1 习题一 真空中的静电场

合集下载

《真空中的静电场》选择题解答与分析

《真空中的静电场》选择题解答与分析

12 真空中的静电场 12.1电荷、场强公式1. 如图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的大小为(A) 4.5104(N C -1). (B) 3.25104(N C -1). 答案:(B)参考解答:根据点电荷的场强大小的公式,点电荷q 1在C 点产生的场强大小为)C (N 108.1)(4142011-⋅⨯==AC q E πε,方向向下.点电荷q 2在C 点产生的场强大小为)C (N 107.2)(4142022-⋅⨯==AC q E πε,方向向右.C 处的总场强大小为:),C (N 1025.3142221-⋅⨯=+=E E E总场强与分场强E 2的夹角为.69.33arctan 021==E E θ对于错误选择,给出下面的分析:答案(A)不对。

你将)C (N 105.410)7.28.1(14421-⋅⨯=⨯+=+=E E E 作为解答。

错误是没有考虑场强的叠加,是矢量的叠加,应该用),C (N 1025.3142221-⋅⨯=+=E E E进入下一题:2. 真空中点电荷q 的静电场场强大小为2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.进入下一题: 12.2高斯定理1. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是: (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(C) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.答案:(B) 参考解答:高斯定理的表达式:∑⎰==⋅ni i q s E 101d ε .它表明:在真空中的静电场内,通过任意闭合曲面的电通量等于该闭合面所包围的电荷电量代数和的0/1ε倍。

3-1电磁-真空中的静电场 大学物理作业习题解答

3-1电磁-真空中的静电场 大学物理作业习题解答

dE
zdq 40(z2 r2 )3/2
R cos.ds 40R3
sin cosd 20
d R o
x
故球心o处总场强为:
E
dE
/ 2 sin cos d
0
20
40
4
1-6 均匀带电的无限长细线,弯成如图所示的形状,若点电荷的线
密度为λ,半圆处半径为R,求o点处的电场强度.
解:o电场强是由三部分电荷产生的:
解:作一半径为r的同心球面为高斯面。
当r<R1
当 R1<r<R2
E4r2 0, E 0
R1
r 2r2 sindrdd
E 4r2 R1 0 0
R2
0
1
r
2
A r sindrdd
0 R1 0 0
E
A
r2 R12 20r2
同理,当r>R2
E4r2 1 R2 2 Arsindrdd
0
20
9
1-10 两个无限长的共轴圆柱面,半径分别为R1和R2,面上都均
匀带电,沿轴线单位长度的电量分别为 1和 2 ,求: (1)场强分布;(2)若 1 2,情况如何?画出E-r曲线。
解:由圆柱面的对称性,E的方向为垂直柱面, r
故作一共轴圆柱面为高斯面,由高斯定律得:
R1
高 斯

r<R1, 当R1<r<R2 ,
1-12 将q=1.7×10-8库仑的点电荷从电场中的A点移到B点,外力需 做功5.0×10-8焦耳,问A,B俩点间的电势差是多少?哪点电势高?若 设B点的电势为零,A点的电势为多大?
解:(1) AAB=q(VA-VB), WAB=- AAB=+5.0×10-8

大物练习题

大物练习题

第十一章真空中的静电场1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.LP2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为ˍˍˍ,通过立方体一面的电场强度通量是ˍˍˍ,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是ˍˍˍ,(2)另外三个面每个面的电通量是ˍˍˍ。

3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是()A.ER2π B.R22πC. ER22π D. ER221π4.根据高斯定理的数学表达式⎰∑⋅=SqSE/dε可知下述各种说法中,正确的是()(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( )图11-2图11-3EOr (A)E ∝1/r6.如图所示, 电荷-Q 均匀分布在半径为R ,长为L 的圆弧上,圆弧的两端有一小空隙,空隙长为)(R L L <<∆∆,则圆弧中心O 点的电场强度和电势分别为( )A.R Q i L R L Q 0204,4πεπε-∆- B.RQ i L R L Q 02024,8πεεπ-∆- C.RQ i L R L Q 0204,4πεπε ∆ D.RL L Qi L R L Q 0204,4πεπε∆-∆-7.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________8. 如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ.在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接.设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为( )(A) E =0,U =r a ln 20ελπ. (C) E =r 02ελπ,U =rb ln 20ελπ (B) E =0,U =a b ln 20ελπ (D) E =r 02ελπ,U =a b ln 20ελπ.图11-69.如图,在点电荷+Q ,-Q 产生的电场中,abcd 为同一直线上等间距的四个点,若将一点电荷+q 0由b 点移到d 点,则电场力( )A. 作正功;B. 作负功;C.不作功;D.不能确定10.说明下列各式的物理意义(1)l d E ⋅(2)l d E b a ⋅⎰ (3)l d E L ⋅⎰(4)S d E ⋅11.已知某静电场的电势函数)(14121222SI y y x x U --=,由场强和电势梯度的关系式可得点(2,3,0)处的场强E =ˍˍˍi +ˍˍˍj +ˍˍˍk (SI)a c +Q-Q 图11-9答案:1.()d L d q +π04ε 2. 00024,0,6,εεεq q q 3.A4.C5.C ⎪⎪⎩⎪⎪⎨⎧≥=≤=)( 22)( 220020R r R rr R R r r E ρπλπελερερ,或 6. A7. 10cm8.B9.A10. (1)l d E ⋅表示电场力对单位正电荷所做的元功。

真空中的静电场(1、3)习题难点讲解

真空中的静电场(1、3)习题难点讲解

若球内无空腔,P点的电场为
E1

3 0
r
若空腔内填满体电荷密度为 的电荷,当
其单独存在时,P点的电场为
由电场叠加原理,得
E2


3 0
r
E

E1

E2

3 0
r

r

3 0
a
6.
en E2
h
E1
en
S E dS E1S E2S
(E1 E2 )S
dE 4 0a2 4 0a
dq dl rd sin
dE
1
40r 2

rd sin

d 40r sin
d

4 0a
指向 dq
指向 dq
这一对线元在O点的元 场强等值反向,相互抵 消。故所有电荷在O点 产生的场强为零。
4. 电荷密度为 Ar 的球体的电场
r
dl
R cos 2 R2 sind

40 R3
sin cosd

2 0
dS x d
O
R
E dE

2 sin cosd
2 0 0


1
sin2
2


20 2
0 4 0
3. 两根平行长直线间距为2a一端用半圆形线连起来。全线上均匀 带电。证明在圆心O处的电场强度为零。
0 20a
E2 y

4 0a
(sin 2
sin1 )
1


2
, 2




E2 y 4 0a E2 2 0a

大学物理第6章真空中的静电场课后习题及答案

大学物理第6章真空中的静电场课后习题及答案

⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。

试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。

3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。

求该直线段受到的电场⼒。

解:先求均匀带电圆环在其轴线上产⽣的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。

+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。

在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。

电场习题及答案

电场习题及答案

真空静电场(一)一.选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度 [ ](A ) 处处为零 (B )不一定都为零 (C )处处不为零 (D )无法判断2. 设有一“无限大”均匀带负电荷的平面,取X 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标X 变化的关系曲线为(规定场强方向沿X 轴方向为正,反之为负) []3. 下面列出的真空中静电场的场强公式,其中哪个是正确的? [ ](A ) 点电荷Q 的电场: 204QE r πε=(B ) 无限长均匀带电直线(线密度λ)的电场: 302E r rλπε= (C ) 无限大均匀带电平面(面密度σ)的电场:02E σε= (D ) 半径为R 的均匀带电球面(面密度σ)外的电场:230R E r r σε= 4. 将一个试验电荷Q (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F 。

若考虑到电量Q 不是足够小,则 [ ](A) F/Q 比P 点处原先的场强数值大(B) F/Q 比P 点处原先的场强数值小(C) F/Q 与P 处原先的场强数值相等(D) F/Q 与P 处原先的场强数值关系无法确定。

5. 根据高斯定理的数学表达式0s q E dS ε=∑⎰可知下列各种说法中,正确的是 [ ] (A ) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零(B ) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零(C ) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零(D ) 闭合面上各点场强均为零时,闭合面内一定处处无电荷6. 当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心处产生的电场强度E 和电势U 将 [ ](A )E 不变,U 不变; (B )E 不变,U 改变;(C )E 改变,U 不变 (D ) E 改变,U 也改变7. 在匀强电场中,将一负电荷从A 移至B ,如图所示,则: [ ](A ) 电场力作正功,负电荷的电势能减少(B ) 电场力作正功,负电荷的电势能增加(C ) 电场力作负功,负电荷的电势能减少(D ) 电场力作负功,负电荷的电势能增加8. 真空中平行放置两块大金属平板,板面积均为S ,板间距离为d ,(d 远小于板面线度),板上分别带电量+Q 和-Q ,则两板间相互作用力为 [ ](A )2204Q d πε (B )220Q S ε (C )2205k Q S ε+ (D )2202Q S ε 二.填空题1 带有N 个电子的一个油滴,其质量为m ,电子的电量的大小为e ,在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为________________,大小为____________________。

第九章 真空中的静电场(答案)

第九章  真空中的静电场(答案)

一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x <0)和-λ(x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B) i a 02ελπ. (C) i a 04ελπ. (D)()j i a+π04ελ. 【提示】左侧与右侧半无限长带电直线在(0,a )处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。

[ B ] 2(基础训练2) 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面。

据Guass 定理:SE dS=iiq ε∑⎰r R ≤时,有:()22012rL=r E L R λππεπ⎛⎫ ⎪⎝⎭,即:20r =2E R λπε r R >时,有:()012rL=E L πλε ,即:0=2rE λπε [ C ] 3(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A)06εq . (B) 012εq. (C) 024εq . (D) 048εq .【提示】添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。

则大立方体的外表面构成一个闭合的高斯面。

由Gauss 定理知,通过该高斯面的电通量为qε。

另一方面,该高斯面可看成由24个面积与侧面abcd 相等的面组成,且具有对称性。

所以,通过侧面abcd 的电场强度通量等于24εq [ D ] 4(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) a q 08επ-.【提示】200248P a M M aq qU E dl dr r a πεπε-===⎰⎰[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)rQ Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 【提示】根据带电球面在球内外所激发电势的公式,以及电势叠加原理即可知结果。

电磁学习题 电场部分

电磁学习题 电场部分

学号 班级 姓名 成绩第一章 真空中的静电场 (一)一、选择题1、关于电场强度定义式E=F/q 0,指出下列说法中的正确者[ ]。

A .场强E 的大小与检验电荷q 0的电量成反比;B .对场中某点,检验电荷受力F 与q 0的比值不因q0而变; C .检验电荷受力F 的方向就是场强E 的方向;D .若场中某点不放检验电荷q 0,则F=0,从而E =0。

图6-12、如图6-1所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为[ ]。

A. 204y q επ; B.202y q επ; C.302y qa επ; D. 304yqaεπ。

3、无限大均匀带电平面电荷面密度为σ,则距离平面d 处一点的电场强度大小为[ ]。

A .0; B .02σε; C .02d σε; D .04σε。

4、如图6-2所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度ERr EARr E BRr E CRrED的大小与距轴线的距离r 关系曲线为[ ]。

图6-25、在真空中,有一均匀带电细圆环,半径为R ,电荷线密度为λ,则其圆心处的电场强度为( )A 、0ελ;B 、R 02πελ;C 、202R πελ; D 、0v/m6、下列哪一说法正确( )A 、电荷在电场中某点受到的电场力很大,该点的电场强度一定很大B 、在某一点电荷附近的一点,如果没有把试验电荷放进去,则这点的电场强度为零C 、电力线上任意一点的切线方向,代表正点电荷在该点处获得的加速度方向D 、如果把质量为m 的点电荷放在一电场中,由静止状态释放,电荷一定沿电场线运动二、填空题1、两个正点电荷所带电量分别为q 1和q 2,当它们相距r 时,两电荷之间相互作用力为 F = ,若q 1+q 2=Q ,欲使两电荷间的作用力最大,则它们所带电量之比q 1:q 2= 。

第九章 真空中的静电场(答案)2015(1)

第九章  真空中的静电场(答案)2015(1)

第九章 真空中的静电场一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a 02 . (C)i a04 . (D) j i a 04 . 【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为:22E E a矢量叠加后,合场强大小为:02E a合,方向如图。

[ C ] 2(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A) 06 q . (B) 012 q . (C) 024 q . (D) 048 q.【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。

则大立方体外围的六个正方形构成一个闭合的高斯面。

由Gauss 定理知,通过该高斯面的电通量为q。

再据对称性可知,通过侧面abcd 的电场强度通量等于24 q。

[ D ] 3(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A)a q 04 . (B) aq08 .(C)a q 04 . (D) aq08 .【提示】:220048PaM Maq q V E dl dr rav v gAbcaqaa+qPME +E -E 合+-xy (0, a ) +-xy (0, a )[ C ] 4(自测提高4)如图9-34,设有一“无限大”均匀带正电荷的平面。

取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):【提示】:由于电场分布具有平面对称性,可根据高斯定理求得该带电平面周围的场强为:(+0;0)2E i x x u v v “”号对应“”号对应[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)r Q Q 0214 . (B) 20210144R Q R Q .(C) 0. (D)1014R Q .【提示】:根据带点球面在求内外激发电势的规律,以及电势叠加原理即可知结果。

习题一:真空中的静电场习题详解

习题一:真空中的静电场习题详解

dq = ρ ⋅ 4π r 2 dr
5
第 6 页共 6 页
1 真空中的静电场习题详解
习题册-下-1
dq 在球心处产生的电势为
dU =
dq ρr d r = 4πε 0 r ε0
整个带电球层在球心处产生的电势为
U 0 = ∫ dU 0 =
ρ ε0

R2
R1
rdr =
ρ
2ε 0
(R
2 2
− R12 )
3 a ,由点电荷的电势公式得 2
(D)
Q 。 12 πε 0 a
U=
Q Q = 4 πε 0 r 2 3 πε 0 a
二、填空题 1.真空中两平行的无限长均匀带电直线,电荷线密度分别为
+λ 2d
d d −λ
− λ 和 λ ,点P1和P2与两带电线共面,位置如图,取向右为坐
标正方向,则P1和P2两点的场强分别 为 答案: E1 = 和 。
a b r P
a b λ λ λ ln ; (B) E = ,U= ln ; 2πε 0 r 2πε 0 r 2πε 0 r b b λ λ λ ln ; (D) E = ,U= ln 。 2πε 0 a 2 πε 0 r 2πε 0 a
λ
λ ,则 P 点的电势为 2πε 0 r
U = ∫ Edr = ∫ 0dr + ∫
4πε 0 d ( L + d )
q
x O L
dq
(L+d-x) d
P dE
x
解:带电直杆的电荷线密度为 λ = q / L 。设坐标原点
O 在杆的左端,在 x 处取一电荷元 dq = λ dx = qdx / L ,它在 P 点的场强为

题解1-真空中的静电场(已修改)

题解1-真空中的静电场(已修改)

3 2 3 大小: 区:E i i i 2 0 2 0 2 0 2 0 2 区:E i i i 大小: 2 0 2 0 2 0 2 0 2、 E dS Q E 0 S a 0
大小: 2 0
i (i )
杆 0
EP dE
2
i
P
以无穷远处电势为零, P点电势为:
Ld x
U P dU

L
0
(q / L)dx (q / L) L d ln 4 0 ( L d x) 4 0 d 1
2、一电荷面密度为σ 的“无限大”平面,在距离平面 a米远处一点的场强大小的一半是由平面上的一个半径 为R的圆面积范围内的电荷产生的。试求该圆半径的大 小。 解:圆盘在其轴线上P点场强:
根据电势叠加原理,P点处的电势也与电荷在环L上的 分布状况无关,为: dq
UP
4 0 r Nq 4 0 r
L

dq

4 r
0
1
L
R dq
L
r
P

dE
Z
9、C 空间各点处的总场强为:(方法与选择题第5小题 的方法相同)
0 (r R1 ) 2 E Eer er Q1 /(4 0 r ) ( R1 r R2 ) e (Q Q ) /(4 r 2 ) (r R2 ) 2 0 r 1
'
R
dl
R
Rd

d
y
dE
θ位置处的一窄条在轴线上的一点产生的场强为:
' ' dE i sin j cos 2 0 R 2 0 R d d i sin j cos 2 2 2 0 R 2 0 R

大学物理课后习题答案 真空中的静电场

大学物理课后习题答案 真空中的静电场

第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。

根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。

其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。

3、[D]1、粒子作曲线运动的条件必须存在向心力。

2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。

3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。

4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。

E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。

∑=0q 并不能说明E有任何特定的性质。

8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。

真空中的静电场(含答案,大学物理作业,考研真题)

真空中的静电场(含答案,大学物理作业,考研真题)

班级:
姓名:
学号:
第十章 真空中的静电场(3)
一 、选择题 1、静电场中某点电势的数值等于 (A)正试验电荷 q0 置于该点时具有的电势能; (B) 把正试验电荷 q0 从该点移到电势零点处电场力所作的功; (C) 把单位正电荷从该点移到电势零点处电场力所作的功
(D)把单位正电荷从该点移到电势零点处外力所作的功。
P(x,0) xx
[
]
3、(2010 年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互
作用力为 F,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相
同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变
为:
(A) F/2;
(B) F/4;
S1
S2
S3
3、(2012 年北京科技大学)两个平行的“无限大”均
+σ +2σ
匀带电平面,其电荷面密度分别为 和 2 ,如图所示,则 A、
B、C 三个区域的电场强度分别为:
EA
EB
A
B
C
EC
3
三 、计算题 1、两个无限长同轴圆柱面,半径分别为 R1 和 R2(R2>R1),带有等值异号电荷,每单位长 度的电量为λ(即电荷线密度)。试分别求(1)r < R1,(2)r > R2,(3)R1< r<R2 时,离轴线 为 r 处之电场强度。
若将 q 移至 B 点,则:
(A)、S 面上的总电通量改变,P 点的场强不变; (B)、S 面上的总电通量不变,P 点的场强改变;
P· S B·

(C)、S 面上的总电通量和 P 点的场强都不变; (D)、S 面上的总电通量和 P 点的场强都改变。

静电场习题课1

静电场习题课1
2
2.两条无限长平行直导线相距为 0,均匀带有等量异号电荷,电 两条无限长平行直导线相距为r 均匀带有等量异号电荷, 两条无限长平行直导线相距为 .(1) 荷线密度为λ.( )求两导线构成的平面上任一点的电场强度 设该点到其中一线的垂直距离为x);( );(2) (设该点到其中一线的垂直距离为 );( )求每一根导线上 单位长度导线受到另一根导线上电荷作用的电场力. 单位长度导线受到另一根导线上电荷作用的电场力. 分析: 分析 : ( 1 ) 在两导线构成的平面上 任一点的电场强度为两导线单独在 此所激发的电场的叠加. 此所激发的电场的叠加. (2)由F = qE,单位长度导线所受 , 的电场力等于另一根导线在该导线 o 处的电场强度来乘以单位长度导线 所带电的量, 应该注意: 所带电的量,即:F = λE应该注意: 应该注意 式中的电场强度E是除去自身电荷 式中的电场强度 是除去自身电荷 外其它电荷的合电场强度. 外其它电荷的合电场强度.
= r0 λ i 2πε 0 x ( r0 x )
λ
E
E+
λ
p
o
分别表示正, (2)设F+,F-分别表示正,负带电 导线单位长度所受的电场力, 导线单位长度所受的电场力,则有
x
x
r0
λ2 F+ = λE = i 2πε0r0
λ2 F = λE+ = i 2πε0r0
相互作用力大小相等, 相互作用力大小相等,方向相 两导线相互吸引. 反,两导线相互吸引.
b2 x =0 2
2
x=
b , ( 0 ≤ x ≤ b) 2
6
6.在一半径为 的金属球A外面套有一个同心的金属球壳 6.在一半径为R1 =6.0 cm的金属球 外面套有一个同心的金属球壳 在一半径为 的金属球 B.已知球壳 的内,外半径分别为 2 =8.0 cm,R3 =10.0 cm.设 的内, .已知球壳B的内 外半径分别为R , . 带有总电荷Q 球壳B带有总电荷 带有总电荷Q 球A带有总电荷 A= 3.0×10-8C ,球壳 带有总电荷 B= 2.0×10-8C. 带有总电荷 × × . 和球壳B的电势 (l)求球壳 内,外表面上所带的电荷以及球 和球壳 的电势; )求球壳B内 外表面上所带的电荷以及球A和球壳 的电势; 接地然后断开, 接地, 和球壳B (2)将球壳 接地然后断开,再把金属球 接地,求球 和球壳 )将球壳B接地然后断开 再把金属球A接地 求球A和球壳 外表面上所带的电荷以及球A和球壳 的电势. 和球壳B的电势 内,外表面上所带的电荷以及球 和球壳 的电势. 分析:( )根据静电感应和静电平衡 分析:(1) :( 时导体表面电荷分布的规律,电荷Q 时导体表面电荷分布的规律,电荷 A 均匀分布在球A表面 球壳B内表面带 表面, 均匀分布在球 表面,球壳 内表面带 电荷电荷-QA ,

第九章 真空中的静电场(答案)2015(1)

第九章  真空中的静电场(答案)2015(1)

Qq b 点.则此过程中电场力作功 A= 4 0
1 1 R r . 2
Q R
a r1 O
r2
b
【提示】 :静电力做功 qU ab q (Va Vb ) 。其中: Va
Q Q , Vb 。 4 0 R 4 0 r2
三. 计算题
1.(基础训练 20) 真空中一立方体形的高斯面,边长 a=0.1 m,位于图中所示位置.已知空间 的场强分布为: Ex=bx , Ey=0 , Ez=0. 常量 b=1000 N/(C·m).试求通过该高斯面的电通量.
y a O z a a a x
y 1 a 2 2a
E1 O
E2 x
【解】 :通过 x=a 处平面 1 的电场强度通量
1 = -E1 S1= -b a3
通过 x = 2a 处平面 2 的电场强度通量
2 = E2 S2 = b a3 其它平面的电场强度通量都为零.因而通过该高斯面的总电场强度通量为 =1+2 = b a3-b a3 = b a3 =1 N·m2/C
'
(2)假设放掉电荷后,外球面上的电荷为 Q2 ,则由:
5
Vo Vr1 Vr2
4 0 r1
'
Q1

4 0 r2
Q2'
0
有: Q2 外球面上放掉的电荷为:
r2 Q1 r1
Q2 Q2' 4 r22
r2 r Q1 4 r22 2 4 r12 r1 r1 Vo 0 2 ( r2 r1r2 ) 6.67 10 9 C ) r1 r2
4
3 (基础训练 25) 图中所示为一沿 x 轴放置的长度为 l 的不均 匀带电细棒,其电荷线密度为=0 (x-a),0 为一常量.取无穷远 处为电势零点,求坐标原点 O 处的电势.

练习册-第12章《真空中的静电场》答案

练习册-第12章《真空中的静电场》答案

第12章 真空中的静电场 参考答案一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E =,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ;(5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ;(7). -2×103 V ; (8).⎪⎪⎭⎫ ⎝⎛-πa br r q q 11400ε(9). 0,pE sin α ; (10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 总场强为⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R的半圆形,LPd E O沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π 它在O 处产生场强θεεd 24d d 20220RQRq E π=π= 按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202RQE E x π== θθεθd cos 2cos d d 202RQE E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰所以 j RQ j E i E E y x202επ-=+=3. “无限长”均匀带电的半圆柱面,半径为R设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为θελελd 22d d 020RRE π=π=如图所示. 它在x 、y 轴上的二个分量为:d E x=d E sin θ , d E y=-d E cos θ对各分量分别积分RRE x 02002d sin 2ελθθελππ=π=⎰0d cos 2002=π-=⎰πθθελRE y场强 i Rj E i E E y x02ελπ=+=4.实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85×10-12 C 2·N -1·m -2)解:(1) 设电荷的平均体密度为ρ面如图(1)(侧面垂直底面,底面∆S 平行地面)底面处的场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E·S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S 高斯面S 包围的电荷∑q i =h ∆S ρ 由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴ () E E h1201-=ερ=4.43×10-13 C/m 3(1)(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2)由高斯定理 ⎰⎰E·S d =∑i 01q ε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9×10-10 C/m35. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R ), A 为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rV π=π==⎰⎰ρ (r ≤R) 以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到 ()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅得到 ()20424/r AR E ε=, (r >R ) 方向沿径向,A >0时向外,A <0时向里.6. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求:(2)(1) 平板外两侧任一点P 1和P 2处的电场强度大小; (2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即 022d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧)(2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεkSb xdx kSS E E x==+'⎰得到 ⎪⎪⎭⎫⎝⎛-='22220b x k E ε (0≤x ≤b )(3) E '=0,必须是0222=-b x , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).'解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ=圆盘在该处的场强为 i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ∴ix R x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x +-=+=⎰εσεσ8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ =Ar (r ≤R ),式中A 为常量.试求: (1) 圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:⎰π=⋅S rhE S E 2d为求高斯面内的电荷,r <R 时,取一半径为r ',厚d r '、高h 的圆筒,其电荷为 r r Ah V ''π=d 2d 2ρOxP则包围在高斯面内的总电荷为3/2d 2d 302Ahr r r Ah V rVπ=''π=⎰⎰ρ由高斯定理得 ()033/22εAhr rhE π=π 解出 ()023/εAr E = (r ≤R )r >R 时,包围在高斯面内总电荷为:3/2d 2d 302AhR r r Ah V RV π=''π=⎰⎰ρ 由高斯定理 ()033/22εAhR rhE π=π解出 ()r AR E 033/ε= (r >R )(2) 计算电势分布 r ≤R 时⎰⎰⎰⋅+==l R R rlr rrAR r r A r E U d 3d 3d 0320εε ()Rl AR r R A ln 3903330εε+-=r >R 时 rlAR r r AR r E U l rlrln 3d 3d 0303εε=⋅==⎰⎰9.一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3m的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B AB A rrr E U U ελ 120ln 2R R ελπ-=得到()120/ln 2R R U U A B -=πελ, 所以()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14 N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 2041rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用. 若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰c b a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。

(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。

(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。

(B )通过S 面的电通量不变,P 点的电场强度变化。

(C )通过S 面的电通量改变,P 点的电场强度不变。

(D )通过S 面的电通量改变,P 点的电场强度变化。

6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页共5页 习题一 真空中的静电场 习题册-下-1
学院 班 序号___________姓名
习题一(第十七章)
一、选择题
1.如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为L ,电荷Q -均匀分布其上。

空隙长为()L L R ∆∆<<,则圆弧中心O 点的电场强度和电势分别为 [ ] (A)200,44Q L Q
i R L R πεπε-∆- ;
(B)2200,84Q L Q
i R L R πεπε-∆- ;
(C)200,44Q L Q
i R L R
πεπε∆ ;
(D)
200,44Q L Q L
i R L RL
πεπε-∆-∆ 。

2.有两个电荷都是+q 的点电荷,相距为2a 。

今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。

在球面上取两块相等的小面积S 1和S 2,其位置如图所示。

设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为S Φ,则[ ] (A )120, /S q εΦ>ΦΦ=; (B )120, 2/S q εΦ<ΦΦ=;
(C )120, /S q εΦ=ΦΦ=; (D )120, /S q εΦ<ΦΦ=。

3.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为 [ ]
4.如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为 。

在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接。

设地的电势为零,则在
内圆柱面里面、距离轴线为r 的
P 点的场强大小和电势分别为 [ ]
(A )00,ln 2a E U r λε==
π; (B )00,
ln 22b
E U r r
λλεε==ππ; (C )00,ln 2b E U a λε==π; (D )00, ln 2π2b
E U r a
λλεε==π。

5.在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为
2∝
2

r
R
r
R
(A
; (B
; (C )
06Q
a
επ; (D )
012Q
a
επ。

二、填空题
1.真空中两平行的无限长均匀带电直线,电荷线密度分别为
λ-和λ,点P 1和P 2与两带电线共面,位置如图,取向右为
坐标正方向,则P 1和P 2两点的场强分别 为
和。

2.在场强为E 的均匀静电场中,取一半球面,其半径为R , E 的方向和半球的轴平行,可求得通过这个半球面的 E 通量是。

3.如图,A 点与B 点间距离为2l ,OCD 是以B 为中心,以l 为半径的半圆路径。

A 、B 两处各放有一点电荷,电量分别为+q 和-q 。

若把单位正电荷从O 点沿OCD 移
到D 点,则电场力所做的功为 ;把单位负电荷从D 点沿AB 延长线移到无穷远,电场力所做的功为 。

4.如图所示,两同心带电球面,内球面半径为15cm r =,带电荷
81310C q -=⨯;外球面半径为220cm r =, 带电荷82610C q -=-⨯。

设无
穷远处电势为零,则在两球面间另一电势为零的球面半径
r =__________。

5.已知某静电场的电势分布为2281220U x x y y =+-,则场强分布 E =
_______________________________________。

x
λ
+
l
2l
O
Q
+-三、计算题
1.如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端为d 的P 点的电场强度。

2.如图所示,一半径为R 的半圆环,右半部均匀带电Q +,左半部均匀带电Q -。

问半圆
环中心O 点的电场强度大小为多少?方向如何?
L
q P
3.图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R1,外表面半径为R2。

设无穷远处为电势零点,求该带电系统的场强分布和空腔内任一点的电势。

4.两个带等量异号电荷的均匀带电同心球面,半径分别为
10.03 m
R=和
20.10 m
R=。

已知两者的电势差为450 V,求内球面上所带的电荷。

*
5.一平面圆环,内外半径分别为R 1,R 2,均匀带电且电荷面密度为σ+。

(1)求圆环轴线
上离环心O 为x 处的P 点的电势;(2)再应用场强和电势梯度的关系求P 点的场强;(3)若令2R →∞,则P 点的场强又为多少?。

相关文档
最新文档