北京交通大学大学物理学_下_答案

合集下载

北京交通大学大学物理学_下_答案

北京交通大学大学物理学_下_答案

新教材下册习题解答(教师用) 第12章12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,长度之比是多少)?解:活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT V p V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:n k T p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量.解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12.4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米内有多少个分子? 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解:V p 1t m V p 2t ()V V -2 p 2t m ∆3V p 3t m 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 3231122109.815.2737.815.288052.02215.310--⋅⨯=⨯⨯⨯=∆-=m kg Vt t m t t t ρ 12.6真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60º夹角,每秒内有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [2.9×103Pa] 解: AN M m =Pa SNm S F p 323433230109.210022.6100.223100.110210260sin 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===--v12.7 下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 612.8 容器内贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积内的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的内能. 解:(1) 由 nkT p = 得,3252351045.215.3001038.110013.1--⨯=⨯⨯⨯==m kT p n (2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4) 12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε12.9 1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少? 解: (1) J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε12.10 试求1mol 氢气分别在0℃和500℃时的内能.解: J RT 3111067.515.27331.82525⨯=⨯⨯==ε J RT 4221061.115.77331.82525⨯=⨯⨯==ε12.11 (1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的内能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的内能之比. 解:(1) RT E H 25102132⨯⨯=- RT E eH 2310413⨯⨯=-3102=eH H E E (2) 由nkT p =, 相同的T 、p 条件,可知: e H H n n =2 kT n E H H 2522= kT n E e e H H 23=352=eH H E E 12.12 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少? 解:依题意有,340=p p 由气压公式有:m p p g RT h 301030.234ln 81.90289.027331.8ln ⨯=⨯⨯==μ 12.13 求速率大小在p v 与1.01p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆1==p W v v 01.0=∆=∆pW v v在p p v v 01.1~间隔的分子数占总分子数的百分数为()%83.0422=∆=∆=∆-W e W W W f N N W π12.14 求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为1331071.110215.27331.860.160.1--⋅⨯=⨯⨯⨯==s m M RT v 13321084.110215.27331.873.173.1--⋅⨯=⨯⨯⨯==s m M RT v 1331050.110215.27331.841.141.1--⋅⨯=⨯⨯⨯==s m M RT p v 由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一 121026.4-⋅⨯=s m o v 1221061.4-⋅⨯=s m o v ()121076.3-⋅⨯=s m opv12.15 如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线? 氧气和氢气的最概然速率各是多少? 方均根速率各是多少? 解: 由 MRT p 2=v 可知,温度相同时,p v 与M 成反比又由图可知,12p p v v > 因此 可得,21M M > 所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线()()()()2222H M O M O H p p =v v ()12500-⋅=s m O p v()()()()122222000232500-⋅===s m O H M O M H p p v v由 MRT32=v MRT p 2=v 得, p v v 232= ()12261250023-⋅=⨯=s m O v))(v f 图12-31 习题12.14图()1222450200023-⋅=⨯=s m H v12.16 设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔内的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N()0202002023200000v v v v v v v v v v v v v v a a a ad d a N =+⎪⎪⎭⎫ ⎝⎛=+=⎰⎰ 032v Na =(2)()N a a a ad d a N 12787202322023200000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0 (3) ()v v v v v d f ⎰=02022202020022022363191461211121210v v v v v v v v v v v v v m m ad Nd a Nm m =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+==⎰⎰ε 12.17 设N 个粒子系统的速度分布函数为⎩⎨⎧>>>=)0),0(d d 00v v v v v (为常量K K N v⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1)KO )(v Nf 0图12-32习题12.15图0v v (2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v vv v ===⎰⎰d d NNv00254.032383v v v v ===ππ 12.18 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v ? 解:麦克斯韦速率分布律 ()2223224v v v kT m e kT m f -⎥⎦⎤⎢⎣⎡=ππ (a ) m kT p 2=v px v v= ()2224x e x kTm x f -=π (b)221v m k =ε()k kTk ke kT mf επεε-⎪⎭⎫ ⎝⎛=23124()0112423=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-kT e kT m d f k kT k k kεπεεε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε12.19 设容器内盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时内能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,2''1'M m M m =21'''M M mm = 118m kT π=v 228m kTπ=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, VU V RT RT U p 3434==12.20 求在标准状态下一秒内分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为2.0×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n ()m nd 72521021009.21069.2100.22121--⨯=⨯⨯⨯==ππλ1331070.110215.27331.888--⋅⨯=⨯⨯⨯==s m m RT ππv 19731013.81009.21070.1--⨯=⨯⨯==s z λv12.21 在足够大的容器中,某理想气体的分子可视为d=4.0×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =3.0×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米?(设分子未与容器壁碰撞) 解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ110821006.1107.4100.5--⨯=⨯⨯==s z λv(2) λN R =h R R z N t 1182107.4100.5110018222=⨯⨯⨯⨯==⎪⎭⎫ ⎝⎛==-λυυλλ 12.22 设电子管内温度为300K ,如果要管内分子的平均自由程大于10cm 时,则应将它抽到多大压力?(分子有效直径约为3.0⨯10-8cm ) 解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<12.23 计算⑴在标准状态下,一个氮分子在1s 内与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76⨯10-8cm )解: (1) λυ=z 3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n()m nd 8252102109.51069.21076.32121--⨯=⨯⨯⨯==ππλ1231054.4102815.27331.888--⋅⨯=⨯⨯⨯==s m M RT ππυ 1982107.7109.51054.4--⨯=⨯⨯=s z (2) mol V V mol 179.04.224===ν AN N ν=132923103.8107.710022.6179.0-⨯=⨯⨯⨯⨯===s z N z N z A ν12.24 实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径.解:λυρη31=M RT πυ8= nm =ρ 其中 kT p n =, A N M m = 得:RTpM =ρ所以m MRT p RTMpMRT8355105.91032815.27331.810013.111092.1381383---⨯=⨯⨯⨯⨯⨯⨯⨯===ππηπηλpd kT nd 22221ππλ==m p kT d 108523100.3105.910013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.25 今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=M C VM λυρκ31 R C VM 25= RT pM nm ==ρ m RMT p R MRT M pM RT73531069.131.8815.273102810013.11107.235681565283---⨯=⨯⨯⨯⨯⨯⨯⨯⨯===ππκπκλpd kT nd 22221ππλ==m p kT d 107523102.21069.110013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.26 在270C 时,2mol 氮气的体积为0.1L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =0.828atm ⋅L 2⋅mol -2, b =3.05⨯10-2L ⋅mol . 解:RT pV ν=Pa VRTp 731099.4101.015.30031.82⨯=⨯⨯⨯==-ν ()RT b V V a p ννν=-⎪⎭⎫ ⎝⎛+22p 2p 0V 02V V()()PaV a b V RT p 72532221044.91.010013.1828.04101005.321.015.30031.82⨯=⨯⨯⨯-⨯⨯⨯-⨯⨯=--=--ννν 第13章13.1 (1)理想气体经过下述三种途径由初态I (2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b )等温膨胀;(c )先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的范氏气体重复以上三个过程的计算? [答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) ()00000222200V p V V p pdV A V V =-==⎰ (b) 200222ln 2ln 00V p RT dV VRTpdV A V V V V ====⎰⎰(c) ()00000220V p V V p pdV A V V =-==⎰(2) 范德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b)()000020000222222ln 22ln 000V ab V b V b V V a p V a V a RT dV V a b V RTpdV A bV b V V V V V ----⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛--==--⎰⎰(c) 0020V p pdV A V V ==⎰13.2 由如图13-40所示.一系统由状态a 沿acb 到达状态b ,吸热量80Cal ,而系统做功126J.⑴经adb 过程系统做功42J ,问有多少热量传入系统?⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J ,试问系统是吸热还是放热?热量是多少? 解:1Cal=4.2J(1) A E Q +∆= J Q 3362.480=⨯=J A Q E 210126336=-=-=∆ 所以经adb 过程传入系统的热量 J A E Q 252422101=+=+∆= (2) J A 84-=029484210<-=--=+∆=J A E Q 所以系统是放热,热量是294J13.3 如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d ,已知p a =p d =1atm ,p b =p c =2atm ,V a =1L ,V b =1.5L ,V c =3L ,V a =4L .⑴试计算气体在abcd 过程中内能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a (图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal ,求该过程中气体所做的功. 解:(1) b a →()a b m V T T C E -=∆.νa a a RT V p ν= RV p T a a a ν=b b b RT V p ν= RV p T bb b ν=()a a b b a a b b V p V p R V p R V p R E -=⎪⎭⎫ ⎝⎛-=∆2323ννν()J 231004.31010132515.1223⨯=⨯⨯-⨯⨯=- ()J p d V A b aV V 231076.010*******.02121⨯=⨯⨯⨯+⨯==-⎰J A E Q 21080.3⨯=+∆= 同理: c b →()()J V p V p E b b c c 231056.4101013255.12322323⨯=⨯⨯⨯-⨯⨯=-=∆-图13-41 习题13.3图pp 12J pdV A cbV V 231004.3105.11013252⨯=⨯⨯⨯==-⎰J A E Q 21060.7⨯=+∆=d c →()()J V p V p E c c d d 231004.31010132532412323⨯-=⨯⨯⨯-⨯⨯=-=∆- ()J pdV A d cV V 231052.1101013252121⨯=⨯⨯+⨯==-⎰J A E Q 21052.1⨯-=+∆=J E 21056.4⨯=∆总 J A 21032.5⨯=总 J Q 21088.9⨯=总(2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- J pdV A adV V 231004.3103101325⨯-=⨯⨯-==-⎰J A E Q 21060.7⨯-=+∆=(3) c a →()J E 221060.71056.404.3⨯=⨯+=∆J E Q A 221019.31060.72.4257⨯=⨯-⨯=∆-=13.4 如图13-42所示.一定质量的氧气在状态A 时,V 1=3L ,p 1=8.2×105Pa ,在状态B时V 2=4.5L ,p 2=6×105Pa .分别计算气体在下列过程吸收的热量,完成的功和内能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程C A → ()()35103102.862525-⨯⨯⨯-⨯=-=∆A A C C V p V p EJ 31065.1⨯-=J A 0=J Q 31065.1⨯-=B C → ()()J V p V p E C C B B 3531025.21061035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 335122109.01035.4106⨯=⨯-⨯⨯=-=- J Q 31015.3⨯=图13-42 习题13,4图J E 3106.0⨯=∆总 J A 3109.0⨯=总 J Q 3105.1⨯=总(2) ADB 过程D A →()()J V p V p E A A D D 35310075.3102.81035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 3351211023.11035.4102.8⨯=⨯-⨯⨯=-=-J Q 310305.4⨯=B D → ()()J V p V p E D D B B 33510475.2105.4102.862525⨯-=⨯⨯⨯-⨯=-=∆-J A 0=J Q 310475.2⨯-=J E 3106.0⨯=∆总 J A 31023.1⨯=总 J Q 31083.1⨯=总13.5压强为p =1.01×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量?(2) 如加热时分别压强不变需要多少热量? [答案: Q V =683J; Q p =957J]解:(1) RT pV ν= RTpV=ν ()J R RT pV T C E m V 6901003000082.01001.125300400255.=⨯⨯⨯⨯=-=∆=∆νJE Q V 690=∆=(2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 13.6 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么?氢气的温度变为多少?(2)若温度不变,问此热量变为什么?氢气的压强及体积各变为多少?(3)若压强不变, 问此热量变为什么? 氢气的温度及体积各变为多少?[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =281.6K; V 2=0.046 m 3] 解:(1) 全部转化为内能 T C Q m V V ∆=.ν K R C Q T m V 12252500.=⨯==∆ν K T 15.2851215.2732=+=(2) 全部转化为对外界做功 12lnV V RT Q T ν= 12V e V RTQ T ν= 3310448.0104.222m V =⨯⨯=-3205.0m V =2211V p V p = Pa V V p p 4521121007.905.00448.010013.1⨯=⨯⨯==(3) 一部分用于对外做功,一部分用于内能增加 T C Q m p p ∆=.νK R C Q T mp p6.8272500.=⨯==∆ν K T 75.2816.815.2732=+=2211T V T V = 32112046.075.28115.2730448.0m T T V V =⨯==13.7 一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低? [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RTV V c ν=2RT V cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低13.8 1mol 氢,在压强为1.0×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C .试分别计算以上两种过程中吸收的热量、气体做的功和内能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,∆U =1246J]解:(1) 定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ 等温过程 J E 0=∆ ()J RT V V RT Q A T 16.20342ln 8015.27331.82ln ln12=⨯+⨯==== J Q 66.3280=总 J A 16.2034=总 J E 50.1246=∆总 (2) 等温过程J E 0=∆J RT Q A T 56.16882ln 15.29331.82ln =⨯⨯===定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ J Q 06.2935=总 J A 56.1688=总 J E 50.1246=∆总 13.9 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= T R R dT c RT T c T R pdV T C Q m V ∆⎪⎭⎫ ⎝⎛+=+∆=+∆=⎰⎰223223.νννν 则可得,R T Q C m 27=∆=ν13.10 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明γ=--()()p p V V V p 100100解: 过程1为定容过程 V 不变,()01T T C T C Q V V -=∆=νν由理想气体状态方程得, 000RT V p ν= R V p T ν000=101RT V p ν= RV p T ν011=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,()02T T C T C Q p p -=∆=νν由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得, ()()001001p V V V p p C C Vp --==γ13.11气缸内有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍?若为双原子理想气体,又为几倍?[答案:1.26;1.15] 解:由理想气体绝热方程 常量=-T V 1γ 得,212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T 其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T1p 单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυ13.12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热 ()121T T C Q p -=ν等压过程CD 放热 ()432T T C Q p -=ν BC 、DA 是绝热过程 0=Q 124312111T T T T Q Q Q A---=-==η 利用绝热方程 常量=--γγT p 1 得,γγγγ----=312211T p T p 31122T p p T γγ--⎪⎪⎭⎫⎝⎛=γγγγ----=412111T p T p 41121T p p T γγ--⎪⎪⎭⎫⎝⎛=2311211T T p p -=⎪⎪⎭⎫⎝⎛-=-γγη 13.13设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热 ()a b m V T T C Q -=.1νa c →为等压压缩过程, 放热()a c m p T T C Q -=.2ν2 1图13-45习题13.14狄赛尔循环()()a b m V a c m p T T C T T C Q Q ---=-=..1211η 利用理想气体状态方程 RT pV ν=, 得()()222111V p V p RV p V p R T T a a b b a b -=-=-νν 循环效率为 ()()1111212122212212---=---=p p V V V p V p V p V p γγη 13.14 有一种柴油机的循环叫做狄赛尔循环,如图13-45所示.其中BC 为绝热压缩过程,DE 为绝热膨胀过程,CD 为等压膨胀过程,EB 为等容冷却过程,试证明此循环的效率为⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη解:CD 为等压膨胀过程, 吸热 ()C D p T T C Q -=ν1EB 为等容冷却过程, 放热 ()B E V T T C Q -=ν2 循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得()B B E E B E V p V p R T T -=-ν1()C C D D C D V p V p RT T -=-ν1()()2'11111V V p p p V V p V p V p V p C B E C C D D B B E E ---=---=γγη 利用绝热方程 常量=γpV , 得γγE E D D V p V p = E D p V V p γ⎪⎭⎫ ⎝⎛='1()()221211V p V p RV p V p R T T a a c c a c -=-=-ννγγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫ ⎝⎛=2'V V p p B E()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=-111111111112'1212'2'122'1V V V V V V V V V V p p p p V V p p p p V B C B EB C B E γγγγγη 13.15 1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =1.24×103J,Q 2=4.01×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=13.16 1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及内能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得, 111RT V p =222RT V p = 又由图可知,11V p =, 22V p =121RT V= 11RT V =1222RT V = 122RT V =22V V =()J R T T C E V 5.62323002512=⨯=-=∆ ()J RT V V VdV pdV A V V V v 5.12462121121222121==-===⎰⎰J A E Q 7479=+∆= 吸热32→O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 13322223232--===⎰⎰γγγV p V p VdVV p pdV A V V V V γγ3322V p V p = 2323p VV p γ⎪⎪⎭⎫ ⎝⎛= J RT V V V p VV V p A 5.62321578212182128157122122223222=-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--γγγγ13→0=∆E A Q =J V V RT A 51848ln 30031.8ln131-=⨯⨯-=-= J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η *13.17 0.1mol 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L , V B =3L ,p A =3atm .(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热?证明Q CB =0.能否由此说从C 到B 的每个微小过程都有δQ =0? 解:(1) 由理想气体状态方程, 得 A A A RT V p ν= B B B RT V p ν=又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E νp (atm)图13-47 习题13.17图J pdV A 25310052.410013.11022221⨯=⨯⨯⨯⎪⎭⎫⎝⎛+⨯⨯==-⎰J A Q 210052.4⨯==(3) 由理想气体状态方程 RT pV ν=, 得R pV T ν=又由图可知: 4+-=V p 即 ()V V R T 412+-=ν 由极值条件:0=dVdT, 得 042=+-V即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>A0>+∆=A E Q 吸热dA dE dQ +=()()dV V V RC dT C dE VV 63421+-=+-==ννν ()dV V pdV dA 4+-==()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q LLCB但不能说从C 到B 的每个微小过程都有0=Q δ13.18一台家用冰箱放在气温为300K 的房间内,做—盒-13℃的冰块需从冷冻室中吸出 2.09×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以2.09×102J·s -1的速率取出热量,求所要求的电功率是多少瓦? (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==abcpVOabcdOp 代入数据得 5.6260300260=-=eJ e Q A 4521022.35.61009.2⨯=⨯==(2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯== 13.19 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少?[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 ()%2.33011111=+=+=+=w A w A η13.20根据热力学第二定律证明: (1)两条绝热线不能相交;(2) 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证13.21一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少?空气的熵变是多少?总熵变是多少?[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q112165300373ln 22.4180ln 21-⋅-=⨯⨯-====∆⎰⎰K J T T mc dT T mc T dQ S T T 水 ()122121853007322.4180-⋅=⨯⨯=-===∆⎰K J T T T mc T Q T dQ S 空气 120165185-⋅=-=∆+∆=∆K J S S S 空气水总13.22 1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =] 解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰13.23 一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln Ω; ⑵n =0状态与n =N /2状态之间的熵变是多少? ⑶如果N=6⨯1023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛--NN n N k eN k n W k S A NN n A 222222ln2ln ln 2(2)熵的变化:k N NN N k N k S S S A AN 2222ln 2ln202=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯--=-=∆ (3) 23106⨯=N 时, 熵差为1232314.421038.1106--⋅=⨯⨯⨯=∆K J S第14章14.1 作简谐运动的质点,速度最大值为3cm/s ,振幅A =2cm ,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得2/20.02/0.03 4.2m T A s ππ==⨯⨯=v(2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.021.5ms Aω-===v ,所以有cos()0.02cos(1.5/2)x A t t ωϕπ=+=-14.2 一水平弹簧振子的振幅A =2cm,周期T =0.50s.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =-1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-14.3 设一物体沿x 轴作简谐振动,振幅为12cm ,周期为2.0s ;在t =0时位移为6.0cm ,且向x 轴正方向运动.试求:(1)初相位;(2)t =0.5s 时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->00sin 03πϕϕ∴<=-(2) 12cos()()0.53x t cm t s ππ=-=时0.5t s x cm ==10.52220.512sin()6312cos()3t s t st cm s a t cm sπππππππ-=-==--=-⋅=--=-⋅v(3) 12cos x ϕ=)习题14.3图2A当6x cm =-时1cos 2ϕ=-∵0sin 2ϕ<∴=v12212sin 65566cm s a x cm t t sπϕωππϕϕωωπ-=-=-⋅=-=∆∆=⋅∆∆===v 14.4 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)c o s (1φω+=t A x ,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。

大学物理课后习题答案(北邮第三版)下

大学物理课后习题答案(北邮第三版)下

大学物理习题及解答习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷20220)33(π4130cos π412a q q a q '=︒εε解得q q 33-='(2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r qE πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解:20π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S qE 0ε=,所以f=Sq2ε.试问这两种说法对吗?为什么?f到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqEε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为SqE2ε=,另一板受它的作用力SqSqqf222εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l qpϖϖ=,场点到偶极子中心O点的距离为r,矢量rϖ与lϖ的夹角为θ,(见题8-5图),且lr>>.试证P点的场强E在r方向上的分量r E和垂直于r的分量θE 分别为rE=32cosrpπεθ, θE=34sinrpπεθ证: 如题8-5所示,将pϖ分解为与rϖ平行的分量θsinp和垂直于rϖ的分量θsinp.∵lr>>∴场点P在r方向场强分量3π2cosrpErεθ=垂直于r方向,即θ方向场强分量30π4sinrpEεθ=题8-5图题8-6图8-6 长l=15.0cm的直导线AB上均匀地分布着线密度λ=5.0x10-9C·m-1的正电荷.试求:(1)在导线的延长线上与导线B端相距1a=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距2d=5.0cm 处Q点的场强.解:如题8-6图所示(1)在带电直线上取线元x d,其上电量q d在P点产生场强为2)(dπ41dxaxEP-=λε222)(dπ4dxaxEEllPP-==⎰⎰-ελ]2121[π4lala+--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=lQx E 0d ,即QE ϖ只有y 分量,∵22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d ll x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y∴REExπ2ελ==,方向沿x轴正向.8-8 均匀带电的细线弯成正方形,边长为l,总电量为q.(1)求这正方形轴线上离中心为r 处的场强E;(2)证明:在lr>>处,它相当于点电荷q产生的场强E.解: 如8-8图示,正方形一条边上电荷4q在P点产生物强P Eϖd方向如图,大小为()4π4coscosd2221lrEP+-=εθθλ∵22cos221lrl+=θ12coscosθθ-=∴24π4d2222lrllrEP++=ελPEϖd在垂直于平面上的分量βcosddPEE=⊥∴424π4d222222lrrlrlrlE+++=⊥ελ题8-8图由于对称性,P点场强沿OP方向,大小为2)4(π44d42222lrlrlrEEP++=⨯=⊥ελ∵lq4=λ∴2)4(π42222lrlrqrEP++=ε方向沿OP8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该平面轴线上的A 点处,求:通过圆平面的电通量.(x Rarctan=α)解: (1)由高斯定理0d εq S E s⎰=⋅ϖϖ 立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴)(π42200x R Sq +=Φε02εq=[221x R x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r S ααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ,02π4ε∑=qr E当5=r cm 时,0=∑q ,=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r -∴()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则rlE S E Sπ2d =⋅⎰ϖϖ对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴r E 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, nE ϖϖ)(21210σσε-= 1σ面外, nE ϖϖ)(21210σσε+-=2σ面外, nE ϖϖ)(21210σσε+=n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ϖ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=ϖ∴ O 点电场'd 33030OO r E ερ=ϖ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ(如题8-13(b)图)则03ερrE PO ϖϖ=,03ερr E O P '-='ϖϖ,∴0003'3)(3ερερερd OO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯= ∴ qlE pE M ==max代入数字 4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解:⎰⎰==⋅=2221212021π4π4d d r r r r q q r r q q r F A εεϖϖ)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=∴R qq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sinπ-] R 0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强r E 0π2ελ=电子受力大小r e eE F e 0π2ελ==∴ r v mre 20π2=ελ 得1320105.12π2-⨯==e mv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷r qU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量.(2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qx i x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q p ϖϖ=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-=30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d =∴ 2d d 21===AC ABAB AC E E σσ且 1σ+2σS q A=得,32S q A=σ S q A 321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εεϖϖ(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:π4π42020=-=R qR qU εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q '(电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21='外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+R qR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电qq 43=''∴ 此时小球1与小球2间相互作用力0220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力0294π432322F r qq F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得S q261==σσ S qd U 2032-=-=εσσ S qd U 2054+=-=εσσ所以CB 间电场S q d U E 00422εεσ+== )2d (212d 02S q U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理∑⎰=⋅qS D Sϖϖd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内;介质外)(2R r <场强303π4,π4r r Q E r Qr D εϖϖϖ==外 (2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞ϖϖ外介质内)(21R r R <<电势rd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内2020π4)11(π4R Q R rqr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势rd r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D ϖϖ得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21UE E ==∴ r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑∴rl Q D π2=(1)电场能量密度22222π82l r Q D w εε== 薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力为零,没有加速度.(2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C +=其上电荷123Q Q =∴355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r rQ E εϖϖ=3R r >时 302π4r rQ E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量)111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E εϖϖ=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcd μϖϖ ∴ 21B B ρϖ= (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处则02)1.0(220=-+rIr I πμπμ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理 I(力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 I(力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 I-(力学、相对论、电磁学)_北京交通大学中国大学mooc 课后章节答案期末考试题库2023年1.如图所示,一斜面固定在卡车上,一物块置于该斜面上。

在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动。

此时斜面对物块的摩擦力的冲量的方向[ ]。

【图片】参考答案:沿斜面向上或向下均有可能2.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的且固定在地面上,物体在从A至C的下滑过程中,下面哪个说法是正确的?[ ]【图片】参考答案:轨道支持力的大小不断增加3.一个质点在某一运动过程中,所受合力的冲量为零,则[ ]。

参考答案:质点的动量的增量为零_质点的动量不一定守恒4.关于质点系内各质点间相互作用的内力做功问题,以下说法中正确的是[ ]。

参考答案:一对内力所做的功之和一般不为零,但不排斥为零的情况5.下列说法中正确的是[ ]。

参考答案:系统内力不改变系统的动量,但内力可以改变系统的动能6.静止在原点处的某质点在几个力作用下沿着曲线【图片】运动。

若其中一个力为【图片】,则质点从O点运动到【图片】点的过程中,力【图片】所做的功为[ ]。

参考答案:12J7.质量为m=0.01kg的质点在xOy平面内运动,其运动方程为【图片】,则在t=0 到t=2s 时间内,合力对其所做的功为[ ]。

参考答案:2J8.如图所示,质量为M半径为R的圆弧形槽D置于光滑水平面上。

开始时质量为m的物体C与弧形槽D均静止,物体 C 由圆弧顶点 a 处下滑到底端 b 处的过程中,分别以地面和槽为参考系,M与m之间一对支持力所做功之和分别为[ ]。

【图片】参考答案:=0;=09.对质点系有以下几种说法:① 质点系总动量的改变与内力无关;② 质点系总动能的改变与内力无关;③ 质点系机械能的改变与保守内力无关;④ 质点系总势能的改变与保守内力无关。

在上述说法中[ ]。

参考答案:①和③是正确的10.质量分别为【图片】和【图片】的两个小球,连接在劲度系数为k的轻弹簧两端,并置于光滑的水平面上,如图所示。

大学物理 交通大学下册答案

大学物理 交通大学下册答案

11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强。

解:以O 为坐标原点建立xOy 坐标,如图所示。

①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强: 有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:2002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。

或写成场强:22024O x O y E E E R λπε=+=,方向45。

11-11.一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体中挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如图所示。

求:(1)在球形空腔内,球心O '处的电场强度0E ;(2)在球体内P 点处的电场强度E ,设O '、O 、P 三点在同一直径上,且d OP =。

解:利用补偿法,可将其看成是带有电荷体密度为ρ的大球和带有电荷体密度为ρ-的小球的合成。

(1)以O 为圆心,过O '点作一个半径为d 的高斯面,根据高斯定理有:13043S E d S d ρπε⋅=⋅⎰⇒003d E ρε=,方向从O 指向O '; xyE(2)过P 点以O 为圆心,作一个半径为d 的高斯面。

大学物理(交大3版)答案(21-23章)

大学物理(交大3版)答案(21-23章)

n = k +1
v 习题 22
22-1.计算下列客体具有 10MeV 动能时的物质波波长,(1)电子; (2)质子。 解:(1) 电子高速运动,设电子的总能量可写为:= E EK + m0 c 2
2 4 = E 2 c 2 p 2 + m0 c 可得
用相对论公式,
p=
1 1 1 2 4 2 4 2 ( EK + m0 c 2 ) 2 − = E 2 − m0 c = m0 c EK + 2m0 c 2 EK c c c
E 1.6 × 10−13 = = 1.78 × 10− 30 kg c 2 (3 × 108 ) 2
P=
m=
21-6. 100 W 钨丝灯在 1800K 温度下工作。假定可视其为黑体,试计算每秒钟内,在
5000 A 到 5001 A 波长间隔内发射多少个光子?
解:设钨丝灯的发射面积为 S ,由斯特藩-玻耳兹曼定律可得辐射总功率 P = σT ⋅ S
N =
P∆λ 2π cλ −4 S ∆λ = = 5.7 ×1013 hc e e λ kT − 1

21-7.波长为 1 A 的 X 光在石墨上发生康普顿散射,如在 θ = (1)散射光的波长 λ ' ; (2)反冲电子的运动方向和动能。 解:(1)
π
2
处观察散射光。试求:
θ Δλ = λ′ − λ0 = 2 λc sin 2 ( ) 2
= λ
h = p
h = 2mE
6.63 ×10−34 = 9.1×10−15 m −27 −19 6 2 ×1.67 ×10 ×10 ×10 ×1.6 ×10
−2
A )的光子的能量、动量和质量。

最新大学物理(北邮大)答案习题9

最新大学物理(北邮大)答案习题9

大学物理(北邮大)答案习题9习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ 外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB产生 01=BBC 产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

北京交通大学物理慕课单元作业答案

北京交通大学物理慕课单元作业答案

北京交通大学物理慕课单元作业答案1、1.高速公路上沿直线高速行驶的轿车为避免事故紧急刹车:因为轿车紧急刹车,速度变化很快,所以加速度很大.[判断题] *对(正确答案)错2、司机驾车时必须系安全带,这是为了防止向前加速时惯性带来的危害[判断题] *对错(正确答案)答案解析:防止刹车时惯性带来的危害3、下列情形中,矿泉水瓶中水的质量会发生变化的是()[单选题] *A. 打开瓶盖,喝掉几口(正确答案)B. 将这瓶水放入冰箱,水温度变低C. 水结成冰,体积变大D. 宇航员将这瓶水带到太空4、人潜水的深度不能太大,这是因为大气压随着水的深度的增加而增大[判断题] *对错(正确答案)答案解析:液体压强随着水的深度的增加而增大5、原子核分裂或聚合,可以释放出巨大的能量,这种能叫做化学能[判断题] *对错(正确答案)答案解析:核能不是化学能6、关于声现象中,下列说法正确的是()[单选题]A.“闻其声而知其人”主要是根据声音的音调来判断的B.用大小不同的力先后敲击同一音叉,音叉发声的音色会不同C.公共场合要“轻声说话”指的是减小声音的响度(正确答案)D.超声波可以在真空中传播7、65.卢瑟福用α粒子(带正电)轰击金箔实验为现代原子理论打下了基础,如图线条中,可能是α粒子在该实验中的运动轨迹,能说明原子核带正电且质量较大的是()[单选题] *A. aB. bC. cD.d(正确答案)8、著名风景区百花山,远远望去云雾缭绕。

关于雾的形成,下列说法正确的是()[单选题]A. 雾是从山中冒出来的烟B. 雾是水蒸气凝华形成的小水珠C. 雾是从山中蒸发出来的水蒸气D. 雾是水蒸气液化形成的小水珠(正确答案)9、2.银行有存储贵重物品的业务,需要记录“手纹”、“眼纹”、“声纹”等,以便用自己独有的特征才能取走东西,防止盗领,这里的“声纹”主要记录的是人说话的([单选题] *A.音调B.响度C.音色(正确答案)D.三者都有10、关于光现象,下列说法正确的是()[单选题]A. 光在水中的传播速度是3×108m/sB.矫正近视眼应佩戴凸透镜C. 光的色散现象说明白光是由多种色光组成的(正确答案)D. 镜面反射遵守光的反射定律,漫反射不遵守光的反射定律11、水的温度没有达到沸点时,水是不能变为水蒸气的[判断题] *对错(正确答案)答案解析:水在任何温度下都可以蒸发变成水蒸气12、17.影视剧中,为了防止演员受伤,砸向演员的道具石头一般是用泡沫塑料制成的。

北京交通大学大学物理试卷模拟及答案

北京交通大学大学物理试卷模拟及答案

北京交通大学 大学物理Ⅰ(B )知识水平测试题模 拟 试 题 本试题共6页一、 选择题 (单项选择、每小题3分)1 (0519)对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动.2(0039)如图所示,假设物体沿着竖直面上圆弧形 轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下 面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心.(B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加.3 (0138)一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2. 如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为(A) 2. (B) 3.(C) 2. (D) 3.4 (4351)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t(C) 2)/(1c tc v -⋅∆ (D) 2)/(1c t c v -⋅⋅∆5 (4169)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c .(C) (2/5) c . (D) (1/5) c .A R6 (4723)质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍.7(1001)一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 .8 (1019)在点电荷+q 的电场中,若取图中P 点 处为电势零点 , 则M 点的电势为(A) a q 04επ. (B) aq 08επ.(C) a q 04επ-. (D) aq 08επ-.9(1137)一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它下方放置一电量为q 的点电荷,如图所示,则(A) 只有当q > 0时,金属球才下移. (B) 只有当q < 0时,金属球才下移. (C) 无论q 是正是负金属球都下移. (D) 无论q 是正是负金属球都不动. 10(1226)两个完全相同的电容器C 1和C 2,串联后与电源连接.现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小. (B) C 1上的电荷大于C 2上的电荷.(C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大.11(2553)在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R 120πμ. (C) 0. (D) R 140μ.12(2658)若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出.13 (2451) 一铜条置于均匀磁场中,铜条中电子流的方向 如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速.14(2505)一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω 绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t这根铜棒两端之间的感应电动势是: (A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω. (E) B L 221ω. 15(2420)在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B 的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB 导线中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. 16 (2183) 在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明: (A) 闭合曲线L 上K E 处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念.二、 填空题1 (本题3分)(0261)一质点从静止出发沿半径R =1.0 m 的圆周运动,其角加速度随时间t 的变化规律是β =12t 2 -6t (SI),则质点的角速度ω =________________________; 切向加速度 a t =________________________.2(本题3分)(0871)质点在几个力作用下,沿曲线 j y i x r 23+= (SI) 运动,若其中一力为i x F 2= (SI) ,则该力在质点由P 1 (0,1)到P 2 (1,0)运动B × × ×的过程中所做的功为___________________.3(本题3分)(0540)一质点的角动量为k t t j t i t L)812()12(6232-++-= , 则质点在t = 1 s 时所受力矩=M _________________________________.4(本题4分)(0134)如图所示,长为L 、质量为m 的匀质细杆,可绕通过杆的端点O 并与杆垂直的水平固定轴转动.杆的另一端连接一质量为m 的小球.杆从水平位置由静止开始自由下摆,忽略轴处的摩擦,当杆转至与竖直方向成θ 角时,小球与杆的角速度ω=_______________.对O 轴的力矩M = . 角加速度β=_______________.5(本题3分)(0236)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________.6(本题2分)(4362)静止时边长为 50 cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108 m ·s -1运动时,在地面上测得它的体积是____________.7(本题3分)(1499)点电荷q 1、q 2、q 3和q 4在真空中的分布如图所示.S 为闭合曲面,则通过该闭合曲面的 电场强度通量⎰⋅S S E d =____________,式中的E 是点电荷 在闭合曲面上任一点产生的场强的矢量和.8(本题3分)(1511)一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为_______,极板上的电荷为 .m0 俯视图q 1q 39(本题3分)(2586).如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B中,且B 与导线所在平面垂直.则该载流导线bc 所受的 磁力大小为_________________.10(本题3分)(2598)氢原子中,电子绕原子核沿半径为r 的圆周运动,它等效于一个圆形电流.(设电子质量为m e ,电子电荷的绝对值为e ) . 其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩(角动量)大小L 之比=Lp m ________________. 如果外加一个磁感应强度为B 的磁场,其磁感应线与轨道平面平行,那么这个圆电流所受的磁力矩的大小M =__________________.11(本题3分)(2186)一平行板电容器,两板间为空气,极板是半径为r 的圆导体片,在充电时极板间电场强度的变化率为tE d d ,若略去边缘效应,则两极板间位移电流密度为________________;位移电流为_________________________.计算题(每题8分、共16分)1 (1540) 一圆柱形电容器,内圆柱的半径为R 1,外圆柱的半径为R 2,长为L [L >>(R 2 – R 1)],两圆柱之间充满相对介电常量为εr 的各向同性均匀电介质.(1) 求该电容器的电容; (应有必要过程)(2) 若内外圆柱单位长度上带电荷(即电荷线密度)分别为λ和-λ,求电容器储存的能量.2 (2167)一无限长直导线通有电流t e I I -=0. 一矩形导体线圈与长直导线共面放置, 其长边与导线平行, 如图所示. 试求:(1) 导线与线圈的互感系数M . (应有必要过程)(2) 矩形线圈中的感应电动势的大小与方向。

大学物理学下册答案第11章-大学物理11章答案

大学物理学下册答案第11章-大学物理11章答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载大学物理学下册答案第11章-大学物理11章答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第11章稳恒磁场习题一选择题B1B2abcdIIIll习题11-1图11-1 边长为l的正方形线圈,分别用图11-1中所示的两种方式通以电流I(其中ab、cd与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ](A),(B),(C),(D),答案:C解析:有限长直导线在空间激发的磁感应强度大小为,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计算,。

故正确答案为(C)。

习题11-2图11-2 两个载有相等电流I的半径为R的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O处的磁感应强度大小为多少? [ ](A)0 (B)(C)(D)答案:C解析:圆线圈在圆心处的磁感应强度大小为,按照右手螺旋定则判断知和的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O处的磁感应强度大小为。

11-3 如图11-3所示,在均匀磁场中,有一个半径为R的半球面S,S边线所在平面的单位法线矢量与磁感应强度的夹角为,则通过该半球面的磁通量的大小为[ ]SRBn习题11-3图(A)(B)(C)(D)答案:C解析:通过半球面的磁感应线线必通过底面,因此。

故正确答案为(C)。

IS习题11-4图11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S,当曲面S向长直导线靠近时,穿过曲面S的磁通量和面上各点的磁感应强度将如何变化?[ ](A)增大,B也增大(B)不变,B也不变(C)增大,B不变(D)不变,B增大答案:D解析:根据磁场的高斯定理,通过闭合曲面S的磁感应强度始终为0,保持不变。

大学物理下册课后答案 超全超详细

大学物理下册课后答案 超全超详细

第十二章 导体电学【例题精选】例12-1 把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示. 设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 (A) U B > U A ≠0. (B) U B > U A = 0.(C) U B = U A . (D) U B < U A . [ D ]例12-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20r RU . (D) r U 0. [ C ] *例12-3 如图所示,封闭的导体壳A 内有两个导体B 和C 。

A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是(A ) U A = UB = UC (B ) U B > U A = U C (C ) U B > U C > U A (D ) U B > U A > U C例12-4 在一个不带电的导体球壳内,先放进一个电荷为 +q 的点电荷,点电荷不与球壳内壁接触。

然后使该球壳与地接触一下,再将点电荷+q 取走。

此时,球壳的电荷为 ;电场分布的范围是 . -q 球壳外的整个空间例12-5 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d .今使A 板带电荷q A ,B 板带电荷q B ,且q A > q B .则A 板的靠近B 的一侧所带电荷为 ;两板间电势差U = .)(21B A q q - Sd q q B A 02)(ε- 例12-6 一空气平行板电容器,电容为C ,两极板间距离为d 。

充电后,两极板间相互作用力为F 。

则两极板间的电势差为 ;极板上的电荷为 。

C Fd /2 FdC 2例12-7 C 1和C 2两个电容器,其上分别标明200 pF (电容量)、500 V (耐压值) 和300 pF 、900 V .把它们串连起来在两端加上1000 V 电压,则(A) C 1被击穿,C 2不被击穿. (B) C 2被击穿,C 1不被击穿.(C) 两者都被击穿. (D) 两者都不被击穿. [ C ]ABA C Bd例12-8 半径分别为1.0 cm 与2.0 cm 的两个球形导体,各带电荷 1.0³10-8 C ,两球相距很远.若用细导线将两球相连接.求:(1) 每个球所带电荷;(2) 每个球的电势.(22/C m N 1094190⋅⨯=πε) 解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q , 则两球电势分别是 10114r q U επ=, 20224r q U επ=两球相连后电势相等 21U U =,则有 21212122112r r qr r q q r q r q +=++== 由此得到 921111067.62-⨯=+=r r qr q C 92122103.132-⨯=+=r r qr q C两球电势 310121100.64⨯=π==r q U U ε V例12-9 如图所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为 R a 、 R b 、R c .圆柱面B 上带电荷,A 和C 都接地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2.解:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差 a b R R R R BA R R r r r E U ab a bln 2d 2d 0111ελελπ=π-=⋅=⎰⎰B 、C 间电势差 b c R R R R BC R R r r r E U cb cb ln 2d 2d 0222ελελπ=π-=⋅=⎰⎰ 因U BA =U BC ,得到()()a b b c R R R R /ln /ln 21=λλ 【练习题】*12-1 设地球半径R =6.4⨯106 m ,求其电容?解:C=4πε0R=7.12³10-4F12-2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2为λ2(A) d 1 / d 2. (B) d 2 / d 1. (C) 1. (D) 2122/d d . [ B ]12-3 充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系:(A) F ∝U . (B) F ∝1/U . (C) F ∝1/U 2. (D) F ∝U 2. [ D ] 12-4 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ C ] 12-5 一导体A ,带电荷Q 1,其外包一导体壳B ,带电荷Q 2,且不与导体A 接触.试证在静电平衡时,B 的外表面带电荷为Q 1 + Q 2.证明:在导体壳内部作一包围B 的内表面的闭合面,如图.设B 内表面上带电荷Q 2′,按高斯定理,因导体内部场强E 处处为零,故0/)(d 021='+=⎰⋅εQ Q S E S∴ 12Q Q -=' 根据电荷守恒定律,设B 外表面带电荷为2Q '',则 222Q Q Q =''+' 由此可得 21222Q Q Q Q Q +='-='' 第十三章 电介质【例题精选】例13-1 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ] 例13-2 C 1和C 2两空气电容器串联起来接上电源充电。

大学物理学答案_下册_北京邮电大学

大学物理学答案_下册_北京邮电大学

大学物理习题及解答习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q aq'=︒εε解得 qq 33-='(2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r qE πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r rq E ε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d qπε,又有人说,因为f =qE ,S q E 0ε=,所以f =S q02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S qE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力SqS qqf 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p .∵ l r >>∴ 场点P 在r 方向场强分量30π2cos rp E r εθ=垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a x E E ll P P -==⎰⎰-ελ]2121[π40la l a +--=ελ)4(π220l al-=ελ用15=l cm ,9100.5-⨯=λ1mC -⋅, 5.12=a cm 代入得21074.6⨯=P E 1CN -⋅方向水平向右(2)同理 2220d d π41d +=xxE Q λε 方向如题8-6图所示由于对称性⎰=lQx E 0d ,即QE 只有y 分量,∵22222220d d d d π41d ++=xxx E Qy λε22π4d d ελ⎰==lQyQy EE ⎰-+2223222)d (d ll xx222d 4π2+=llελ以9100.5-⨯=λ1cmC -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1CN -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外则ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RRE x 000π2d sin π4ελϕϕελπ==⎰d cos π400=-=⎰ϕϕελπRE y∴RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P Ed 方向如图,大小为()4π4cos cos d 2221lrE P +-=εθθλ∵22cos 221lrl+=θ12cos cos θθ-=∴24π4d 22220l r ll r E P++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 222222lrrlrlrl E +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220lr lr lrE E P ++=⨯=⊥ελ∵l q 4=λ∴2)4(π422220lr lrqr E P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(x Rarctan=α)解: (1)由高斯定理0d εq S E s⎰=⋅ 立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量6εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量6εq e=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则024εq e=Φ,如果它包含q 所在顶点则=Φe.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R+的球冠面的电通量,球冠面积*]1)[(π22222xRxx R S +-+=∴)(π42200x RSq +=Φε02εq =[221xRx+-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=d sin π2r r S ααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理d ε∑⎰=⋅qS E s,02π4ε∑=qrE当5=r cm 时,0=∑q ,0=E8=r cm时,∑q3π4p=3(r )3内r -∴()2023π43π4rr rE ερ内-=41048.3⨯≈1CN -⋅, 方向沿半径向外.12=r cm 时,3π4∑=ρq -3(外r )内3r∴ ()420331010.4π43π4⨯≈-=rr rE ερ内外1CN -⋅沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2= 则 rlE S E S π2d =⋅⎰对(1) 1R r <0,0==∑E q(2)21R r R <<λl q =∑∴rE 0π2ελ=沿径向向外(3)2R r >0=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, nE )(21210σσε-=1σ面外,nE )(21210σσε+-=2σ面外,nE )(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1)ρ+球在O 点产生电场010=E ,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ=;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερr E PO=,3ερr E O P '-=',∴ 0003'3)(3ερερερd OO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p 在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=Mm N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r=42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题8-16图示0π41ε=OU)(=-Rq Rq 0π41ε=OU)3(RqRq -Rq0π6ε-=∴Rq q U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==RR E E yR0π4ελ=[)2sin(π-2sinπ-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d RRxxxxU ελελελ同理CD 产生2ln π402ελ=U半圆环产生034π4πελελ==RR U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小re eE F e 0π2ελ==∴rvmre 20π2=ελ得1320105.12π2-⨯==emvελ1mC -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势22π4xRq U +=ε∴()ixR qx i x U E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4rql l l r q U εθθθε=+--=∴30π2cos rp rU E r εθ=∂∂-=30π4sin 1rp U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即2222040321=---εσεσεσεσ又∵+2σ03=σ∴ 1σ4σ= 说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ ABACUU=,即∴ABAB AC AC E E dd =∴2dd 21===ACAB ABAC E E σσ且1σ+2σS q A =得,32Sq A =σS q A 321=σ而7110232-⨯-=-=-=A C q S q σCC 10172-⨯-=-=S q B σ (2)31103.2dd⨯===ACACAC AE UεσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R Rq rr q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε (3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q '(电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q UAεεε得 qR R q 21='外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q UBεεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq Rq εε得-='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知2020π4rqF ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0220183π483π4"'2F rqrq q F =-=εε(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力0294π432322F rq qF ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U=0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U UAB=可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσdU Sq S q dU U C SS q B A解得S q261==σσS q d U2032-=-=εσσS q dU 2054+=-=εσσ所以CB 间电场S qdU E 00422εεσ+==)2d (212d 02Sq U E U UCBCε+===注意:因为C 片带电,所以2UUC≠,若C 片不带电,显然2U U C=8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rr Q E r r Q D r εε==内;介质外)(2R r <场强303π4,π4rr Q E rQr D ε ==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R QR rq rεεε+-=)11(π420R rQ r r-+=εεε(3)金属球的电势rd r d 221⋅+⋅=⎰⎰∞R R R E E U 外内 ⎰⎰∞+=222020π44πdr R R Rr rQdrrQ εεε)11(π4210R R Q r r-+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D 得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21U E E ==∴rD D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R=,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量;rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内(3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl Q D π2=(1)电场能量密度22222π82lr QDw εε==薄壳中rl r Q rl r l r Qw W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222lnπ4π4d d R R VR R lQrlr Q W W εε(3)电容:∵C QW 22=∴)/ln(π22122R R l WQC ε==*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1)1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε=但2q 处于金属球壳中心,它受合力为零,没有加速度.(2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μ F .1C 上电压为50V .求:ABU.解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C +=其上电荷123Q Q =∴355025231123232⨯===C U C C Q U86)35251(5021=+=+=UU UABV8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1)1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C UU ,而100021=+UU∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021UU U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失WW W -=∆0)22()2121(2221212221C q C q UC UC +-+=221212UC C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求: (1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε=3R r >时302π4rr Q E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R rr rQ W εε⎰-==21)11(π8π8d 212202R R R R Qrr Q εε在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Qr r r Q W εεε∴ 总能量)111(π8321221R R R QW W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rr Q E ε=,02=W∴4210211001.1)11(π8-⨯=-==R R QW W ε J(3)电容器电容 )11/(π422102R R QW C -==ε121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcd μ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用. 9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ 外,与⎰⎰=⋅=⋅L l l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒RI R I B ,方向⊥向里∴)6231(203210ππμ+-=++=RIB B B B ,方向⊥向里.9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

奥鹏[北京交通大学]《大学物理(力学和热学部分)》在线作业二-0004满分参考5

奥鹏[北京交通大学]《大学物理(力学和热学部分)》在线作业二-0004满分参考5

北交《大学物理(力学和热学部分)》在线作业二-0004
一质点在光滑平面上,在外力作用下沿某一曲线运动,若突然将外力撤消,则该质点将作()
A:匀速率曲线运动
B:匀速直线运动
C:停止运动
D:减速运动
参考选项:B
某质点作直线运动的运动学方程为x=3t-5t^3 + 6 (SI),则该质点作()
A:匀加速直线运动,加速度沿x轴正方向
B:匀加速直线运动,加速度沿x轴负方向
C:变加速直线运动,加速度沿x轴正方向
D:变加速直线运动,加速度沿x轴负方向
参考选项:D
二相同物体,一从光滑斜面上由静止开始滑下;另一同时从等高度由静止自由落下,二物体到达地面的先后次序是()
A:同时到达
B:自由下落的物体先达
C:沿斜面下滑的物体先到达
D:不确定
参考选项:B
一辆车沿弯曲公路行驶,作用在车辆上的合力的方向指向()
A:道路外侧
B:道路内侧
C:道路中间
D:无法判断
参考选项:B
质点做匀速圆周运动时,其速度和加速度的变化情况为()
A:速度不变,加速度在变化
B:二者在变化
C:加速度不变,速度在变化
D:二者都不变
参考选项:B
一定质量的理想气体贮存在容积固定的容器内,现使气体的压强增大为原来的两倍,则()
A:内能和温度都不变
B:内能变为原来的两倍,温度变为原来的四倍
C:内能和温度都变为原来的两倍
D:内能变为原来的四倍,温度变为原来的两倍
参考选项:C
1。

新版北京交通大学物理学考研经验考研参考书考研真题

新版北京交通大学物理学考研经验考研参考书考研真题

在决定考研的那一刻,我已预料到这一年将是怎样的一年,我做好了全身心地准备和精力来应对这一年枯燥、乏味、重复、单调的机械式生活。

可是虽然如此,我实在是一个有血有肉的人呐,面对诱惑和惰性,甚至几次妥协,妥协之后又陷入对自己深深的自责愧疚当中。

这种情绪反反复复,曾几度崩溃。

所以在此想要跟各位讲,心态方面要调整好,不要像我一样使自己陷入极端的情绪当中,这样无论是对自己正常生活还是考研复习都是非常不利的。

所以我想把这一年的经历写下来,用以告慰我在去年饱受折磨的心脏和躯体。

告诉它们今年我终于拿到了心仪学校的录取通知书,你们的付出和忍耐也终于可以扬眉了。

知道自己成功上岸的那一刻心情是极度开心的,所有心酸泪水,一扫而空,只剩下满心欢喜和对未来的向往。

首先非常想对大家讲的是,大家选择考研的这个决定实在是太正确了。

非常鼓励大家做这个决定,手握通知书,对未来充满着信念的现在的我尤其这样认为。

当然不是说除了考研就没有了别的出路。

只不过个人感觉考研这条路走的比较方便,流程也比较清晰。

没有太大的不稳定性,顶多是考上,考不上的问题。

而考得上考不上这个主观能动性太强了,就是说,自己决定自己的前途。

所以下面便是我这一年来积攒的所有干货,希望可以对大家有一点点小小的帮助。

由于想讲的实在比较多,所以篇幅较长,希望大家可以耐心看完。

文章结尾会附上我自己的学习资料,大家可以自取。

北京交通大学物理学的初试科目为:(101)思想政治理论和(201)英语一(629)普通物理和(876)光学参考书目为:1.《大学物理学》上册和下册,第二版,高等教育出版社,编者:吴柳2.《光学》北京大学出版社赵凯华编著先聊聊英语单词部分:我个人认为不背的单词再怎么看视频也没用,背单词没捷径。

你想又懒又快捷的提升单词量,没门。

(仅供个人选择)我建议用木糖英语单词闪电版,一天200个,用艾宾浩斯曲线一个月能记完,每天记单词需要1小时(还是蛮痛苦的,但总比看真题时啥也看不懂要舒服多)。

大学物理学(下册)习题答案详解

大学物理学(下册)习题答案详解

第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。

2020年北京北方交通大学高一物理下学期期末试卷含解析

2020年北京北方交通大学高一物理下学期期末试卷含解析

2020年北京北方交通大学高一物理下学期期末试卷含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 在空中飞行了十多年的“和平号”航天站已失去动力,由于受大气阻力作用,其绕地球做匀速圆周运动的半径将逐渐减小,在此过程中下列说法正确的是() A.航天站的速度将加大B.航天站绕地球旋转的周期加大C.航天站的向心加速度加大D.航天站的角速度将增大参考答案:ACD2. 如图所示,AB=3AE,AC=2AE, AD=1.5AE,若把物体从斜面底部沿AB、AC、AD三个斜面匀速拉到顶端A时,(不计摩擦)则( )A.沿着AB用的拉力最小,做功最多B.沿着AC用的拉力最小,做功最多C.沿着AD用的拉力最小,做功也最少D.沿着三个斜面用的拉力不相等,做功一样多参考答案:D3. 一辆汽车停在水平地面上,一个人用力水平推车,但车仍然静止,表明A. 推力越大,静摩擦力越小B. 推力越大,静摩擦力越大,推力与静摩擦力平衡C. 推力大小变化时,静摩擦力大小不变D. 推力小于静摩擦力参考答案:B4. 如图所示,物体A和B的质量均为m,且分别用轻绳连接跨过定滑轮(不计绳子与滑轮、滑轮与轴之间的摩擦)。

当用水平变力F拉物体B沿水平方向向右做匀速直线运动的过程中()A.物体A也做匀速直线运动 B.绳子拉力始终大于物体A所受的重力C.物体A的速度小于物体B的速度 D.地面对物体B的支持力逐渐增大参考答案:BCD5. (单选)地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星相对自己静止不动,则这两位观察者的位置以及两颗人造地球卫星到地球中心的距离可能是()A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍C.两人都在赤道上,两卫星到地球中心的距离一定相等D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍参考答案:考点:同步卫星.专题:人造卫星问题.分析:地球同步卫星即地球同步轨道卫星,又称对地静止卫星,是运行在地球同步轨道上的人造卫星,星距离地球的高度约为36000 km,卫星的运行方向与地球自转方向相同、运行轨道为位于地球赤道平面上圆形轨道、运行周期与地球自转一周的时间相等,即23时56分4秒,卫星在轨道上的绕行速度约为3.1公里/秒,其运行角速度等于地球自转的角速度.解答:解:在夜晚都发现自己正上方有一颗人造地球卫星相对自己静止不动,说明此卫星为地球同步卫星,运行轨道为位于地球赤道平面上圆形轨道,距离地球的高度约为36000 km,所以两个人都在赤道上,两卫星到地球中心的距离一定相等.故选C.点评:本题考查了地球卫星轨道相关知识点,地球卫星围绕地球做匀速圆周运动,圆心是地球的地心,万有引力提供向心力,轨道的中心一定是地球的球心;同步卫星有四个“定”:定轨道、定高度、定速度、定周期.本题难度不大,属于基础题.二、填空题:本题共8小题,每小题2分,共计16分6. 人造卫星绕地球做匀速圆周运动时处于完全失重状态,所以在这种环境中已无法用天平称量物体的质量。

北京交通大学 大学物理Ⅱ(B)试卷及答案

北京交通大学 大学物理Ⅱ(B)试卷及答案

北京交通大学 大学物理Ⅱ(B )知识水平测试题2003级 2004-2005第一学期 2004/12/31答卷时间:9:00—10:40注意事项 : 1.闭卷测试,可带一张A4纸 2.可以使用无存储功能计算器. 3.请将全部答题内容写在答题卷上,写在本试题卷将被视为无效! 一、 单项选择题(每小题3分,共36分)1.设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为(A) 1 . (B) 1/2 .(C) 1/3 . (D) 1/4 .2.理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是: (A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.3.1 mol 理想气体经过一等压过程,温度变为原来的两倍,设该气体的定压摩尔热容为C p ,则此过程中气体熵的增量为: (A)p C 21. (B) 2C p . (C) 21ln p C . (D) C p ln2.4.一简谐振动曲线如图所示.则振动周期是 (A) 2.00 s . (B) 2.20 s . (C) 2.40 s . (D) 2.60 s .5. 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4. (B) E 1/2. (C) 2E 1. (D) 4 E 1 6.S 1和S 2是波长均为λ 的两个相干波的波源,相距3λ /4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上的S 1外侧和S 2外侧两区域中的各点,合成波的强度分别是 (A) 4I 0,4I 0. (B) 0,0. (C) 0,4I 0 . (D) 4I 0,0.7. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.8. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹.(B) P 点处为暗条纹. (C) 不能确定P 点处是明条纹还是暗条纹. (D) 无干涉条纹.9.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为: (A) 光强单调增加.(B) 光强先增加,后又减小至零. (C) 光强先增加,后减小,再增加.(D) 光强先增加,然后减小,再增加,再减小至零.10.康普顿效应的主要特点是 (A) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关. (B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关.(C) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关.11.若α 粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是(A) )2/(eRB h . (B) )/(eRB h . (C) )2/(1eRBh . (D) )/(1eRBh . 12.粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x <a ,x > a 三个区域发现粒子的概率,则有(A) ρ1 ≠ 0,ρ2 = 0, ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1= 0, ρ2≠ 0, ρ3 ≠ 0.x OU (x )Ua二、 填空题(共44分)1(本题4分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度数为i ,则当温度为T 时, 一个分子的平均动能为________. 一摩尔氧气分子的转动动能总和为________.2.(本题3分)一定质量的理想气体,先经过等体过程使其热力学温度升高一倍,再经过等温过程使其体积膨胀为原来的两倍,则分子的平均自由程变为原来的____倍. 3.(本题3分)如图所示的是两个简谐振动的振动曲线,它们合成的余弦振动的初相为__________________.4.(本题5分)如图所示,一平面简谐波沿Ox 轴负方向传播,波长为λ ,若P 处质点的振动方程是)212cos(π+π=t A y P ν,则该波的表达式是_______________________________;P 处质点的振动速度表达式是_____________________。

大学物理(交大3版)答案(11-15章)

大学物理(交大3版)答案(11-15章)

第11章11-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设m 03.0m,04.0==AC BC ).解:1q 在C 点产生的场强 20114ACq E πε=2q 在C 点产生的场强 22204q E BC πε=C 点的合场强 22412 3.2410VE E E m=+=⨯ 方向如图11-2. 用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向.解: 棒长 m d r l 12.32=-=π电荷线密度19100.1--⋅⨯==m C l q λ若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强。

由于r d ,该小段可看成点电荷 C d q 11100.2-⨯=='λ圆心处场强 1211920072.0)5.0(100.2100.94--⋅=⨯⨯⨯='=m V r q E πε 方向由缝隙指向圆心处11-3. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:设O 为坐标原点,水平方向为x 轴,竖直方向为y 轴 半无限长导线∞A 在O 点的场强 )(40j i E 1-=Rπελ半无限长导线∞B 在O 点的场强 )(40j i E 2+-=RπελAB 圆弧在O 点的场强 )(40j i E 3+=Rπελ总场强 j)i E E E E 321+=++=(40Rπελ11-4. 带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 解:R d RdldE 00204sin 4πεϕϕλπελ==ϕcos dE dE x = 考虑到对称性 0=x Eϕsin dE dE y = RR d dE E y 00002084sin sin ελπεϕϕλϕπ===⎰⎰方向沿y 轴负向11-5. 一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度.解:把球面分割成许多球带,球带所带电荷 dl r dq σπ2= 2322023220)(42)(4r x dl rx r x xdq dE +=+=πεσππεθc o sR x = θs i n R r = θRd dl = 21sin 2224E d i πσσθθεε==⎰11-6. 图示一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ.求板内、外的场强分布,并画出场强随坐标x 变化的图线,即x E -图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板).解:在平板内作一个被平板的中间面垂直平分的闭合圆柱面1S 为高斯面S E d S ∆=∙⎰21S E S x q ∆=∑ρ2ερxE =)2(d x ≤同理可得板外一点场强的大小 02ερd E =()2dx >11-7. 设电荷体密度沿x 轴方向按余弦规律x cos 0ρρ=分布在整个空间,式中0ρ为恒量.求空间的场强分布.解:过坐标x ±处作与x 轴垂直的两平面S ,用与x 轴平行的侧面将之封闭,构成高斯面。

大学物理学习指南答案-下册

大学物理学习指南答案-下册

第11章 静电场【例题精选】例11-1 (见书上) 例11-2()22300(428qd qdR R d R πεππε-或),从O 点指向缺口中心点例11-3 D 例11-4 D 例11-5 B例11-6 0/2σε, 向右; 03/2σε, 向右; 0/2σε, 向左 例11-7 (见书上)【练习题】11-1 B 11-2 0/d λε,220(4)d R d λπε-,沿矢径OP11-3 0/Q ε,0205180Q Rπε和r11-4 B11-5 【解】(1)作与球体同心,半径r <R 的高斯球面S 1。

球体内电荷密度ρ随r 变化,因此,球面S 1内包含的电荷214()d ro Q r r r πρ=⎰。

已知的电荷体密度ρ(r ) =kr ,根据高斯定理:11d s o Q Φε=⋅=⎰E S , 230144d rr o E r k r r ππε⋅=⎰,可求得球体内任意点的场强:24r o r E k ε=,r <R 。

(2)作与球体同心、半径r >R 的球面S 2,因R 外电荷为零,故S 2内的电荷Q 2=Q 总,根据高斯定理:1231d 44d Rrs oEr k r r Φππε=⋅=⋅=⎰⎰E S ,得球体外任意一点的场强:4204r R E k r ε=,r >R 。

11-6 0/(2)σε-,03/(2)σε11-7 【解】两同轴圆柱面带有等量异号电荷,则内外电荷线密度分别为λ和-λ。

电场分布具有轴对称性。

(1)建立半径1r R <的同轴高斯柱面,设高为h 。

高斯柱面内无电荷分布。

1d 20SE rh π⋅=⋅=⎰E S ,则,10E=(1r R <)(2)建立12R r R <<的同轴高斯柱面,设高为h 。

高斯柱面内包含电荷。

柱面的上下底面无电场分布,电场均匀分布在侧面。

20d 2Sh E rh λπε⋅=⋅=⎰E S ,则,202E rλπε=(12R r R <<) (3)建立半径2r R >的同轴高斯柱面,设高为h 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新教材下册习题解答(教师用) 第12章12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,长度之比是多少)?解: 活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT V p V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:nkT p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解:221V p V p = (1) ()()RT MM MV V p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RTM M V p V p p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12.4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米内有多少个分子? 解: 由nkT p = 得,12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解: 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 12.6真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60º夹角,每秒内有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [2.9×103Pa] 解: AN M m =12.7 下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 612.8 容器内贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积内的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的内能. 解:(1) 由 nkT p = 得,(2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4) 12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε12.9 1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少? 解: (1) J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε12.10 试求1mol 氢气分别在0℃和500℃时的内能. 解: J RT 3111067.515.27331.82525⨯=⨯⨯==ε 12.11 (1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的内能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的内能之比. 解:(1) RT E H 25102132⨯⨯=- RT E e H 2310413⨯⨯=- (2) 由nkT p =, 相同的T 、p 条件,可知:12.12 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少? 解:依题意有,340=p p 由气压公式有:12.13 求速率大小在p v 与1.01p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆在p p v v 01.1~间隔的分子数占总分子数的百分数为12.14 求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一12.15 如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线? 氧气和氢气的最概然速率各是多少? 方均根速率各是多少? 解: 由 MRTp 2=v 可知,温度相同时,p v 与M 成反比 又由图可知,12p p v v > 因此 可得,21M M >图12-31 习题12.14图所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线 由 M RT32=v M RT p 2=v 得, p v v 232= 12.16 设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔内的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N (2)()N a a a ad d aN 127872023220232000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0(3) ()v v v v v d f ⎰=202212.17 设N 个粒子系统的速度分布函数为⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1) ()v Nf (2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v v v v ===⎰⎰d d NNv12.18 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v ? 解:麦克斯韦速率分布律 ()2223224v v v kT m e kT m f -⎥⎦⎤⎢⎣⎡=ππ 图12-32习题12.15图(a ) m kT p 2=v px v v= (b)221v m k =ε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε12.19 设容器内盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时内能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,118m kT π=v 228m kT π=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, 12.20 求在标准状态下一秒内分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为2.0×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n 12.21 在足够大的容器中,某理想气体的分子可视为d=4.0×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =3.0×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米?(设分子未与容器壁碰撞) 解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ(2) λN R =12.22 设电子管内温度为300K ,如果要管内分子的平均自由程大于10cm 时,则应将它抽到多大压力?(分子有效直径约为3.0⨯10-8cm )解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<12.23 计算⑴在标准状态下,一个氮分子在1s 内与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76⨯10-8cm )解: (1) λυ=z (2) mol V V mol 179.04.224===ν 12.24 实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径. 解:λυρη31=M RT πυ8=nm =ρ 其中 kT p n =, A N M m = 得:RTpM =ρ所以12.25 今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=MCVM λυρκ31 R C VM25= RT pM nm ==ρ 12.26 在270C 时,2mol 氮气的体积为0.1L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =0.828atm ⋅L 2⋅mol -2, b =3.05⨯10-2L ⋅mol . 解:RT pV ν=第13章13.1 (1)理想气体经过下述三种途径由初态I (2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b )等温膨胀;(c )先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的范氏气体重复以上三个过程的计算?0p 2p 0V 02V V[答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) 200pdV A V V ==⎰(b) 220pdV A V V ==⎰(c) 20pdV A V V ==⎰(2) 范德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b) (c) 0020V p pdV A V V ==⎰13.2 由如图13-40所示.一系统由状态a 沿acb 到达状态b ,吸热量80Cal ,而系统做功126J.⑴经adb 过程系统做功42J ,问有多少热量传入系统?⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J ,试问系统是吸热还是放热?热量是多少? 解:1Cal=4.2J(1) A E Q +∆=所以经adb 过程传入系统的热量 (2) J A 84-=所以系统是放热,热量是294J13.3 如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d ,已知p a =p d =1atm ,p b =p c =2atm ,V a =1L ,V b =1.5L ,V c =3L ,V a =4L .⑴试计算气体在abcd 过程中内能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a (图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal ,求该过程中气体所做的功. 解:(1) b a → 同理: c b → (2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- (3) c a →13.4 如图13-42所示.一定质量的氧气在状态A 时,V 1=3L ,p 1=8.2×105Pa ,在状态B时V 2=4.5L ,p 2=6×105Pa .分别计算气体在下列过程吸收的热量,完成的功和内能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程图13-40 习题13.2图图13-41 习题13.3图J Q 31065.1⨯-=(2) ADB 过程13.5压强为p =1.01×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量?(2) 如加热时分别压强不变需要多少热量? [答案: Q V =683J; Q p =957J]解:(1) RT pV ν= RTpV=ν (2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 13.6 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么?氢气的温度变为多少?(2)若温度不变,问此热量变为什么?氢气的压强及体积各变为多少?(3)若压强不变, 问此热量变为什么? 氢气的温度及体积各变为多少?[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =281.6K; V 2=0.046 m 3] 解:(1) 全部转化为内能(2) 全部转化为对外界做功(3) 一部分用于对外做功,一部分用于内能增加 13.7 一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低? [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RTV V c ν=2RT V cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低13.8 1mol 氢,在压强为1.0×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C .试分别计算以上两种过程中吸收的热量、气体做的功和内能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,∆U =1246J]解:图13-42 习题13,4图(1) 定容过程 等温过程 (2) 等温过程定容过程13.9 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= 则可得,R T Q C m 27=∆=ν 13.10 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明解: 过程1为定容过程 V 不变,由理想气体状态方程得, 000RT V p ν= RV p T ν000=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得, ()()001001p V V V p p C C Vp --==γ13.11气缸内有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍?若为双原子理想气体,又为几倍?[答案:1.26;1.15] 解:由理想气体绝热方程 常量=-T V 1γ 得,V1V 2V 212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυ13.12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热等压过程CD 放热 BC 、DA 是绝热过程 0=Q利用绝热方程 常量=--γγT p 1 得,13.13设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热a c →为等压压缩过程, 放热利用理想气体状态方程 RT pV ν=, 得循环效率为 1122212212-=---=V p V p V p V p γγη13.14 有一种柴油机的循环叫做狄赛尔循环,绝热膨胀过程,CD 为等压膨胀过程,EB ⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη解:CD 为等压膨胀过程, 吸热EB 为等容冷却过程, 放热图13-43 习题13.12图图13-46 习题13.16图循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得 利用绝热方程 常量=γpV , 得γγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫ ⎝⎛=2'V V p p B E13.15 1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =1.24×103J,Q 2=4.01×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=13.16 1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及内能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得,222RT V p = 又由图可知,11V p =, 22V p =J A E Q 7479=+∆= 吸热O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η *13.17 0.1mol 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L , V B =3L ,p A =3atm .(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热?证明Q CB =0.能否由此说从C 到B 的每个微小过程都有δQ =0? 解:(1) 由理想气体状态方程, 得 又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E ν(3) 由理想气体状态方程 RT pV ν=, 得R pV T ν=又由图可知: 4+-=V p 即 ()V V R T 412+-=ν 由极值条件:0=dVdT, 得 042=+-V即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>+∆=A E Q 吸热()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q LLCB但不能说从C 到B 的每个微小过程都有0=Q δ13.18一台家用冰箱放在气温为300K 的房间内,做—盒-13℃的冰块需从冷冻室中吸出 2.09×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以2.09×102J·s -1的速率取出热量,求所要求的电功率是多少瓦? (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==代入数据得 5.6260300260=-=ep (atm)abcpVOabcdVOp (2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯== 13.19 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少?[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 13.20根据热力学第二定律证明: (1)两条绝热线不能相交;(2) 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证13.21一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少?空气的熵变是多少?总熵变是多少?[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q13.22 1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =]解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰13.23 一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln Ω; ⑵n =0状态与n =N /2状态之间的熵变是多少? ⑶如果N=6⨯1023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得 (2)熵的变化:(3) 23106⨯=N 时, 熵差为第14章14.1 作简谐运动的质点,速度最大值为3cm/s ,振幅A =2cm ,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得 (2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.02 1.5ms Aω-===v ,所以有14.2 一水平弹簧振子的振幅A =2cm,周期T =0.50s.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =-1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-14.3 设一物体沿x 轴作简谐振动,振幅为12cm ,周期为2.0s ;在t =0时位移为6.0cm ,且向x 轴正方向运动.试求:(1)初相位;(2)t =0.5s 时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->(2) 12cos()()0.53x t cm t s ππ=-=时(3) 12cos x ϕ=习题14.3图习题14.6图当6x cm =-时1cos 2ϕ=-∵0sin ϕ<∴=v 14.4 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)cos(1φω+=t A x ,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。

相关文档
最新文档