高等数学上学期期末考试试题和答案解析四份
高等数学上学期期末考试试卷及答案四份
高等数学试卷(B 卷)答案及评分标准2004-2005年度第一学期科目:高等数学I 班级:姓名:学号:成绩: 一、填空题(5153'=⨯')1、()3)2ln(--=x x x f 的定义域是_2、 2 )1sin 2sin (lim 0x =⋅+→xx x x 3、 e )31(lim 3=+∞→xx x4、如果函数x x a x f 3sin 31sin )(+=,在3π=x 处有极值,则2=a5、34d )1(sin cos 223=+⋅⎰-x x x ππ二、单项选择题(5153'=⨯')1、当0→x 时,下列变量中与2x 等价的无穷小量是()A.x cos 1-B.2x x +C.1-x eD.x x sin )ln(1+2、)A ()(' ,)(的是则下列极限中等于处可导在设a f a x x f =。
A .h h a f a f h )()(lim0--→B .hh a f h a f h )()(lim 0--+→C .h a f h a f h )()2(lim 0-+→D .h h a f h a f h 3)()2(lim 0--+→3、设在[]b a ,上函数)(x f 满足条件()0)(,0<''>'x f x f 则曲线()x f y =在该区间上() A.上升且凹的B.上升且凸的C.下降且凹的D.下降且凸的4、设函数()x f 具有连续的导数,则以下等式中错误的是()A.)(d )(d d x f x x f x b a =⎪⎭⎫ ⎝⎛⎰ B.x x f t t f x a d )(d )(d =⎪⎭⎫ ⎝⎛⎰ C.()x x f x x f d )(d )(d=⎰ D.C t f t t f +='⎰)(d )(5、反常积分⎰∞+- 0d 2x xe x ()A.发散B.收敛于1C.收敛于21D.收敛于21-三、算题('488'6=⨯)1、求极限xxx x 30sin sin tan lim -→2、求22)2()ln(sin lim x x x -→ππ3、求曲线⎩⎨⎧==ty tx 2cos sin 在当4π=t 处的切线方程和法线方程4、已知函数0,sin >=x x y x ,计算xy d d5、求积分⎰x e xd6、求积分x x e ed ln 1⎰7、计算曲线π≤≤=x x y 0,sin 与x 轴围成的图形面积,并求该图形绕y 轴所产生的旋转体体积。
大一(第一学期)高数期末考试题及答案
大一上学期高数期末考试之巴公井开创作一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(l i m .5.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.6.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .7. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解. 四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线xy ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个分歧的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分)5.6e. 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:1033()x f x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =。
大一(第一学期)高数期末考试题及答案
页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一上学期高数期末考试试题(五套)详解答案
2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。
解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。
或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。
2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。
解:f(x)在x=3,0,-1处无定义,是间断点。
121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。
∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。
∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。
3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。
高数期末考试题及答案大全
高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。
答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。
在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。
切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。
试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。
答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。
则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。
利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。
积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。
高等数学上学期期末考试试题和答案解析四份
高等数学试卷(B 卷)答案及评分标准2004-2005年度第一学期科目: 高等数学I 班级: 姓名: 学号: 成绩:一、填空题(5153'=⨯') 1、()3)2ln(--=x x x f 的定义域是_ 2、 2 )1sin 2sin (lim 0x =⋅+→xx x x 3、 e )31(lim 3=+∞→xx x e )31(lim 3=+∞→x x x4、如果函数x x a x f 3sin 31sin )(+=,在3π=x 处有极值,则2=a5、34d )1(sin cos223=+⋅⎰-x x x ππ二、单项选择题(5153'=⨯')1、当0→x 时,下列变量中与2x 等价的无穷小量是( )A . x cos 1-B . 2x x +C . 1-x eD . x x sin )ln(1+ 2、)A ()(' ,)(的是则下列极限中等于处可导在设a f a x x f =。
A .h h a f a f h )()(lim0--→ B .hh a f h a f h )()(lim 0--+→C .h a f h a f h )()2(lim 0-+→ D . hh a f h a f h 3)()2(lim 0--+→3、设在[]b a ,上函数)(x f 满足条件()0)(,0<''>'x f x f 则曲线()x f y =在该区间上( ) A. 上升且凹的 B. 上升且凸的 C. 下降且凹的 D. 下降且凸的4、设函数()x f 具有连续的导数,则以下等式中错误的是( )A. )(d )(d d x f x x f x b a=⎪⎭⎫ ⎝⎛⎰ B. x x f t t f x a d )(d )(d =⎪⎭⎫ ⎝⎛⎰ C. ()x x f x x f d )(d )(d=⎰ D. C t f t t f +='⎰)(d )(5、反常积分⎰∞+- 0d 2x xex ( )A. 发散B. 收敛于1C. 收敛于21D. 收敛于21-三、算题('488'6=⨯) 1、求极限xxx x 3sin sin tan lim -→ 2、求22)2()ln(sin lim x x x -→ππ3、求曲线⎩⎨⎧==ty tx 2cos sin 在当4π=t 处的切线方程和法线方程4、已知函数0,sin >=x x y x,计算xy d d 5、求积分⎰x e x d6、求积分x x e ed ln 1⎰7、计算曲线π≤≤=x x y 0,sin 与x 轴围成的图形面积,并求该图形绕y 轴所产生的旋转体体积。
大一第一学期期末高等数学(上)试题及答案
(本小题5分)第一学期期末高等数学试卷、解答下列各题(本小题5分)x 3 12x 162x 3(本小题5分)求 x 2 2 dx. (1 x )(本小题5分)(本小题5分) 求-^dx. 1 x(本小题5分)求— 1 t 2 dt .dx 0(本小题5分)求 cot 6 x esc 4 xdx.(本小题5分)求-1 1 , 求 1 p cos dx. x x(本小题5分)设X e2t cost确定了函数y y e si nt(本小题5分)求'x 1 xdx .0 ■(本小题1、2、3、4、5、6、7、8、9、10、 11、 12、13、求函数 y 4 2xx 2的单调区间丫(本小题5分) sin x dx.求2 2 0 8 sin 2 x (本小题5分) 设 x(t) e kt(3cos t 4sin t),求 dx .设函数y y (x )由方程y 2 in y 2 x 6所确定,求史 dx (本大题共16小题, 总计80分)求极限 limx 2 9x 212x求极限 limarctan xx.1 arcsin xy(x),求乎dx14、 (本小题5分)求函数y 2e x e x 的极值15、 (本小题5分)2 2 2 2求极限 lim & “ (2x“ (3xD d°x Dx(10x 1)(11x 1)16、 (本小题5分)cos2x .求dx.1 sin xcosx二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省.(本大题6分)设f (x ) x (x 1)( x 2)( x 3),证明f (x ) 0有且仅有三个实根一学期期末高数考试(答案)、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)23x 212 26x 18x 122、(本小题3分)x 2\ 2x )1 d(1 x 2) 2(1 x 2)2c.3、(本小题3分) 因为 arctanx而 limarcsin — 02 x x2、(本小题7分)2求由曲线y -和y2三、解答下列各题所围成的平面图形绕 0X 轴旋转所得的旋转体的 体积.解:原式 limx 2lim 歿 x 212x18(19、 116 151故 limarcta n x arcs in o x x求—1 t2 dt .dx 0 '原式 2x 1 x 4cot 6 x(1 1 .7cot x 7(本小题4分) 2求1 工-x2cot x)d(cot x)1. 9cot x c.91cos^d(^) x x2(本小题4分)求 x 1 xdx.令 J 1 x ui u4、 5、(本小题3分)x .dx1 x1 x 1dx 1 x . dx dx1 xx ln 1 x(本小题3分)c.6、(本小题4分)cot 5 6 x csc 4 xd x8、1 (本小题4分) x e 2^st确定了函数y y e si nty(x),求 dy dx解:dy dxe 2t (2sin tt22e (cost 2tsin t ) e t (2 sint cost)22~(cost 2t sin t )cost)7、cos 1dx. x原式1 si n — x2u2)du 原式 2 (u41 \32(—)5 39、116 15解: dxx (t)dt13、(本小题6分)设函数y y (x )由方程y 2 ln y 2 x 6所确定,求鱼dx2yy 空 6x 5 y3yx 57厂14、(本小题6分)求函数y 2e x ex , 2x1、y 2e (e y1 1驻点:x -| n —2 2由于 y 2e x e x 0故函数有极小值,,1n "2)2 210、(本小题5分) 求函数 y 4 2x x 2的单调区间解: 函数定义域(11、 12、 设 y 当x当x 当xX)2 2x 2(1 1, y 01, y0函数单调增区间为,11, y 0函数的单调减区间为1,(本小题5分)sin x ,2— dx.8 sin x2d cosx 09 cos 2 x原式1, 3 cosx ln ---------- 6 3 cosx丄In 26(本小题x (t )6分)e kt (3cos t 4sin t),求dx .e kt (43k)cos t (4k 3 )sin t dtx的极值解.定义域),且连续V x264d(*si n2x 1) 1 丄 si n2x2 1In 1 -si n2x c2、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 沿, 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省•512设晒谷场宽为x,则长为 ----- 米,新砌石条围沿的总长为512xL 2x —— x (x 0)L c 51222x唯— •驻点 x 16 L1024 小3x即 x 16为极小值点 故晒谷场宽为16米,长为51232米时,可使新砌石条围沿16所用材料最省2、(本小题8分)15、(本小题 求极限 原式 2 2 2(x 1)(2x 1) (3x 1)2(10x 1)(10x 1)(11x 1)1 2 1 2 1 2 (1 -)2 (2 -)2 (3 -)2(10 丄)2x x x x1 1(10 -)(11 -)x x 10 11 216 10 11lim x lim x 16、(本小题7 210分) cos2x dx 1 sin xcosx cos2x 1 l sin2xdx2求由曲线y -和y2,8x 22x 3 x 10, x 1 4-)2x 32 (rdx 4x 40(匚6x)dx4J 1 5 (——x 4 5 1 1 7. -------x ) 64 7 04 1 1 512 44(—— )—5 7 35二、解答下列各题(本大题10分)设f (x) x(x 1)( x2)(x 3),证明f (x) 0有且仅有三个实根证明:f (x)在(,)连续,可导,从而在[0,3];连续,可导.又 f(0)f(1)f(2)f(3)则分别在[0,1],[1,2],[2,3]上对f(x)应用罗尔定理得,至少存在1(0,1), 2 (1,2), 3(2,3)使f ( !) f ( 2) f ( 3)即f (x) 0至少有三个实根,又f (x) 0,是三次方程,它至多有三个实根 由上述f (x)有且仅有三个实根高等数学(上)试题及答案D 、不存在2、下列变量中,是无穷小量的为(、填空题(每小题 3分,本题共 15分)1、2、时,f (x)x e 2x在x 0处连续.3、dx ln x ,则巴dyx/x+14、 曲线yx 在点(0, 1 )处的切线方程是y=x+15、 若 f (x)dxsin2x C ,C 为常数,则 f (x)2cos2x —。
(完整版)大一高等数学期末考试试卷及答案详解
一、填空题(每小题3分,共18分)
1.设函数 ,则 是 的第类间断点.
2.函数 ,则 .
3. .
4.曲线 在点 处的切线方程为.
5.函数 在 上的最大值,最小值.
6. .
二、单项选择题(每小题4分,共20分)
1.数列 有界是它收敛的().
必要但非充分条件; 充分但非必要条件;
充分必要条件; 无关条件.
二.选择题(每小题4分,4题共16分):
1.设常数 ,则函数 在 内零点的个数为(B).
(A)3个;(B)2个;(C)1个;(D)0个.
2.微分方程 的特解形式为(C)
(A) ;(B) ;
(C) ;(D)
3.下列结论不一定成立的是(A)
(A)(A)若 ,则必有 ;
(B)(B)若 在 上可积,则 ;
(C)(C)若 是周期为 的连续函数,则对任意常数 都有 ;
2.下列各式正确的是().
; ;
; .
3.设 在 上, 且 ,则曲线 在 上.
沿 轴正向上升且为凹的; 沿 轴正向下降且为凹的;
沿 轴正向上升且为凸的; 沿 轴正向下降且为凸的.
4.设 ,则 在 处的导数().
等于 ; 等于 ;
等于 ; 不存在.
5.已知 ,以下结论正确的是().
函数在 处有定义且 ; 函数在 处的某去心邻域内有定义;
大一高等数学期末考试试卷
(一)
一、选择题(共12分)
1. (3分)若 为连续函数,则 的值为( ).
(A)1 (B)2 (C)3 (D)-1
2. (3分)已知 则 的值为( ).
(A)1 (B)3 (C)-1 (D)
3. (3分)定积分 的值为( ).
高数期末试题及答案解析
高数期末试题及答案解析一、选择题1. 在一个三角形ABC中,已知∠C=90°,AC=4,BC=12。
则∠A 的正弦值是:A) 1/3B) 1/4C) 3/4D) 3/5解析:根据正弦定理,我们有sinA = BC/AC = 12/4 = 3。
故选项C) 3/4正确。
2. 设函数f(x) = x^2 + 2x + 1,g(x) = 2x - 1,则f(g(0))的值为:A) 7B) 5C) 3D) 1解析:首先计算g(0) = 2(0) - 1 = -1。
然后将g(0)代入f(x)中得到f(g(0)) = f(-1) = (-1)^2 + 2(-1) + 1 = 1 - 2 + 1 = 0。
故选项D) 1正确。
二、填空题1. 解方程组:2x + 3y = 74x - y = 1解析:首先将第二个方程的y单独解出来,得到y = 4x - 1。
将其代入第一个方程,得到2x + 3(4x - 1) = 7,化简得到14x - 3 = 7,进一步化简得到14x = 10,解得x = 10/14 = 5/7。
将x的值代入y = 4x - 1中,得到y= 4(5/7) - 1 = 20/7 - 7/7 = 13/7。
所以方程组的解为x = 5/7,y = 13/7。
三、计算题1. 求不定积分∫(2x + 3)dx。
解析:根据积分的线性性质,可以将不定积分拆成两个部分:∫2x dx + ∫3 dx。
对于第一部分,根据幂函数的求导公式和积分的逆运算,得到∫2x dx = x^2 + C,其中C为常数。
对于第二部分,由于它是一个常数函数,其积分结果为该常数与x的乘积,即∫3 dx = 3x + C',其中C'为常数。
所以不定积分∫(2x + 3)d x的结果为(x^2 + C) + (3x + C') = x^2 + 3x + C +C'。
2. 求定积分∫(0 to π/2) sin(x)dx。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷一、选择题(共12分)1. (3分)若为连续函数,则的值为()。
(A)1 (B)2 (C)3 (D)—12。
(3分)已知则的值为( ).(A)1 (B)3 (C)—1 (D)3。
(3分)定积分的值为( ).(A)0 (B)—2 (C)1 (D)24。
(3分)若在处不连续,则在该点处()。
(A)必不可导(B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分) 平面上过点,且在任意一点处的切线斜率为的曲线方程为。
2。
(3分)。
3. (3分)= 。
4. (3分)的极大值为。
三、计算题(共42分)1.(6分)求2.(6分)设求3.(6分)求不定积分4.(6分)求其中5.(6分)设函数由方程所确定,求6.(6分)设求7.(6分)求极限四、解答题(共28分)1.(7分)设且求2.(7分)求由曲线与轴所围成图形绕着轴旋转一周所得旋转体的体积。
3.(7分)求曲线在拐点处的切线方程.4.(7分)求函数在上的最小值和最大值。
五、证明题(6分)设在区间上连续,证明标准答案一、1 B; 2 C; 3 D; 4 A。
二、1 2 3 0; 4 0.三、1 解原式5分1分2解2分4分3 解原式3分2分1分4解令则2分1分1分1分1分5两边求导得2分1分1分2分6解2分4分7解原式= 4分= 2分四、1 解令则3分= 2分2分1分2解3分2分2分3解1分令得1分当时,当时, 2分为拐点, 1分该点处的切线为2分4解2分令得1分2分最小值为最大值为2分五、证明1分1分1分1分1分移项即得所证。
1分。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷及答案详解大一高等数学期末考试试卷一、选择题(共12分)2ex,x0,1. (3分)若f(x)为连续函数,则a的值为( ).a x,x0(A)1 (B)2 (C)3 (D)-12. (3分)已知f(3)2,则limh0f(3h)f(3)的值为(). 2h(A)1 (B)3 (C)-1 (D)1 23. (3分)定积分2的值为(). 2(A)0 (B)-2 (C)1 (D)24. (3分)若f(x)在x x0处不连续,则f(x)在该点处( ).(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(x,y)处的切线斜率为3x2的曲线方程为 .2. (3分)(x2x4sinx)dx . 113. (3分) limx2sinx01= . x4. (3分) y2x33x2的极大值为三、计算题(共42分)1. (6分)求limx0xln(15x). sin3x22. (6分)设y求y. 3. (6分)求不定积分xln(1x2)dx.4. (6分)求 30x,x1, f(x1)dx,其中f(x)1cosx ex1,x 1.5. (6分)设函数y f(x)由方程edt costdt0所确定,求dy. 00ytx6. (6分)设f(x)dx sinx2C,求f(2x3)dx.37. (6分)求极限lim1. n2n四、解答题(共28分)1. (7分)设f(lnx)1x,且f(0)1,求f(x). n2. (7分)求由曲线y cosx x与x轴所围成图形绕着x轴旋转一周2 2所得旋转体的体积.3. (7分)求曲线y x33x224x19在拐点处的切线方程.4. (7分)求函数y x[5,1]上的最小值和最大值.五、证明题(6分)设f(x)在区间[a,b]上连续,证明baf(x)dx b a1b[f(a)f(b)](x a)(x b)f(x)dx. 22a 标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 y x1; 2 32; 3 0; 4 0. 3三、 1 解原式limx5x 5分 x03x25 1分 32分 2 x lxn2(解lny l2x1212x[2] 4分y2x12x 13 解原式1ln(1x2)d(1x2) 3分 212x[(1x2)ln(1x2)(1x2)dx2分 221x1[(1x2)ln(1x2)x2] C 1分 24 解令x1t,则 2分03f(x)dx1f(t)dt 1分122t11(et1)dt 1分 1cost2 1分0[et t]1e2e 1 1分5 两边求导得ey y cosx0, 2分ycosx 1分 ye cosx 1分 sinx 1cosx dy dx 2分 sinx 16 解f(2x3)dx 12f(2x3)d(2x 2分1sin(2x3)2 C 4分 27 3lim1解原式=n2n322n332 4分 =e 2分四、1 解令lnx t,则x et,f(t)1et, 3分f(t)(1et)dt=t et C. 2分f(0)1,C0, 2分f(x)x ex. 1分2 解 Vx22cosxdx 3分 2202cos2xdx 2分3 解22. 2分6x 6 1分 y3x26x24,y 令y0,得x 1. 1分当x1时,y0; 当1x时,y0, 2分(1,3)为拐点, 1分该点处的切线为y321(x1). 2分 4 解y1 2分令y0,得x3. 1分435y(5)5 2.55,y,y(1)1, 2分4 435y(5)5y最大值为. 分最小值为4 4五、证明ba(x a)(x b)f(x)(x a)(x b)df(x)分 ab[(x a)(x b)f(x)]a af(x)[2x(a b)dx分a[2x(a b)df(x)分 bbb[2x(a b)]f(x)a2af(x)dx分(b a)[f(a)f(b)]2af(x)dx,分移项即得所证分 bbb。
高等数学上期末试卷(含答案)
一. 选择题:(每小题3分,共15分)1. 若当0x →时,arctan x x -与nax 是等价无穷小,则a = ( ) B A. 3 B.13 C. 3- D. 13- 2. 下列函数在[1,1]-上满足罗尔定理条件的是 ( )C A. ()f x x = B. 3()f x x =C. ()e e xxf x -=+ D. 1,10()0,01x f x x -≤≤⎧=⎨<≤⎩3. 如果()e ,xf x -=则(ln )d f x x x'=⎰ ( )B A. 1C x -+ B. 1C x+ C. ln x C -+ D. ln x C + 4.曲线y x=渐近线的条数是( ) C A. 1 B. 2 C. 3 D. 45. 设函数()f x 与()g x 在[,]a a -上均具有二阶连续导数,且()f x 为奇函数,()g x 为偶函数,则[()()]d aa f x g x x -''''+=⎰( ) DA. ()()f a g a ''+B. ()()f a g a ''-C. 2()f a 'D. 2()g a '二. 填空题:(每小题3分,共15分)1. 要使函数2232()4x x f x x -+=-在点2x =连续,则应补充定义(2)f = .142. 曲线2e x y -=在区间 上是凸的.(,22-序号3.设函数322(21)e ,x y x x x =+++则(7)(0)y =______________.77!2+4. 曲线231x t y t⎧=+⎨=⎩在2t =点处的切线方程是 . 37.y x =- 5.定积分11(cos x x x -+=⎰ .π2三.解下列各题:(每小题10分,共40分)1.求下列极限(1)22011lim .ln(1)x x x →⎡⎤-⎢⎥+⎣⎦. 解:原式=2240ln(1)lim x x x x→-+ …………..2分 2302211lim.42x xx x x →-+== ………….3分 (2)()22220e d lim e d xt xx t t t t-→⎰⎰.解:原式= ()222202e d e limext x x x t x --→⋅⎰………….3分 22000e d e =2lim2lim 2.1x t xx x t x--→→==⎰ …………..2分2. 求曲线0πtan d (0)4x y t t x =≤≤⎰的弧长.解:s x x == …………..5分ππ440sec d ln sec tan |ln(1x x x x ==+=+⎰ ………..5分 3. 设()f x 满足e ()d ln(1e ),x x f x x C =-++⎰求()d .f x x ⎰解:1(),1e xf x -=+ …………..4分 1e ()d d d 1e 1e xx xf x x x x ---=-=++⎰⎰⎰ …………..3分 ln(1e ).x C -=++ …………..3分4. 已知2lim e d ,xc x x x c x x x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰求常数.c 解:2lim e ,xc x x c x c →+∞+⎛⎫= ⎪-⎝⎭………….4分 221e d (24cxc c x x -∞=-⎰ …………. 4分 5.2c = …………. 2分四.解下列各题:(每小题10分,共30分)1. 设()f x 在[,]a b 上连续,且()0,f x >且1()()d d ,()xba xF x f t t t f t =-⎰⎰求证: (1)[,],()2;x a b F x '∀∈≥(2)()F x 在(,)a b 内恰有一个零点.证明:(1)1()()2,()F x f x f x '=+≥= ……3分 (2)()F x 在[,]a b 上连续 ……1分11()()d d d 0,()()a bb aaa F a f t t t t f t f t =-=-<⎰⎰⎰ ……2分1()()d d ()d 0,()b bb aba Fb f t t t f t t f t =-=>⎰⎰⎰ ……2分由零点定理,()F x 在(,)a b 内至少有一个零点. ……1分 又()F x 在[,]a b 上严格单调增,从而()F x 在(,)a b 内恰有一个零点.……1分2. 设直线(01)y ax a =<<与抛物线2y x =所围成图形的面积为1,S 它们与直线1x =围成图形的面积为2.S(1)确定a 的值,使12S S S =+取得最小值,并求此最小值; (2)求该平面图形绕x 轴旋转一周所得的旋转体的体积.解:22(0,0),(,)y ax a a y x=⎧⇒⎨=⎩ ……..2分 1220()d ()d a aS ax x x x ax x =-+-⎰⎰31,323a a =-+21()0,22S a a a '=-=⇒=唯一驻点()20,S a a ''=>最小值2(.26S = ……..4分1222222π[()()]d π[()()]d 22x V x x x x x x =-+-1π.30+=……..4分 3. 设()f x 在[0,1]上二次可微,且(0)(1)0,f f ==证明:存在(0,1),ξ∈使得()()0.f f ξξξ'''+=证明:令()(),F x xf x '=则()F x 在[0,1]上可微, ……..3分(0)(1)0,f f ==()f x 在[0,1]上可微,由罗尔定理存在(0,1),η∈使()=0f η'……..3分(0)()0,F F η==由罗尔定理存在(0,)(0,1),ξη∈⊂使()=0F ξ' ()()(),F x f x xf x ''''=+(0,1),()()=0.f f ξξξξ'''∴∈+ ……..4分。
期末高等数学上习题及答案
第一学期期末高等数学试卷一、解答以下各题(本大题共16小题,总计 80分) 1、(本小题5分)求极限l im x 312x163 9x 212x4x22x2、(本小题5 分)求x 22dx.(1x) 3、(本小题5分) 求极限limarctanxarcsin 1xx4、(本小题5分)求x dx.1 x5、(本小题 5 分)求dx 2 1t 2dt .dx 06、(本小题 5 分) 求cot 6xcsc 4xdx.7、(本小题5分)2 1cos 1dx .求1 x 2x8、(本小题5 分)x e t cost 2y(x),求dy .设 确定了函数y ye 2tsint dx9、(本小题5 分)3求 x1xdx .10、(本小题5分) 求函数 y 4 2x x 2的单调区间11、(本小题5分)求2sinx dx .sin 2x0812、(本小题 5 分)设xt )e kt(3cos t 4sin t ,求dx .( )13、(本小题 5 分)设函数yyx 由方程y 2 l n y 2 x 6所确定 , 求dy .( )dx14、(本小题 5 分)求函数y e x e x 的极值215、(本小题 5 分)求极限lim (x1)2 (2x1)2(3x1)2(10x 1)2x16、(本小题5分)(10x 1)(11x1)求cos2xdx.1sinxcosx二、解答以下各题(本大题共2小题,总计14分)1、(本小题7分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围沿,另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省.2、(本小题7分)求由曲线yx 2 和y x 3 所围成的平面图形绕 ox 轴旋转所得的旋转体的 体积.28三、解答以下各题 (本大题6分)设f(x) x(x 1)(x 2)(x3),证明f(x) 0有且仅有三个实根.一学期期末高数考试(答案)一、解答以下各题 (本大题共16小题,总计77分) 1、(本小题3分)解:原式lim 3x 2 12218x12x26x6xlim212x1822、(本小题3分)1dx (1x 2)21 d(1 x 2)2(1 x 2)211x 2c.3、(本小题3分)因为arctanx2 而limarcsinx故limarctanxarcsin1xx4、(本小题3分)xdx1 x1 x 1dx 1x dxdxxln1xc.5、(本小题3分)原式2x1x 4 6、(本小题4分) cot 6xcsc 4xdxcot 6x(1cot 2x)d(cotx)1x1cot7x 1cot9xc.797、(本小题4分)211原式1cos d()x x1 sin2 118、(本小题4分)解:dy e2t(2sint cost)dx e t(cost22tsint2)e t(2sint cost)(cost22tsint2)9、(本小题4分)令1 x u2原式 2 (u4u2)du12(u5u3)12531161510、(本小题5分)函数定义域(,)y22x2(1x)当x1,y0当x,y函数单调增区间为,1 10当x,y函数的单调减区间为1,1011、(本小题5分)原式2dcosx09cos2x13cosx2lncosx0631ln2612、(本小题6分)dx x(t)dte kt(43k)cos t(4k3)sintdt13、(本小题6分)2yy2y6x5yy 3yx5 y2114、(本小题6分)定义域(,),且连续y2e x(e2x1)2驻点:x1ln 12 2由于y2e x e x故函数有极小值,,y(1ln1) 2 215、(本小题 8分)2 2(1 1 )2 (2 1 )2 (3 1 )2(10 1 )2原式lim x xxxx (10 1)(11 1)10 11 21x x6 10 117216、(本小题 10分)解:cos2x dxcos2x dx1 sinxcosx11sin2xd(12sin2x1) 2 11sin2x12sin2x cln12二、解答以下各题(本大题共2小题,总计13 分)1、(本小题5 分)设晒谷场宽为 x,那么长为512米,新砌石条围沿的总长为xL2x 512 (x0)xL2512唯一驻点x16x 2L1024 0即x16为极小值点x 3故晒谷场宽为 16米,长为51232米时,可使新砌石条围沿16所用材料最省2、(本小题8分)解:x 2x 3, 2 2x 3 x 1 ,.28x0x 148V x4 x 2 )2 (x3 2dx 4x4x 6( ) 0()dx284 64(11x 5 41 1x 7)4 564 744( 1 1 ) 51257 35三、解答以下各题(本 大题10分)证明:f(x)在( , )连续,可导,从而在[0,3];连续,可导.又f(0)f(1)f(2)f(3)0那么分别在[0,1],[1,2],[2,3]上对f(x)应用罗尔定理得,至少存在1(0,1),2(1,2),3(2,3)使f(1)f(2)f(3)0即f(x)0至少有三个实根,又f(x)0,是三次方程,它至多有三个实根,由上述f(x)有且仅有三个实根参考答案一。
(完整版),期末高等数学(上)试题及答案,推荐文档
1、(本小题 3 分)
解: 原式
lim
x2
3x 6x2
2 12 18x
12
6x lim x 2 12 x 18
2
2、(本小题 3 分)
(1
x x2)2
dx
1 d(1 x2 ) 2 (1 x 2) 2
11 2 1 x2 c.
3、(本小题 3 分)
因为 arctan x
而 lim arcsin 1 0
lim
x
x
x
x
1
1
(10 )(11 )
x
x
10 11 21
(10 1 ) 2 x
6 10 11 7
2
16、( 本小题 10 分 )
解:
cos2x dx
1 sin x cosx
d( 1 sin 2x 1) 2
1 1 sin 2x 2
1 ln 1 sin 2x c
2
二、解答下列各题 (本大题共 2 小题,总计 13 分 ) 1、(本小题 5 分)
且
F ( 1) 1 0 , F (1) 1 0 .
22
由零点定理知存在
x1
1 [
,1]
,使
F ( x1 )
0.
2
由 F ( 0) 0 ,在 [ 0, x1] 上应用罗尔定理知,至少存在一点
(0, x1) ( 0,1) ,使 F ( ) f ( ) 1 0 ,即 f ( ) 1 …
第 7 页,共 7 页
9、(本小题 5 分)
3
求 x 1 x dx. 0
10、( 本小题 5 分 )
求函数 y 4 2 x
11、( 本小题 5 分 )
高等数学(上)期末考试试题及答案
高等数学(上)期末考试试题一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。
2、当k 时,⎪⎩⎪⎨⎧>+≤=00e )(2x k x x x f x 在0=x 处连续. 3、设x x y ln +=,则______=dydx 4、曲线x e y x-=在点(0,1)处的切线方程是 5、若⎰+=C x dx x f 2sin )(,C 为常数,则=)(x f 。
二、 单项选择题(每小题3分,本题共15分) 1、若函数x xx f =)(,则=→)(lim 0x f x ( ) A 、0 B 、1- C 、1 D 、不存在2、下列变量中,是无穷小量的为( ) A. )0(1ln +→x x B. )1(ln →x x C. )0(cosx →x D. )2(422→--x x x 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A .极大值点B .极小值点C .驻点D .间断点4、下列无穷积分收敛的是( )A 、⎰+∞0sin xdx B 、dx e x ⎰+∞-02 C 、dx x ⎰+∞01 D 、dx x⎰+∞01 5、设空间三点的坐标分别为M (1,1,1)、A (2,2,1)、B (2,1,2)。
则AMB ∠=A 、3πB 、4πC 、2π D 、π 三、 计算题(每小题7分,本题共56分)1、求极限 xx x 2sin 24lim 0-+→ 。
2、求极限 )111(lim 0--→x x e x 3、求极限 2cos 102lim x dte x t x ⎰-→4、设)1ln(25x x e y +++=,求y '5、设)(x y f =由已知⎩⎨⎧=+=t y t x arctan )1ln(2,求22dx y d 6、求不定积分dx x x ⎰+)32sin(12 7、求不定积分 x x e x d cos ⎰8、设⎪⎪⎩⎪⎪⎨⎧≥+<+=011011)(x xx e x f x, 求 ⎰-20d )1(x x f四、 应用题(本题7分) 求曲线2x y =与2y x =所围成图形的面积A 以及A 饶y 轴旋转所产生的旋转体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学试卷(B 卷)答案及评分标准2004-2005年度第一学期科目: 高等数学I 班级: 姓名: 学号: 成绩:一、填空题(5153'=⨯') 1、()3)2ln(--=x x x f 的定义域是_ 2、 2 )1sin 2sin (lim 0x =⋅+→xx x x 3、 e )31(lim 3=+∞→xx xe )31(lim 3=+∞→x x x4、如果函数x x a x f 3sin 31sin )(+=,在3π=x 处有极值,则2=a5、34d )1(sin cos 223=+⋅⎰-x x x ππ二、单项选择题(5153'=⨯')1、当0→x 时,下列变量中与2x 等价的无穷小量是( )A . x cos 1-B . 2x x +C . 1-x eD .x x sin )ln(1+2、)A ()(' ,)(的是则下列极限中等于处可导在设a f a x x f =。
A .h h a f a f h )()(lim 0--→ B .h h a f h a f h )()(lim 0--+→C .h a f h a f h )()2(lim-+→ D . hh a f h a f h 3)()2(lim 0--+→3、设在[]b a ,上函数)(x f 满足条件()0)(,0<''>'x f x f 则曲线()x f y =在该区间上( )A. 上升且凹的B. 上升且凸的C. 下降且凹的D. 下降且凸的4、设函数()x f 具有连续的导数,则以下等式中错误的是( )A. )(d )(d d x f x x f x b a =⎪⎭⎫ ⎝⎛⎰ B. x x f t t f x a d )(d )(d =⎪⎭⎫ ⎝⎛⎰C. ()x x f x x f d )(d )(d =⎰ D. C t f t t f +='⎰)(d )( 5、反常积分⎰∞+- 0d 2x xe x ( )A. 发散B. 收敛于1C. 收敛于21D. 收敛于21-三、算题('488'6=⨯)1、求极限xxx x 3sin sin tan lim-→2、求22)2()ln(sin lim x x x -→ππ3、求曲线⎩⎨⎧==ty tx 2cos sin 在当4π=t 处的切线方程和法线方程4、已知函数0,sin >=x x y x,计算xy d d 5、求积分⎰x e x d6、求积分x x eed ln 1 ⎰7、计算曲线π≤≤=x x y 0,sin 与x 轴围成的图形面积,并求该图形绕y 轴所产生的旋转体体积。
8、计算星型线0,20,cos ,sin 33>≤≤==a t t a y t a x π的全长.四、求函数求10123+-=x x y 的单调区间、极值点、凹凸区间、拐点('7)五、设)(0 ]10[)(x f x f <且上连续,,在, 证明:方程1d )( 0=+⎰xt t f x 在[0,1]上有且仅有一根('5)六、设f (x )连续, 计算t t x f t xx d )(d d 0 22⎰- ('5)七、⎪⎩⎪⎨⎧>+≤=01062t tt t e t f t ,,)(设 , 计算:⎰∞-=xt t f x F d )()(('5)答案:一、填空题1、(2,3)∪(3,+∞)2、23、 e )31(lim 3=+∞→xx x4、25、34d )1(sin cos 223=+⋅⎰-x x x ππ二、1、D2、A3、B4、A5、C三、计算题1、解:x x x x 30sin sin tan lim-→=x x x 20sin cos 1lim-→=21 2’ 4’2、解:22)2()ln(sin lim x x x -→ππ=)2(4cos sin 1lim 2x xx x --→ππ=)2(4cos lim 2x x x --→ππ=81 3、解: 当4π=t 曲线过点)0,22(, 由于22d d 4-=πxy,4’所以, 当4π=t 处的切线方程和法线方程分别为:)22(22--=x y 1’)22(42-=x y 1’4、解:)sin ln (cos )sin ln (cos d )(d d d sin ln sin ln sin xxx x x x x x x e x e x y x x x x x +=+==解: 令uu x x u d 2d ,==, 则:1’ 解: 令uu x x u d 2d ,==, 则:1’5、令u u x x u d 2d ,==, ⎰x e xd =c ex c e u u e ue u ue xuu u u +-=+-=-=⎰⎰)1(2)1(2d 22d 26、解: x x e ed ln 1 ⎰=ex x x x x x x x x x e ee ee e 22d ]ln [d ]ln [d ln d ln 111111111-=-++-=+-⎰⎰⎰⎰ 7、解:面积⎰==π2d sin x x s2’体积微分元x x x V d sin 2d π= 1’所求体积2004d cos 2]cos 2[d sin 2πππππππ=+-==⎰⎰x x x x x x x V 3’ 8、解: 弧微分t t a s d 2sin 23d = 2’弧长⎰⎰===20206d 2sin 6d 2sin 23ππa t t a t t a s 4’四、解:2,2,0',123'212=-==-=x x y x y 得驻点令 1’,0'',6''3===x y x y 得点令由上可知:函数的单调增区间为: (-∞,-2),(2,+∞); 函数的单调减区间为:(-2,2) 2’ 函数的极大值点:(-2,26),极小值点(2,-6)1’ 凹区间为:(0,+∞),凸区间为:(-∞,0)1’拐点为:(0,10)五、证: 构造函数=)(x ϕ1d )( 0 -+⎰xt t f x , 函数在[0,1]上连续,在区间内可导 1’0d )()1(,1)0(10>=-=⎰x x f ϕϕ,由连续函数的零点定理知,存在ξ在(0,1)内使0)(=ξϕ 2’又因为0)(1)('>+=x f x ϕ所以函数在(0,1)的零点唯一. 2’原命题得证.六、解: 令:22t x u -=, t t u d 2d -= 2’t t x f t x x d )(d d 0 22⎰-=)(]d )(21[d d 20 x 2x f x u u f x =-⎰ 七、解:当⎰∞===≤xx t e t e x F x d )(0时, 2’ 当⎰⎰⎰∞=∞-+=++==>xxtx t tt t e t t f x F x 3620arctan 311d 1d d )()(0时,《高等数学IV1》课程考试试卷 (A 卷)学院 专业 班级学号 姓名………………………………………………………………………………………………………………一、选择题(每小题3 分,共12分)1、设2()3,f x x x x =+使()(0)n f 存在的最高阶数n 为( )(A) 0 (B) 1 (C) 2 (D)32、函数dt e t y x t ⎰-=20 )1( 有极大值点( )(A ) 1=x (B ) 1-=x (C ) 1±=x (D ) 0=x 3、已知函数()f x 的一个原函数是x 2sin ,则'()xf x dx =⎰( ) (A) 2cos2sin 2x x x C -+ (B) 2sin 2cos2x x x C -+ (C) 2sin 2cos2x x x C ++ (D) sin 2cos2x x x C -+ 4、2x =是函数1()arctan2f x x=-的 ( ) (A )连续点 (B )可去间断点 (C )第一类不可去间断点 (D )第二类间断点二、填空题(每小题3 分,共12分) 1、函数xy xe -=的图形的拐点是 。
2、曲线21x ey --=的渐进线是 。
3、设dte xf xt ⎰-=02)(,则()()limh f x h f x h h→+--= 。
4、=-→xx x 20)1(lim 。
三、求下列极限(每小题6分,共12分)。
1、2301cos(1)lim tan sin x x e x x→--⋅。
2、()011lim ln 1x x x →⎛⎫- ⎪ ⎪+⎝⎭。
四、计算下列微分或导数(每小题6分,共18分)。
1、21x ln x arctan x y +-=,求dy 。
2、cos (sin ),x dy x dx=若y 求。
3、设cos sin x R ty R t =⎧⎨=⎩,求22d y dx 。
五、计算下列积分(每小题6分,共18分)。
1、dx )x (x ⎰+11。
2、求1(12ln )dx x x +⎰。
3、dx xx ⎰-1221。
六、若01x <<,证明不等式x e xx211-<+-(8分)。
七、,0423412所围成的平面图形与直线为曲线设=--=y x x y D求: (1) D 的面积S ; (2) D 绕x 轴旋转一周所得的旋转体体积V 。
(10分)八、求微分方程522(1)1dy yxdx x-=++的通解(10分)。
《高等数学IV1》统考试题(A )答案及评分标准一、选择(每题3分,共12分)1、B 2、D 3、A 4、C二、填空(每题3分,共12分)1、)2 ,2(2-e 2、1=y 3、22x e- 4、21e 三、计算下列极限(每小题6分,共12分)。
1、解:原式=4202)1(lim 2x e x x -→ (2分)4402lim x x x →= (4分)21=(6分) 2、 解:原式=20ln(1)ln(1)limlim ln(1)x x x x x x x x x →→-+-+=+ (3分) 2121lim 2111lim00=+=+-→→x x xx x x x (3分)四、求下列导数和微分(每小题6分,共18分)。
1、解:22tan 11x x dy arc x dx x x ⎡⎤=+-⎢⎥++⎣⎦(3分) arctan xdx = (6分)2、解:cos lnsin ()x x y e ''= (2分)cos lnsin (sin ln sin cot cos )x x e x x x x =-+ (4分)=cos (sin )(sin ln sin cot cos )x x x x x x -+ (6分)3、解:解:t dxdycot -= (3分) 2'2311(cot)sin sin t d y dx R t R t=-=-- (6分)五、计算下列积分(每小题6分,共18分)。