2020成都市高三零诊考试数学理科试题及详细解析

合集下载

四川省成都市2020届高三数学第一次诊断性检测试题理含解析

四川省成都市2020届高三数学第一次诊断性检测试题理含解析

四川省成都市2020届高三数学第一次诊断性检测试题 理(含解析)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.若复数1z 与23z i =--(i 为虚数单位)在复平面内对应的点关于实轴对称,则1z =( ) A. 3i -- B. 3i -+ C. 3i + D. 3i -【答案】B 【解析】 【分析】由题意得复数z 1与23z i =--的实部相等,虚部互为相反数,则z 1可求.【详解】∵复数z 1与23z i =--(i 为虚数单位)在复平面内对应的点关于实轴对称, ∴复数z 1与23z i =--(i 为虚数单位)的实部相等,虚部互为相反数,则z 1=3i -+. 故选:B .【点睛】本题考查复数的代数表示法及其几何意义,属于基础题.2.已知集合{}1,0,A m =-,{}1,2B =,若{}1,0,1,2A B ⋃=-,则实数m 的值为( ) A. 1-或0 B. 0或1 C. 1-或2 D. 1或2【答案】D 【解析】 【分析】根据集合并集的定义即可得到答案. 【详解】集合{}1,0,A m =-,{}1,2B =,且{}1,0,1,2A B ⋃=-,所以1m =或2m =.故选:D【点睛】本题主要考查集合并集的基本运算,属于基础题.3.若sin )θπθ=-,则tan 2θ=( )A. C.【答案】C 【解析】 【分析】由题意利用同角三角函数的基本关系、诱导公式,求得tan θ,再利用倍角公式求得tan 2θ的值. 【详解】sin 5cos(2)θπθ=-,∴sin 5cos θθ=,得tan 5θ=,222tan 255tan 21tan 15θθθ∴===---. 故选:C【点睛】本题主要考查同角三角函数的基本关系、诱导公式,倍角公式的应用,属于基础题. 4.某校随机抽取100名同学进行“垃圾分类"的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图,则这100名同学的得分的中位数为( )A. 72.5B. 75C. 77.5D. 80【答案】A 【解析】 【分析】根据频率分布直方图求得中位数即可.【详解】在频率分步直方图中,小正方形的面积表示这组数据的频率,∴中位数为:0.50.01100.0310701072.50.0410-⨯-⨯+⨯=⨯.故选:A【点评】本题考查频率分布直方图的相关知识,直方图中的各个矩形的面积代表了频率,所有各个矩形面积之和为1,也考查了中位数,属于基础题.5.设等差数列{}n a 的前n 项和为n S ,且533a a =,则95S S =( ) A. 95 B.59 C. 53D. 275【答案】D 【解析】 【分析】将S 9,S 5转化为用a 5,a 3表达的算式即可得到结论.【详解】由等差数列{}n a 的前n 项和为n S ,∴95S S =19159252a a a a +⨯+⨯=5395a a ,且533a a =,∴95S S =95×3=275.故选:D .【点睛】本题考查了等差数列的前n 项和,等差中项的性质,考查计算能力,属于基础题. 6.已知,αβ是空间中两个不同的平面,,m n 是空间中两条不同的直线,则下列说法正确的是( )A. 若//m α,//n β,且//αβ,则//m nB. 若//m α,//n β,且αβ⊥,则//m nC. 若m α⊥,//n β,且//αβ,则m n ⊥D. 若m α⊥,//n β,且αβ⊥,则m n ⊥ 【答案】C 【解析】 【分析】由空间中直线与直线、直线与平面及平面与平面位置关系逐一核对四个选项得答案. 【详解】由m ∥α,n ∥β,且α∥β,得m ∥n 或m 与n 异面,故A 错误; 由m ∥α,n ∥β,且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故B 错误; 由m ⊥α,α∥β,得m ⊥β,又n ∥β,则m ⊥n ,故C 正确;由m ⊥α,n ∥β且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故D 错误. 故选:C .【点睛】本题考查命题的真假判断与应用,考查空间中直线与直线、直线与平面及平面与平面位置关系的判定与应用,考查空间想象能力与思维能力,属于中档题. 7.261(2)()x x x+-的展开式的常数项为( ) A. 25 B. 25-C. 5D. 5-【答案】B 【解析】 【分析】利用二项式定理的通项公式计算即可得出.【详解】61()x x -的展开式的通项公式为:T r +1=r 6C (x )6﹣r r1x ⎛⎫- ⎪⎝⎭=r 6C (x )6﹣r()-r x -=r 6C ()1r - ()6-2rx .令6﹣2r =﹣2,或6﹣2r =0,分别解得r =4,或r =3.所以261(2)()x x x+-的展开式的常数项为()44611C ⨯-+2×()33611C ⨯-=154025.-=-故选:B【点睛】本题考查了二项式定理的应用、方程思想方法,考查了推理能力与计算能力,属于基础题.8.将函数sin(4)6y x π=-图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移6π个单位长度,得到函数()f x 的图象,则函数()f x 的解析式为( ) A. ()sin(2)6f x x π=+ B. ()sin(2)3f x x π=-C. ()sin(8)6f x x π=+D. ()sin(8)3f x x π=-【答案】A 【解析】 【分析】利用函数的图象平移变换和伸缩变换的应用求出结果即可.【详解】函数sin(4)6y x π=-图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到sin(2)6y x π=-的图象,再把所得图象向左平移6π个单位长度,得到函数f (x )=sin 2()sin(2)666y x x πππ⎡⎤=+-=+⎢⎥⎣⎦的图象.故选:A .【点睛】本题考查了函数图象的平移和伸缩变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.9.已知抛物线24y x =的焦点为F ,,M N 是抛物线上两个不同的点若5MF NF +=,则线段MN 的中点到y 轴的距离为( ) A. 3B.32C. 5D.52【答案】B 【解析】 【分析】抛物线到焦点的距离转化为到准线的距离,可求出横坐标之和,进而求出中点的横坐标,求出结果即可.【详解】由抛物线方程24y x =,得其准线方程为:1x =-,设11(,)M x y ,22(,)N x y ,由抛物线的性质得,1211=5MF NF x x +=+++,MN ∴中点的横坐标为32, 线段MN 的中点到y 轴的距离为:32. 故选:B .【点睛】本题考查了抛物线定义的应用,属于基础题. 10.已知122a =,133b =,3ln 2c =,则( ) A. a b c >> B. a c b >> C. b a c >> D. b c a >>【答案】C【解析】 【分析】利用根式的运算性质、幂函数的单调性可得a ,b 的大小关系,利用对数函数的单调性即可得出c <1.【详解】∵122a ===,且133b ===,∴1a b <<,3lnln 12e <=.∴b a c >>. 故选:C .【点睛】本题考查了根式的运算性质、幂函数的单调性、对数函数的单调性,属于基础题.11.已知定义在R 上的数()f x 满足112n n n b b -+-=,当2x ≤时()(1)1xf x x e =--.若关于x的方程()210f x kx k e -+-+=有三个不相等的实数根,则实数k 的取值范围是( ) A. (2,0)(2,)-+∞ B. (2,0)(0,2)-C. (,0)(,)e e -⋃+∞D. (,0)(0,)e e -⋃【答案】D 【解析】 【分析】根据f (2﹣x )=f (2+x )可知函数f (x )关于x =2对称,利用当2x ≤时()(1)1xf x x e =--,画出函数y =f (x )的大致图象.由题意转化为y =k (x ﹣2)+e ﹣1与f (x )有三个交点,直线恒过定点(2,e ﹣1),再根据数形结合法可得k 的取值范围. 【详解】由题意,当x ≤2时,f (x )=(x ﹣1)e x ﹣1.f ′(x )=xe x .①令f ′(x )=0,解得x =0;②令f ′(x )<0,解得x <0;③令f ′(x )>0,解得0<x ≤2.∴f (x )在(﹣∞,0)上单调递减,在(0,2]上单调递增,在x =0处取得极小值f (0)=﹣2.且f (1)=﹣1;x →﹣∞,f (x )→0.又∵函数f (x )在R 上满足f (2﹣x )=f (2+x ),∴函数f (x )的图象关于x =2对称. ∴函数y =f (x )的大致图象如图所示:关于x 的方程f (x )﹣kx +2k ﹣e +1=0可转化为f (x )=k (x ﹣2)+e ﹣1.而一次函数y =k (x ﹣2)+e ﹣1很明显是恒过定点(2,e ﹣1).结合图象,当k =0时,有两个交点,不符合题意,当k =e 时,有两个交点,其中一个是(1,﹣1).此时y =f (x )与y =k (x ﹣2)+e ﹣1正好相切.∴当0<k <e 时,有三个交点.同理可得当﹣e <k <0时,也有三个交点. 实数k 的取值范围为:(﹣e ,0)∪(0,e ). 故选:D .【点睛】本题主要考查数形结合法的应用,利用导数分析函数的单调性并画出函数图象,再根据直线过定点而斜率变动分析出斜率的取值范围,属于中档题.12.如图,在边长为2的正方形123APP P 中,线段BC 的端点,B C 分别在边12PP 、23P P 上滑动,且22P B P C x ==,现将1APB ∆,3AP C ∆分别沿AB ,AC 折起使点13,P P 重合,重合后记为点P ,得到三被锥P ABC -.现有以下结论:①AP ⊥平面PBC ;②当,B C 分别为12PP 、23P P 的中点时,三棱锥P ABC -的外接球的表面积为6π; ③x 的取值范围为(0,42)-;④三棱锥P ABC -体积的最大值为13. 则正确的结论的个数为( ) A. 1 B. 2C. 3D. 4【答案】C 【解析】 【分析】根据题意得,折叠成的三棱锥P ﹣ABC 的三条侧棱满足PA ⊥PB 、PA ⊥PC ,由线面垂直的判断定理得①正确;三棱锥P ﹣ABC 的外接球的直径等于以PA 、PB 、PC 为长、宽、高的长方体的对角线长,由此结合AP =2、BP =CP =1,得外接球的半径R=2P ﹣ABC 的外接球的体积,故②正确;由题意得(0,2)x ∈,BC =,312PC PB PB PC x ====-,在CPB ∆中,由边长关系得(0,4-,故③正确;由等体积转化P ABC A PBC V V --=计算即可,故④错误.【详解】由题意得,折叠成的三棱锥P ﹣ABC 的三条侧棱满足PA ⊥PB 、PA ⊥PC , 在①中,由PA ⊥PB ,PA ⊥PC ,且PB PC P =,所以AP ⊥平面PBC 成立,故①正确; 在②中,当,B C 分别为12PP 、23P P 的中点时,三棱锥P ﹣ABC 的三条侧棱两两垂直,三棱锥P ﹣ABC 的外接球直径等于以PA 、PB 、PC 为长、宽、高的长方体的对角线长,结合AP =2、BP =CP =1x =,得外接球的半径R =22=,所以外接球的表面积为224462S R πππ⎛==⨯= ⎝⎭,故②正确;在③中,正方形123APP P 的边长为2,所以(0,2)x ∈,BC =,312PC PB PB PC x ====-,在CPB ∆中,由边长关系得2x -+2x ->,解得(0,4x ∈-,故③正确; 在④中,正方形123APP P 的边长为2,且22PB PC x ==,则2PB PC x ==-, 所以()()222111sin 223263P ABCA PBCx VV CP BP CPB AP x ---==⨯⨯⨯∠⨯≤⨯-⨯=在(0,422)-上递减,无最大值,故④错误.故选:C【点睛】本题将正方形折叠成三棱锥,求三棱锥的外接球的表面积.着重考查了长方体的对角线长公式、等体积转化求三棱锥的体积最值等知识,属于中档题. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知实数,x y 满足约束条件402200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最大值为_______.【答案】6 【解析】 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【详解】作出实数x ,y 满足约束条件402200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域如图:(阴影部分)由2z x y =+得y =﹣12x +12z ,平移直线y =﹣12x +12z , 由图象可知当直线y =﹣12x +12z 经过点A 时,直线y =﹣12x +12z 的截距最大,此时z 最大.由40220x y x y +-=⎧⎨-+=⎩,解得A (2,2),代入目标函数z =x +2y 得z =2×2+2=6.故答案为:6.【点睛】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法,属于基础题.14.设正项等比数列{}n a 满足481a =,2336a a +=,则n a =_______. 【答案】3n 【解析】 【分析】将已知条件转化为基本量a 1,q 的方程组,解方程组得到a 1,q ,进而可以得到a n . 【详解】在正项等比数列{}n a 中,481a =,2336a a +=,得312118136a q a q a q ⎧=⎨+=⎩,解得133a q =⎧⎨=⎩,∴a n =11n a q -⋅=3•3n ﹣1=3n . 故答案为:3n【点睛】本题考查了等比数列的通项公式,主要考查计算能力,属于基础题.15.已知平面向量a ,b 满足||2a =,||3b =,且()b a b ⊥-,则向量a 与b 的夹角的大小为_______. 【答案】6π【解析】 【分析】利用两个向量垂直的性质,两个向量的数量积的定义,求出向量a 与b 的夹角即可. 【详解】∵平面向量a ,b 满足||2a =,||3b =,且()b a b ⊥-,∴2()0b a b b a b ⋅-=⋅-=,∴2b a b ⋅=.设向量a 与b 的夹角的大小为θ,则,求得cosθ=2,∵[]0,θπ∈ ,故θ=6π. 故答案为:6π. 【点睛】本题主要考查两个向量垂直的性质,两个向量的数量积的定义,属于基础题.16.已知直线y kx =与双曲线2222:1(0,0)x y C a b a b-=>>相交于不同的两点,A B ,F 为双曲线C 的左焦点,且满足||3||AF BF =,||OA b =(O 为坐标原点),则双曲线C 的离心率为_______.【答案】3 【解析】 【分析】取双曲线的右焦点'F ,连接A 'F ,B 'F ,可得四边形A 'F BF 为平行四边形,运用双曲线的定义和平行四边形的对角线的平方和等于四条边的平方和,以及离心率公式可得所求值. 【详解】设|BF |=m ,则|||3||3AF BF m ==,取双曲线的右焦点'F ,连接A 'F ,B 'F ,可得四边形A 'F BF 为平行四边形,可得|A 'F |=|BF |=m ,设A 在第一象限,可得3m ﹣m =2a ,即m =a ,由平行四边形的对角线的平方和等于四条边的平方和,可得(2b )2+(2c )2=2(a 2+9a 2),化为c 2=3a 2,则e =ca=3. 故答案为:3.【点睛】本题考查双曲线的定义、方程和性质,考查平行四边形的性质,以及化简运算能力,属于中档题.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤) 17.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22223b c a +-=. (1)求sin A 的值;(2)若ABC ∆223sin B C =,求ABC ∆的周长. 【答案】(1)13;(2)2632【解析】【分析】(1)由已知条件结合余弦定理可求cos A 的值,进而根据同角三角函数基本关系式可求sin A 的值.(2)利用三角形的面积公式可求bc b =3c ,解得b ,c 的值,根据余弦定理可求a 的值,即可求解三角形的周长.【详解】(1)∵222b c a +-=,∴由余弦定理可得2bc cos A =3bc ,∴cos A =3,∴在△ABC 中,sin A =13.(2)∵△ABC ,即12bc sin A =16bc ,∴bc =,sin B =3sin C ,b =3c ,∴b =,c =2,则a 2=b 2+c 2﹣2bc cos A =6,a ∴=,所以周长为2abc ++=+.【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G 手机购买意向的调查,将计划在今年购买5G 手机的员工称为“追光族",计划在明年及明年以后才购买5G 手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.(1)完成下列22⨯列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求X 的分布列及数学期望.附22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++【答案】(1)表见解析,没有95%的把握认为该公司员工属于“追光族"与“性别"有关;(2)分布列见解析,()9 10E X=【解析】【分析】(1)根据题意,列出列联表,计算K2,查表判断即可;(2)随机变量X的所有可能取值为0,1,2,3,分布求出对应概率,列出分布列,求期望即可.【详解】(1)由题意得,2×2列联表如下:22100(20204020)25= 2.778406040609K⨯⨯-⨯=≈⨯⨯⨯ 3.841<,故没有95%的把握认为该公司员工属于“追光族"与“性别"有关;(2)由题意得,随机变量X 的所有可能的取值为0,1,2,3,373107(0)24C P X C ===;123731021(1)40C C P X C ⋅===; 21373107(2)40C C P X C ⋅===; 333101(3)120C P X C ===.所以X 的分布列为X 0 1 2 3P724 2140 740 112021719()123.404012010E X ∴=⨯+⨯+⨯= 【点睛】本题考查了独立性检验,考查了超几何分布,主要考查分析解决问题的能力和计算能力,属于中档题.19.如图,在四棱锥P ABCD - 中,AP ⊥平面PBC ,底面ABCD 为菱形,且60ABC ︒∠=,E 为BC 的中点.(1)证明:BC ⊥平面PAE ;(2)若2AB =,1PA =,求平面ABP 与平面CDP 所成锐二面角的余弦值.【答案】(1)见解析;(2)33【解析】【分析】(1)根据菱形基本性质得BC⊥AE,再由线面垂直得BC⊥AP,故BC⊥平面PAE;(2)以P为坐标原点,,,PE PQ PA的方向分别为x,y,z轴建立空间直角坐标系,分别求出平面BAP与平面CDP的法向量计算即可.【详解】(1)连接AC,因为底面ABCD为菱形,且∠ABC=60°,所以△ABC为正三角形,因为E为BC的中点,所以BC⊥AE,又因为AP⊥平面PBC,BC⊂平面PBC,所以BC⊥AP,因为AP∩AE=A,AP,AE⊂平面PAE,所以BC⊥平面PAE;(2)因为AP⊥平面PBC,PB⊂平面PBC,所以AP⊥PB,又因为AB=2,PA=1,所以PB=3,由(1)得BC⊥PE,又因为E为BC中点,所以PB=PC=3,EC=1,所以PE=2,如图,过点P作BC的平行线PQ,则PQ,PE,PA两两互相垂直,以P为坐标原点,,,PE PQ PA的方向分别为x,y,z轴建立如图所示的空间直角坐标系,则P(0,0,0),A(0,0,1),B(2,﹣1,0),C(2,1,0),D(0,2,1),设平面BAP的一个法向量m=(x,y,z),又PA=(0,0,1),PB=(2,﹣1,0),由m PAm PB⎧⋅=⎨⋅=⎩,得2x﹣y=0,z=0,令x=1,则m=(1,2,0),设平面CDP的一个法向量n=(a,b,c),又PC=(2,1,0),PD=(0,2,1),由n PCn PD⎧⋅=⎨⋅=⎩,得2a+b=0,2y+z=0,令a=1,则n=(1,﹣2,22),所以33cos,311m n==-⋅,即平面ABP与平面CDP所成锐二面角的余弦值为3333.【点睛】本题考查空间平面二面角问题,涉及证明线面垂直等知识点,建系是解决该类问题的常用方法,属于中档题. 20.已知函数()(1)ln af x a x x x=-++,.a R ∈ (1)讨论函数()f x 的单调性;(2)当1a <-时,证明:(1,)x ∀∈+∞,2().f x a a >-- 【答案】(1)答案不唯一,见解析;(2)见解析; 【解析】 【分析】(1)求出导数,讨论a 的取值范围,求出单调区间;(2)由(1)得函数函数()f x 在(1,)+∞内的最小值为()(1)ln()1f a a a a -=----,根据题意转化为2(1)ln()10a a a +--->在1a <-恒成立即可.【详解】(1)22221(1)(1)()()1a a x a x a x x a f x x x x x'-+---+=+-==,因为0,x a R >∈, 当0a ≥时,0x a +>,函数()f x 在(0,1)内单调递减,在(1,)+∞内单调递增; 当10a -<<时,即01a <-<,函数()f x 在(0,)a -内单调递增,在(,1)a -内单调递减,在(1,)+∞内单调递增;当1a =-时,22(1)()0x f x x'-=,函数()f x 在(0,)+∞内单调递增; 当1a <-时,即1a ->,函数()f x 在(0,1)内单调递增,在(1,)a -内单调递减,在(,)a -+∞内单调递增;综上:当0a ≥时,()f x 在(0,1)内单调递减,在(1,)+∞内单调递增;当10a -<<时,()f x 在(0,)a -内单调递增,在(,1)a -内单调递减,在(1,)+∞内单调递增; 当1a =-时,()f x 在(0,)+∞内单调递增;当1a <-时,()f x 在(0,1)内单调递增,在(1,)a -内单调递减,在(,)a -+∞内单调递增. (2)当1a <-时,由(1)可得函数()f x 在(1,)a -内单调递减,在(,)a -+∞内单调递增,∴函数()f x 在(1,)+∞内的最小值为()(1)ln()1f a a a a -=----,要证:不等式2().f x a a >--成立, 即证:2(1)ln()1a a a a a --<----,即证:()2(1)ln()(1)1l 01n a a a a a a ⎡⎤+--=-++->⎣⎦-,1a <-,即证:()1ln 0a a ++-<, 令1(1)()ln 1(1),()10x h x x x x h x x x'--=-+≥=-=≤, 则函数()h x 在[1,)+∞内单调递减,()(1)0h x h ≤=,因为1,1a a <-∴->, 则()ln()10h a a a -=-++<,即当1a <-时,ln()1a a -<--成立 则当1a <-时,2(1,),()x f x a a ∀∈+∞>--成立.【点睛】本题考查利用导数求函数单调性,运用分类讨论思想是关键,涉及构造新函数求区间等问题,属于中档题.21.已知椭圆C :2212x y +=的右焦点为F ,过点F 的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线l :2x =与x 轴相交于点H ,过点A作AD l ⊥,垂足为D.(1)求四边形OAHB (O 为坐标原点)面积的取值范围; (2)证明直线BD 过定点E ,并求出点E 的坐标. 【答案】(1);(2)证明见解析,3,02E ⎛⎫⎪⎝⎭【解析】 【分析】(1)由题意设直线AB 的方程,代入椭圆整理得纵坐标之和与之积,将四边形的面积分成2个三角形,根据底相同,列出关于面积的函数式,再结合均值不等式可得面积的取值范围; (2)由(1)得B ,D 的坐标,设直线BD 的方程,令纵坐标为零得横坐标是定值,即直线BD 过定点.【详解】(1)由题F (1,0),设直线AB :()()11221(),,,,x my m R A x y B x y =+∈,联立22112x my x y =+⎧⎪⎨+=⎪⎩,消去x ,得()222210m y my ++-=,因为()224420m m ∆=++>,12122221,22m y y y y m m +=-=-++, 则1z y y -=== 所以四边形OAHB的面积12121||2S OH y y y y =⋅-=-=,,1,t t S t t t=∴∴==+因为12t t+(当且仅当t =1即m =0时取等号),所以02S <,所以四边形OAHB 的面积取值范围为;(2)()()221,,2,B x y D y ,所以直线BD 的斜率1222y y k x -=-,所以直线BD 的方程为1212(2)2y y y y x x --=--,令y =0,可得212121212122,x y zy my y y y x y y y y -+-==--①由(1)可得121212122221,,222m y y y y y y my y m m +=-=-∴+=++ 化简①可得()()112121212123222z s y y y y y y x y y y y ++--===--则直线BD 过定点3,02E ⎛⎫⎪⎝⎭. 【点睛】本题考查了直线和椭圆的位置关系,四边形面积的取值范围,求直线的方程,证明直线过定点的等问题,考查运算能力,属于中档题.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分,作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.在平面直角坐标系xOy 中,已知P 是曲线1C :22(2)4x y +-=上的动点,将OP 绕点O 顺时针旋转90︒得到OQ ,设点Q 的轨迹为曲线2C .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程; (2)在极坐标系中,点(3,)2M π,射线(0)6πθρ=≥与曲线1C ,2C 分别相交于异于极点O的,A B 两点,求MAB ∆的面积.【答案】(1)曲线1C :4sin ρθ=,曲线2C :4cos ρθ=;(2【解析】 【分析】(1)由题意,点Q 的轨迹是以(2,0)为圆心,以2为半径的圆,写出其普通方程,再结合ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ,可得曲线C 1,C 2的极坐标方程;(2)在极坐标系中,设A ,B 的极径分别为ρ1,ρ2,求得|AB |=|ρ1﹣ρ2|,再求出M (3,2π)到射线()06πθρ=≥的距离h =3sin 3π=,即可求得△MAB 的面积.【详解】(1)由题意,点Q 的轨迹是以(2,0)为圆心,以2为半径的圆,则曲线C 2:22(2)4x y -+=,∵ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ,∴曲线C 1的极坐标方程为ρ=4sinθ,曲线C 2的极坐标方程为ρ=4cosθ;(2)在极坐标系中,设A ,B 的极径分别为ρ1,ρ2,124sincos1).66AB ππρρ∴=-=-=又点(3,)2M π到射线(0)6πθρ=≥的距离为3sin32h π==MAB ∴∆的面积12S AB h =⋅= 【点睛】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查计算能力,属于中档题.23.已知函数() 3.f x x =-(1)解不等式()421f x x ≥-+;(2)若142(0,0)m n m n+=>>,求证:3().2m n x f x +≥+-【答案】(1)2(,][0,)3-∞-⋃+∞;(2)见解析. 【解析】 【分析】(1)原不等式可化为:|x ﹣3|≥4﹣|2x +1|,即|2x +1|+|x ﹣3|≥4,分段讨论求出即可; (2)由基本不等式得m n +的最小值92,转化为|x +32|﹣f (x )≤92恒成立即可.【详解】(1)原不等式化为3421x x -≥-+,即213 4.x x ++-≥ ①12x ≤-时,不等式化为2134x x ---+≥,解得23x ≤-; ②132x -<<时,不等式化为2134x x +-+≥,解得0x ≥,03x ∴≤<; ③3x ≥时,不等式化2134x x ++-≥,解得2x ≥,3x ∴≥.综上可得:原不等式解集为2(,][0,)3-∞-⋃+∞.(2)() 3.f x x =-3339()3(3)2222x f x x x x x ∴+-=+--≤+--=, 当且仅当3()(3)02x x +-≥且332x x +≥-时取等号.又142(0,0)m n m n+=>>,1141419()()(5)(52222n m m n m n m n m n ∴+=++=++≥+=, 当且仅当4n m m n=时取等号.∴3().2m n x f x +≥+-【点睛】考查绝对值不等式的解法和绝对值不等式的性质,利用分类讨论的思想结合绝对值的性质和基本不等式的应用,属于中档题.。

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合 $A=\{x|0<x<2\}$,$B=\{x|x\geq1\}$,则 $A\capB=$A) $\{x|0<x\leq1\}$ (B) $\{x|0<x<1\}$ (C) $\{x|1\leqx<2\}$ (D) $\{x|0<x<2\}$2.复数 $z=2i/(2-i)$($i$ 为虚数单位)在复平面内对应的点位于A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3.已知函数 $f(x)=\begin{cases} |x-1|。

& x\leq 1 \\ e^{\ln x}。

& x>0 \end{cases}$,则 $f(f(2))=$A) 0 (B) 1 (C) $e^{-1}$ (D) 24.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部、教育部、XXX等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”。

某校高二(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日”宣传活动。

已知随机数表中第6行至第7行的各数如下:xxxxxxxx39 xxxxxxxx82 xxxxxxxx78 xxxxxxxx38xxxxxxxx48 xxxxxxxx15 xxxxxxxx77 xxxxxxxx17 xxxxxxxx92 若从随机数表第6行第9列的数开始向右数,则抽取的第5名学生的学号是A) 17 (B) 23 (C) 35 (D) 375.“$k=223$” 是“直线 $y=kx+2$ 与圆 $x^2+y^2=1$ 相切”的A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D)既不充分也不必要条件6.已知离心率为2的双曲线 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ ($a>0,b>0$)与椭圆$\dfrac{y^2}{84}+\dfrac{x^2}{ab}=1$ 有公共焦点,则双曲线的方程为A) $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ (B)$\dfrac{x^2}{b^2}-\dfrac{y^2}{a^2}=1$ (C) $x^2-a^2y^2=b^2$ (D) $y^2-a^2x^2=b^2$7.执行如图所示的程序框图,则输出的结果 $S$ 为A) $-1$ (B) $\dfrac{2}{\sqrt{2}}$ (C) 0 (D) $-\dfrac{1}{\sqrt{2}}$8.设函数 $f(x)$ 的导函数是 $f'(x)$。

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

数学【理科】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|02}A x x =<<,{|1}B x x =≥,则A B =(A){|0x x <≤1}(B){|01}x x << (C){|2x x <1≤} (D){|02}x x << 2.复数2i 2i z =-(i 为虚数单位)在复平面内对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限3.已知函数|1|,0()=ln ,0.x x f x x x -⎧⎨>⎩,≤则1(())e f f = (A)0 (B)1 (C)e 1- (D)24.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部、教育部、团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高二(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日”宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 若从随机数表第6行第9列的数开始向右数,则抽取的第5名学生的学号是(A)17 (B)23 (C)35 (D)375.“3k =”是“直线2y kx =+与圆221x y +=相切”的(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件6.已知离心率为2的双曲线22221(0,0)x y a b a b -=>>与椭圆14822=+y x 有公共焦点,则双曲线的方程为 (A)112422=-y x (B) 141222=-y x (C)1322=-y x (D) 1322=-y x 7.执行如图所示的程序框图,则输出的结果S 为(A)1-(B)22 (C)0(D)212--8.设函数()f x 的导函数是()f x '.若2()()cos f x f x x '=π-,则()=6f π' (A)12- (B)12(C)32 (D)32- 9.如图是某几何体的三视图.若三视图中的圆的半径均为2,则该几何体的表面积为(A)14π (B)16π(C)18π (D)20π10.在平面直角坐标系xOy 中,已知直线:(1)l y k x =+与曲线1sin 2,:sin cos x C y θθθ=+⎧⎨=+⎩(θ为参数)在第一象限恰有两个不同的交点,则实数k 的取值范围为(A)(0,1) (B)1(0,)2 (C)2[,1)3 (D)21[,)32 11.已知函数()||ln||x x f x =.若)e (),3ln (),2(ln f c f b f a =-==,则c b a ,,的大小关系为 (A)a c b >> ( B)c a b >> (C)c b a >> (D)b c a >>12.已知关于x 的不等式ln(1()),x x kx k b b -++∈R ≤当x ∈(1,+∞)时恒成立,则11b k --的最小值是 (A)2e - (B)1e 1-+ (C)21e - (D)e 1--二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知呈线性相关的变量x ,y 之间的关系如下表:x1 2 3 4 y 1 3 4 6由表中数据得到的回归直线方程为ˆˆ1.6yx a =+.由此预测当8x =时,ˆy 的值为________. 14.函数2()2e 3x f x -=-+的图象在0=x 处的切线方程为________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是_______.16.已知点P 在椭圆22221(0)x y a b a b+=>>上,1F 是椭圆的左焦点,线段1PF 的中点在圆2222x y a b +=-上.记直线1PF 的斜率为k ,若1k ≥,则椭圆离心率的最小值为_______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)2019年12月,《生活垃圾分类标志》新标准发布并正式实施.为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1000人的年龄进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:各年龄段频数分布表 各年龄段人数频率分布直方图(Ⅰ)请补全频率分布直方图,并求出各年龄段频数分布表中n m ,的值;(Ⅱ)已知从年龄在[)30,40段中采用分层抽样的方法选出了5名代表参加垃圾分类知识交流活动.现从这5名代表中任选2名作为领队,求这两名领队中恰有1名年龄在[)35,40段中的概率.18. (本小题满分12分)已知函数32()21f x x ax bx a =+++-在1-=x 处取得极值0,其中,a b ∈R .(Ⅰ)求b a ,的值;(Ⅱ)当[1,1]x ∈-时,求)(x f 的最大值.组数分组 频数 第一组[25,30) 200 第二组 [30,35) 300 第三组[35,40) m 第四组[40,45) 150 第五组[45,50) n 第六组 [50,55]50 合计 1000如图①,在菱形ABCD 中,60A ∠=°且2=AB ,E 为AD 的中点.将△ABE 沿BE 折起使2=AD ,得到如图②所示的四棱锥A -BCDE .(Ⅰ)求证:平面ABE ⊥平面ABC ;(Ⅱ)若P 为AC 的中点,求二面角C BD P --的余弦值.图① 图②20.(本小题满分12分)在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换⎪⎩⎪⎨⎧='='y y x x 21:ϕ后,得到曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 相交于B A ,两点,连接BO 并延长与曲线C 相交于点D ,且2||=AD .求△ABD 面积的最大值.已知函数()e ,.xf x x ax a =+∈R(Ⅰ)设()f x 的导函数为(),f x '试讨论()f x '的零点个数;(Ⅱ)设()ln ln (1).a g x ax x a x a x =++-当(1,x ∈+∞)时,若()()f x g x ≥恒成立,求a 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=⎪⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 6=.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)已知点)0,1(P .若直线l 与曲线C 相交于B A ,两点,求2211||||PA PB +的值.。

四川省成都市第七中学2020届高三数学零诊模拟试题 理(含解析)

四川省成都市第七中学2020届高三数学零诊模拟试题 理(含解析)
13。命题 : , ,写出命题 的否定:_______________
【答案】 ,
【解析】
【分析】
特称命题改为全称命题,把“ ”改为“ ”,“存在”改为“所有",再否定结论。
【详解】命题 是特称命题,它的否定是全称命题,
∴ 。 ∴ 为真.
∵ ,∴ 不是最长边,∴ 至少有一个超过 ,∴内角和超过 ,所以 错误。
方法2:如图
延长 交 的外接圆于点 ,则 ,
∴ ,∴ 。
又∵ ,∴ 。
∴ ,即 ,即 。
【点睛】本题考查了命题的判断,计算量较大,意在考查学生的计算能力。
第Ⅱ卷
二、 填空题:本大题共四小题,每小题5分,共20分
【解析】
【分析】
①根据原命题与逆否命题真假关系;②根据奇函数的定义与性质判断;③根据基本不等式判断.
【详解】当 且 时, 成立,
根据原命题与逆否命题真假一致,故①正确;
定义域为 的奇函数 必有 ,
定义域为 函数 且满足 不一定是奇函数,如 ,故②正确;
若 , 且 ,

当且仅当 即 时等号成立,故③正确;
A. B. C. D.
【答案】B
【解析】
【分析】
利用二倍角公式和辅助角公式将 化简为 的形式,再利用周期函数求出其最小正周期,可得答案.
【详解】解:
,可得其最小正周期为 ,
故选B。
【点睛】本题主要考查三角函数的恒等变换:二倍角公式和辅助角公式等,及三角函数的周期性的,属于中档题型
12.如图,已知 ,其内部有一点 满足 ,命题 最大值有可能超过36度;命题 若三边长对应分别为 ,则 ;则正确的选项为( )
A. 真 假B。 假 假C。 真 真D。 假 真

四川省成都市第七中学2020届高三零诊模拟数学(理)试题 Word版含解析

四川省成都市第七中学2020届高三零诊模拟数学(理)试题 Word版含解析

成都七中高2020届零诊热身试卷数学(理工类)第Ⅰ卷一、选择题:共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合{}11A x x =-<,{}210B x x =-<,则A B =U ( ) A. ()1,1- B. ()1,2-C. ()1,2D. ()0,1【答案】B 【解析】由2{|11},{|10}A x x B x x =-<=-<得:{}|02A x x =<<,{}|11B x x =-<<, 则()1,2A B ⋃=-,故选B. 2.若1122aii i+=++,则复数a =( ) A. 5i -- B. 5i -+C. 5i -D. 5i +【答案】D 【解析】解:由题意可知:()()()12125ai i i i +=++= , 则515i a i i-==+ . 本题选择D 选项.3.设()f x 是定义在R 上周期为2的奇函数,当01x <<时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭( ) A. 14-B. 12-C.14D.12【答案】C 【解析】 分析】根据()f x 的周期为2,则5122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再根据奇函数()()f x f x =--求解.【详解】因为()f x的周期为2,所以5512222f f f⎛⎫⎛⎫⎛⎫-=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;又()f x是奇函数,所以1122 f f⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭所以25111122224 f f⎡⎤⎛⎫⎛⎫⎛⎫-=-=--=⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦故选B.【点睛】本题考查根据函数奇偶性、周期性求值.方法:根据奇偶性、周期性把自变量化到有解析式的区间. 4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.2 8.6 10.0 11.3 11.9 支出y(万元) 6.2 7.5 8.0 8.5 9.8 根据上表可得回归直线方程ˆˆˆy bx a=+,其中ˆˆˆ0.76,b a y bx==-,据此估计,该社区一户收入为15万元家庭年支出为()A. 11.4万元 B. 11.8万元 C. 12.0万元 D. 12.2万元【答案】B 【解析】试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.5.设D 为ABC ∆中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则( )A. 5166BO AB AC =-+u u u r u u ur u u u rB. 1162BO AB AC =-u u u r u u u r u u u rC. 5166BO AB AC =-u u u r u u u r u u u rD. 1162BO AB AC =-+u u u r u u ur u u u r【答案】A 【解析】由平面向量基本定理可得:()11513666BO AO AB AD AB AB AC AB AB AC =-=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,故选A.6.执行如图的程序框图,则输出x 的值是( )A. 1B. 2C.12D. 1-【答案】D 【解析】 【分析】易知当1024y =时,循环结束;再寻找x 的规律求解. 【详解】计算过程如下:x2 -11221-…1-y0 1 2 3 4 … 1024 1024y <是是是是是是否当1024x =时,循环结束,所以输出1x =-. 故选D.【点睛】本题考查程序框图,选择表格计算更加简洁.当循环次数较多时,要注意寻找规律. 7.等差数列{}n a 中的2a 、4032a 是函数()3214613f x x x x =-+-的两个极值点,则()2220174032log a a a ⋅⋅=( )A. 24log 6+B. 5C. 23log 3+D.24log 3+【答案】C 【解析】 由()3214613f x x x x =-+-,得()286f x x x =-+',由()2860f x x x =-+=',且24032a a 、是()3214613f x x x x =-+-的极值点,得24032201728a a a +==,240326a a ⋅=,∴20174a =,则()222017403222log ?·log 243log 3a a a ==+,故选C. 8.以下三个命题正确的个数有( )个.①若225a b +≠,则1a ≠或2b ≠;②定义域为R 的函数()f x ,函数()f x 为奇函数是()00f =的充分不必要条件;③若0x >,0y >且21x y +=,则11x y+的最小值为3+A. 0个 B. 1个 C. 2个 D. 3个【答案】D 【解析】 【分析】①根据原命题与逆否命题真假关系;②根据奇函数的定义与性质判断;③根据基本不等式判断.【详解】当1a =且2b =时,225a b +=成立, 根据原命题与逆否命题真假一致,故①正确; 定义域为R 的奇函数()f x 必有()00f =,定义域为R 函数()f x 且满足()00f =不一定是奇函数,如()2f x x =,故②正确;若0x >,0y >且21x y +=,则2133112y x y y x x +=+++≥+=+当且仅当2y x x y =即1x y ==时等号成立,故③正确;【点睛】本题考查命题,充分必要条件,及基本不等式.原命题的真假比较难判断时,可借助逆否命题来判断;基本不等式注意成立的条件“一正二定三相等” .9.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

精品解析:四川省成都市新都区2019-2020学年高三诊断测试理科数学试题(解析版)

精品解析:四川省成都市新都区2019-2020学年高三诊断测试理科数学试题(解析版)

新都区2020届高三毕业班摸底测试数学试题(理)注意事项:1.答题前,务必将姓名、考场号、座位号填写在答题卡规定的位置上,并将考生条形码粘贴在规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题(本大题共12小题,每小题5分,共60分.每小题有且只有一个正确选项.)1.已知全集U =R ,集合{}202,{0}A x x B x x x =≤≤=->,则图中的阴影部分表示的集合为( )A. (1](2,)-∞⋃+∞,B. (0)(12)-∞⋃,,C. [1)2,D. (12], 【答案】A 【解析】B={x|x 2﹣x >0}={x|x >1或x <0},由题意可知阴影部分对应的集合为∁U (A∩B)∩(A ∪B), ∴A∩B={x|1<x≤2},A∪B=R, 即∁U (A∩B)={x|x≤1或x >2},∴∁U (A∩B)∩(A∪B)={x|x≤1或x >2}, 即(﹣∞,1]U (2,+∞) 故选:A2.设121iz i i-=++,则z z +=—( ) A. 1i --B. 1i +C. 1i -D. 1i -+【答案】B 【解析】 【分析】对复数z 进行运算得z i =,从而求得||1z z i +=+.【详解】因21(1)22221(1)(1)2i i i z i i i i i i i ---=+=+=+=++-,所以||1z =,所以||1z z i +=+. 故选:B.【点睛】本题考查复数的四则运算、共轭复数和模的概念,考查基本运算求解能力. 3.已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则72S =( ) A. 2 B. 7C. 14D. 28【答案】D 【解析】 【分析】根据等差数列通项公式,将等式5632a a a +=+化成42a =,再由等差数列的前n 项和公式得742S 2728a =⋅=.【详解】因为5632a a a +=+,所以111142452322a d a d a d a d a ++=+++⇒+=⇒=, 所以742S 2728a =⋅=. 故选:D.【点睛】本题考查等差数列通项公式、前n 项和公式,考查基本运算求解能力.4.已知sin cos 3αα+=,则sin 2α=( )A. 79-B. 29-C.29D.79【答案】A 【解析】 【分析】直接对等式两边平方,利用倍角公式得sin 2α的值.【详解】因为sin cos 3αα+=,所以2227(sin cos )(12sin cos 399sin 2ααααα+=⇒+=-=⇒. 故选:A.【点睛】本题考查同角三角函数的基本关系、倍角公式,考查基本运算求解能力. 5.已知函数()f x 满足:①对任意1x 、()20,x ∈+∞且12x x ≠,都有1212()()0f x f x x x -<-;②对定义域内的任意x ,都有()()0f x f x --=,则符合上述条件的函数是( ) A. ()21f x x x =++B. x1()2f x ⎛⎫= ⎪⎝⎭C. ()ln 1f x x =+D. ()cos f x x =【答案】B 【解析】 【分析】由题设条件判断增减性和奇偶性,再结合所给具体函数判断即可【详解】由题可知,()f x 为定义域在()0,+∞的减函数,且函数具有偶函数特征;对A ,当()0,x ∈+∞,()21f x x x =++,()f x 的对称轴为12x =-,在()0,+∞为增函数,与题不符,排除;对B ,x 1()2f x ⎛⎫= ⎪⎝⎭,当()0,x ∈+∞,1()2xf x ⎛⎫= ⎪⎝⎭,为减函数,又()-xx11()22f x f x ⎛⎫⎛⎫-=== ⎪ ⎪⎝⎭⎝⎭,故B 符合; 对C ,()ln 1f x x =+,函数显然不具备偶函数特征,排除; 对D ,函数为周期函数,在()0,x ∈+∞不是减函数,排除; 故选:B【点睛】本题考查函数解析式的辨析,函数增减性与奇偶性的应用,属于基础题6.已知定义在R 上的函数()f x 满足(3)(3)f x f x -=+,且函数()f x 在()0,3上为单调递减函数,若ln422log 3,a b c e ===,则下面结论正确的是( )A. ()()()f a f b f c <<B. ()()()f c f a f b <<C. ()()()f c f b f a <<D. ()()()f a f c f b <<【答案】C 【解析】 【分析】由题判断函数对称轴为3x =,结合()f x 在()0,3上为单调递减可知,判断函数值大小关系,即判断对应数值与3的绝对值的大小关系,可画出拟合图形加以求解【详解】由(3)(3)f x f x -=+得3x =,又()f x 在()0,3上为单调递减,画出拟合图形,如图:()()ln 4220,1,log 31,2,4a b c e =∈=∈==,在图上的对应关系如图所示:,显然()()()f c f b f a << 故选:C【点睛】本题考查根据函数的对称性比较函数值大小,解题关键在于确定对称轴和函数与对称轴的关系,属于基础题 7.已知0,0a b >>,若不等式313n a b a b+≥+恒成立,则n 的最大值为( ) A. 9 B. 12C. 16D. 20【答案】C 【解析】 【分析】可左右同乘3a b +,再结合基本不等式求解即可 【详解】0,0a b >>,()313133n a b n a b a b a b ⎛⎫+≥⇔++≥ ⎪+⎝⎭,()31333911016b a a b a b a b ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当1a b ==时,等号成立,故16n ≤ 故选:C【点睛】本题考查基本不等式求最值,属于基础题 8.函数3cos xy x e =-的图象可能是( )A. B. C. D.【答案】B 【解析】【分析】考查该函数的奇偶性,在0x =处的取值以及该函数在()0,∞+上的单调性可辨别出图象。

2020届四川省成都市高三第一次诊断考试 数学(理)

2020届四川省成都市高三第一次诊断考试  数学(理)

2020届四川省成都市高三第一次诊断考试数学(理科)本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第II 卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟 注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 1与z 2=-3-i(i 为虚数单位)在复平面内对应的点关于实轴对称,则z 1= (A)-3-i (B)-3+i (C)3+i (D)3-i2.已知集合A ={-l ,0,m},B ={l ,2}。

若A ∪B ={-l ,0,1,2},则实数m 的值为 (A)-l 或0 (B)0或1 (C)-l 或2 (D)l 或23.若sin )θπθ=-,则tan2θ=(A)3-(B)3 (C)2- (D)24.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这l00名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图。

则这100名同学的得分的中位数为(A)72.5 (B)75 (C)77.5 (D)805.设等差数列{a n }的前n 项和为S n ,且a n ≠0,若a 5=3a 3,则95S S = (A)95 (B)59 (C)53 (D)2756.已知α,β是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列说法正确的是 (A)若m ∥α,n ∥β,且α∥β,则m ∥n (B)若m ∥α,n ∥β,且α⊥β,则m ∥n (C)若m ⊥α,n ∥β,且α∥β,则m ⊥n (D)若m ⊥α,n ∥β且α⊥β,则m ⊥n7.261(2)()x x x+-的展开式的常数项为 (A)25 (B)-25 (C)5 (D)-5 8.将函数y =sin(4x -6π)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移6π个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为(A)f(x)=sin(2x +6π) (B)f(x)=sin(2x -3π) (C)f(x)=sin(8x +6π) (D)f(x)=sin(8x -3π)9.已知抛物线y 2=4x 的焦点为F ,M ,N 是抛物线上两个不同的点。

2020届四川省成都市高三第一次诊断考试 数学(理)(含答案)

2020届四川省成都市高三第一次诊断考试  数学(理)(含答案)

2020届四川省成都市高三第一次诊断考试数学(理科)本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第II 卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。

注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 1与z 2=-3-i(i 为虚数单位)在复平面内对应的点关于实轴对称,则z 1= (A)-3-i (B)-3+i (C)3+i (D)3-i2.已知集合A ={-l ,0,m},B ={l ,2}。

若A ∪B ={-l ,0,1,2},则实数m 的值为 (A)-l 或0 (B)0或1 (C)-l 或2 (D)l 或23.若sin )θπθ=-,则tan2θ=(A)3-3 (C)2- (D)24.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这l00名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图。

则这100名同学的得分的中位数为(A)72.5 (B)75 (C)77.5 (D)805.设等差数列{a n }的前n 项和为S n ,且a n ≠0,若a 5=3a 3,则95S S = (A)95 (B)59 (C)53 (D)2756.已知α,β是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列说法正确的是 (A)若m ∥α,n ∥β,且α∥β,则m ∥n (B)若m ∥α,n ∥β,且α⊥β,则m ∥n (C)若m ⊥α,n ∥β,且α∥β,则m ⊥n (D)若m ⊥α,n ∥β且α⊥β,则m ⊥n7.261(2)()x x x+-的展开式的常数项为 (A)25 (B)-25 (C)5 (D)-5 8.将函数y =sin(4x -6π)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移6π个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为 (A)f(x)=sin(2x +6π) (B)f(x)=sin(2x -3π)(C)f(x)=sin(8x +6π) (D)f(x)=sin(8x -3π)9.已知抛物线y 2=4x 的焦点为F ,M ,N 是抛物线上两个不同的点。

【精品高三数学试卷】2019-2020成都高三(上)零诊(理科)+答案

【精品高三数学试卷】2019-2020成都高三(上)零诊(理科)+答案

2019-2020学年四川省成都高三(上)零诊数学试卷(理科)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合{||1|1}A x x =-<,2{|10}B x x =-<,则(A B = )A .(1,1)-B .(1,2)-C .(1,2)D .(0,1)2.(5分)若1122aii i+=++,则(a = ) A .5i --B .5i -+C .5i -D .5i +3.(5分)设()f x 是定义在R 上周期为2的奇函数,当01x <<时,2()f x x x =-,则5()(2f -=)A .14-B .12-C .14D .124.(5分)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元5.(5分)设D 为ABC ∆中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则()A .5166BO AB AC =-+B .1162BO AB AC =-C .5166BO AB AC =- D .1162BO AB AC =-+6.(5分)执行如图的程序框图,则输出x 的值是( )A .2016B .1024C .12D .1-7.(5分)等差数列{}n a 中的2a 、4032a 是函数321()4613f x x x x =-+-的两个极值点,则2220174032log ()(a a a = )A .624log +B .4C .323log +D .324log +8.(5分)以下三个命题正确的个数有( )个 ①:若225a b +≠,则1a ≠或2b ≠;②:定义域为R 的函数()f x ,函数()f x 为奇函数是(0)0f =的充分不必要条件; ③:若0x >,0y >且21x y +=,则11x y+的最小值为32+A .0个B .1个C .2个D .3个9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.(5分)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点,设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A .3[3,1] B .6[3,1] C .6[3,22]3D .22[3,1] 11.(5分)函数2()sin (4cos 1)f x x x =-的最小正周期是( ) A .3πB .23π C .π D .2π12.(5分)如图,已知ABC ∆,其内部有一点O 满足OAB OAC OBC OCA θ∠=∠=∠=∠=,命题:p θ最大值有可能超过36度;命题q :若三边长对应分别为a ,b ,c ,则2a bc =;则正确的选项为( )A .p 真q 假B .p 假q 假C .p 真q 真D .p 假q 真二.填空题:本大题共四小题,每小题5分,共20分.13.(5分)命题p :“0x R ∃∈,200220x x ++”,则命题p 的否定p ⌝是 .14.(5分)曲线y x 与直线(0)x a a =>,0y =所围成封闭图形的面积为2a ,实数m ,n 满足190m n m n a n -⎧⎪+⎨⎪⎩,则2m n -的取值范围是 .15.(5分)已知抛物线22y mx =与椭圆22221(0)x y a b a b+=>>有相同的焦点F ,P 是两曲线的公共点,若5||6PF m =,则此椭圆的离心率为 .16.(5分)定义在区间(0,2]上的函数2()(2)()f x x ln x x t =--+恰有2个不同零点,则实数t 的取值范围是 .三、解答题(共70分):解答应写出文字说明,证明过程或演算步骤,写在答题卷上.17.(12分)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知4B π=,cos cos20A A -=.(1)求角C ;(2)若222b c a bc +=-+,求ABC S ∆.18.(12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185cm 之间的概率;(3)从样本中身高在165~180cm 之间的女生中任选2人,求至少有1人身高在170~180cm 之间的概率.19.(12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (1)证明:1AC AB =;(2)若1AC AB ⊥,160CBB ∠=︒,1BC =,求二面角111A A B C --的余弦值的绝对值.20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>,与x 轴负半轴交于(2,0)A -,离心率12e = (1)求椭圆C 的方程;(2)设直线:l y kx m =+与椭圆C 交于1(M x ,1)y ,2(N x ,2)y 两点,连接AM ,AN 并延长交直线4x =于3(E x ,3)y ,4(F x ,4)y 两点,若12341111y y y y +=+,求证:直线MN 恒过定点,并求出定点坐标.21.(12分)设函数1()(21)x f x e x ax +=+-,其中1a < (1)当0a =时,()f x 的零点个数;(2)若()0f x <的整数解有且唯一,求a 的取值范围. [选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系下,知圆:cos sin O ρθθ=+和直线:sin()0,02)4l πρθρθπ-=.(1)求圆O 与直线l 的直角坐标方程;(2)当(0,)θπ∈时,求圆O 和直线l 的公共点的极坐标.2019-2020学年四川省成都高三(上)零诊数学试卷(理科)参考答案与试题解析一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.【解答】解:由A 中不等式变形得:111x -<-<, 解得:02x <<,即(0,2)A =2{|10}(1,1)B x x =-<=- (1,2)AB ∴=-故选:B . 【解答】解:1122aii i+=++,1(2)(12)5ai i i i ∴+=++=, 51(51)5i i i a i i i i---∴===+-. 故选:D .【解答】解:根据题意,()f x 是定义在R 上周期为2的奇函数, 则511()()()222f f f -=-=-,又由当01x <<时,2()f x x x =-,则21111()()2224f =-=-,故511()()244f -=--=,故选:C .【解答】解:由题意可得1(8.28.610.011.311.9)105x =++++=,1(6.27.58.08.59.8)85y =++++=,代入回归方程可得ˆ80.76100.4a=-⨯=, ∴回归方程为ˆ0.760.4yx =+, 把15x =代入方程可得0.76150.411.8y =⨯+=, 故选:B . 【解答】解:D 为ABC ∆中BC 边上的中点,∴1()2AD AB AC =+, O 为AD 边上靠近点A 的三等分点,∴23OD AD =, ∴1()3OD AB AC =+, ∴111151()()()232366BO BD OD BC AB AC AC AB AB AC AB AC =-=-+=--+=-+. 故选:A .【解答】解:模拟执行程序框图,可得 2x =,0y =满足条件1024y <,执行循环体,1x =-,1y = 满足条件1024y <,执行循环体,12x =,2y = 满足条件1024y <,执行循环体,2x =,3y = 满足条件1024y <,执行循环体,1x =-,4y =⋯观察规律可知,x 的取值周期为3,由于102434131=⨯+,可得: 满足条件1024y <,执行循环体,1x =-,1024y = 不满足条件1024y <,退出循环,输出x 的值为1-. 故选:D . 【解答】解:321()4613f x x x x =-+-,2()86f x x x ∴'=-+,等差数列{}n a 中的2a 、4032a 是函数321()4613f x x x x =-+-的两个极值点,240328a a ∴+=,240326a a =, ∴24032201742a a a +==,322201*********log ()log (46)233log 3a a a log log ∴=⨯=+=+. 故选:C .【解答】解:对于②,若225a b +≠,则1a ≠或2b ≠,因为逆否命题:1a =且2b =则225a b +=是真命题,所以①正确;对于②,函数()f x 的定义域为R ,函数()f x 为奇函数是(0)0f =的充分不必要条件,故选项②正确;对于③,若0x >,0y >且21x y +=,则11112()(2)332y xx y x y x y x y+=++=+++且仅当21x y y +=⎧⎪⎨=⎪⎩即1x =,1y =时取“=”,故③正确;故选:D .【解答】解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了 故选:D .【解答】解:由题意可得:直线OP 于平面1A BD 所成的角α的取值范围是111[,][,]22AOA C OA ππ∠∠.不妨取2AB =.在1Rt AOA ∆中,111sinAA AOA AO ∠==.111111sin sin(2)sin 22sin cos 23C OA AOA AOA AOA AOA π∠=-∠=∠=∠∠==>, sin12π=.sin α∴的取值范围是6[,1]3. 故选:B .【解答】解:函数2()sin (4cos 1)f x x x =-化简可得:223()4sin cos sin 4sin (1sin )sin 3sin 4sin sin3f x x x x x x x x x x =-=--=-=. ∴最小正周期23T π=. 故选:B . 【解答】解:方法1: 在ACO ∆中,根据正弦定理得sin(2)sin b m πθθ=-,即sin 2sin b mθθ=① 在CBO ∆中,根据正弦定理得sin(2)sin b m πθθ=-,即sin()sin b mθαθ=+② 由①②得sin 2sin()b a θθα=+,即sin 2sin()b a θθα=+. 又sin sin2A θ=,sin sin()C θα=+,sin sin b Aa C=在ABC ∆中,根据正弦定理得sin sin A a C c =,即得a bc a=, 2a bc ∴=.q ∴为真. 2a bc =,b ∴不是最长边,B ∴∠,C ∠至少有一个超过2θ,∴内角和超过5θ,所以p 错误.方法2:如图延长AO 交BOC ∆的外接圆于点D ,则2DBC DOC CAB θ∠=∠==∠,BCD BOD ABO ABC θ∠=∠=+∠=∠~ABC BCD ∴∆∆,∴AB BCBC DC=. 又CDA CDO CBO CAD θ∠=∠=∠==∠,DC AC ∴=. ∴AB BCBC AC=,即2BC AC BA =,即2a bc =.q ∴为真. 2a bc =,b ∴不是最长边,B ∴∠,C ∠至少有一个超过2θ,∴内角和超过5θ,所以p 错误. 故选:D .二.填空题:本大题共四小题,每小题5分,共20分.【解答】解:因为特称命题的否定是全称命题,所以命题p :“0x R ∃∈,200220x x ++”,则命题p 的否定p ⌝是:x R ∀∈,2220x x ++>. 故答案为:x R ∀∈,2220x x ++>.【解答】解:由题意,曲线y x =与直线x a =,0y =所围成封闭图形的面积为23320022|33axdx x a ==⎰∴32223a a =,9由实数m ,n 满足140m n m n n -⎧⎪+⎨⎪⎩,作出可行域如图,(4,0)A ,联立14m n m n -=⎧⎨+=⎩,解得5(2B ,3)2.化目标函数2u m n =-为22m un =-, 由图可知,当直线22m un =-过A 时,直线在n 轴上的截距最小,z 有最大值为4; 当直线22m u n =-过B 时,直线在n 轴上的截距最大,z 有最小值为12-. 2u m n ∴=-的取值范围是:1[2-,4]. 故答案为:1[2-,4].【解答】解:设2(2y P m ,)y ,由抛物线的定义可得:25||226y m PF m m +==,化为:2223y m =, 又2m c =,2283c y ∴=.点P 在椭圆上,∴4222214y y m a b +=,即222248193c c a b+=,222b a c =-. 化为:422243790c a c a -+=,4243790e e ∴-+=,解得214e =或9, (0,1)e ∈,2故答案为:12. 【解答】解:定义在区间(0,2]上的函数2()(2)()f x x ln x x t =--+恰有两个不同零点 ⇔函数()0f x =在区间(0,2]上有2个不同零点2x ⇒=或2()0ln x x t -+=在(0,2)上有且只有一个解21x x t ⇔-+=在(0,2)上有且只有一个解y t ⇔=与21y x x =-++在(0,2)上有且只有一个交点可知最大值为1()254x y==;(0)1x y ==;(2)1x y ==-. 又当01x <时,20x x t -+>恒成立, 211()24t x ∴>--+,14t ∴>,t ∴取值范围为15(,1]{}44;故答案为:15(,1]{}44.三、解答题(共70分):解答应写出文字说明,证明过程或演算步骤,写在答题卷上. 【解答】解:(1)因为cos cos20A A -=, 所以22cos cos 10A A --=, 解得1cos 2A =-,cos 1A =(舍去).所以23A π=,又4B π=,所以12C π=.(2)在ABC ∆中,因为23A π=,由余弦定理所以222222cos a b c bc A b c bc =+-=++, 又222b c a bc +=-+, 所以22a a =+, 所以2a =,又因为sin sinsin()1234C πππ==-=, 由正弦定理sin sin c aC A=得c ,所以1sin 12ABC S ac B ∆==.【解答】解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400. (2)由统计图知,样本中身高在170~185cm 之间的学生有141343135++++=人,样本容量为70,所以样本中学生身高在170~185cm 之间的频率 350.570f ==故由f 估计该校学生身高在170~180cm 之间的概率0.5p = (3)样本中女生身高在165~180cm 之间的人数为10,身高在170~180cm 之间的人数为4. 设A 表示事件“从样本中身高在165~180cm 之间的女生中任选2人,至少有1人身高在170~180cm 之间”,则 P (A )26210213C C =-=【解答】解:(1)证明:连接1BC ,交1B C 于点O ,连接AO , 因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点, 又1AB B C ⊥,所以1B C ⊥平面ABO . 由于AO ⊂平面ABO ,故1B C AO ⊥. 又1B O CO =,故1AC AB =.(2)解:因为1AC AB ⊥,且O 为1B C 的中点,所以AO CO =.又因为AB BC =,所以BOA BOC ∆≅∆,故OA OB ⊥,从而OA ,OB ,1OB 两两相互垂直, 以O 为坐标原点,OB 的方向为x 轴正方向,||OB 为单位长,建立空间直角坐标O xyz -, 因为160CBB ∠=︒,所以1CBB ∆为等边三角形, 又AB BC =,则1(1,0,0),(0,A B B C ,111113333(0,,),(1,0,),(1,,0)3333AB A B AB B C BC =-==-==--, 设(n x =,y ,)z 是平面11AA B 的法向量,则11100nAB nA B ⎧=⎪⎨=⎪⎩,33033303y z x z ⎧-=⎪⎪⎨⎪-=⎪⎩,取1x =,得(1,3,3)n =.设m 是平面111A B C 的法向量,则111100m A B m B C ⎧=⎪⎨=⎪⎩,同理可取(1,3,3)m =-,1cos ,||||7m n m n m n ∴<>==,所以二面角111A A B C --的余弦值为17.【解答】解:(1)由题有2a =,12c e a ==.1c ∴=,2223b a c ∴=-=. ∴椭圆方程为22143x y +=.(2)法22222,1:(34)84120143y kx m k x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, △222222644(34)(412)0129k m k m m k =-+->⇒<+,122834kmx x k-+=+,212241234m x x k -=+. 又AM AE k k = ∴3113110062422y y y y x x --=⇒=+++同理24262y y x =+ 又12341111y y y y +=+∴1212122112121212222()666y y x x x y x y y y y y y y y y ++++++=+=1212214()y y x y x y ⇒+=+1212214()()()kx m kx m x kx m x kx m ⇒+++=+++ 1212(4)()280k m x x kx x m ⇒-+-+=,22228(412)24()(4)2800343434km m k m k m k m k k k --+⇒--+=⇒=+++.m k ∴=-,此时满足22129m k <+(1)y kx m k x ∴=+=-∴直线MN 恒过定点(1,0).法2:设直线AM 的方程为:12x t y =-则1222112(34)120143x t y t y t y x y =-⎧⎪⇒+-=⎨+=⎪⎩, 0y ∴=或1211234ty t =+, ∴211111122111268223434t t x t y t t t -=-=-=++同理222226834t x t -=+,22221234ty t =+, 当34x =时,由3132x t y =-有316y t =. ∴16(4,)E t 同理26(4,)F t ,又12341111y y y y +=+, ∴221212123434121266t t t t t t +++=+,12121212()(34)126t t t t t t t t +++⇒=, 当120t t +≠时,124t t =-, ∴直线MN 的方程为121112()y y y y x x x x --=-- 122222221121111112222222221211112112121112112122212121212343468126868124(34)44444()()(1)6868343434343434(34)()3434t tt t t t t t t t t y x y x y x x x t t t t t t t t t t t t t t t t t t t t t t t -++---+⇒-=-⇒-=-⇒=-+=-=---+++++++++++++-++,∴直线MN 恒过定点(1,0)当120t t +=时,此时也过定点(1,0)综上直线MN 恒过定点(1,0).【解答】解:(1)1()(23)x f x e x +'=+,当32x >-时,()0f x '>,函数单增,且0x =时函数值都已经大于0了;当32x <-时,()0f x '<,函数单减,且()0f x <,所以只有一个零点.(2)观察发现(1)0f -<,下证除整数1-外再无其他整数而1()(23)x f x e x a +'=+-, ①当1x >-时,11x e +>,231x +>根据同向不等式乘法得到1(23)1x e x ++>,因为1a <, 所以1()(23)0x f x e x a +'=+->,所以函数单增,且x 趋于+∞时函数值显然很大很大; 但要保证只有唯一整数1-,需要(0)0f >,却发现恒成立. ②当1x <-时,要保证只有唯一整数1-,首先需要(2)0f -,得到32ae当2x <-时,11x e e +<,231x +<-根据同向不等式得到11(23)x e x e ++<-,又因32a e>,所以1()(23)0x f x e x a +'=+-<,所以函数在2x <-单减,且(2)0f -> 综上所述:()0f x <的整数解有且唯一时,312a e<. [选修4-4:坐标系与参数方程](本小题满分10分)【解答】解:(1)圆:cos sin O ρθθ=+,即2cos sin ρρθρθ=+, 故圆O 的直角坐标方程为:220x y x y +--=,直线:sin()4l πρθ-=sin cos 1ρθρθ-=,则直线的直角坐标方程为:10x y -+=. (2)由(1)知圆O 与直线l 的直角坐标方程, 将两方程联立得22010x y x y x y ⎧+--=⎨-+=⎩,解得01x y =⎧⎨=⎩.即圆O 与直线l 的在直角坐标系下的公共点为(0,1), 转化为极坐标为(1,)2π.。

高2020届6月月考零诊模拟考试(理)参考答案

高2020届6月月考零诊模拟考试(理)参考答案

又 s(8) 0 , s(9) 0 ,
∴ x0 (8,9) ,使得 s(x0 ) 0 ,即 2 ln x0 x0 4 ,
且当 2 x x0 时, s(x) 0 ;当 x x0 时, s(x) 0 ,
即 g(x) 在 (2,x0 ) 上单调递减;在 (x0, ) 上单调递增,

y1 y2

(m2
1) y1 y2

m3 2
( y1

y2 )

m4 4
(m2 1)
m4 16
m3 (
m3
m4 ) 0,
4(m2 4) 2 m2 4 4
零诊冲刺数学答案第 3 页 共 5 页
四川省金堂中学校高 2020 届数学备课组
m4 16m2 16
整理得
0,
即 m4-16m2-16=0,
2
x
3 3
3 3
解得 0 x
或x
3
3
…………………10 分
3 3 3 3
所以函数 f (x) 的单调减区间为 (0,
), (
,)
3
3
…………………12 分
n
xi yi n.x.y
18.解:(1)由已知有 x 45 , y 36 , bˆ i1
16310 8 45 36
2
2
∴ (2x-2)2+(2y)2=4(y≥0),
整理得 C1 的轨迹方程为(x-1)2+y2=1(y≥0).
……………………5 分
(2)直线 l 过点 A(-1,0),
x 1 t cos,

所以直线 l 的参数方程为

四川省成都市2020届高三下学期第二次诊断考试 理科数学(含答案)

四川省成都市2020届高三下学期第二次诊断考试 理科数学(含答案)

f
(x)
ln x x
,
g(x)
xe x
,若存在
x1
(0,),
x2
R
,使得
f
( x1 )
g(x2 )
k(k
0)
成立,则 ( x2 )2 ek 的最大值为( ) x1
A. e2
B. e
4
C.
e2
1
D.
e2
第Ⅱ卷(非选择题,共 90 分)
·3·
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在答题卡上.
A
B
C
7.执行如图所示的程序框图,则输出 S 的值为( )
A.16
B.48
C.96
D D.128
8. 已 知 函 数
f (x) sin(x )(0 ),
f
(
)
0




f (x) 的 图 象 的 对 称 轴 方 程 为
2
4
()
A. x k , k Z 4
B. x k , k Z 4
点.
·4·
(Ⅰ)求证:平面 PAC⊥平面 PBD (Ⅱ)若 PE=3,求二面角 D 一 PE 一 B 的余弦值.
19.(本小题满分 12 分)
某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫题材,创作出一
批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该
PM PN
23.(本小题满分 10 分)选修 4-5;不等式选讲) 已知函数 f(x)=|x-1|+|x+3|.
(Ⅰ)解不等式 f(x)≥6; (Ⅱ)设 g(x)=-x2+2ax,其中 a 为常数若方程 f(x)=g(x)在(0,+∞)上恰有两个不相等的实 数根,求实数 a 的取值范围.

成都市第七中学2020届高三零诊模拟数学(理)试题Word版含解析

成都市第七中学2020届高三零诊模拟数学(理)试题Word版含解析

成都七中高2020届零诊热身试卷理科数学第Ⅰ卷一、选择题:每小题5分,共60分.1.已知集合{}11A x x =-<,{}210B x x =-<,则A B =U ( ) A. ()1,1- B. ()1,2-C. ()1,2D. ()0,1【答案】B【解析】由2{|11},{|10}A x x B x x =-<=-<得:{}|02A x x =<<,{}|11B x x =-<<, 则()1,2A B ⋃=-,故选B. 2.若1122aii i+=++,则复数a =( ) A. 5i -- B. 5i -+C. 5i -D. 5i +【答案】D【解析】解:由题意可知:()()()12125ai i i i +=++= ,则515i a i i-==+ . 本题选择D 选项.3.设()f x 是定义在R 上周期为2的奇函数,当01x <<时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭( ) A. 14-B. 12-C.14D.12【答案】C【详解】因为()f x 的周期为2, 所以5512222f f f ⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 又()f x 是奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭所以25111122224f f ⎡⎤⎛⎫⎛⎫⎛⎫-=-=--=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦故选B .4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元)8.28.6 10.011.3 11.9 支出y (万元) 6.27.58.08.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A. 11.4万元 B. 11.8万元C. 12.0万元D. 12.2万元【答案】B 【解析】由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.5.设D 为ABC ∆中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则( )A. 5166BO AB AC =-+u u u r u u ur u u u rB. 1162BO AB AC =-u u u r u u u r u u u rC. 5166BO AB AC =-u u u r u u u r u u u rD. 1162BO AB AC =-+u u u r u u u r u u u r【答案】A 【解析】由平面向量基本定理可得:()11513666BO AO AB AD AB AB AC AB AB AC =-=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,故选A.6.执行如图的程序框图,则输出x 的值是( )A. 1B. 2C.12D. 1-【答案】D【详解】计算过程如下:x2 -1 122 1-… 1-y0 1 2 3 4 … 1024 1024y <是是是是是是否当1024x =时,循环结束,所以输出1x =-. 故选D.7.等差数列{}n a 中的2a 、4032a 是函数()3214613f x x x x =-+-的两个极值点,则()2220174032log a a a ⋅⋅=( ) A. 24log 6+ B. 5C. 23log 3+D. 24log 3+【答案】C 【解析】 由()3214613f x x x x =-+-,得()286f x x x =-+',由()2860f x x x =-+=',且24032a a 、是()3214613f x x x x =-+-的极值点,得24032201728a a a +==,240326a a ⋅=,∴20174a =,则()222017403222log ?·log 243log 3a a a ==+,故选C.8.以下三个命题正确的个数有( )个.①若225a b +≠,则1a ≠或2b ≠;②定义域为R 的函数()f x ,函数()f x 为奇函数是()00f =的充分不必要条件;③若0x >,0y >且21x y +=,则11x y+的最小值为322+ A. 0个 B. 1个 C. 2个 D. 3个【答案】D【详解】当1a =且2b =时,225a b +=成立, 根据原命题与逆否命题真假一致,故①正确; 定义域为R 的奇函数()f x 必有()00f =,定义域为R 函数()f x 且满足()00f =不一定是奇函数,如()2f x x =,故②正确;若0x >,0y >且21x y +=, 则21323222112y x y x y y x yx x +=+++≥+⋅=+ 当且仅当2y x x y =即22,212x y -==-时等号成立,故③正确;故选D.9.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

2020届四川省成都市零模数学(理)试题(解析版)

2020届四川省成都市零模数学(理)试题(解析版)

2020届四川省成都市零模数学(理)试题一、单选题1.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A.12B.12-C.12i D.12i -【答案】A【解析】由()1i z i +=得1z ii=+,然后分子分母同时乘以分母的共轭复数可得复数z ,从而可得z 的虚部. 【详解】 因为(1)i z i +=,所以22(1)1111(1)(1)11221i i i i i i z i i i i i --+=====+++-+-, 所以复数z 的虚部为12. 故选A. 【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.2.若集合{1234}A =,,,,{}260B x x x =--≤,则A B =( )A.{1}B.{12},C.{2,3}D.{12,3}, 【答案】D 【解析】{}60,23,1,2,3x x x A B --≤∴-≤≤⋂=,选D .3.如图是某赛季甲、乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是( )A.甲所得分数的极差为22B.乙所得分数的中位数为18C.两人所得分数的众数相等D.甲所得分数的平均数低于乙所得分数的平均数 【答案】D【解析】根据茎叶图,逐一分析选项,得到正确结果. 【详解】甲的最高分为33,最低分为11,极差为22,A 正确;乙所得分数的中位数为18,B 正确;甲、乙所得分数的众数都为22,C 正确;甲的平均分为11151720222224323319699x ++++++++==甲,乙的平均分为8111216182022223116099x ++++++++==乙 ,甲所得分数的平均数高于乙所得分数的平均数,D 错误,故选D. 【点睛】本题考查了根据茎叶图,求平均数,众数,中位数,考查基本概念,基本计算的,属于基础题型.4.若实数,x y 满足约束条件220,10,0.x y x y +-≤⎧⎪-≥⎨⎪≥⎩,则2z x y =-的最小值为()A.0B.2C.4D.6【答案】A【解析】画出约束条件所表示的区域,然后利用平移法求出z 的最大值. 【详解】作出实数x ,y 满足约束条件220100x y x y +-⎧⎪-⎨⎪⎩表示的平面区域,如图所示.由2z x y =-可得1122y x z =-,则12z -表示直线1122y x z =-在y 轴上的截距,纵截距越大,z 越小.作直线20x y -=,然后把该直线向可行域平移,当直线经过点B 时,12z -最大,z 最小. 由2201x y x +-=⎧⎨=⎩可得1(1,)2B ,此时0z =,故选:A .【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 5.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A.1 B.3 C.6 D.9【答案】D【解析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值. 【详解】由3132312log log log 12a a a +++= ,可得31212log 12a a a =,进而可得()6121212673a a a a a == ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.6.已知函数()sin ,0,621,0.x x x f x x ππ⎧⎛⎫+≤⎪ ⎪=⎝⎭⎨⎪+>⎩则()()21f f -+=( )A .632+ B .632- C .72D .52【答案】C【解析】结合分段函数的表达式,利用代入法进行求解即可. 【详解】 解:1(2)sin(2)sin 662f πππ-=-+==,f (1)1213=+=,∴17(2)(1)322f f -+=+=, 故选:C . 【点睛】本题主要考查函数值的计算,利用代入法是解决本题的关键.属于基础题. 7.ABC △中,角A ,B ,C 的对边分别为,,a b c .若向量(),cos m a A =-,()cos n C c =-,且0m n ⋅=,则角A 的大小为()A.6πB.4π C.3π D.2π 【答案】B【解析】利用数量积结合正弦定理转化为三角函数问题,通过两角和的公式化简得到角A 的方程,得解.【详解】 由0m n =得,0(,cos )(cos ,2)cos )cos a A C c a C c A =--=--,由正弦定理得,sin cos cos sin cos 0A C B A C A +=,化为sin()cos 0A C B A +=,即sin cos 0B B A =, 由于sin 0B ≠,∴cos A =()0,A π∈∴4A π=,故选:B . 【点睛】本题主要考查平面向量的数量积和正弦定理,考查和角的正弦公式的应用,意在考查学生对这些知识的理解掌握水平.8.执行如图所示的程序框图,则输出的m 的值为()A.5B.6C.7D.8【答案】B【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算S 的值并输出变量m 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得 开始 0S =1m =① 1122100⨯=< 2m =② 12122210100⨯+⨯=< 3m = ③ 12312223234100⨯+⨯+⨯=< 4m = ④ 12341222324298100⨯+⨯+⨯+⨯=< 5m =⑤ 123451222324252258100⨯+⨯+⨯+⨯+⨯=>6m =故选:B . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.若矩形ABCD 的对角线交点为O ',周长为410,四个顶点都在球O 的表面上,且3OO '=,则球O 的表面积的最小值为()A.3223πB.6423πC.32πD.48π【答案】C【解析】首先利用矩形求出外接圆的小圆半径,进一步利用基本不等式求出球的半径,进一步求出球的表面积的最小值. 【详解】如图,设矩形ABCD 的两邻边分别为a ,b ,则210a b +=,且外接圆O '的半径22a b r +=.由球的性质得,OO '⊥平面ABCD ,所以球O 的半径2222(3)34a b R r +=++由均值不等式得,2222a ba b ++222()202a b a b++=, 所以222220(3)33844a b R r +=+++=,当且仅当10a b == 所以球O 的表面积的最小值为2432R ππ=, 故选:C . 【点睛】本题考查的知识要点:球的表面积公式的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 10.已知函数()()221xf x x a x e =++,则“2a =是“函数()f x 在-1x =处取得极小值”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求出原函数的导函数,分析函数()f x 在1x =-处取得极小值时的a 的范围,再由充分必要条件的判定得答案.解:若()f x 在1x =-取得极小值,2222()[(2)1](1)(1)x x f x x a x a e x x a e '=++++=+++.令()0f x '=,得1x =-或21x a =--. ①当0a =时,2()(1)0x f x x e '=+. 故()f x 在R 上单调递增,()f x 无最小值;②当0a ≠时,211a --<-,故当21x a <--时,()0f x '>,()f x 单调递增; 当211a x --<<-时,()0f x '<,()f x 单调递减; 当1x >-时,()0f x '>,()f x 单调递增. 故()f x 在1x =-处取得极小值.综上,函数()f x 在1x =-处取得极小值0a ⇔≠.∴“a =是“函数()f x 在1x =-处取得极小值”的充分不必要条件.故选:A . 【点睛】本题考查利用导数研究函数的极值,考查充分必要条件的判定,属于中档题.11.已知双曲线2222C :1(0,b 0)x y a a b-=>>的左、右焦点分别为()10F c-,,()20F c ,,点N 的坐标为23c,2b a ⎛⎫- ⎪⎝⎭.若双曲线C 左支上的任意一点M 均满足24MF MN b >+,则双曲线C 的离心率的取值范围为( )A.3⎛⎝ B.C.1,(5,)3⎛+∞ ⎝⎭D.(13,)+∞【答案】C【解析】首先根据双曲线的定义,212MF MF a =+,转化为124MF MN a b ++>,即()1min24MF MNa b ++>,根据数形结合可知,当点1,,M F N 三点共线时,1MF MN +最小,转化为不等式23242b a b a+>,最后求离心率的范围.由已知可得212MF MF a -=,若2||4MF MN b +>,即1|||24MF MN a b ++>‖,左支上的点M 均满足2||4MF MN b +>, 如图所示,当点M 位于H 点时,1||MF MN +最小,故23242b a b a +>,即22348b a ab +>, 223840,(2)(23)0b ab a a b a b ∴-+>∴-->,23a b ∴>或222,49a b a b <∴>或22224,913a b c a <∴<或22135,1c c a a >∴<<或5,ca >∴双曲线C 的离心率的取值范围为131,(5,)3⎛⎫+∞ ⎪ ⎪⎝⎭.【点睛】本题考查离心率的取值范围的问题,属于中档题型,意在考查化归和计算能力,关键是根据几何关系分析1|||MF MN +‖的最小值,转化为,a b 的代数关系,最后求ca的范围.12.若关于x 的不等式ln 210x x kx k -++>在()2,+∞内恒成立,则满足条件的整数k 的最大值为( )A .2B .3C .4D .5【答案】A【解析】由题意知分离参数得到ln 12x x k x +<-,通过研究()ln 12x x g x x +=-的()g x '虚设零点0x ,利用零点存在性定理得()06,7x ∈并回带零点得到()min g x 的范围,进而得到对应整数k 的最大值. 【详解】解:根据题意,()2ln 1k x x x -<+对于2x >恒成立ln 12x x k x +∴<-令()ln 12x x g x x +=-,只需()min k g x <即可()()22ln 32x x g x x -+-=-'令()2ln 3h x x x =-+-()20x h x x-'=> ()h x ∴在()2,+∞递增,()()3632ln 62ln 62ln ln 602h ⎛⎫=-=-=< ⎪⎝⎭,()()2742ln 72ln ln 70h e =-=-> ,故存在()06,7x ∈,使得()00h x =, 002ln 3=0x x ∴-+-即003ln =2x x - ,而()g x 在()02x ,递减,()0x +∞,递增, 由()06,7x ∈,()()()000000min 00-3·+1ln -12==== 2.5,3-2-22x x x x x g x g x x x ∴∈ ()min K g x <故整数k 的最大值为2,故选:A . 【点睛】本题考查了利用导数研究函数的单调性,考查了零点存在性定理,属于中档题.二、填空题13.某公司一种新产品的销售额y 与宣传费用x 之间的关系如表:已知销售额y 与宣传费用x 具有线性相关关系,并求得其回归直线方程为9y bx =+,则b 的值为__________. 【答案】6.5【解析】由表中数据计算平均数,代入回归直线方程中求得回归系数.【详解】由表中数据,计算0123425x ++++==,10152030351102255y ++++===,又归直线方程为ˆˆ9y bx =+过样本中心点(2,22)得, ˆ2229b=+, 解得13ˆ 6.52b ==. 故答案为:6.5. 【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题. 14.已知曲线C :2cos sin x y θθ=⎧⎨=⎩(θ为参数).若点P 在曲线C 上运动,点Q 为直线l :20x y +-=上的动点,则PQ 的最小值为__________.【解析】先表示出曲线C 上的点到直线距离,再利用三角函数的图像和性质求|PQ|的最小值. 【详解】表示曲线2cos ,:(sin x C y θθθ=⎧⎨=⎩为参数)上任意点(2cos ,sin )P θθ到直线:20l x y +-的距离d ==当sin()1θα+=时,||min min PQ d ==【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,点到直线的距离公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.15.已知()f x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数,其导函数为()f x ',8f π⎛⎫= ⎪⎝⎭当x 0,2π⎛⎫∈ ⎪⎝⎭时,()sin 22()cos 20f x x f x x '+>,则不等式()21f x sin x <的解集为______. 【答案】,88ππ⎛⎫-⎪⎝⎭【解析】首先根据已知构造函数,()()sin 2g x f x x =⋅ ,根据导数可知函数()g x 单调递增,即()()sin 218f x x g x g π⎛⎫⋅<⇔< ⎪⎝⎭,再结合奇偶性得到不等式的解集. 【详解】令()() 2g x f x sin x =,则()()()' 22 2g x f x sin x f x cos x =+ 当0,2x π⎛⎫∈ ⎪⎝⎭时,()()'0g x g x >, 单调递增,且sin 18842g f πππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.因为()sin 21f x x <等价于()sin 2sin 288f x x f ππ⎛⎫⎛⎫<⨯ ⎪ ⎪⎝⎭⎝⎭,即g(x)<g(8π),又()()sin 2g x f x x =为偶函数,所以8x π<,故88x ππ-<<,故不等式()21f x sin x <的解集为,88ππ⎛⎫-⎪⎝⎭. 【点睛】本题考查了函数的奇偶性,函数与方程,函数与不等式,导数的应用,涉及函数与方程思想,数形结合思想和转化化归思想,考查逻辑思维能力,等价转化能力,运算求解能力,综合性较强,本题的关键是构造函数()() 2g x f x sin x =,根据导数分析函数的单调性,并且判断()g x 是偶函数.16.已知抛物线()2:20C y px p =>的焦点为F ,准线为l 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020成都市高三零诊考试数学试题(理科)第I卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数z=1ii+(i为虚数单位)的虚部是()A 12B -12C12i D -12i【解析】【考点】①复数的定义与代数表示法;②虚数单位的定义与性质;③复数运算的法则与基本方法;④复数虚部的定义与确定的基本方法。

【解题思路】运用复数运算的法则与基本方法,虚数单位的性质,结合问题条件通过运算得到复数z的代数表示式,利用复数虚部确定的基本方法求出复数z的虚部就可得出选项。

【详细解答】 z=1ii+=(1(1(1i ii i-+-)))=221i ii--=12i+=12+12i,∴复数z的虚部为12,⇒A正确,∴选A。

2、已知集合A={1,2,3,4},B={x|2x-x-6<0},则A B=()A {2}B {1,2}C {2,3}D {1,2,3} 【解析】【考点】①集合的表示法;②一元二次不等式的定义与解法;③集合交集的定义与运算方法。

【解题思路】运用一元二次不等式的解法,结合问题条件化简集合B,利用几何交集运算的基本方法通过运算求出A B就可得出选项。

【详细解答】B={x|2x-x-6<0}={x|-2<x<3},A={1,2,3,4},∴A B={1,2},⇒B正确,∴选B。

3、如图,是某赛季甲,乙两名篮球运动员9场比赛甲乙所得分数的茎叶图,则下列说法错误的是() 0 8A 甲所得分数的极差为22B 乙所得分数的 7 5 1 1 1 2 6 8 中位数为18C 两人所得分数的众数线段 4 2 2 0 2 0 2 2D 甲所得分数的平均数低于乙所得分数的平均数 3 2 3 1【解析】【考点】①茎叶图的定义与性质;②极差的定义与求法;③中位数的定义与求法;④众数的定义与求法;⑤平均数的定义与求法。

【解题思路】运用茎叶图的性质,结合问题条件分别求出甲所得分数的极差,乙所得分数的中位数,甲,乙所得分数的众数和平均数就可得出选项。

【详细解答】甲所得分数的极差为33-11=22,∴A正确;乙所得分数的中位数为18,∴B 正确;甲,乙所得分数的众数分别为22,22,∴C正确;甲,乙所得分数的平均数分别为x 甲=1115172022222432339++++++++ ≈ 21.8, x 乙=811121618202222319++++++++≈ 17.8,21.8>17.8,∴x 甲>x 乙,⇒D 错误,∴选D 。

x+2y-2≤0, 4、若实数x ,y 满足约束条件 x-1≥0,则z=x-2y 的最小值为( )A 0B 2 y ≥0,C 4D 6 【解析】【考点】①不等式表示的平面区域的定义与求法;②不等式组表示的平面区域(可行域)的定义与求法;③最优解的定义与求法。

【解题思路】运用求不等式表示的平面区域,不等式组表示的平面区域(可行域)的求法,结合问题条件求出约束条件的可行域,利用最优解的求法求出问题的最优解就可得出选项。

【详细解答】作出约束条件的可行域如图所示,由 x+2y-2=0,得 x=1, x+2y-2=0,得 x=2, , x-1=0, y=12, y=0, y=0, ∴A (1,12), B (1,0),C (2,0),当目标 函数经过点A 时,z=1-2⨯12=1-1=0;当目标函数经过点B 时,z=1-2⨯0=1-0=1;当目标函数经过点C 时,z=2-2⨯0=2-0=2,∴z=x-2y 的最小值为0,⇒A 正确,∴选A 。

5、已知等比数列{ n a }的各项均为正数,若3log 1a +3log 2a +------+3log 12a =12,则6a 7a =( )A 1B 3C 6D 9【解析】【考点】①等比数列通项公式的定义与性质;②等比数列的定义与性质;③求等比数列通项公式的基本方法;④对数的定义与性质。

【解答思路】设等比数列{n a }的公比为q ,根据等比数列{n a }通项公式的性质,结合问题条件得到关于首项1a ,公比q 的等式,求出首项1a 关于公比q 的式子,运用求等比数列通项公式的基本方法把1a 12a 表示成关于1a ,q 的式子,从而求出1a 12a 的值就可得出选项。

【详细解答】设等比数列{n a }的公比为q ,n a =1a 1n q -,3log 1a +3log 2a +------+3log 12a =3log 1212111a q ++----+=3log 12661a q =12,∴21161()a q =123,⇒2111a q =9,∴6a 7a=2111a q =9,⇒D 正确,∴选D 。

6、已知函数f(x)= sin(πx+6π),x ≤0,则f(-2)+ f(1)=( ) 2x +1, x >0,A 62+B 62C 72D 52【解析】【考点】①分段函数的定义与性质;②分段函数求值的基本方法;③正弦函数的定义与性质;④三角函数诱导公式及运用;⑤指数的定义与性质。

【解答思路】运用分段函数求值的基本方法,正弦函数的性质,三角函数诱导公式,指数的性质,结合问题条件分别求出f(-2),f(1)的函数值,把两个函数值相加就可得出选项。

【详细解答】 f(-2)= sin(-2π+6π)=sin 6π=12,f(1)= 12+1=3,∴ f(-2)+f(1)=12+3 =72,⇒C 正确,∴选C 。

7、∆ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若向量m =(a ,-cosA ),n =(cosC ,b-c ),且m .n =0,则角A 的大小为( )A 6πB 4πC 3πD 2π 【解析】【考点】①正弦定理及运用;②向量数量积的定义与性质;③求向量数量积的基本方法;④三角形内角和定理及运用;⑤三角函数一点公式及运用。

【解答思路】运用正弦定理,三角形内角和定理,三角函数诱导公式和求向量数量积的基本方法,结合问题条件求出cosA 的值,从而求出角A 的大小就可得出选项。

【详细解答】m =(a ,-cosA ),n =(cosC b-c ),sin a A =sin b B =sin c C=2R ,A+B+C=.180,∴m .n RsinBcosA+2RsinCcosA=2R (sinAsinBcosA )=2R (sinBcosA )=2RsinB (cosA )=0,2RsinB ≠0,∴cosA=0,⇒ cosA== 2,.0<A <.180,∴A=4π,⇒B 正确,∴选B 。

8、执行如图所示的程序框图,则输出的m 的值为( )A 5B 6C 7D 8【解析】【考点】①程序框图的定义与性质;②算法的定义与性质;③运用程序框图进行运算的基本方法。

【解题思路】运用程序框图的性质和运算的基本方法,结合问题条件通过运算就可得出选项。

【详细解答】如图,S=0<100,m=1,∴S=0+1⨯12=2,m=1+1=2,S=2<100,m=2,∴S=2+2⨯22=2+8=10,m=2+1=3,S=10<100,m=3,∴S=10+3⨯32=10+24=34,m=3+1=4,S=34<100,m=4,∴S=34+4⨯42=34+64=98,m=4+1=5,S=98<100,m=5,∴S=98+5⨯52=98+160=258, m=5+1=6, S=2588>100,∴ m=6,⇒B 正确,∴选B 。

9、若矩形ABCD 的对角线交点为O ',周长为10四个顶点都在球O 的表面上,且O O '= 3,则球O 的表面积的最小值为( )A 3223π B 6423π C 32π D 48π 【解析】【考点】①矩形的定义与性质;②几何体外接球的定义与性质;③求几何体外接球半径的基本方法;④求表面积的计算公式与计算方法。

【解题思路】运用矩形性质,几何体外接球的性质和求几何体外接球半径的基本方法,结合问题条件求出几何体外接球的半径,利用球表面积的计算公式通过运算就可得出选项。

【详细解答】如图,连接OC ,设AB=x ,矩形 OABCD 的周长为10∴10,⇒AC 2 D C=2(210)x +2x ,在Rt ∆O 'OC 中,O O '3, O 'O 'C=122x -AC ,∴2R =OC 2=O 'C 2+ O O '2=14AC 2 A B +O O '2=122x 1012(10)x +8≥8,⇒当且仅当102R =0+8=8为最小,∴O S 球表=4π2R 的最小值为4⨯8π=32π,⇒C 正确,∴选C 。

10已知函数f(x)=(2x +2a x+1)x e ,则“2”是“函数f(x)在x=-1处取得极小值”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分也不必要条件【解析】【考点】①函数导函数的定义与求法;②函数极值的定义与求法;③充分条件,必要条件,充分必要条件的定义与判定的基本方法。

【解题思路】运用求函数导函数的基本方法,结合问题条件求出函数f(x)的导函数f ' (x),当2,利用判定函数在某点存在极值的基本方法,判定函数f(x)是否在x=-1处取得极小值;当函数f(x)在x=-1处取得极小值时,看能否求出,根据判断充分条件,必要条件,充分必要条件的基本方法通过判定就可得出选项。

【详细解答】当时,f ' (x)=(2x+) x e +(2x +2x+1)x e =(2x +4x+3)x e ,令f ' (x)=0,得x=-1或x=-3,当x ∈(-3,-1)时,f ' (x)<0,当x ∈(-1,+ ∞)时,f ' (x)>0,∴函数f(x)在x=-1处取得极小值,;当数f(x)在x=-1处取得极小值时,f ' (x)=(2x+2a ) x e +(2x +2a x+1)x e =[2x +(2a +2)x+2a +1]x e ,∴1+2a +2+2a +2=22a +5,⇒a=±≠,∴综上所述“”是“函数f(x)在x=-1处取得极小值”的充分而不必要条件, ⇒A 正确,∴选A 。

11、已知双曲线C :22x a -22y b=1(a >0,b >0),的左右焦点分别为1F (-c ,0),2F (c ,0),又点N (-c ,232b a),若双曲线C 左支上的任意一点M 均满足|M 2F |+|MN|>4b ,则双曲线C 离心率的取值范围为( )A BC (1,3)+∞) D (1+∞) 【解析】【考点】①双曲线的定义与性质;②双曲线离心率的定义与求法;③不等式的定义与解法。

相关文档
最新文档