华东师大版七年级数学上册期末考试试题

合集下载

华东师大版七年级数学上册期末测试题

华东师大版七年级数学上册期末测试题

华东师大版七年级数学上册期末测试题一、选择题(每小题4分,共40分).1.-2017的绝对值是( ).A.2017B.-2017C.20171D.20171− 2.当3x =时,代数式x 210−的值是( ) .A. 1B. 2C. 3D. 43.下面不是同类项的是( ).A. 2−与12B. b a 22−与b a 2C. m 2与n 2D.22x y -与2212y x4.下列式子中计算正确的是( ).A.22550x y xy −= B .22523a a −= C .22243xy xy xy −=D .235a b ab +=5.下列各数中,比3−大的数是( ).A. π−B. 1.3−C. 4−D. 2−6.下列物体中,主视图是圆的是( ).A B C D7.中国药学家屠呦呦发明的青蒿素为保护人类健康做出了重大贡献,荣获2015年诺贝尔生理学或医学奖,奖金约为3 020 000元人民币.将3 020 000用科学记数法表示为( ).A.41002.3⨯B.410302⨯C.61002.3⨯D.610302⨯8.如图,锯木板前,在木板两端固定两个点,用墨盒弹一根墨线然后再锯,这样做的数学道理是( ).A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D.经过已知直线外一点,有且只有一条直线与已知直线平行9.下面图形中,射线OP 是表示北偏东60°方向的是( ).10.一组数据:2,1 ,3 ,x , 7 , -9,…,满足“从第三个数起,若前两个数依次为a 、b ,则紧随其后的数就是2a b −”,例如这组数中的第三个数“3”是由“221⨯−”得到,那么该组数据中的x 为( ).A. -2B. -1C. 1D. 2二、填空题(每小题4分,共24分).11.在有理数5.0−、-5、35中,属于分数的共有 个. 12.把多项式x x +−229按字母x 降幂排列是 .13.若50A ∠=︒,则A ∠的补角为 . 14.在数轴上,点A 表示的数是5,若点B 与A 点之间距离是8,则点B 表示的数是 .15. 如图,直线a ∥b ,将三角尺的直角顶点放在直线b 上,若∠1=35°,则∠2= .16.观察下列数字:第1层 1 2第2层 4 5 6第3层 9 10 11 12第4层 16 17 18 19 20… … … …在上述数字宝塔中,第4层的第二个数是17,请问2510为第 层第 个数.三、解答题(共86分).17.(8分)计算: 5×(-2)+(-8)÷(-2)18.(8分)计算:()5497332÷−+−19.(8分)先化简,再求值:()()y x xy y x xy y x 22252223−−++,其中1=x ,1−=y .(第15题图)20.(8分)如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.①画线段AB;②画直线AC;③过点B画AD的平行线BE;④过点D画AC的垂线,垂足为F.21.(8分)如图,点B是线段AC上一点,且20=AB,8=BC.(1)试求出线段AC的长;(2)如果点O是线段AC的中点.请求线段OB的长.22.(10分)根据解答过程填空(写出推理理由或根据):如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC证明∵∠DAF=∠F(已知)∴AD ∥BF()∴∠D=∠DCF()∵∠B=∠D()∴∠=∠DCF (等量代换)∴AB∥DC()BCDA23.(10分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30、-25、-30、+28、-29、-16、-15、(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?24.(12分)下列是某初一数学兴趣小组探究三角形内角和的过程,请根据他们的探究过程,结合所学知识,解答下列问题.兴趣小组将图1△ABC三个内角剪拼成图2,由此得△ABC三个内角的和为180度.(1)请利用图3证明上述结论.(2)三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图4,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.①请探究出∠ACD与∠A、∠B的关系,并直接填空:∠ACD= .②如图5是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值.25.(14分)我们知道:对边平行且相等,四个角都是直角的四边形是长方形.一结论解答问题.(1)如图1是某直三棱柱的表面展开图.①请指出图中哪三个字母表示多面体的同一点;②如果沿BC 、GH 将其表面展开图.....剪成三块,恰好拼成一个长方形,那么△BMC 应满足什么条件?(直接写出所有满足条件......,不必说明理由) (2)将图2中边长都是20cm 的等边三角形纸片剪拼成一个底面是等边三角形的直三棱柱模型,使它的表面积与原等边三角形的面积相等;请按要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据).参考答案:一、选择题(每小题4分,共40分)1. A ;2. D ;3. C ;4. C ;5. D ;6. C ;7. C ;8. A ;9. C ;10 . B.二、填空题(每小题4分,共24分)11. 2; 12. 229x x −++; 13. 130°;14.3−或13;(每对一个得两分)15.55 °; 16. 50、11.三、解答题17.(本题8分)解:原式= -10+4 ………6分(化简正确每个2分)= -6 ………… …8分18.(本题8分)解:原式=()45293⨯−+− ………………………4分(化简正确每个2分) =()4589⨯−+− ………………………6分 =()109−+−…………………………… …7分=19− ………………………………… …8分19.(本题8分)解:原式=y x xy y x xy y x 22254263−−++ … …4分xy 2= ………………………… …5分当1,1−==y x 时,原式=()112−⨯⨯ ……………………………… 7分2−= …………8分20.(本题8分)每画对一条得2分(点E 、点F 没标注各扣1分)21.(本题8分)解:(1)∵BC AB AC += …………2分又∵AB=20,BC=8∴AC 820+= ………………………………………………3分28= ………………………………………………4分(2)∵O 是AC 的中点, ∴AC CO 21=………………………………………… …5分 14= ……………………………………………6分∴BC CO OB −=…………………………………………7分 814−=6= ……………………………………………8分 22.(本题10分)证明:∵∠DAF =∠F ( 已知 )∴ AD ∥ BF (内错角相等,两直线平行 ) …………2分∴∠D =∠DCF ( 两直线平行, 内错角相等 )…… …4分∵∠B =∠D ( 已知 ) ………………………………6分 ∴∠ B =∠DCF ( 等量代换 ) ………………………8分∴AB ∥DC (同位角相等,两直线平行 ).………… …10分23.(本题10分)解:(1)∵+30-25-30+28-29-16-15=-57 ………………………2分 ∴ 经过这7天,仓库里的水泥减少了57吨 ……………………3分(2)∵200+57=257 ………………………………………… …4分∴那么7天前,仓库里存有水泥257吨 ……………… … …6分(3)依题意:进库的装卸费为:()()[]a a 582830=+++ ;… ………… …7分出库的装卸费为:[]b b 1151516293025=−+−+−+−+−… ………8分 ∴ 这7天要付多少元装卸费58115a b +…10分(直接列式求得答案且正确不扣分)24.(本题12分)证明:(1)过点C 作AB CM // ………… ……1分AB CM // (已作)2∠=∠∴A (两直线平行,同位角相等) ………2分1∠=∠B (两直线平行,内错角相等) ……………3分018021=∠+∠+∠BCA ………………… ……4分0180=∠+∠+∠∴B A BCA ………………… ……5分(2)① ∠A +∠B, ……………………………… …8分②对于△BDN, ∠MNA =∠B +∠D, ………… …9分对于△CEM , ∠NMA =∠C +∠E, ……… …10分对于△ANM , ∠A+∠MNA +∠NMA=180 o , ……11分∴∠A+∠B +∠D+∠C +∠E=180 o , ……………………12分25.(本题14分)解:(1)点A 、M 、D 三个字母表示多面体的同一点.……………3分(2)△BMC 应满足的条件是:a 、∠BMC=90°,且BM=DH ,或CM=DH ;………………5分b 、∠MBC=90°,且BM=DH ,或BC=DH ; ……………7分c 、∠BCM=90°,且BC=DH ,或CM=DH ; ………… …9分(3)如下图,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可.M D 21A BC。

【华东师大版】七年级数学上期末试卷含答案

【华东师大版】七年级数学上期末试卷含答案

一、选择题1.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个2.下列说法正确的是( )A .射线PA 和射线AP 是同一条射线B .射线OA 的长度是3cmC .直线,AB CD 相交于点 PD .两点确定一条直线 3.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( ) A .互余B .互补C .相等D .无法确定 4.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A .B .C .D .5.一元一次方程的解是( ) A .B .C .D . 6.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cm B .6cm C .5cm D .10cm 7.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x -2-1 0 1 2 mx n +-12 -8 -4 0 4A .1x =-B .0x =C .1x =D .2x = 8.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A .九折B .八五折C .八折D .七五折 9.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .11 10.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- 11.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分 12.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1二、填空题13.如图所示,直线AB ,CD 交于点O ,∠1=30°,则∠AOD =________°,∠2=________°.14.如图是一个正方体盒的展开图,若在其中的三个正方形A 、B 、C 内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A ,B ,C 内的三个数依次为__,___,___.15.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________. 16.某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元.17.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式2A B - 的值不变,则12()(2)33a A b B ---的值是_______. 18.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个19.计算:3122--=__________;︱-9︱-5=______. 20.已知2x =,3y =,且x y <,则34x y -的值为_______.三、解答题21.如图,已知A 、B 、C 、D 四点,根据下列要求画图:(1)画直线AB 、射线AD ;(2)画∠CDB ;(3)找一点P ,使点P 既在AC 上又在BD 上.22.如图,O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.(1)若OE 是∠BOC 的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC ,∠DOE=72°,求∠EOC 的度数. 23.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+7 24.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?25.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=,(2)数轴上a,b,c所对应的点分别为A,B,C,则B,C两点间的距离为;(3)在(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t秒,①此时A表示的数为;此时B表示的数为;此时C表示的数为;②若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.观察下列单项式:x-,237x39x,…写出第n个单项7x, (19)-,203x,35x-,4式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.2.D解析:D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.3.C解析:C【分析】∠1和∠2互余,∠2与∠3互余,则∠1和∠3是同一个角∠2的余角,根据同角的余角相等.因而∠1=∠3.【详解】∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C.【点睛】本题考查了余角的定义.解题的关键是掌握余角的定义,以及同角的余角相等这一性质. 4.A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A 折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B 、图C 和图D 中对面图案不相同;故选A .【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题. 5.A解析:A【解析】【分析】先移项,再合并同类项,把x 的系数化为1即可;【详解】原式=; =故选A.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键. 6.C解析:C【解析】试题分析:原来正方形的边长为x ,则=39,解得:x=5.考点:一元一次方程的应用 7.A解析:A【分析】根据题意得出方程组,求出m 、n 的值,再代入求出x 即可.【详解】根据表格可知0x =时,4mx n +=-,所以4n =-.2x =时,4mx n +=,所以244m -=,移项得244m =+,合并同类项,得28m =系数化为1,得4m =.所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -=系数化为1,得1x =-.故选A .【点睛】本题考查了解一元一次方程和二元一次方程的解,能求出m 、n 的值是解此题的关键. 8.A解析:A【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。

华师大版七年级上册数学期末考试试卷含答案

华师大版七年级上册数学期末考试试卷含答案

华师大版七年级上册数学期末考试试题一、单选题1.-2022的相反数是( )A .-2022B .12022C .2022D .12022- 2.若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°3.下列说法中正确的是( )A .单项式25xy -的系数是5-,次数是2 B .单项式m 的系数是1,次数是0 C .12ab -是二次单项式 D .单项式45xy -的系数是45-,次数是2 4.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( )A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-5.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是( )A .a+b <0B .a ﹣b >0C .ab <0D .b a>0 6.如图,由几个相同的小正方体搭成一个几何体,从上面观察该图形,得到的平面图形是A .B .C .D .7.一只跳蚤在数轴上从原点开始,第1次向右跳2个单位长度,第2次向左跳4个单位长度,第3次向右跳6个单位长度,第4次向左跳8个单位长度,…依此规律跳下去,当它第2020次落下时,落点表示的数是( )A .2019B .2020C .2020-D .10108.如图是一个正方体的平面展开图,标注了字母m 的是正方体的前面,如果正方体的左面与右面标注的式子相等,前面与后面标注的数字互为相反数,则m 的值为( )A .3B .﹣3C .2D .﹣29.已知当1x =时,代数式334ax bx ++值为8,那么当1x =-时,代数式334ax bx ++值为( ) A .0 B .5- C .1- D .310.下面四个图形中,1∠与2∠是同位角的是( )A .B .C .D . 11.如图是一款手推车的平面示意图,其中AB∥CD ,126∠=︒,274∠=︒,那么3∠的度数为( )A .100°B .132°C .142°D .154°12.把四张形状大小完全相同的小长方形卡片(如图∥)不重叠地放在一个底面为长方形(长为m ,宽为n)的盒子底部(如图∥),盒子底面未被卡片覆盖的部分用阴影表示,则图∥中两块阴影部分的周长和是( )A .4mB .4nC .2(m +n)D .4(m -n) 二、填空题13.如果单项式﹣12xa ﹣2y 2b +1与单项式7x 2a ﹣7y 4b ﹣3是同类项,则ab = .14. 10.8万用科学记数法可表示为_____.15.已知两个角分别为35︒和145,︒且这两个有一条公共边,则这两个角的平分线所成的角为_________________________.16.定义一种对正整数n 的“F”运算:∥当n 为奇数时,结果为35n +;∥当n 为偶数时,结果为2k n ;(其中k 是使2kn 为奇数的正整数),并且运算可以重复进行,例如,取26n =,则:若49n =,则第2021次“F”运算的结果是___________.17.如图是一个数值运算的程序,若输出y 的值为1,则输入的值为____.18.如果一个数的平方是14,那么这个数是______. 19.在数轴上从左到右有A ,B ,C 三点,其中1AB =,2BC =,如图所示.设点A ,B ,C 所对应数的和是x .(1)若以点A 为原点,则C 表示的数是______;(2)若以BC 的中点为原点,则x 的值是______.20.已知关于x ,y 的多项式x 2ym +1+xy 2﹣2x 3﹣5是六次四项式,单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,则m ﹣n =_____.三、解答题21.计算 (1)5357722124812247⎛⎫⎛⎫+-+÷-- ⎪ ⎪⎝⎭⎝⎭ (2)2022211(10.5)2(3)2⎡⎤---⨯⨯--⎣⎦ 22.先化简,再求值:2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2);其中x 、y 满足(x -1)2+|y+2|=0.23.如图,CE 平分ACD ∠,F 为CA 延长线上一点,//FG CE 交AB 于点G ,140ACD ∠=︒,45B ∠=︒,求AGF ∠的度数.24.如图,P 是线段AB 上一点,AB =12cm ,M ,N 两点分别从点P ,B 出发以1cm/s 、3cm/s 的速度同时向左运动,运动时间为ts .(1)当t =1,且PN =3AM 时,求AP 的长.(2)当点M 在线段AP 上,点N 在线段BP 上运动的任一时刻,总有PN =3AM ,AP 的长度是否变化?若不变,请求出AP 的长;若变化,请说明理由.(3)在(2)的条件下,Q 是直线AB 上一点,且AQ =PQ+BQ ,求PQ 的长.25.分别指出下列图中的同位角、内错角、同旁内角.26. 一个高为8cm ,容积为50mL 的圆柱形容器里装满了水,现把高16cm 的圆柱垂直放入,使圆柱的底面与容器的底面接触,这时一部分水从容器中溢出,当把圆柱从容器中拿出后,容器中水的高度为6厘米.求圆柱的体积.参考答案1.C【分析】根据相反数的定义:只有符号不同的两个数互为相反数,特别地,0的相反数是0,求解即可.【详解】解:-2022的相反数是2022,故选:C .【点睛】本题考查相反数,熟练掌握相反数的定义是解题的关键.2.B【分析】根据补角、余角的定义即可求解.【详解】∥α∠的补角是150°∥α∠=180°-150°=30°∥α∠的余角是90°-30°=60°故选B .【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角3.D【分析】直接根据单项式的系数与次数的定义、多项式以及多项式的次数的定义解决此题.【详解】A .单项式25xy -的系数是15-,次数是3,故A 不符合题意; B .单项式m 的系数是1,次数是1,故B 不符合题意;C .12ab -是二次多项式,故C 不符合题意; D .单项式45xy -的系数是45-,次数是2,故D 符合题意; 故选:D .【点睛】本题主要考查单项式的系数与次数、多项式,熟练掌握单项式的系数与次数的定义,多项式的定义是解题的关键.4.D【分析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【详解】解:()22537351x x x x +---+22+--+-=537351x x x x2288=+-x x所以的计算过程是:()22288351+---+x x x x22=+---+x x x x2883512139=-+-x x故选:.D【点睛】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.5.D【分析】根据数轴的特点即可依次判断.【详解】由数轴可得a+b<0,正确;a>b,故a﹣b>0,正确;a>0>b,故ab<0,正确;b<0,故错误;a故选D.【点睛】此题主要考查数轴的应用,解题的关键是熟知有理数的运算.6.D【分析】观察图形可知,从上面看到的图形是两行:后面一行3个正方形,前面一行2个正方形靠左边,据此即可解答问题.【详解】解:根据题干分析可得,从上面看到的图形是.故选:D.【点睛】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.7.C【分析】根据数轴上的点的移动规律“左减右加”计算即可得出答案.【详解】解:设向左跳为负,向右跳为正,由题意得,[][](2)(4)(6)(8)4034(4036)4038(4040)++-+++-+++-++-(24)(68)(1012)(40344036)(40384040)=-+-+-++-+- 2020=-,故选:C .【点睛】本题考查了数轴上的点的变化规律,解题关键注意计算时的正负数的表示方法.8.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“m”与“x”是相对面,“﹣2”与“3”是相对面,“4”与“2x”是相对面,解∥正方体的左面与右面标注的式子相等,∥4=2x ,解得x =2;∥标注了m 字母的是正方体的前面,左面与右面标注的式子相等,前面与后面标注的数字互为相反数,∥m =﹣2.故选:D .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.A【分析】把x =1分别代入两个等式得到两个关于a 、b 的等式,然后把x =−1代入代数式,再把两个a 、b 、的等式整理代入进行计算即可得解.【详解】解:∥当1x =时,代数式334ax bx ++值为8,∥a+3b+4=8,即:a+3b=4,∥当1x =-时,334ax bx ++=()()()3131********a b a b a b ⋅-+⋅-+=--+=-++=-+=,故选A.【点睛】本题考查了代数式求值,根据系数的特点表示出所求代数式是解题的关键.10.D【分析】根据同位角的定义和图形逐个判断即可.【详解】A、不是同位角,故本选项错误;B、不是同位角,故本选项错误;C、不是同位角,故本选项错误;D、是同位角,故本选项正确;故选:D.【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.11.B【分析】先根据平行线性质求出∥A,再根据邻补角的定义求出∥4,最后根据三角形外角性质得出∥3=∥4+∥A.【详解】解:如图:∥AB∥CD,∥1=26°,∥∥A=∥1=26°,∥∥2=74°,∥2+∥4=180°,∥∥4=180°-∥2=180°-74°=106°,∥∥3=∥4+∥A=106°+26°=132°.故选:B.【点睛】本题考查了平行线性质和三角形外角性质的应用,解题的关键是求出∥A的度数和得出∥3=∥4+∥A.12.B【分析】本题需先设小长方形卡片的长为a ,宽为b ,再结合图形得出上面的阴影周长和下面的阴影周长,再把它们加起来即可求出答案.【详解】解:设小长方形卡片的长为a ,宽为b ,∥L 上面的阴影=2(n -a+m -a ),L 下面的阴影=2(m -2b+n -2b ),∥L 总的阴影=L 上面的阴影+L 下面的阴影=2(n -a+m -a )+2(m -2b+n -2b)=4m+4n -4(a+2b ),又∥a+2b=m ,∥4m+4n -4(a+2b)=4n ,故选:B .【点睛】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.13.25【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,求出a ,b ,再代入b a 中即可得出答案. 【详解】单项式22112a b x y -+-与单项式27437a b x y --是同类项, 2272143a a b b -=-⎧∴⎨+=-⎩, 解得:52a b =⎧⎨=⎩, 2525b a ∴==.故答案为:25.【点睛】本题考查同类项的定义以及有理数的乘方运算;同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,掌握同类项的定义是解题的关键.14.51.0810⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:10.8万=51.0810⨯,故答案为:51.0810⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.15.90或55.【分析】根据题意易得这两个角有两种位置关系:一种是叠合,一种是不叠合,然后直接求解即可.【详解】设35BOC ∠=︒,145,AOC ∠=︒OD 平分∥AOC ,OE 平分∥BOC .当这两个角叠合时,如图所示:∴()()11145355522DOE AOC BOC ∠=∠-∠=⨯︒-︒=︒; 当这两个角不叠合时,如图所示:∴()()11145359022DOE AOC BOC ∠=∠+∠=⨯︒+︒=︒. 故答案为90或55.【点睛】本题主要考查角的角度计算,关键是根据题意进行分类讨论,然后利用角的和差关系求解即可.16.98【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F 运算”的结果.【详解】解:本题提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F∥运算,即3×49+5=152(偶数),需再进行F∥运算,即152÷23=19(奇数),再进行F∥运算,得到3×19+5=62(偶数),再进行F∥运算,即62÷21=31(奇数),再进行F∥运算,得到3×31+5=98(偶数),再进行F∥运算,即98÷21=49,再进行F∥运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故答案为:98.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.17.3±【分析】设输入的数为x,根据程序列出关于x的方程,求出x即可.【详解】设输入的数为x,根据程序列方程得(1)x-÷2=112x-=3x=3x=±故答案为3±【点睛】本题考查了整式的程序计算,正确理解程序是解题的关键.18.1 2±【分析】根据有理数的乘方运算即可求出答案.【详解】解:21124⎛⎫±=⎪⎝⎭,∴这个数是12±,故答案为:12±. 【点睛】本题考查有理数的乘方,解题的关键是熟练运用有理数的乘方运算,本题属于基础题型.19. 3 -2【分析】根据数轴上两点之间的距离进行解答即可.【详解】解:(1)∥点A 为原点,1AB =,2BC =,∥3AB BC +=,∥点C 表示的数为3,(2)∥以BC 的中点为原点,2BC =,∥点B 表示的数为-1,点C 表示的数为1,又1AB =,∥点A 表示的数为-2,∥x=-2+(-1)+1=-2.故答案为:3,-2.【点睛】本题考查数轴上两点之间的距离,理解数轴上两点之间的距离等于两点差的绝对值是解题关键.20.1【分析】根据多项式x 2ym +1+xy 2﹣2x 3﹣5是六次四项式,可得216m ++=,根据单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,可得256n m +-=,两式联立即可得到m 、n 的值,代入计算即可求解.【详解】∥多项式212325m x y xy x 是六次四项式,∥216m ++=,解得3m =,∥单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,∥256n m +-=,即2536n ,解得2n =,∥1m n -=,故答案为1.【点睛】此题考查了单项式与多项式的定义和性质.解题的关键是掌握单项式和多项式的相关定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.21.(1)-7 (2)34- 【解析】(1) 解:5357722124812247⎛⎫⎛⎫+-+÷-- ⎪ ⎪⎝⎭⎝⎭ 5357242212481277⎛⎫⎛⎫=+-+⨯-- ⎪ ⎪⎝⎭⎝⎭ 5243245247242212747871277⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+-⨯-+⨯-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1018152227777=--+-- 7=-.(2) 解:2022211(10.5)2(3)2⎡⎤---⨯⨯--⎣⎦ ()1112922=--⨯⨯- ()1174=--⨯- 714=-+ 34=-. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 22.2266xy x y -,-36【分析】根据去括号法则,合并同类项法则,对整式的加减化简,然后根据非负数的意义求得x 、y 的值,再代入求值即可.【详解】解:原式=2222224610xy xy x y xy x y -++-2266xy x y =-由题意得:x 1,y 2==-∥2266xy x y -=6×1×(-2)-6×21×(-2)2=-36.【点睛】考点:整式加减运算,非负数23.25°【分析】根据角平分线的定义求出∥ACE ,再根据两直线平行,内错角相等可得∥AFG=∥ACE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∥GAF ,根据三角形的内角和定理即可得到结论.【详解】解:∥CE 平分ACD ∠,140ACD ∠=︒ ∥111407022ACE ACD ∠=∠=⨯︒=︒,18040ACB ACD ∠=︒-∠=︒, ∥//FG CE ,∥70AFG ACE ∠=∠=︒,∥85FAG B ACB ∠=∠+∠=︒,∥18025AGF AFG FAG ∠=︒-∠-∠=︒,故AGF ∠的度数是25°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.24.(1)AP 的长为3cm ;(2)AP 的长度不变,AP=3cm ,(3)PQ 的长为6cm 或12cm .【分析】(1)P 是线段AB 上一点,AB =12cm ,设AP=xcm ,BN=3tcm ,PN=(12-3t -x)cm ,AM=AP -MP=(x -t)cm ,当t =1,PN =3AM ,列方程12-3-x=3(x -1),解方程即可;(2)根据PN =3AM ,列方程12-3t -x=3(x -t),解方程得出x=3,AP 的长度不变;(3)根据点Q 的位置可分三种情况,当点Q 在BA 延长线上,QA <QP <QB ,此种情况AQ =PQ+BQ 不成立;当点Q 在AB 上,根据AQ=PQ+QB , 列方程2(3+PQ )=PQ+12,当点Q 在AB 延长线上,根据AQ =PQ+BQ ,列方程12+BQ=PQ+BQ ,解方程即可.【详解】解:(1)P 是线段AB 上一点,AB =12cm ,设AP=xcm ,BN=3tcm ,PN=(12-3t -x)cm ,AM=AP -MP=(x -t)cm ,当t =1,PN =3AM ,即12-3-x=3(x -1),解得x=3,∥AP 的长为3cm ;(2)∥PN =3AM ,∥12-3t -x=3(x -t)解得x=3cm ,AP的长度不变,AP=3cm,(3)根据点Q的位置可分三种情况,当点Q在BA延长线上,QA<QP<QB,此种情况AQ=PQ+BQ不成立;当点Q在AB上,∥AQ=PQ+QB,AQ=AP+PQ=3+PQ,BQ=12-AQ,∥AQ=PQ+12-AQ,∥2AQ=PQ+12,∥2(3+PQ)=PQ+12,解得PQ=6cm;当点Q在AB延长线上,AQ=PQ+BQ,AQ=12+BQ,∥12+BQ=PQ+BQ,∥PQ=12cm,∥PQ的长为6cm或12cm.【点睛】本题考查了一元一次方程的应用,两点间的距离,列代数式,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.25.图1中同位角有:∥1与∥5,∥2与∥6,∥3与∥7,∥4与∥8;内错角有:∥3与∥6,∥4与∥5;同旁内角有:∥3与∥5,∥4与∥6.;图2中同位角有:∥1与∥3,∥2与∥4;同旁内角有:∥3与∥2.【分析】根据两直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角,可得同位角;两个角在截线的两侧,被截两直线的中间的角是内错角,可得内错角;两个角在截线的同侧,被截两直线的中间的角是同旁内角,可得同旁内角.【详解】解:如图1,同位角有:∥1与∥5,∥2与∥6,∥3与∥7,∥4与∥8;内错角有:∥3与∥6,∥4与∥5;同旁内角有:∥3与∥5,∥4与∥6.如图2,同位角有:∥1与∥3,∥2与∥4;同旁内角有:∥3与∥2.【点睛】本题考查了同位角、内错角,同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.26.325m【分析】根据题意得出:因为浸入的圆柱体是垂直放入的,所以浸入的圆柱体的高度是8厘米,所以浸入部分的体积等于下降的水的体积,下降的水的体积等于高为8-6=2厘米的圆柱容器的体积;先用圆柱形容器的容积除以8求出圆柱形容器的底面积,再利用圆柱的体积公式计算出浸入的圆柱体的体积,因为浸入的8厘米是16厘米的一半,所以体积就是浸入的部分的体积的2倍,再乘2即可解答.【详解】解:()()()50886168÷⨯-⨯÷6.2522=⨯⨯()325cm =,答:圆柱的体积是325m .【点睛】解决本题的关键是明确浸入水中的圆柱体的体积等于下降的水的体积,而下降的水的高度是2厘米,不是6厘米.。

华东师大版七年级数学上册期末试卷(必考题)

华东师大版七年级数学上册期末试卷(必考题)

华东师大版七年级数学上册期末试卷(必考题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .86.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A.20B.35C.55D.709.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程:(1)2976x x -=+ (2)332164x x +-=-2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、D5、A6、D7、A8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、2m≤-5、±46、7三、解答题(本大题共6小题,共72分)1、(1)x=﹣3;(2)x=3 4.2、3 53、(1)证明见解析;(2)∠FAE=135°;4、∠BOE的度数为60°5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)3;(2)第5个台阶上的数x是﹣5;应用:从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.。

华东师大版七年级数学上册期末考试及答案【完整版】

华东师大版七年级数学上册期末考试及答案【完整版】

华东师大版七年级数学上册期末考试及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.分解因式:32x 2x x -+=_________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2.如果关于x,y的方程组437132x ykx y k-=⎧⎪⎨+-=-⎪⎩的解中,x与y互为相反数,求k的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、A6、C7、B8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、60°3、()2 x x1-.4、(4,2)或(﹣2,2).5、2或2.56、54°三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、x=1,y=-1,k=9.3、略4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)。

2023—2024学年最新华东师大新版七年级上学期数学期末考试试卷(附参考答案)

2023—2024学年最新华东师大新版七年级上学期数学期末考试试卷(附参考答案)

最新华东师大新版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2、港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程总投资1269亿元,将1269亿用科学记数法表示,结果并精确到百亿约为()A.13×1010B.1.2×1011C.1.3×1011D.0.12×1012 3、如图是由5个大小相同的正方体组成的立体图形,其俯视图是()A.B.C.D.4、下列去括号正确的是()A.a﹣(b+c)=a﹣b+c B.a﹣(b﹣c)=a+b﹣cC.a﹣(b﹣c)=a﹣b﹣c D.a﹣(b+c)=a﹣b﹣c5、如图,下列各组条件中,能得到AB∥CD的是()A.∠1=∠3 B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°6、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OBC.射线OC D.射线OD7、a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣aC.﹣b<a<﹣a<b D.a<﹣b<﹣a<b8、如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.115°B.110°C.120°D.130°9、下列哪个图形是正方体的展开图()A.B.C.D.10、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°11、当x=2时,整式ax3+bx﹣1的值等于﹣100,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.100B.﹣100C.98D.﹣9812、如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.4B.5C.6D.7二、填空题(每小题3分,满分18分13、比较大小:﹣﹣14、在数轴上点A表示数1,点B与点A相距3个单位,点B表示数是.15、若2a3b n+3与4a m﹣1b4的和是单项式,则﹣m+n=.16、若关于x、y的二次多项式﹣3x2+y3+nx2﹣4y+3的值与x的取值无关,则n=.17、如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.18、由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形个(用含n的代数式表示).最新华东师大新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计66分,解答题要有必要的文字说明)19、计算:.20、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.21、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.22、某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+30、﹣25、﹣30、+28、﹣29、﹣16、﹣15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?23、如图,AD∥EF,∠1+∠2=180°.(1)求证:DG∥AB;(2)若DG是∠ADC的角平分线,∠ADB=120°,求∠B的度数.24、如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.25、对于一个四位自然数N,如果N满足各数位上的数字不全相同且均不为0,它的千位数字减去个位数字之差等于百位数字减去十位数字之差,那么称这个数N为“差同数”.对于一个“差同数”N,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t,规定:.例:N=7513,因为7﹣3=5﹣1,故:7513是一个“差同数”.所以:s=73﹣51=22,t=71﹣53=18,则:.(1)请判断4378是否是“差同数”.如果是,请求出F(N)的值;(2)若自然数P,Q都是“差同数”,其中P=1000x+10y+616,Q=100m+n+3042(1≤x≤9,0≤y≤8,1≤m≤9,0≤n≤7,x,y,m,n都是整数),规定:,当3F(P)﹣F(Q)能被11整除时,求k的最小值.26、如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图2,若过G点作GE∥AB交AD于E,连接CE,CE恰好平分∠BCD,∠1﹣∠2=20°求∠AGE的度数;(3)如图3,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.最新华东师大新版七年级上学期数学期末考试试卷(参考答案)13、>14、﹣2或415、﹣3 16、3 17、40°18、(3n﹣1)三、解答题19、.20、-821、解:(1)>、<、>(2)﹣2a﹣4b22、(1)减少了57吨(2)257吨(3)这7天要付(58a+115b)元装卸费23、解:(1)6 (2)5cm (3)BE的长是4或10cm24、解:(1)证明(略)(2)30°25、解:(1)(2)k的最小值为26、(1)证明(略)(2)65°(3)或5。

华东师大版七年级数学上册期末考试题及答案【各版本】

华东师大版七年级数学上册期末考试题及答案【各版本】

华东师大版七年级数学上册期末考试题及答案【各版本】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.按如图所示的运算程序,能使输出y值为1的是()A.11m n,D.21====,m n==,C.12m n==,B.10m n4.下列图形具有稳定性的是()A.B.C.D.x-取最小值时,x的值是( )5.已知x是整数,当30A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q7.下列各组数中,能作为一个三角形三边边长的是()A .1,1,2B .1,2,4C .2,3,4D .2,3,58.6的相反数为( )A .-6B .6C .16-D .169.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122xx x-+=--.2.已知关于x的不等式21122m mxx->-.(1)当m=1时,求该不等式的非负整数解;(2)m取何值时,该不等式有解,并求出其解集.3.如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、A5、A6、C7、C8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、83、(3,7)或(3,-3)4、205、40°6、2或-8三、解答题(本大题共6小题,共72分)1、x=1.2、(1)0,1;(2)当m≠-1时,不等式有解;当m> -1时,原不等式的解集为x<2;当m< -1时,原不等式的解集为x>2.3、略4、略5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.。

华东师大版七年级上学期期末考试数学试卷含答案(共3套)

华东师大版七年级上学期期末考试数学试卷含答案(共3套)

A.B.5C.-D.-52.计算|-|-的结果是()A.- B.C.-1D.17.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=∠AOB,则射线OC是∠AOB 华东师大版七年级上学期数学期末检测题时间:90分钟满分:120分一、选择题(每小题3分,共30分)1.5的倒数为()1155123311333.我市今年参加中考的人数约为42000人,将42000用科学记数法表示为()A.4.2×104B.0.42×105C.4.2×103D.42×1034.下列各式中,成立的是()A.a2+a2=2a4B.2a-a=1C.-5(a-b)=-5a+b D.a-b+c=a-(b-c)5.下列立体图形中,俯视图是正方形的是()6.数a,b在数轴上的位置如图所示,下列各式中正确的个数是()①a+b>0;②ab<0;③|a|+b<0;④a-b>0;⑤|a|=-a.A.1个B.2个C.3个D.4个,第6题图),第8题图)12的平分线;④连结两点之间的线段叫两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有()A.1个B.2个C.3个D.4个8.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n9.如图,直线a,b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°12.若- xy 3与 2x m -2y n +5 是同类项,则 n m =____. (1)(-1)2015-| - |× ×[22-(-4)2]; (2)-62÷2 ×(-1 )2+4-22×(- ).10.将一张长方形的纸对折(如图所示),得到一条折痕(图中的虚线),继续对折,每次折痕都保持平行,连 续对折三次后,可以得到 7 条折痕,那么 n 次对折可得到折痕的条数为( )A .2n -1B .2n -1C .2n +1D .2n +1二、填空题(每小题 3 分,共 24 分)11.在跳远测试中,合格的标准是 4.00 米,王凡跳出了 4.12 米,记作+0.12 米,李强跳出了 3.95 米,应记 作____.1 313.多项式 2xy 3-x 3y -1+3x 2y 2 是____次____项式,将它按 x 的降幂排列为____ .14.已知 m 2-m =6,则 1-2m 2+2m =____.15.如图,点 O 在直线 AB 上,OC 平分∠AOB ,∠MON =90°,则∠1 的余角是____,∠BOM 的补角是 ____.,第 15 题图) ,第 16 题图) ,第 18 题图)16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是____.17.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多 10 人,两种都会 的有 7 人,设会弹古筝的有 m 人,则该班同学共有____人.(用含有 m 的代数式表示) 18.如图,已知 l 1∥l 2,若∠1 与∠2 互余,∠3=120°,则∠4=____. 三、解答题(共 66 分) 19.(10 分)计算:1 7 21 1 12 4 34 2 320.(8 分)由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方体中的数字表示该位置的小正方体的个数,请画出图中这个几何体的主视图与左视图.(5x 2-3y 2)-[(5x 2-2xy -y 2)-2(3y 2-xy)],其中 x =-2,y =- .21.(8 分)先化简,再求值:1222.(8 分)如图,直线 AB ,CD 相交于点 O ,OD 平分∠AOF ,OE ⊥CD 于点 O ,∠AOE =50°,求∠FOC 的度数.23.(10 分)两种移动电话计费方式如下:月租费本地通话费全球通 15 元/月 0.10 元/分神州行0.20 元/分(1)一个月内某用户在本地通话时间是 x 分钟,请你用含有 x 的式子分别写出两种计费方式下该用户应该支 付的费用;(2)若某用户一个月内本地通话时间是 5 个小时,你认为采用哪种计费方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,全球通收费为 30 元,请你帮助他解决一下.24.(10 分)如图,∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?25.(12分)(1)如图①,已知数轴上A,B两点分别表示-3,5,则AB=____.数轴上M,N两点分别表示数m,n,则MN=____.(2)如图②,E,F为线段AB的三等分点,P为直线AB上一动点(P不与E,F,A重合).在点P的运动过程中,PE,PF,PA有何数量关系?请写出结论并说明理由.A.B.5C.-D.-52.计算|-|-的结果是(A)A.- B.C.-1D.17.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=∠AOB,则射线OC是∠AOB参考答案一、选择题(每小题3分,共30分)1.5的倒数为(A)1155123311333.我市今年参加中考的人数约为42000人,将42000用科学记数法表示为(A)A.4.2×104B.0.42×105C.4.2×103D.42×1034.下列各式中,成立的是(D)A.a2+a2=2a4B.2a-a=1C.-5(a-b)=-5a+b D.a-b+c=a-(b-c)5.下列立体图形中,俯视图是正方形的是(A)6.数a,b在数轴上的位置如图所示,下列各式中正确的个数是(C)①a+b>0;②ab<0;③|a|+b<0;④a-b>0;⑤|a|=-a.A.1个B.2个C.3个D.4个,第6题图),第8题图)12的平分线;④连结两点之间的线段叫两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有(C)A.1个B.2个C.3个D.4个8.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是(C)A.m-n B.m+nC.2m-n D.2m+n9.如图,直线a,b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为(A)A.110°B.115°C.120°D.130°12.若-xy3与2x m-2y n+5是同类项,则n m=__-8__.(1)(-1)2015-|-|××[22-(-4)2];(2)-62÷2×(-1)2+4-22×(-).10.将一张长方形的纸对折(如图所示),得到一条折痕(图中的虚线),继续对折,每次折痕都保持平行,连续对折三次后,可以得到7条折痕,那么n次对折可得到折痕的条数为(A)A.2n-1B.2n-1C.2n+1D.2n+1二、填空题(每小题3分,共24分)11.在跳远测试中,合格的标准是4.00米,王凡跳出了4.12米,记作+0.12米,李强跳出了3.95米,应记作__-0.05米__.1313.多项式2xy3-x3y-1+3x2y2是__四__次__四__项式,将它按x的降幂排列为__-x3y+3x2y2+2xy3-1__.14.已知m2-m=6,则1-2m2+2m=__-11__.15.如图,点O在直线AB上,OC平分∠AOB,∠MON=90°,则∠1的余角是__∠2和∠4__,∠BOM 的补角是__∠1和∠3__.,第15题图),第16题图),第18题图) 16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__左视图__.17.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人,设会弹古筝的有m人,则该班同学共有__(2m+3)__人.(用含有m的代数式表示)18.如图,已知l1∥l2,若∠1与∠2互余,∠3=120°,则∠4=__150°__.三、解答题(共66分)19.(10分)计算:1721112434232解:原式=9解:原式=-30320.(8分)由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方体中的数字表示该位置的小正方体的个数,请画出图中这个几何体的主视图与左视图.解:图略(5x2-3y2)-[(5x2-2xy-y2)-2(3y2-xy)],其中x=-2,y=-.21.(8分)先化简,再求值:121解:原式=4y2,当x=-2,y=-2时,原式=122.(8分)如图,直线AB,CD相交于点O,OD平分∠AOF,OE⊥CD于点O,∠AOE=50°,求∠FOC 的度数.解:∵OE⊥CD,∠AOE=50°,∴∠AOD=90°-∠AOE=40°,又∵OD平分∠AOF,∴∠DOF=∠AOD=40°,∴∠FOC=180°-∠DOF=140°23.(10分)两种移动电话计费方式如下:月租费本地通话费全球通15元/月0.10元/分神州行0.20元/分(1)一个月内某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用;(2)若某用户一个月内本地通话时间是5个小时,你认为采用哪种计费方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,全球通收费为30元,请你帮助他解决一下.解:(1)全球通:15+0.1x,神州行:0.2x(2)全球通:15+0.1×5×60=45元,神州行:0.2×5×60=60元;45<60,采用全球通比较划算(3)(30-15)÷0.1=150(分),即通话时间为150分钟时,全球通的收费为30元24.(10分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?解:(1)AE∥FC,理由:∵∠2+∠CDB=180°,又∠1+∠2=180°,∴∠1=∠CDB,∴AE∥FC (2)AD∥BC,理由:由(1)得AE∥FC,∴∠A+∠ADC=180°,又∠A=∠C,∴∠C+∠ADC=180°,∴AD∥BC(3)BC平分∠DBE,理由:由AB∥CF,得∠EBC=∠C,由AD∥BC得∠DBC=∠ADB,∠C=∠ADF,∵DA平分∠BDF,∴∠ADF=∠ADB,∴∠EBC=∠DBC,∴BC平分∠DBE25.(12分)(1)如图①,已知数轴上A,B两点分别表示-3,5,则AB=__5-(-3)=8__.数轴上M,N两点分别表示数m,n,则MN=__n-m__.(2)如图②,E,F为线段AB的三等分点,P为直线AB上一动点(P不与E,F,A重合).在点P的运动过程中,PE,PF,PA有何数量关系?请写出结论并说明理由.解:P在A左边,PE-PA=PF-PE,即2PE-PF=PA;P在AE上,PE+PA=PF-PE,即PF-2PE =PA;P在EF上,PE+PF=AP-PE,即2PE+PF=PA;P在FB上,PE-PF=AP-PE,即2PE-PF =PA;P在B右边,PE-PF=PA-PE,即2PE-PF=PAA.2017B.-2017C.1D.-华师大版七年级上学期数学期末检测卷一、选择题(每小题4分,共40分).1.-2017的绝对值是().1201720172.当x=3时,代数式10-2x的值是().A.1B.2C.3D.43.下面不是同类项的是().A.-2与12B.-2a2b与a2bC.2m与2nD.-x2y2与12x2y24.下列式子中计算正确的是().A.5x2y-5xy2=0B.5a2-2a2=3C.4x y2-xy2=3xy2D.2a+3b=5ab5.下列各数中,比-3大的数是().A.-πB.-3.1C.-4D.-26.下列物体中,主视图是圆的是().A B C D7.中国药学家屠呦呦发明的青蒿素为保护人类健康做出了重大贡献,荣获2015年诺贝尔生理学或医学奖,奖金约为3020000元人民币.将3020000用科学记数法表示为().A.3.02⨯104B.302⨯104C.3.02⨯106D.302⨯1068.如图,锯木板前,在木板两端固定两个点,用墨盒弹一根墨线然后再锯,这样做的数学道理是().A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D.经过已知直线外一点,有且只有一条直线与已知直线平行319.(8 分)先化简,再求值: 3 x 2 y + 2 x y + 2 x 2 y - 2 x y - 5x 2 y ,其中 x = 1 , y = -1 .(9.下面图形中,射线 OP 是表示北偏东 60°方向的是().10.一组数据:2,1 ,3 , x , 7 , -9,…,满足“从第三个数起,若前两个数依次为 a 、 b ,则紧随其后的数就是 2a - b ”,例如这组数中的第三个数“3”是由“ 2 ⨯ 2 -1”得到,那么该组数据中的 x 为().A. -2B. -1C. 1D. 2二、填空题(每小题 4 分,共 24 分).11.在有理数 - 0.5 、-5、 5 3中,属于分数的共有 个.12.把多项式 9 - 2 x 2 + x 按字母 x 降幂排列是.13.若 ∠A = 50︒ ,则 ∠A 的补角为.14.在数轴上,点 A 表示的数是 5,若点 B 与 A 点之间距离是 8,则点 B 表示的数是.15. 如图,直线 a ∥ b ,将三角尺的直角顶点放在直线 b 上,若∠1=35°,则∠2=.16.观察下列数字:第 1 层1 2第 2 层4 5 6第 3 层9 10 11 12(第 15 题图)第 4 层 16 17 18 19 20… … … …在上述数字宝塔中,第 4 层的第二个数是 17,请问 2510 为第层第 个数.三、解答题(共 86 分).17.(8 分)计算: 5×(-2)+(-8)÷(-2)18.(8 分)计算: - 32+ (7 - 9) ÷45) (): 20.(8 分)如图,已知 A 、B 、C 、D 是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.①画线段 AB ;②画直线 AC ;③过点 B 画 AD 的平行线 BE ;④过点 D 画 AC 的垂线,垂足为 F .A BDC21.(8 分)如图,点 B 是线段 AC 上一点,且 AB = 20 , BC = 8 .(1)试求出线段 AC 的长;(2)如果点 O 是线段 AC 的中点.请求线段 O B 的长.22.(10 分)根据解答过程填空(写出推理理由或根据):如图,已知∠DAF=∠F,∠B=∠D,试说明 AB ∥DC证明∵∠DAF=∠F( 已知 )∴ AD ∥ BF ()∴∠D=∠DCF()∵∠B=∠D()∴∠=∠DCF ( 等量代换 )∴AB∥DC()23.(10 分)某水泥仓库一周 7 天内进出水泥的吨数如下(“+”表示进库,“-”表示出库) +30、-25、-30、+28、-29、-16、-15、(1)经过这 7 天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这 7 天,仓库管理员结算发现库里还存 200 吨水泥,那么 7 天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨 a 元、出仓库的水泥装卸费是每吨 b 元,求这 7 天要付多少元装卸费?...........24.(12 分)下列是某初一数学兴趣小组探究三角形内角和的过程,请根据他们的探究过程,结合所学知识,解答下列问题.兴趣小组将图 △1 ABC 三个内角剪拼成图 △2,由此得 ABC 三个内角的和为 180 度.(1)请利用图 3 证明上述结论.(2)三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图 4,点 D 为 BC 延长线上一点,则∠ACD 为△ABC 的一个外角.①请探究出∠ACD 与∠A 、∠B 的关系,并直接填空:∠ACD=.②如图 5 是一个五角星,请利用上述结论求∠A+∠B +∠C +∠D +∠E 的值.25.(14 分)我们知道:对边平行且相等,四个角都是直角的四边形是长方形.你可以利用这一结论解答问题.(1)如图 1 是某直三棱柱的表面展开图.①请指出图中哪三个字母表示多面体的同一点;②如果沿 BC 、GH 将其表面展开图剪成三块,恰好拼成一个长方形,那么△BMC 应满足什么条件?(直接写出所有满足条件,不必说明理由)(2)将图 2 中边长都是 20cm 的等边三角形纸片剪拼成一个底面是等边三角形的直三棱柱模型,使它的表面积与原等边三角形的面积相等;请按要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据).参考答案一、选择题(每小题4分,共40分)1.A;2.D;3.C;4.C;5.D;6.C;7.C;8.A;9.C;10.B.二、填空题(每小题4分,共24分)11.2;12.-2x2+x+9;13.130°;14.-3或13;(每对一个得两分)15.55°;16.50、11.三、解答题17.(本题8分)解:原式=-10+4…………………………………6分(化简正确每个2分)=-6……………………………………………………………8分18.(本题8分)解:原式=-9+(-2)3⨯54………………………4分(化简正确每个2分)=-9+(-8)⨯54…………………………………………6分=-9+(-10)…………………………………………………7分=-19………………………………………………………8分19.(本题8分)解:原式=3x2y+6xy+2x2y-4xy-5x2y……4分(化简正确每个2分)=2x y………………………………………………………5分当x=1,y=-1时,原式=2⨯1⨯(-1)…………………………………7分=-2…………8分(没化简直接代入求值且答案正确得3分)20.(本题8分)每画对一条得2分(点E、点F没标注各扣1分)21.(本题8分)解:(1)∵AC=AB+BC………………………………………2分又∵AB=20,BC=8∴AC=20+8………………………………………………3分[]= 28………………………………………………4 分(2)∵ O 是 AC 的中点,∴ CO = 1AC ……………………………………………5 分2= 14……………………………………………6 分BM ∴ OB = CO - BC ………………………………………7 分= 14 - 8A1 C2D= 6 ……………………………………………8 分22.(本题 10 分)证明:∵∠DAF=∠F( 已知 )∴ AD ∥ BF (内错角相等,两直线平行 )…………2 分∴∠D=∠DCF( 两直线平行, 内错角相等 )………4 分∵∠B=∠D( 已知) ………………………………6 分∴∠ B =∠DCF( 等量代换 ) ………………………8 分∴AB∥DC (同位角相等,两直线平行 ).……………10 分23.(本题 10 分)解:(1)∵+30-25-30+28-29-16-15=-57………………………2 分∴ 经过这 7 天,仓库里的水泥减少了 57 吨 ……………………3 分(2)∵200+57=257 ………………………………………………4 分∴那么 7 天前,仓库里存有水泥 257 吨 ……………………6 分(3)依题意:进库的装卸费为: [(+ 30)+ (+ 28)]a = 58a ;… …………………………7 分出库的装卸费为: - 25 + - 30 + - 29 + -16 + -15 b = 115b … ………8 分∴ 这 7 天要付多少元装卸费 58a + 115b …10 分(直接列式求得答案且正确不扣分)24.(本题 12 分)证明 (1)过点 C 作 CM // AB ……………………………………1 分C M // AB (已作)∴ ∠A = ∠2 (两直线平行,同位角相等)…………2 分∠B = ∠1(两直线平行,内错角相等) ……………3 分∠BCA + ∠1 + ∠2 = 180 0 ………………………4 分∴ ∠BCA + ∠A + ∠B = 180 0 ………………………5 分∴(2)① ∠A+∠B, …………………………………8 分o ,②对于△BDN, ∠MNA=∠B+∠D, ……………9 分对于△CEM , ∠NMA=∠C+∠E, …………10 分对于△ANM , ∠A+∠MNA+∠NMA=180 ,……11 分∴∠A+∠B +∠D+∠C +∠E=180 o ……………………12 分25.(本题 14 分)解:(1)点 A 、M 、D 三个字母表示多面体的同一点.……………3 分(2△) BMC 应满足的条件是:a 、∠BMC=90°,且 BM=DH ,或 CM=DH ;………………5 分b 、∠MBC=90°,且 BM=DH ,或 BC=DH ; ……………7 分c 、∠BCM=90°,且 BC=DH ,或 CM=DH ; ………………9 分(3)如上图,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可.A.2和-2B.-2和C.-2和-D.-和2华师大版七年级上学期数学期末检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各组数中,互为倒数是的()1112222.下列各图中,∠1与∠2互为余角的是()3.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2B.3x2C.2xy3D.2x34.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.90°B.100°C.105°D.120°,第4题图),第7题图),第8题图)5.计算8+6÷(-2)的结果是()A.-7B.-5C.5D.76.今年元旦,某风景区的最低气温为-5℃,最高气温为10℃,则这个风景区今年元旦的最高气温比最低气温高()A.-15℃B.15℃C.5℃D.-5℃7.如图所示,该几何体的俯视图是()8.如图,点A,B,C顺次在直线上l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12B.BC=4C.AM=5D.CN=29.在某月的日历上用矩形圈到a,b,c,d四个数(如图),如果d=18,那么a+b+c=()A.38B.40C.48D.58,第9题图),第10题图) 10.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个12.计算:-3.5+|- |-(-2)=___.(1)-1.5+1.4-(-3.6)-1.4+(-5.2);(2)-14-[2-(-3)2]÷( )3.二、填空题(每小题 3 分,共 24 分)11.若+10 万元表示盈余 10 万元,那么亏损 3 万元表示为____.5213.已知∠A 与∠B 互余,若∠A =20°15′,则∠B 的度数为____. 14.化简:(2xy +3x 2y)-3(2x 2y -xy 2)=__ _.15.一个多边形有 8 条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到____个三角形. 16.如图,∠AOC =150°,则射线 OA 的方向是____ .,第 16 题图),第 17 题图) ,第 18 题图)17.将一副学生用三角板按如图所示方式放置,若 AE ∥BC ,则∠AFD 的度数是____.18.(2016· 河南模拟)如图是钢琴键盘的一部分,若从 4 开始,依次弹出 4,5,6,7,1,4,5,6,7,1,…,按照上述规律弹到第 2016 个音符是___.三、解答题(共 66 分) 19.(6 分)计算:1 220.(6 分)一只小虫从某点 P 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,-3,+10,-8,-6,+12,-10.(1)通过计算说明小虫是否回到起点 P ;(2)如果小虫爬行的速度为 0.5 厘米/秒,那么小虫共爬行了多长时间.(1)当 a =- ,b =4 时,求 A -2B 的值;21.(6 分)如图已知 AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上相应依据.22.(8 分)先化简再求值:(1)5(3a 2b -ab 2)-4(-ab 2+3a 2b),其中 a =-1,b =2;(2)x +2(3y 2-2x)-4(2x -y 2),其中|x -2|+(y +1)2=0.23.(8 分)如图所示,l 1,l 2,l 3 交于点 O ,∠1=∠2,∠3∶∠1=8∶1,求∠4 的度数.24.(10 分)已知多项式 A =2a 2+ab -2a -1,B =a 2+ab -1.12(2)若多项式 C 满足:C =A -2B -C ,试用 a ,b 的代数式表示 C.25.(10分)如图,请按照要求回答问题:(1)数轴上的点C表示的数是____;线段AB的中点D表示的数是____;(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC 能否平分∠MBN,并说明理由.26.(12分)AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数;(用含n的代数式表示)(2)将(1)中线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.A.2和-2B.-2和C.-2和-D.-和2参考答案一、选择题(每小题3分,共30分)1.下列各组数中,互为倒数是的(C)1112222.(2016·长沙)下列各图中,∠1与∠2互为余角的是(B)3.(2015·厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是(D)A.-2xy2B.3x2C.2xy3D.2x34.把两块三角板按如图所示那样拼在一起,则∠ABC等于(D)A.90°B.100°C.105°D.120°,第4题图),第7题图),第8题图)5.计算8+6÷(-2)的结果是(C)A.-7B.-5C.5D.76.(2016春·长兴县月考)今年元旦,某风景区的最低气温为-5℃,最高气温为10℃,则这个风景区今年元旦的最高气温比最低气温高(B)A.-15℃B.15℃C.5℃D.-5℃7.(2016·和县一模)如图所示,该几何体的俯视图是(B)8.如图,点A,B,C顺次在直线上l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件(A)A.AB=12B.BC=4C.AM=5D.CN=29.在某月的日历上用矩形圈到a,b,c,d四个数(如图),如果d=18,那么a+b+c=(A)A.38B.40C.48D.58,第9题图),第10题图) 10.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为(C)(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.若+10万元表示盈余10万元,那么亏损3万元表示为__-3万元__.12.计算:-3.5+|- |-(-2)=__1__.(1)-1.5+1.4-(-3.6)-1.4+(-5.2);(2)-14-[2-(-3)2]÷( )3. (2)原式=-1-[2-9]÷ =-1-(-7)× 8=-1+56=55 5 2 13.已知∠A 与∠B 互余,若∠A =20°15′,则∠B 的度数为__69.75°__.14.化简:(2xy +3x 2y)-3(2x 2y -xy 2)=__5xy 2-3x 2y __.15.一个多边形有 8 条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到__6__个三角形.16.如图,∠AOC =150°,则射线 OA 的方向是__北偏东 30°__.,第 16 题图),第 17 题图) ,第 18 题 图)17.将一副学生用三角板按如图所示方式放置,若 AE ∥BC ,则∠AFD 的度数是__75°__.18.(2016· 河南模拟)如图是钢琴键盘的一部分,若从 4 开始,依次弹出 4,5,6,7,1,4,5,6,7, 1,…,按照上述规律弹到第 2016 个音符是__4__.三、解答题(共 66 分)19.(6 分)计算:1 2解:(1)原式=-1.5+1.4+3.6-1.4-5.2=(-1.5-1.4-5.2)+(1.4+3.6)=-8.1+5=-3.1 1 820.(6 分)一只小虫从某点 P 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,-3,+10,-8,-6,+12,-10.(1)通过计算说明小虫是否回到起点 P ;(2)如果小虫爬行的速度为 0.5 厘米/秒,那么小虫共爬行了多长时间.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=5-3+10-8-6+12-10=0,所以 小虫能回到起点 P(2)(5+3+10+8+6+12+10)÷0.5=54÷0.5=108(秒),答:小虫共爬行了 108 秒21.(6 分)如图已知 AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上 相应依据.解:∵AD ∥BC(已知),∴∠1=∠3( 两直线平行,内错角相等 ),∵∠1=∠2,∴__∠2=∠3__( 等量代换 ),∴__BE ∥DF __( 同位角相等,两直线平行 ),∴∠3+∠4=180°( 两直线平行,同旁内角互补 ).22.(8 分)先化简再求值:(1)5(3a 2b -ab 2)-4(-ab 2+3a 2b),其中 a =-1,b =2;解:原式=15a 2b -5ab 2+4ab 2-12a 2b =3a 2b -ab 2,把 a =-1,b =2 代入得:6+4=10(2)x +2(3y 2-2x)-4(2x -y 2),其中|x -2|+(y +1)2=0.解:原式=x +6y 2-4x -8x +4y 2=-11x +10y 2,∵|x -2|+(y +1)2=0,∴x =2,y =-1,则原式=- 22+10=-1223.(8 分)如图所示,l 1,l 2,l 3 交于点 O ,∠1=∠2,∠3∶∠1=8∶1,求∠4 的度数.解:设∠1=x ,则∠2=x ,∠3=8x ,依题意有 x +x +8x =180°,解得 x =18°,则∠4=18°+18°=36°,故∠4 的度数是 36°24.(10 分)已知多项式 A =2a 2+ab -2a -1,B =a 2+ab -1.(1)当a=-,b=4时,求A-2B的值;(2)由C=A-2B-C,得到C=A-B=a2+ab-a--a2-ab+1=-ab-a+解:(2)∵线段BC的中点E表示的数是=0.75,∴DE=|-2-0.75|=2.75∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,∴∠ABE=2∠ABC=2n°,∠CDE=∠ADC=40°,∴∠BED=∠BEF+∠DEF=n°+40°(12(2)若多项式C满足:C=A-2B-C,试用a,b的代数式表示C.解:(1)∵A=2a2+ab-2a-1,B=a2+ab-1,∴A-2B=2a2+ab-2a-1-2a2-2ab+2=-ab-2a 1+1,当a=-2,b=4时,原式=2+1+1=4111112222225.(10分)如图,请按照要求回答问题:(1)数轴上的点C表示的数是__2.5__;线段AB的中点D表示的数是__-2__;(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC能否平分∠MBN,并说明理由.-1+2.52(3)如下图(可以标出不同角的度数)BC平分∠MBN.理由是∵∠ABM=120°,∴∠MBC=180°-120°=60°,又∠CBN=60°,∴∠MBC=∠CBN,即BC平分∠MBN26.(12分)AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数;(用含n的代数式表示)(2)将(1)中线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.解:1)如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,111122∠ADC =80°,∴∠ABE =2∠ABC =2n °,∠CDE =2∠ADC =40°,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴ ∠BEF =180°-∠ABE =180°-2n °,∠CDE =∠DEF =40°,∴∠BED =∠BEF +∠DEF =180°-2 2(2)∠BED 的度数改变,过点 E 作 EF ∥AB ,如图②,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,1 1 11 11 n °+40°=220°- n °。

华东师大版七年级数学上册期末考试题及答案【完整版】

华东师大版七年级数学上册期末考试题及答案【完整版】

华东师大版七年级数学上册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.下列图形具有稳定性的是()A.B.C.D.5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32137x y x y +=⎧⎨-=-⎩ (2)()45113812x y y x y ⎧+=+⎪⎨+=⎪⎩2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,O ,D ,E 三点在同一直线上,∠AOB=90°.(1)图中∠AOD 的补角是_____,∠AOC 的余角是_____;(2)如果OB 平分∠COE ,∠AOC=35°,请计算出∠BOD 的度数.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、A6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、40°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、40°6、5三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)14xy⎧=⎪⎨⎪=⎩2、74n=-,38m=.3、(1)∠AOE,∠BOC;(2)125°4、∠BOE的度数为60°5、(1)30;(2)①补图见解析;②120;③70人.6、(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.。

华东师大版七年级数学上册期末试卷(完美版)

华东师大版七年级数学上册期末试卷(完美版)

华东师大版七年级数学上册期末试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.下列图形具有稳定性的是()A.B.C.D.5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.下列等式变形正确的是()A.若﹣3x=5,则x=3 5B.若1132x x-+=,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6 D.若3(x+1)﹣2x=1,则3x+3﹣2x=1二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.绝对值不大于4.5的所有整数的和为________.3.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 4.若+x x-有意义,则+1x=___________.5.364的平方根为________.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x+3)=5(x-3)2123x-()=435x--x2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、A5、C6、C7、C8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、03、2或2 -34、15、±26、5三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、3 53、略4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)9万元(2)共有5种进货方案(3)购买A款汽车6辆,B款汽车9辆时对公司更有利。

华东师大新版2023-2024学年七年级上册数学期末复习试卷(含答案)

华东师大新版2023-2024学年七年级上册数学期末复习试卷(含答案)

2023-2024学年华东师大新版七年级上册数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.若a与1互为相反数,那么a+1=( )A.﹣1B.0C.1D.﹣22.国务院新闻办公室2021年4月6日发布《人类减贫的中国实践》白皮书指出,改革开放以来,按照现行贫困标准计算,中国7.7亿农村贫困人口摆脱贫困,6098万贫困人口参加了城乡居民基本养老保险.将6098万用科学记数法表示为( )A.6.098×103B.0.6098×104C.6.098×107D.6.098×1083.如图所示,是一个由正方体和正三棱柱组成的几何体,则其俯视图是( )A.B.C.D.4.在xy2与﹣xy2,3ab2与4a2b,4abc与cab,b3与43,﹣与6,5a2b3c与a2b3中是同类项的有( )A.2组B.3组C.4组D.5组5.如图,四个实数a,b,c,d在数轴上的对应的点分别是A,B,C,D,若c+d=0,则a,b,c,d四个实数中,绝对值最大的一个是( )A.a B.b C.c D.d6.如图,下列说法错误的是( )A.OA方向是北偏东55°B.OB方向是北偏西75°C.OC方向是西南方向D.OD方向是南偏东30°7.以下说法正确的是( )A.同旁内角互补B.有公共顶点、并且相等的两个角是对顶角C.经过直线外一点,有且只有一条直线与这条直线平行D.如果两个角之和等于180°,那么这两个角是为邻补角8.AD、AE分别是△ABC的中线和高,则AD和AE的大小关系为( )A.AD>AE B.AD<AE C.AD≥AE D.AD≤AE二.填空题(共6小题,满分18分,每小题3分)9.用“>”或“<”填空:﹣15 0; 5; .10.多项式3a﹣πr2﹣1是 次三项式.11.若a+b+c=0,且|a|>|b|>|c|,则下列关系可能成立的是 .(填序号)①a>0,b<0,c<0;②a>0,b<0,c>0;③a<0,b>0,c<0;④a<0,b>0,c>0.12.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则式子+4m﹣3cd的值为 .13.如图,∠AOB=85°,∠BOC=45°.OD平分∠AOC,则∠AOD= .14.如图所示,用若干小棒拼成排由五边形组成的图形,若图形中含有1个五边形,需要5根小棒;图形中含有2个五边形,需要9根小棒;图形中含有3个五边形,需要13根小棒;若图形中含有n个五边形需要小棒的根数是 根.三.解答题(共10小题,满分78分)15.(12分)计算(1)(﹣3)+(﹣4)+(+1)﹣(﹣9);(2)﹣6.5+4+8.75﹣3+5(用简便运算)(3)(﹣2)×÷(﹣)×4(4)﹣32+(﹣1)2001÷(﹣)2﹣(0.25﹣)×6.16.(5分)先化简,再求值:(﹣x2﹣y+4x)+(2x2﹣4x﹣2y),其中x=﹣3,y=﹣1.17.(5分)如图,点C在线段AB上,点D是线段AB的中点,若AC=6cm,BC=3cm,求线段CD的长度.18.(6分)2021年“新冠肺炎”疫情的持续影响,使得医用口罩销量一直在增加.某口罩加工厂每名工人计划每天生产350个医用口罩,一周生产2450个口罩,由于种种原因,实际每天生产量与计划量相比有出入,下表是工厂小李某周的生产情况.(超产记为正,减产记为负)星期一二三四五六日增减产量+5﹣2﹣4+13﹣9+15﹣8(1)根据记录的数据可知,小李本周三生产口罩 个;(2)根据上表记录的数据,求出小李本周实际生产口罩数量;(3)若加工厂实行每周计件工作制,每生产一个口罩可得0.5元,若超额完成每周计划工作量,则超过部分每个另外奖励0.15元,若完不成每周的计划量,则少生产一个扣0.2元,小李本周的工资是多少?19.(6分)按下列要求作图:(1)在五边形ABCDE中画直线BD和射线CE交于点F.(2)反向延长AE、BC相交于点G;连接FG并反向延长交线段CD于点H.20.(6分)如图,在一条数轴上,点O为原点,点A、B、C表示的数分别是m+1,2﹣m,9﹣4m.(1)求AB的长;(用含m的代数式表示)(2)若AB=2BC,求m.21.(8分)如图,AD∥BC,∠B=∠D.求证:BE∥DF.22.(8分)如果一个角的补角的2倍减去这个角的余角恰好等于这个角的4倍,求这个角的度数.23.(10分)观察下列式子,定义一种新运算:1⊗3=4×1﹣3=1;5⊗2=4×5﹣2=18;3⊗(﹣1)=4×3+1=13;(﹣2)⊗(﹣3)=4×(﹣2)+3=﹣5.(1)请你想一想:a⊗b= (用含a,b的式子表示);(2)如果a⊗(﹣5)=(﹣3)⊗a,求a的值.24.(12分)如图1,已知AB∥CD,∠ACD的平分线CM与∠BAC的平分线AM相交于点M.(1)求证:AM⊥CM;(2)如图2,G为线段AC上一个定点,点H为射线CD上一个动点,当点H在射线CD上运动(点C除外)时,∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵a与1互为相反数,∴a=﹣1,∴a+1=﹣1+1=0.故选:B.2.解:6098万=60980000=6.098×107.故选:C.3.解:这个立体图形的俯视图是一个正方形,正方形中间有一条纵向的实线.故选:C.4.解:xy2与﹣xy2所含字母相同,相同字母的指数也相同,是同类项;3ab2与4a2b所含字母相同,相同字母的指数不相同,不是同类项;4abc与cab所含字母相同,相同字母的指数也相同,是同类项;b3与43,所含字母不相同,不是同类项;﹣与6是同类项;5a2b3c与a2b3所含字母不相同,不是同类项;则同类项有3组.故选:B.5.解:∵c+d=0,∴|c|=|d|,由数轴可知a<b<c<0<d,且|a|>|b|>|c|=|d|,∴绝对值最大的是a,故选:A.6.解:A.OA方向是北偏东35°,故该选项不正确,符合题意;B.OB方向是北偏西75°,故该选项正确,不符合题意;C.OC方向是西南方向,故该选项正确,不符合题意;D.OD方向是南偏东30°,故该选项正确,不符合题意.故选:A.7.解:∵两直线平行,同旁内角互补,∴A选项错误;∵一条角的平分线将这个角分成两个相等的角,但这两个相等的角不是对顶角,∴B选项错误;∵经过直线外一点,有且只有一条直线与这条直线平行,∴C选项正确;∵两直线平行,同旁内角互补,∴D选项错误;综上,正确的选项为:C.故选:C.8.解:∵AD、AE分别是△ABC的中线和高,∴AD≥AE.故选:C.二.填空题(共6小题,满分18分,每小题3分)9.解:﹣15<0,﹣<5,﹣>﹣,故答案为:<,<,>.10.解:多项式3a﹣πr2﹣1是二次三项式.故答案为:二.11.解:∵|a|>|b|>|c|,∴表示实数a的点在数轴距离原点最远,表示b,c的点在数轴上距离原点比a要近一些,∵a+b+c=0,∴当a在原点右侧时,则b,c在原点左侧;当a在原点左侧时,则b,c在原点右侧,∴a>0,b<0,c<0;或a<0,b>0,c>0.故答案为:①④.12.解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=8﹣3=5;当m=﹣2时,原式=﹣8﹣3=﹣11,故答案为:5或﹣1113.解:∵∠AOB=85°,∠BOC=45°,∴∠AOC=∠AOB+∠BOC=130°,∵OD平分∠AOC,∴∠AOD=∠AOC=×130°=65°.故答案为:65°.14.解:观察图形可知:图形中含有1个五边形,需要5根小棒;即4×1+1,图形中含有2个五边形,需要9根小棒;4×2+1,图形中含有3个五边形,需要13根小棒;4×3+1,…若图形中含有n个五边形需要小棒的根数是(4n+1).故答案为:(4n+1).三.解答题(共10小题,满分78分)15.解:(1)(﹣3)+(﹣4)+(+1)﹣(﹣9),=﹣3﹣4+1+9,=3;(2)﹣6.5+4+8.75﹣3+5,=4.25+8.75+5﹣6.5﹣3.5,=18﹣10=8;(3)(﹣2)×÷(﹣)×4,=2×××4,=16(4)﹣32+(﹣1)2001÷(﹣)2﹣(0.25﹣)×6,=﹣9﹣1×4+×6,=﹣12.25.16.解:原式=﹣x2﹣y+4x+2x2﹣4x﹣2y=x2﹣3y,当x=﹣3,y=﹣1时,原式=(﹣3)2﹣3×(﹣1)=9+3=12.17.解:∵AC=6cm,BC=3cm,∴AB=AC+BC=6+3=9(cm),∵点D是线段AB的中点,∴AD=AB=9=4.5(cm),∴CD=AC﹣AD=6﹣4.5=1.5(cm),故线段CD的长度为1.5 cm.18.解:(1)350﹣4=346(个),小李本周三生产口罩346个.故答案为:346;(2)+5﹣2﹣4+13﹣9+15﹣8=10(个),则本周实际生产的数量为:2450+10=2460(个)答:小李本周实际生产口罩数量为2460个;(3)一周超额完成的数量为10个,∴2450×0.5+10×(0.5+0.15)=1225+6.5=1231.5(元),答:小李本周的工资是1231.5元.19.解:(1)如图,BD、CE为所作;(2)如图,GH为所作.20.解:(1)由题意得:AB=(m+1)﹣(2﹣m)=2m﹣1;(2)由题意得:AB=2m﹣1,BC=(2﹣m)﹣(9﹣4m)=3m﹣7,∵AB=2BC,∴2m﹣1=2(3m﹣7),∴.21.证明:∵AD∥BC,∴∠EAD=∠B,∵∠B=∠D,∴∠EAD=∠D,∴BE∥DF.22.解:设这个角的度数为x°,2(180﹣x)﹣(90﹣x)=4x.解得x=54.所以这个角的度数是54°.23.解:(1)根据题意得a⊗b=4a﹣b,故答案为:4a﹣b;(2)∵a⊗(﹣5)=(﹣3)⊗a,∴4a+5=4×(﹣3)﹣a,解得a=﹣3.4.24.(1)证明:∵AB∥CD,∴∠BAC+∠ACD=180°,∵CM平分∠ACD,AM平分∠BAC,∴∠MAC=∠BAC,∠MCA=∠ACD,∴∠MAC+∠ACM=∠BAC+∠ACD=90°,∴∠M=180°﹣(∠MAC+∠ACM)=90°,∴AM⊥CM;(2)解:∠BAC=∠CHG+∠CGH,理由:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠CHG+∠CGH+∠ACD=180°,∴∠BAC=∠CHG+∠CGH.。

华东师大版七年级数学上册期末试卷及答案【完美版】

华东师大版七年级数学上册期末试卷及答案【完美版】

华东师大版七年级数学上册期末试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x yx y-=⎧⎨-=⎩(2)33255(2)4x yx y+⎧=⎪⎨⎪-=-⎩2.若不等式组122x ax x+≥⎧⎨->-⎩①有解;②无解.请分别探讨a的取值范围.3.如图,直线AB//CD,BC平分∠ABD,∠1=54°,求∠2的度数.4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.绵阳中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9 000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、B6、C7、C8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、40°3、0.4、205、AC=DF(答案不唯一)6、7三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、①a>-1②a≤-13、72°4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)原计划拆建各4 500平方米;(2)可绿化面积1 620平方米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版七年级数学上册期末考试试题
一、判断.(每题2分,共20分)
1.代数式2r
=是圆的面积公式. ( )

1表示,
2.任何一个有理数a的相反数都可以用a
-表示,倒数用
a
绝对值用∣a∣表示. ( )
3.整式与整式的和一定是整式. ( )
4.若n
m,为有理数,且∣m∣>n,则一定有∣m∣>∣n∣. ( )
5.两个有公共顶点且大小相等的角是对顶角. (
)
6.在同一平面内,过已知直线外一点作该直线的垂线有且只有一条.
( )
7.两条直线被第三条直线所截,同位角相等. ( )
8.用一平面去截一个球,截面一定是圆. ( )
9.在标准状态下,水在100°C时沸腾是必然事件. (
)
10.若,0
a则b
=
a>是不可能事件. ( )
二、填空.
11.–2的倒数的相反数为________
.
12.用科学计数法表示0.00120为________
.
13.若,a
a>则a________0(填“>”, “<”, “≥”, “≤”).
14.绝对值小于4的整数有________个,其中非负整数是________.
15.用字母表示分数的性质“一个分数的分子、分母同乘以一个不为零的
数,分数值不变”是________.
16.多项式1932332---xy y x y x 的最高次项是________,最高次项的系数是
________,把多项式按x 的升幂排列为________.
17.当5.0,2
3==b a 时,代数式)(2ab b a +的值为________.
18.有一条公共边,另一条边也在同一直线上,且互补的两个角的平分线
互相________.
19.如图1,已知C 是AB 的三等分点,D 是AC 的中点,若BD=15cm,则AB= ________. 20.如果一个角的两边和另一个角的两边分别垂直,则这两个角的关系是
________.
21.两个奇数的和是偶数是________事件.
22.从装有4个白球、2个红球的袋子里任意取出一个球,________球被取出
的可能性大.
三、选择.(每题2分,共20分)
23.若–(–a )为正整数,则a 为( ).
A.正数
B.负数
C.0
D.任意有理数
24.如果,035=++-b a 那么代数式)21(1
b a -的值为( ).
A.75
B.85
C.57
D.5
8 25.1253=a ,那么a 等于( ).
A.5
B.1.5
C.±5
D.–15
26.下列等式正确的是( ).
A.c b a c b a +-=+-)(
B.)(c b a c b a --=+-
C.c b a c b a --=--2)(2
D.)()(c b a c b a ----=+-
27.若多项式y x xy y x 82322+--与某多项式的差为,122+-x x 则这个多项式
为( ).
A.13823222--+--x y x xy y x
B.13823222+-+--x y x xy y x
C.1823222+++--x y x xy y x D .1823222-++--x y x xy y x
28.如果m 与n 互为倒数,且2=x 时,代数式9)3(2+--nx m x 的值是–3,则当
2-=x 时,该代数式的值是( ).
A.21
B.-7
C.7
D.11
29.点到直线的距离是指( ).
A.从直线外一点到这条直线的垂线
B.从直线外一点到这条直线的垂
线段
C.从直线外一点到这条直线的垂线的长
D.从直线外一点到这条直
线的垂线段的长
30.已知M,N,P 是同一直线上的三个点,MN=,,b NP a =那么MP 的距离等于(
).
A.b a +
B.b a -
C.a b -
D.a b b a b a --+或或
31.如图2,其中共有( )条线段.
A.8
B.10
C.12
D.14
32.试从以下事件中选出必然事件( ).
A.这张彩票中大奖
B.掷骰子掷得4点
C.明天北京下雨
D.在装有2个白球、1个红球的袋子中取出2个球,其中至少有一个白球
四、解答.
33.化简求值.(每题5分,共10分)
(1)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--x y y x x 233131221222,其中3
2,2=-=y x ; (2),4)332(3)2(233223232b a ab ba b ab b b a -+--+-+其中.3
1
,3=-=b a
34.如图3,已知∠B=150°,∠D=140°,AB ∥DE,求∠C.(本题6分)
35.如图4,已知AC ∥DE,DC ∥EF,CD 平分∠BCA.求证:EF 平分∠BED.(本题7分)
36.某校初中一年级的学生去博物馆参观,从学校出发以5km/h 的速度前进,一学生因有事晚从学校出发了18min,急忙骑车以14km/h 的速度追队伍,他在离开学校多远的地方追上了队伍?(本题7分)
答案:
一、1.× 2.× 3.√ 4.× 5.× 6.√
7.× 8.√ 9.√ 10.√
二、11.21
12.1.20×10–3 13.<
14.7 0,1,2,3 15.)0(≠=c b a
bc ac
16.33y x - -1 3322391y x y x xy -+-- 17.23
18.垂直 19.18cm 20.相等或互补 21.必然 22.白
三、23.A 24.C 25.A 26.B 27.D 28.B
29.D 30.D 31.B 32.D
四、33.(1)原式=.94
9272122=+-y x x
(2)原式=.31
2-=ab
34.过点C 作CF 使AB ∥CF.
∵AB ∥CF,∴∠B+∠BCF=180°. ∵∠B=150°,∴∠BCF=30°.
∵AB ∥DE,∴DE ∥CF,
∴∠D+∠DCF=180°.
∵∠D=140°,∴∠DCE=40°.
又∵∠BCD=∠BCF+∠FCD,
∵∠BCD=40°+30°=70°,
即∠C=70°.
35.证明:∵AC ∥DE,∴∠1=∠2.
又∵DC ∥EF,∴∠2=∠3,∠4=∠5, ∴∠3=∠1.
∵CD 平分∠BCA,
∴∠1=∠5,∠3=∠4,
∴EF 平分∠BED.
36.设他追上队伍用的时间为t h,则 ,1460185t t =⎪⎭
⎫ ⎝⎛+ 整理解得).(61
h t =
追上队伍时,离开学校的距离为
).(376114km s =⨯=。

相关文档
最新文档