题型探究
感悟提升
类型三 三角函数式的化简
【例 3】 化简下列各式.
tan (1)
2π-coαssαin--πs2iπn-5απ-coαs6π-α;
1+2sin 290°cos 430° (2) sin 250°+cos 790° .
[思路探索] (1)直接利用诱导公式化简即可. (2)可用诱导公式尽可能将角统一,去根号时注意三角函数值的正 负,从而达到化简目的.
新知探究
题型探究
感悟提升
类型一 给角求值问题
【例 1】 求下列各三角函数式的值:
(1)sin 1 320°; (2)cos -316π; (3)tan (-945°). [思路探索] 利用诱导公式将负角、大角的三角函数转化为锐角的 三角函数.
解 (1)法一 sin 1 320°=sin (3×360°+240°)=sin 240°
新知探究
题型探究
感悟提升
解
sin (1)原式=cos
2π-α 2π-α·sin
-αcos
-α
cos π-αsin π-α
=-cossinαα--csoisnααscinosαα=-csoins°cos 360°+70° sin 180°+70°+cos 720°+70°
数.
(2)常用“切化弦”法,即表达式中的切函数通常化为弦函数.
(3)注意“1”的变式应用:如 1=sin2α+cos2α=tan
化简,再结合被求值的式子的特点,观察所给值的式子与被求式
的特点,找出它们之间的内在联系,特别是角之间的关系,恰当
地选择诱导公式.
新知探究
题型探究
感悟提升
【活学活用 2】 已知 cos(π+α)=-35,π<α<2π,求 sin(α-3π)+ cos(α-π)的值. 解 ∵cos(π+α)=-cos α=-35,∴cos α=35, ∵π<α<2π,∴32π<α<2π,∴sin α=-45. ∴sin(α-3π)+cos(α-π)=-sin(3π-α)+cos(π-α) =-sin(π-α)+(-cos α) =-sin α-cos α=-(sin α+cos α) =--45+35=15.
=sin
(180°+60°)=-sin
60°=-
3 2.
新知探究
题型探究
感悟提升
法二 sin 1 320°=sin(4×360°-120°)=sin(-120°)
=-sin
(180°-60°)=-sin
60°=-
3 2.
(2)法一 cos -316π=cos 316π=cos 4π+76π
=cos (π+π6)=-cos
π6=-
3 2.
法二 cos -316π=cos -6π+56π
=cos
π-π6=-cos
π6=-
3 2.
新知探究
题型探究
感悟提升
(3)tan (-945°)=-tan 945°=-tan (225°+2×360°) =-tan 225°=-tan (180°+45°)=-tan 45°=-1. [规律方法] 此问题为已知角求值,主要是利用诱导公式把任意 角的三角函数转化为锐角的三角函数求解.如果是负角,一般先 将负角的三角函数化为正角的三角函数.
新知探究
题型探究
感悟提升
【活学活用 1】 求 sin 2nπ+23π·cos nπ+43π的值(n∈Z).
解
①当 n 为奇数时,原式=sin
23π·-cos
4 3π
=sin π-π3·-cos π+π3
=sin
π 3·cos
π3=
23×12=
3 4.
②当 n 为偶数时,原式=sin 23π·cos 43π
新知探究
题型探究
感悟提升
解 ∵cos (α-75°)=-13<0,且 α 为第四象限角,
∴α-75°是第三象限角.
∴sin (α-75°)=- 1-cos2α-75°
=-
1--132=-2
3
2 .
∴sin (105°+α)=sin 180°+α-75°
=-sin
(α-75°)=2
3
2 .
[规律方法] 解答这类给值求值的问题,首先应把所给的值进行
1.3 三角函数的诱导公式
第1课时 三角函数诱导公式一~四
【课标要求】 1.了解π+α,π-α,-α的终边与角α的终边的关系,会推导π+
α的正弦、余弦、正切公式. 2.掌握π+α,π-α,-α的正弦、余弦、正切公式并能正确运
用. 【核心扫描】 1.理解诱导公式的推导.(难点) 2.诱导公式与同角三角函数基本关系的综合运用.(重点) 3.各种诱导公式的特点.(易混点)
=sin π-π3·cos π+π3
=sin
π3·-cos
π3=-
3 4.
新知探究
题型探究
感悟提升
类型二 给值求值问题 【例 2】 (2012·商丘高一检测)已知 cos (α-75°)=-13,且 α 为第
四象限角,求 sin (105°+α)的值.
[思路探索] 利用同角三角函数的基本关系式,由cos(α-75°)的值 求sin (α-75°)的值,再结合诱导公式求sin(105°+α)的值.
新知探究
题型探究
感悟提升
探究点2 诱导公式一~四主要有什么作用? 提示 公式一的作用是:把不在0~2π范围内的角化为0~2π范围 内的角; 公式二的作用是:把第三象限角的三角函数化为第一象限角的三 角函数; 公式三的作用是:把负角的三角函数化为正角的三角函数; 公式四的作用是:把第二象限角的三角函数化为第一象限角的三 角函数. 因此,运用公式一~四可以将任一角的三角函数转化为锐角的三 角函数.