二维随机变量及其概率分布

合集下载

《概率论》二维随机变量及其分布函数的定义、基本性质

《概率论》二维随机变量及其分布函数的定义、基本性质

定义3-1 n个随机变量X1,X2,…,X n构成的整体X=(X1,X2,…,X n)称为一个n维随机变量或n维随机向量,X i称为X的第i(i=1,2,…,n)个分量.
定义3-2 设(x,Y)为一个二维随机变量,记
F(x,y)=P{X≤x,Y≤y},-∞<z<+∞,-∞<y<+∞,< p="" style="padding: 0px; list-style: none;">
称二元函数F(x,y)为X与y的联合分布函数或称为(X,Y)的分布函数.
(X,Y)的两个分量X与y各自的分布函数分别称为二维随机变量(X,Y)关于X与关于y的边缘分布函数,记为F X(x)与F Y(y).
边缘分布函数可由联合分布函数来确定,事实上,一元函数
几何上,若把(X,Y)看成平面上随机点的坐标,则分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以(x,y)为顶点、位于该点左下方的无穷矩形D内的概率.
分布函数F(x,y)具有下列性质:
(1)F(x,y)是变量x(或y)的不减函数.
(2)0≤F(x,y)≤l,
对任意固定的y,F(-∞,y)=0
对任意固定的x,F(x,-∞)=0;
F(-∞, -∞)=0,F(+∞,+∞)=1. (3)F(x,y)关于x和关于y均右连续,即F(x,y)=F(x+0,y);F(x,y)=F(x,y+0). (4)对任意固定的x1<x2,y1<y2
F(x2 ,y2)-F(x2,yl)-F(xl,y1)+F(x1+yl)≥0.。

概率论之二维随机变量及其分布

概率论之二维随机变量及其分布

2
arctan
y 4
(2) P(3<<+,0<4)
=F(+,4)-F(+,0) -F(3,4) +F(3,0)
1. 16
3、二维随机变量的概率分布
1)离散型随机变量
如果二维随机变量(,)是在有限个或无限可列 个点(xi,yj)上取值(i,j=1,2,…)。则称(,)为
离散型随机变量。 并称
P{ =xi, =yj}=pij i,j=1,2,… 为二维离散型随机变量(,)的概率分布或分布律, 或称二维型离散随机变量(,)的联合分布律。
2)性质
二维分布函数F(x,y)具有下述性质:
(1) F(x,y)是x、y的单调不减函数.即对任意固定 的y,当x2>x1时,F(x2,y) ≥F(x1,y),对任意固 定的x,当y2>y1时,F(x,y2)≥F(x,y1);
(2)F(x,y)关于x、y均是右连续的,即
F(x,y)=F(x+0,y),F(x,y)=F(x,y+0);
j 1,2,
例5 一盒中装有三只正品和两只次品的某种产品, 现随机地抽取两次,每次抽取一种产品,记
1, 0,
第一次取出的是正品, 第一次取出的是次品。
1, 0,
第二次取出的是正品, 第二次取出的是次品。
试就有放回、无放回情形考察(,)的分布。
(1) 有放回情形
的分布
0
1
pi
0 22 32
2
55 55 5
xy
F ( x, y)
p(u, v)dudv
则称(,)是连续型二维随机变量,函数p(x,y)称 为二维随机变量(,)的概率密度,或称随机变量

第05章 二维随机变量

第05章 二维随机变量

第五章 二维随机变量第一节 二维随机变量及其分布一、二维随机变量1、定义:设),,(P S F 为一概率空间,X 、Y 均为S 上的一维随机变量,称二维向量X ),(Y X =为S 上的二维随机变量.2、X 的分布:}{B P ∈X , 2B ∈B . 其中可证:=∈}{B X F ∈∈∈},))(),((|{S e B e Y e X e .若取},|),{(2121y y y x x x y x B ≤<≤<=,那么},{}{2121y Y y x X x P B P ≤<≤<=∈X},{22y Y x X P ≤≤=},{21y Y x X P ≤≤- },{},{1112y Y x X P y Y x X P ≤≤+≤≤-.3、分布函数(1)定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,R ∈∀y x ,,规定:},{),(y Y x X P y x F ≤≤=. 称),(y x F 为),(Y X 的分布函数.显然: },{2121y Y y x X x P ≤<≤<),(),(),(),(11122122y x F y x F y x F y x F +--=.(2)性质① R ∈∀y x ,,1),(0≤≤y x F .② ),(y x F 关于y x ,均为单调不减函数.③ 0),(=-∞y F ,0),(=-∞x F ,0),(=-∞-∞F ,1),(=+∞+∞F . ④ ),(y x F 关于y x ,均为为右连续函数.⑤ R ∈<<∀2121,y y x x ,0),(),(),(),(11122122≥+--y x F y x F y x F y x F .注:①~⑤为分布函数的特征性质.反之亦然.例1掷硬币三次,X 表示出现正面的次数,|)3(|X X Y --=,求),(Y X 的分布函数),(y x F .解:(1) X 的所有可能取值为3,2,1,0,依次记为4321,,,x x x x ,Y 的所有可能取值为3,1,依次记为21,y y .列表如下X样 本 点Y0 (反反反)3 1 (正反反) (反正反) (反反正) 1 2(正正反) (正反正) (反正正)13 (正正正)3(2) 概率情况列表 81},{21===y Y x X P ,83},{12===y Y x X P , 83},{13===y Y x X P ,81},{24===y Y x X P ,其他0},{===j i y Y x X P .(3)求分布. 记}2,1 ,3,2,1|),{(===j i y x A j i ,YX1 3 0 0 8/1 1 8/3 02 8/3 0 38/1A B BA B +=, 显然φ=∈}),{(A B Y X ,那么}),{(}),{(}),{(A B Y X P BA Y X P B Y X P ∈+∈=∈∑∈===∈=By x j i j i y Y x XP BA Y X P )(,},{}),{((4)求分布函数. ∑≤≤===≤≤=yy x x j i j i y Y x XP y Y x X P y x F ,},{},{),(.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥<≤<≤≥≥<≤<≤<≤≥<≤<<<<=.3 ,3 1, ,3 ,32 ,8/7 ;31 ,3 ,8/6 ;3 ,21 ,8/4 ;31 ,21 ,8/3 ;3 ,10 ,8/1;3 ,1 1 0 0,),(y x y x y x y x y x y x y x y x y x F 或或二、边缘分布1、),(Y X 关于X 的边缘分布: ),(lim }{)(y x F x X P x F y X +∞→=≤=.证明:取}{},{},{x X Y x X n Y x X A n ≤=+∞<≤→≤≤=不减,由①②知),(lim y x F y +∞→存在,故)(}{)lim ()(lim ),(lim ),(lim x F x X P A P A P n x F y x F X n n n n n y =≤====∞→∞→∞→+∞→.2、),(Y X 关于Y 的边缘分布: ),(lim }{)(y x F y Y P y F x Y +∞→=≤=. (略)三、随机变量相互独立、定义:设),(y x F 为),(Y X 的分布函数,X 、Y 的分布函数分别为 )(x F X 、)(y F Y ,若R ∈∀y x ,,恒有=),(y x F )(x F X )(y F Y , 则称X 与Y 相互独立.2、X 与Y 相互独立⇔R ∈<<∀2121,y y x x ,恒有}{}{},{21212121y Y y P x X x P y Y y x X x P ≤<≤<=≤<≤<.证明:“⇐” R ∈∀y x ,,由于},{},{y Y x X y Y n x X n ≤≤→≤<-≤<-, }{}{x X x X n ≤→≤<-, }{}{y Y y Y n ≤→≤<-均不减,则},{),(y Y x X P y x F ≤≤=},{lim y Y n x X n P n ≤<-≤<-=∞→}]{}{[lim y Y n P x X n P n ≤<-≤<-=∞→}]{lim }{lim y Y n P x X n P n n ≤<-≤<-=∞→∞→)()(}{}{y F x F y Y P x X P Y X =≤≤=.“⇒”R ∈<<∀2121,y y x x ,有 },{2121y y x x P ≤<≤<ηξ ),(),(),(),(11122122y x F y x F y x F y x F +--=)()()()()()()()(11122122y F x F y F x F y F x F y F x F Y X Y X Y X Y X +--= )]()()][()([1212y F y F x F x F Y Y X X --= }{}{2121y y P x x P ≤<≤<=ξξ.3、X 与Y 相互独立⇔R ⊂∀21,B B ,恒有}{}{},{2121B Y P B X P B Y B X P ∈∈=∈∈.第二节 二维离散型随机变量一、二维离散型随机变量 1、定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,若),(Y X 的取值为有限个或可数个(至多可数),称),(Y X 为S 上的二维离散型随机变量. 显然:),(Y X 为S 上的二维离散型随机变量⇔X 与Y 均为S 上的一维离散型随机变量.2、概率分布:设),(Y X 所有可能取的值为),(j i y x ,令 },{j i ij y Y x X P p ===,称其为二维随机变量),(Y X 的概率分布(分布率)。

31二维随机变量的概率分布

31二维随机变量的概率分布

思考:根据这个定义,上例中张三的身高X和 李四的体重Y能构成二维随机向量(X,Y)吗?
3.1 二维随机变量的概率分布
一、二维随机变量的分布函数 二、二维离散型随机变量及其分布 三、二维连续型随机变量及其分布
一、二维随机变量的分布函数
二维随机变量(X, Y)的性质不仅与X,Y有关,而且还依赖 于这两个随机变量的相互关系 . 为此,我们引入二维随机 变量的分布函数.
二维随机变量 ( X,Y) 的分布律也可用表格表示为:
有了二维离散 型随机变量的 分布律 pij , 就 能容易的得到
XY
x1 x2 ? xi ?
y1
y2 ?
p11
p12
?
p 2 1 p 22
?
pi1 pi 2 ?
??
yi ? p1 j ? p2 j ?} ?
定义1 设 ( X, Y )是二维随机变量, 对于任意实数 x, y,
称二元函数 F(x, y) ? P{X ? x,Y? y}
y
为二维随机变量 (X,Y)
( x, y) ?
的分布函数 , 或X和Y
X ? x,Y ? y
的联合分布函数 .
O
x
借助右图 可知对于任意
的x1, y1, x2, y2(x1<x2, y1<y2),
Y y2
随机点 (X,Y) 落在矩形域
( x1 ? X ? x2 , y1 ? Y ? y2 ) 及点 (x2, y2) 的概率分别为
P{x1 ? X ? x2, y1 ? Y ? y2}
y1 O x1
x2 X
? F ( x2 , y2 ) ? F ( x1 , y2 ) ? F ( x2 , y1 ) ? F ( x1 , y1 )

二维连续随机变量及其概率分布

二维连续随机变量及其概率分布
P{x1 X x2, y1 Y y2} P{x1 X x2}P{y1 Y y2}
定理2 二维随机变量(X,Y)的两个分量独立的充 分必要条件是: 对任意实数x, y有
P{X x,Y y} P{X x}P{Y y}
定理3 若(X , Y ) 是离散型随机变量,则X与Y相 互独立的充分必要条件是
lim F ( x, y) 0
x
lim F ( x, y) 0
y
lim F ( x, y) 1
x, y
性质3 对于x 和y,F(x, y)都是右连续的,即对任意 的实数x0和y0,均有
Lim xx0 F(x, y)=F(x0 , y), Lim yy0 F( x, y )=F(x, y0 )
(3) f (x, y)与 fX (x), fY (y)之间的关系
f X (x)
f (x, y)dy
fY ( y) f (x, y)dx.
例3 设随机变量X 和Y 具有联合分布
f
(
x,
y)
6, 0,
求X 和Y 边缘密度
x2 y x 其他
解:
f X (x)
f (x, y)dy
x
6dy x2
0
x 0, y 0 其它
求 (X, Y )的边缘分布函数。
解: X的边缘分布函数为
FX
(x)
F
( x,)
lim
y
F ( x,
y)
1 ex x 0
0 x0
1 ex ey exyxy x 0, y 0
(X ,Y) ~ F(x, y)
0
其它
Y的边缘分布函数为
FY
(
y)
F
(,

第五章 二维随机变量及其概率分布

第五章 二维随机变量及其概率分布
G
P{( X ,Y ) G }的值等于以G为底 , 以曲面z f ( x, y) 为顶面的柱体体积.
例3.1 设( X ,Y )的联合密度函数为
f
(
x,
y)
cxy
0
0 x 1, 0 y 1 ,
others
(1)求常数C的值;(2)求P{X Y};
(3).求F (x, y)
解 (1)由
解 由于
43 2 P{X 0,Y 0} P{X 0}P{Y 0 X 0}
10 9 15
46 4 P{X 0,Y 1} P{X 0}P{Y 1 X 0}
10 9 15
64 4 P{X 1,Y 0} P{X 1}P{Y 0 X 1}
10 9 15
65 5 P{X 1,Y 1} P{X 1}P{Y 1 X 1}
例1.1 已知二维随机变量(X,Y)的分布函数为
F (x, y) A[B arctan x)][C arctan y)] ( x, y )
1)求常数A,B,C;
解: 由分布函数的性质,有
lim F(x, y) lim A(B arctan x)(C arctan y)
x
x
y
y
A(B
G
(4)若 f ( x, y)在( x, y)连续,则有2F ( x, y) f ( x, y). xy
3.说明
几何上, z f ( x, y) 表示空间的一个曲面.
f ( x, y)d x d y 1,
表示介于 f (x, y)和 xoy 平面之间的空间区域的 全部体积等于1.
P{( X ,Y ) G} f ( x, y) d x d y,
设二维离散型随机变量( X ,Y )所有可能取的 值为 ( xi , y j ), i, j 1, 2,, 记

《概率论与数理统计》第3章 二维随机变量及其分布

《概率论与数理统计》第3章 二维随机变量及其分布

23 April 2012
第三章 多维随机变量及其分布
注意点
第32页
(1) X 与Y是独立的其本质是: 任对实数a, b, c, d,有
Pa X b, c Y d Pa X b Pc Y d
(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.
23 April 2012
0
=A/6
所以, A=6
23 April 2012
第三章 多维随机变量及其分布
第22页
例3.3.2

(X,
Y)

p( x,
y)
6e(2x3y) , 0,
x 0, y 0 其它
试求 P{ X< 2, Y< 1}.
23 April 2012
第三章 多维随机变量及其分布
第23页
y
解: P{ X<2, Y<1} p(x, y)dxdy
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
23 April 2012
第三章 多维随机变量及其分布
x1 x2 … xi …
23 April 2012
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
第三章 多维随机变量及其分布
第9页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)

3.1 二维随机变量及其分布

3.1  二维随机变量及其分布

可得
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即Y的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即X的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
由 概率密度函数性质 4,得
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
三、二维连续型随机变量及其概率分布
两个常见二维连续型概率分布
三、二维连续型随机变量及其概率分布
关于二维正态分布的说明 (1)服从二维正态分布的密度函数的典型图形见下图; (2)二维正态分布的两个边缘分布是一维正态分布。
解:(1)由二维随机变量分布函数的性质, 可得
一、二维随机变量及其分布函数
例:设二维随机变量(X, Y)的分布函数为
解:由(1)式可得
第一节 二维随机变量及其分布
二维随机变量及其分布函数
二维离散型随机变量及其概率分布 二维连续型随机变量及其概率密度
二、二维离散型随机变量及其概率分布

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X、Y分别表示甲乙命中的次数,求(X,Y)联合分布律。

2.袋中有两只白球,两只红球,从中任取两只以X、Y表示其中黑球、白球的数目,求(X,Y)联合分布律。

3.设,且P{}=1,求(,)的联合分布律,并指出,是否独立。

4.设随机变量X的分布律为Y=,求(X,Y)联合分布律。

5.设(X,Y)的概率分布为且事件{X=0}与{X+Y=1}独立求a,b。

6. 设某班车起点上车人数X服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0<P<1)相互独立。

以Y表示中途下车的人数。

(1)求在发车时有n个人的情况下,中途m个人下车的概率;(2)求(X,Y)联合分布律。

7. 设二维随机变量(X,Y)联合分布函数F(x.y)=A(B+arctan) (C+arctan)。

(1)A、B、C (2)(X,Y)的联合密度f(x,y) (3)(X,Y)的边缘密度,概率论与数理统计第三章二维随机变量及其概率分布例题8.设f(x,y)=为二维随机变量(X,Y)的联合密度函数,求:其它(1)C的值(2), (3)P{X+Y1}并判别X与Y是否独立。

为(X,Y)的密度函数,求:9.设f(x,y)=其它(3)P{X>1/2|Y>0}为(X,Y)的密度函数,求10. 设f(x,y)=其它11. 设f(x,y)=为(X,Y)的密度函数,求()的联合分布其它函数。

12.设X,Y独立,均服从(0,1)上的均匀分布,Z的密度函数。

13. 设f(x,y)=()为(X,Y)的密度函数,Z=X+Y,求的密度函其它数。

概率论与数理统计第三章二维随机变量及其概率分布例题14.设X,Y独立,X~N(μ,),Y~V(-π,π),Z=X+Y,求,结果用Φ( x)表示。

15.设(X,Y)的联合密度函数为f(x,y)=,Z=X+Y,求Z的概率密度。

为(X,Y)的密度函数,Z=X+2Y,求的密度函数。

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

15.设(X,Y)的联合密度函数为 f(x,y)=
1
2������������ 1 2 ������ 2 2
e
− (
1 ������ 2 ������ 2 + ) 2 ������ 1 2 ������ 2 2
,Z=X+Y,求 Z 的概率密度。
−x −2y ������ > 0, y > 0 16.设 f(x,y)= 2e 其它 0
0 ≤ ������ ≤ ������ ≤ 1 其它
为(X,Y)的密度函数,Z=X+Y,求 Z的密度函数
概率论与数理统计第三章二维随机变量及其概率分布例题
14.设 X,Y 独立,X~N(μ,σ2 ),Y~V(-π,π),Z=X+Y,求������������ ������ ,结果用 Φ( x)表示。
概率论与数理统计第三章二维随机变量及其概率分布例题
5. 设(X,Y)的概率分布为
X 0 1
Y
0 1/3 a
1 B 1/4
且事件{X=0}与{X+Y=1}独立求 a,b。
6. 设某班车起点上车人数 X 服从参数 λ(λ>0)的泊松分布,每位乘客中途下车的概率为 P (0<P<1)相互独立。以 Y 表示中途下车的人数。 (1)求在发车时有 n 个人的情况下,中途 m 个人下车的概率; (2)求(X,Y)联合分布律。
9.设 f(x,y)= 2 ������������|������
1 ������ < ������, 0 < ������ < 1 为(X,Y)的密度函数,求: 1 ������������ ������ , ������������ ������ 0 其它 ������|������ , ������������ |������ ������|������ (3)P{X>1/2|Y>0}

二维随机变量与联合概率分布

二维随机变量与联合概率分布

二维随机变量与联合概率分布随机变量是概率论中的重要概念,它描述了随机试验的结果。

而在某些情况下,我们需要考虑两个或者多个随机变量之间的关联关系,这就引出了二维随机变量的概念。

本文将介绍二维随机变量以及联合概率分布的相关知识。

一、二维随机变量的定义在概率论中,二维随机变量由两个随机变量组成,通常用大写字母(如X、Y)表示。

二维随机变量可以表示为(X,Y)。

二、联合概率分布的定义联合概率分布是二维随机变量(X,Y)所对应的概率分布。

对于任意的(x,y),联合概率分布可以表示为P(X=x,Y=y),其中P表示概率。

三、联合概率密度函数如果二维随机变量的取值是连续的,那么联合概率分布可以用联合概率密度函数来描述。

记为f(x,y),则对于任意的(x,y),联合概率密度函数满足以下条件:1. f(x,y)大于或等于0;2. 在整个定义域上的积分等于1,即∬f(x,y)dxdy=1;3. 对于任意的事件A,有P((X,Y)∈A)=∬Af(x,y)dxdy。

四、边缘概率分布边缘概率分布是指在二维随机变量的联合分布中,只考虑某一个随机变量的概率分布。

对于离散型二维随机变量,边缘概率分布可以通过联合概率分布进行计算。

对于连续型二维随机变量,边缘概率分布可以通过联合概率密度函数积分得到。

五、条件概率分布条件概率分布是指在给定一个随机变量的取值时,另一个随机变量的概率分布。

对于二维随机变量(X,Y),在给定X=x的条件下,Y的条件概率为P(Y=y|X=x),表示Y取值为y的条件下,X取值为x的概率。

六、独立性如果二维随机变量X和Y的联合概率分布等于边缘概率分布之积,即P(X=x,Y=y)=P(X=x)P(Y=y),那么称X和Y是相互独立的。

七、联合分布函数与边缘分布函数联合分布函数是指二维随机变量(X,Y)的分布函数,记为F(x,y)=P(X≤x,Y≤y)。

边缘分布函数是指在联合分布函数中,只考虑某一随机变量的取值的分布函数。

二维连续型随机变量分布函数及概率的计算

二维连续型随机变量分布函数及概率的计算

二维连续型随机变量分布函数及概率的计算
二维连续型随机变量是指具有两个维度的随机变量,其取值可以是一个平面上的任意一个点。

与一维连续型随机变量类似,二维连续型随机变量也有分布函数和概率密度函数。

对于任意的实数x和y,定义二维随机变量(X,Y)的分布函数为:
F(x,y) = P(X≤x, Y≤y)
P表示概率,F(x,y)表示(X,Y)取值在区域(-∞,x] × (-∞,y]中的概率。

D表示平面上的任意一个区域,∬表示对D进行二重积分。

如果f(x,y)满足以下两个条件,即可称为(X,Y)的概率密度函数:
1. 非负性:f(x,y)≥0,对于任意的实数x和y成立。

2. 归一性:∬R f(x,y)dxdy = 1,其中R表示整个平面。

三、概率的计算
根据概率密度函数可以计算二维随机变量的概率。

对于任意的区域D,有:
如果要计算二维随机变量(X,Y)在区域D内的概率,可以通过计算概率密度函数在该区域上的积分来得到。

具体计算方法是将概率密度函数带入积分式中,并对x和y分别进行积分。

总结:二维连续型随机变量的分布函数是一个二维平面上的函数,可以用来描述随机变量在某个区域内取值的概率。

而概率密度函数则是用来计算二维随机变量在某个区域内的概率的函数。

在计算概率时,可以通过对概率密度函数进行积分来得到。

《概率论与数理统计》第一节二维随机变量及其分布

《概率论与数理统计》第一节二维随机变量及其分布

( x,y)
Ae (2 x3 y) ,
0,
x 0, 其它.
y
ห้องสมุดไป่ตู้
0,
求:(1)常数A;(2) (X, Y)的分布函数F(x, y); (3) (X, Y)落在三角形区域D:x0, y0, 2x+3y6内的概率.
解:(1)
f ( x, y)dxdy
Ae (2 x3 y)dxdy
00
A
e2 xdx
0
e3 ydy
0
A 3
e2xdx
0
A 3
(
1 2
e
2
x
)
0
A, 6
A 6
1,
A
6.
(2) ( X ,Y )的分布函数为:
F(x, y)
x
y
f
(u,
v
)dudv
x y 6e(2u3v)dudv,
00
0,
x 0, y 0, 其它.
(1
e2 0,
x
)(1
e3
注: P{x1 X x2 , y1 Y y2 } F( x2,y2 ) F( x1,y2 ) F( x2,y1 ) F( x1,y1 ).
3. 分布函数F(x, y)的性质:
(1)非负规范: 对任意(x, y) R2 , 0 F(x, y) 1, 且
F (, ) lim F ( x, y) 1,F (, ) lim F ( x, y) 0,
XY 0 1
0 0.3 0.3
1 0.3 0.1 若把不放回改为有放回的摸球,则( X ,Y )的分布律为:
XY 0 1
0 0.36 0.24
1 0.24 0.16

二维随机变量及分布

二维随机变量及分布

二维随机变量及其概率分布复习资料内容摘要一、二维随机变量设随机试验的样本空间为Ω,X 和Y 是定义在Ω上的两个随机变量(X ,Y )为二维随机变量或二维随机向量。

1. 联合分布函数设(X ,Y )是二维随机变量,y x ,是任意实数,函数F (x ,y )=P{X ≤x ,Y ≤y}称为(X ,Y )的分布函数,或称随机变量X 与Y 的联合分布函数. 2. 联合分布函数的性质(1) 0≤F (x ,y )≤1;(2) F(x ,- ∞)= F(-∞,y)= F(-∞,- ∞)=0F(+∞,+ ∞)=1;(3) F(x ,y)对x 和y 分别是不减的.即对于固定的y ,若x 1<x 2,则F (x 1,y )(),y x F 2≤;对于固定的x ,若y 1<y 2,则F(x ,y 1)≤F(x ,y 2);(4) F (x ,y )关于x 右连续,关于y 右连续,即 F (x +0,y )=F (x ,y ),F (x ,y+0)=F (x ,y )。

(5) 对于任意的点(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,有 F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)≥0. 3.二维离散型随机变量如果二维随机变量(X ,Y)所有可能取的数对为有限个或可数个,则称(X ,Y )为二维离散型随机变量.并且称P{X=i , Y=y j }=ij p ,i ,j=1,2…为(X,Y)的分布律,或称做X与Y的联合分布律. 分布律也可用表格列出:分布律满足下列3条性质:4.二维连续型随机变量设(X,Y)的分布函数为F(x,y),如果存在非负函数f(x,y),使得对任意实数x,y都有则称(X,Y)为二维连续型随机变量,函数f(x,y)称做(X,Y)的概率密度,或X,Y的联合概率密度.f(x,y)具有下列性质:(1)f(x,y)≥0,(2)⎰+∞∞-⎰+∞∞- f(x,y)d x dy=1(3)若f(x,y)在点(x,y)连续,则有(4)设D为x Oy平面上的区域,则f(x,y)d x dyP{(x,y)∈D}=⎰⎰D二、边缘分布1.边缘分布函数设F(X,Y)是X与Y的联合分布函数,则FX(x)=P{X≤x,Y<+∞}=F(x,+∞)F Y(y)=P{ X<+∞,Y≤y } =F(+∞)分别称为(X,Y)关于X与Y的边缘分布律。

概率论二维随机变量及其分布

概率论二维随机变量及其分布
FX(x) F(x, )
FY(y)
F (, y)
.
二维随机变量的分布函数
P { x 1 x x 2 ,y 1 y y 2 } F ( x 2 ,y 2 ) F ( x 2 ,y 1 ) F ( x 1 ,y 2 ) F ( x 1 ,y 1 ). 若已知 (X,Y)的分布函数F(x,y),则可由F(x,y) 导出 X和 Y各自的分布函数 FX(x)和 FY(y):
(x 2 , y2)
y1
O x1
x2 x
图 2.
二维随机变量的分布函数
P { x 1 x x 2 ,y 1 y y 2 } F ( x 2 ,y 2 ) F ( x 2 ,y 1 )
F ( x 1 ,y 2 ) F ( x 1 ,y .1 ).
二维随机变量的分布函数
P { x 1 x x 2 ,y 1 y y 2 } F ( x 2 ,y 2 ) F ( x 2 ,y 1 ) F ( x 1 ,y 2 ) F ( x 1 ,y 1 ). 若已知 (X,Y)的分布函数F(x,y),则可由F(x,y) 导出 X和 Y各自的分布函数 FX(x)和 FY(y):
(2)F(x,y)关于 x和 y均为单调非减函数,即
.
联合分布函数的性质 注:以上四个等式可从几何上进行说明.
(2)F(x,y)关于 x和 y均为单调非减函数,即 对任意固定的 y, 当 x 2 x 1 ,F ( x 2 ,y ) F ( x ,y 1 ), 对任意固定的 x, 当 y 2 y 1 ,F ( x ,y 2 ) F ( x ,y 1 ); (3)F(x,y)关于 x和 y均为右连续,即 F ( x , y ) F ( x 0 , y ) F ( x , y , ) F ( x , y 0 ).

二维随机变量及其概率分布

二维随机变量及其概率分布

1第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1,F(x,-∞)=0,F(-∞,y)=0,F(-∞,-∞)=0,F(∞,∞)=1.(3)F(x,y)关于每个变量都是右连续的,即F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).(4)对于任意实数x 1<x 2,y 1<y 2P{x 1<X ≤x 2,y 1<Y ≤y 2}=F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j )(i ,j =1,2,…)称(X,Y)为二维离散型随机变量.并称P{X=x i ,Y=y j }=p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性0≤p i j ≤1.(2)归一性∑∑=i jij p 1.3.(X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy iji j p 三.二维连续型随机变量及其联合概率密度1.定义如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.22.性质(1)非负性f (x,y)≥0.(2)归一性1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1.(X,Y)关于X 的边缘分布函数F X (x)=P{X ≤x ,Y<∞}=F (x ,∞).(X,Y)关于Y 的边缘分布函数F Y (y)=P{X<∞,Y ≤y}=F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律P{X=x i }=∑∞=1j ij p =p i ·(i =1,2,…)归一性11=∑∞=∙i i p .关于Y 的边缘分布律P{Y=y j }=∑∞=1i ij p =p ·j (j =1,2,…)归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),(归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=xd y x f ⎰∞∞-),(归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有F(x,y)=F X (x)F Y (y),则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j =p i ··p ·j (i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jji j j i p p y Y P y Y x X P ∙=====3P{X=x i |Y=y j }为在Y=y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.,}{},{∙=====i ji i j i p p x X P y Y x X P。

03第三讲 二维随机变量的概率分布

03第三讲 二维随机变量的概率分布

第三讲 二维随机变量的概率分布考纲要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.一、二维随机变量的概率分布问题1 何谓二维随机变量的联合分布函数?何谓二维随机变量的边缘分布函数? 答 1.二维随机变量),(Y X 的联合分布函数{}(,),F x y P X x Y y =≤≤,即),(Y X 的取值落在无穷矩形域(,](,]x y -∞⨯-∞内的概率.二维随机变量的联合分布函数具有如下性质: ⑴0(,)1F x y ≤≤;⑵(,)(,)(,)0F F y F x -∞-∞=-∞=-∞=,(,)1F +∞+∞=; ⑶(,)F x y 关于x (关于y )单调不减; ⑷(,)F x y 关于x (关于y )右连续. 2.二维随机变量),(Y X 关于X 的边缘分布函数{}{}(),(,)lim (,)X y F x P X x P X x Y F x F x y →+∞=≤=≤<+∞=+∞=.二维随机变量),(Y X 关于Y 的边缘分布函数{}{}(),(,)lim (,)Y x F y P Y y P X Y y F y F x y →+∞=≤=<+∞≤=+∞=.问题2 何谓二维离散型随机变量联合分布、边缘分布和条件分布? 答 ⑴联合分布设二维离散随机变量(,)X Y 的所有可能值为(,),,1,2,i j x y i j = ,则称{},(,1,2,)i j ij P X x Y y p i j ====为二维离散随机变量(,)X Y 的联合分布律,其中01ij p ≤≤,111ij i j p ∞∞===∑∑.⑵边缘分布称{}1(1,2,)i ij i j P X x p p i ∞⋅=====∑,{}1(1,2,)j ij j i P Y y p p j ∞⋅=====∑分别为(,)X Y 关于X 和关于Y 的边缘分布律. 利用联合概率分布表计算如下: ⑶条件分布称{}(1,2,)ij i j j p P X x Y y i p ⋅==== 为在j Y y =的条件下随机变量X 的条件分布;称{}(1,2,)ijj i i p P Y y X x j p ⋅==== 为在i X x =的条件下随机变量Y 的条件分布. 例1.设某班车起点站上客人数X 服从参数为λ的泊松分布,每位乘客在中途下车的概率为p 且中途下车与否相互独立. 以Y 表示在中途下车的人数,求⑴在发车时有n 个乘客的条件下,中途有m 个人下车的概率; ⑵二维随机变量),(Y X 的概率分布(01-1). 解 ⑴{}(1)m m n m n P Y m X n C p p -===-; ⑵二维随机变量),(Y X 的概率分布为{}{}{},P X n Y m P X n P Y m X n ======(1)(0,1,2,0,1,,)!nm m n mn e C p p n m n n λλ--=-==2.设随机变量X 和Y 相互独立,下表列出了二维随机变量),(Y X 的联合概率分布及关于X 和关于Y 的边缘概率分布的部分数值,将其余数值填入表中的空白处.解 由联合分布与边缘分布的关系,得111116824p =-=;由独立性,得11112464p ⋅=÷=;由概率分布的性质,得213144p ⋅=-=;其余数值可类似求出.故3.设随机变量11~(1,2)1/41/21/4i X i -⎛⎫=⎪⎝⎭且满足{}1201P X X ==,则{}12P X X == . 【0】问题3 何谓二维连续型随机变量的联合密度?它具有哪些性质? 答 若存在非负函数(,)f x y ,使得随机变量(,)X Y 的分布函数 (,)(,)x y F x y f x y dxdy -∞-∞=⎰⎰,则称(,)X Y 为二维连续随机变量,并称(,)f x y 为(,)X Y 的联合概率密度或者联合密度函数.联合概率密度具有如下性质: ⑴(,)0f x y ≥;⑵(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;⑶(,)(,)x y F x y f x y dxdy -∞-∞=⎰⎰连续;⑷若(,)f x y 在点(,)x y 连续,则(,)(,)xyF x y f x y ''=; ⑸{}(,)(,)DP X Y D f x y dxdy ∈=⎰⎰.例1.设二维随机变量),(Y X 的概率密度2(),(,)0,x y ce f x y -+⎧=⎨⎩.,0,0else y x +∞<<+∞<<则常数=c ;),(Y X 落在区域{(,)1}D x y x y =+≤内的概率为 .【提示:由2()(,)41x y f x y dxdy dx edy +∞+∞+∞+∞-+-∞-∞==⎰⎰⎰⎰推出=c 4;{}112()2(,)413xx y P X Y D dx edy e--+-∈==-⎰⎰.】问题4 如何求二维随机变量的边缘密度?答 设(,)X Y 的概率密度为(,)f x y ,则可按如下公式计算边缘密度: 关于X 的边缘密度()(,)X f x f x y dy +∞-∞=⎰; 关于Y 的边缘密度()(,)Y f y f x y dx +∞-∞=⎰.例 设二维随机变量),(Y X 的概率密度26,,(,)0,x y x f x y else⎧≤≤=⎨⎩ 则),(Y X 关于X 的边缘概率密度=)(x f X ,关于Y 的边缘概率密度=)(y f Y .解 画出概率密度(,)f x y 的非零区域. 由图看出,X 的取值范围[0,1], 当01x ≤≤时,22()(,)66()x X xf x f x y dy dy x x +∞-∞===-⎰⎰,关于X 的边缘概率密度26(),01,()0,.X x x x f x else ⎧-≤≤=⎨⎩类似可求出关于Y的边缘概率密度),01,()0,.Y y y f y else ⎧≤≤⎪=⎨⎪⎩问题5 如何求二维随机变量的条件密度?答 设(,)X Y 的概率密度为(,)f x y ,关于,X Y 的边缘密度分别为(),()X Y f x f y ,则可按如下公式计算条件概率密度:在Y y =的条件下,X 的条件概率密度(,)()()X Y Y f x y f x y f y =;在X x =的条件下,Y 的条件概率密度(,)()()Y X X f x y f y x f x =.问题6 如何判断随机变量的独立性? 答 判断随机变量的独立性的方法有:⑴随机变量X 与Y 相互独立(,)()()X Y F x y F x F y ⇔=; ⑵离散型随机变量X 与Y 相互独立,,ij i j i j p p p ⋅⋅⇔∀=; ⑶连续随机变量X 与Y 相互独立(,)()()X Y f x y f x f y ⇔=.问题7 何谓二维均匀分布?答 若二维随机变量(,)X Y 的概率密度1,(,),(,)0,(,),x y D f x y x y D σ⎧∈⎪=⎨⎪∉⎩其中σ为D 的面积,则称(,)X Y 服从区域D 上的均匀分布.问题8 何谓二维正态分布?它具有哪些性质? 答 若二维随机变量(,)X Y 的概率密度221122211221(,)[()2()()()]2(1)x x y y f x y μμμμρρσσσσ⎧⎫----=--+⎨⎬-⎩⎭则称(,)X Y 服从二维正态分布,记作221212(,)~(,,,,)X Y N μμσσρ.二维正态分布221212(,,,,)N μμσσρ具有如下性质:⑴关于X 和Y 的边缘分布分别为211(,)N μσ,222(,)N μσ;⑵条件分布均为正态分布;⑶X 和Y 的非零线性组合aX bY +服从正态分布; ⑷X 和Y 相互独立的充要条件是相关系数0ρ=.例 设两个相互独立的随机变量X 和Y 分别服从正态分布)1,0(N 和)1,1(N ,则( ).(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}0{=≤-Y X P【提示 独立的正态变量的线性函数仍为正态变量;B 】二、二维随机变量函数的分布问题9 如何求二维随机变量函数的概率分布?答 设(,)g x y 在随机变量(,)X Y 的一切可能值有定义,则称(,)Z g X Y =为随机变量(,)X Y 的函数.求离散型随机变量函数的分布,关键是:弄清(,)Z g X Y =取哪些值,并求出对应的概率;求连续型随机变量函数的分布,关键是:弄清(,)Z g X Y =的取值范围,并求出分布函数.求两个独立随机变量X 与Y 的和Z X Y =+的概率密度,可用如下的卷积公式 ()()()Z X Y f z f x f z x dx +∞-∞=-⎰.例1.设ηξ,是两个相互独立且服从同分布的随机变量,如果ξ的分布律为3,2,1,31}{===i i P ξ,求),max(ηξ=X 与),min(ηξ=Y 的分布律.解 ),m a x (ηξ=X 的取值为1,2,3{}{}{}{}111,1119P X P P P ξηξη========;{}{}{}{}321,11,22,29P X P P P ξηξηξη====+==+===;{}{}{}531129P X P X P X ==-=-==,故),max(ηξ=X 分布律为:类似可求出),min(ηξ=Y 分布律为:2.设1X 和2X 独立,)2,1(1}2{,}1{=-====i p X P p X P i i ,令1,0,X ⎧=⎨⎩为偶数若为奇数若2121X X X X ++ 则2X 的概率分布为 .3.设二维随机变量),(Y X 在矩形}10,20),{(≤≤≤≤=y x y x D 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度)(s f S .(99-1)解 ),(Y X 的概率密度1,(,)(,)20,(,)x y Df x y x y D ⎧∈⎪=⎨⎪∉⎩X 的取值范围为[0,2],Y 的取值范围为[0,1],S XY =的取值范围为[0,2].S XY =的分布函数{}()S F s P S s =≤,当0s ≤时,{}()0S F s P S s =≤=,当2s ≥时,{}()1S F s P S s =≤=, 当02s <<时,{}{}{}()11S F s P S s P S s P XY s =≤=->=->211(,)1(1ln 2ln )22s sxxy ss f x y dxdy dx dy s >==-=+-⎰⎰⎰⎰,故S 的概率密度1(ln 2ln ),02,()20,.S s s f s else ⎧-<<⎪=⎨⎪⎩4.设随机变量X 和Y 相互独立, 2~(,)X N μσ, ~(,)Y U ππ-.试求Y X Z +=的密度函数(用)(x Φ表示).(92-1)解 X 和Y 相互独立,2~(,)X N μσ,~(,)Y U ππ-,则),(Y X 的密度函数=),(y x f 1(),()()20,.X X Y f x y f x f y else πππ⎧-<<⎪=⎨⎪⎩,Y X Z +=的分布函数{}{}()(,)Z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰11()()22z y X z y dy f x dx dy ππππμΦππσ---∞---==⎰⎰⎰(令z y t μσ--=)1()()()22z z z z t dt t dt πμπμσσπμπμσσσΦσΦππ--+-+---=-=⎰⎰,Y X Z +=的密度函数1()()[]2Z Z z z f z F z πμπμπσσ+---⎛⎫⎛⎫'==Φ-Φ ⎪ ⎪⎝⎭⎝⎭.。

第五章 二维随机变量及其分布

第五章 二维随机变量及其分布
x −∞ −∞

y
p(u, v )dudv .
则称( 则称(X,Y)为二维连续型随机变量,p(x,y)称为 为二维连续型随机变量, (X,Y)的联合密度(函数)。 的联合密度(函数)。 偏导存在的点处有: 注:在F(x,y)偏导存在的点处有: ∂2 p( x, y) = F( x, y). ∂x∂y
1 1 2 + P ( X = 2,Y = 2) = 0 + + = . 3 3 3
2011-11-8 皖西学院 数理系 13
一口袋装有3个球 分别标有数字1,2,2, 个球, 例2 一口袋装有 个球,分别标有数字 从袋中任取一球;放回袋中,再从袋中任取一球。 从袋中任取一球;放回袋中,再从袋中任取一球。
变量分成离散型、连续型及混合型, 变量分成离散型、连续型及混合型,主要研究离 散型和连续型的随机变量。 散型和连续型的随机变量。
2011-11-8 皖西学院 数理系 3
二、二维随机变量的分布函数 定义:设有二维随机变量( X ,Y ), 对∀x, y ∈ R, 称概率 P( X ≤ x,Y ≤ y)为随机变量( X ,Y )的联合分布函数。记 概 率 作:F ( x, y), 即 F ( x, y) = P( X ≤ x,Y ≤ y).
概 率 论 与 数 理 统 计
x1 < x2 ⇒ F ( x1 , y) ≤ F( x2 , y);
y1 < y2 ⇒ F ( x, y1 ) ≤ F ( x, y2 ) .
有界性: 有界性:
0 ≤ F ( x, y) ≤ 1; F (−∞, y) = 0, F ( x, −∞) = 0, F (+∞, +∞) = 1.
xi
M

二维随机变量的概率分布和边缘分布表格

二维随机变量的概率分布和边缘分布表格

随机变量是统计学和概率论中的一个重要概念,它描述了在一定条件下可能发生的各种数值。

在随机变量中,二维随机变量是一种特殊的形式,它包含了两个变量而不是一个。

为了更好地理解二维随机变量的概念和特性,我们可以通过概率分布和边缘分布表格来进行详细的分析和讨论。

一、二维随机变量的概率分布1.1 概率分布的定义概率分布是描述随机变量各种取值可能性的概率大小的一种数学函数。

对于二维随机变量而言,概率分布可以通过一个二维表格来表示,其中行和列分别代表两个随机变量可能的取值,格子中的数值表示这两个变量同时取某个值的概率。

1.2 二维随机变量的联合分布对于二维随机变量(X, Y),其联合分布可以表示为P(X=x, Y=y),表示X取值为x且Y取值为y的概率。

联合分布的表格可以清晰地展示X和Y之间的关系,以及它们各自可能的取值和概率大小。

1.3 二维随机变量的条件分布在给定Y的取值条件下,X的分布称为X在Y的条件下的分布。

条件分布可以通过联合分布和边缘分布的关系来求得,它可以帮助我们更好地了解在不同条件下X的可能取值情况。

1.4 二维随机变量的边缘分布二维随机变量的边缘分布是指在给定一维随机变量的分布后,另一维随机变量的分布。

通过边缘分布表格,我们可以清楚地看到X和Y各自的取值和概率大小,从而更好地了解它们的分布特性。

二、二维随机变量的边缘分布2.1 边缘分布的定义对于二维随机变量(X, Y),其边缘分布可以表示为P(X=x)和P(Y=y),分别表示X和Y各自取某个值的概率。

边缘分布表格可以清晰地展示X和Y各自的分布情况。

2.2 边缘分布表格的内容边缘分布表格的横纵坐标分别表示X和Y可能的取值,表格中的数值表示各自的概率。

通过分析边缘分布表格,我们可以得到X和Y各自的取值范围和概率大小,以及它们之间的关系。

2.3 边缘分布与联合分布的关系通过边缘分布表格和联合分布表格的比较,我们可以看到它们之间的关系和差异。

边缘分布可以帮助我们更好地理解在单个随机变量的条件下,另一个随机变量的取值情况和概率大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 某炉钢的基本指标——含碳量(X)、含硫 量(Y)与硬度(Z); 3. 导弹在空中的位置——坐标(X, Y, Z);
4. 在打靶时,命中点的位置——坐标(X,Y).
一般地,我们称 n 个随机变量的整体 X=(X1, X2, …,Xn)为n维随机变量或随 机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
三、二维分布函数F(x, y)的基本性质
当x x 时,F x , y F x , y 当y y 时,F x , y
1 2 1 2 1 1
1.F x , y 分别为x和y的不减函数,即

F x, y
2
2

应用:p96习题2
2.F x , y 是有界的,且
X Y
则称随机变量X和Y是相互独立的。
对离散r.v.,如下
P101例6
其他应用见p102习题1
1 1 Leabharlann 1 F x , y arctgx arctgy 2 2
试求概率P{0<X≤1,0<Y≤1}
解:P0 X 1,0 Y 1 F 1,1 F 1,0 F 0,1 F 0,0
再代入已知分布函数即可得所求结果。
复习一维
随 机 变 量 及 分 布 函 数 离 散 型 随 机 变 量 和 连 续 型 随 机 变 量
随机变量的概念 分布函数 性 质
定义在样本空间的单值实函数。
X落在区间内的概率 离散型随机变量:分布律 定 义 连续型随机变量:概率密度


与分布函数的关系
X落在区间内的概率
3.1 二维随机变量及其联合分布函数
4.对任意的x x , y y ,有 F x , y F x , y F x , y F x , y 0
2 2 1 2 2 1 1 1
3.2二维离散型随机变量
一、二维离散型随机变量及联合分布
1.二维离散型随机变量:如果随机变量(X,Y)的所有可 能取值为有限可列对或无限可列对,则(X,Y)称之。
xi x yi y
ij
边缘分布→
二、边缘分布 由二维随机变量(X,Y)的分布确定的每个随机 变量X和Y的分布,称为X和Y的边缘分布。 X的边缘分布:
i
p
i
i y j ij j ij
PX x PX x , Y p p
Y的边缘分布:
j
i i
2.联合分布律:若(X,Y)的所有可能取值为 x , y , i , j 1,2,
则称下列一组概率为(X,Y)的(联合)分布律:
PX x , Y y p
i i ij
i , j 1,2,
联合分布律通常也 是以表格形式给出, 见教材P97
3.(X,Y)落在区间的概率:对于平面上任意子集A,有
y
x, y
(2)F(x,y)的几何意义是 (X,Y)落在以(x,y)为右上顶 点的无限矩形(包含边界)内 的概率。
O
x
(X,Y)落在矩形区的概率→
(3)(X,Y)落在矩形域的事件 x1 X x 2 , y1 Y y 2
可由分布函数来表示:
例1(p96):设(X,Y)的分布函数为
二、二维随机变量的联合分布函数
定义:设(X,Y)为二维随机变量,对于任意实数x,y,称二元函数
F x , y PX x , Y y
为随机变量(X,Y)的(联合)分布函数。
注意:
1事件X x , Y y e X e x , Y e y X x Y y
一、二维随机变量
定义:设Ω是某试验的样本空间,X=X(e)和Y=Y(e)是定义在Ω 上的两个随机变量,称随机变量对(X,Y)为二维随机变量。
二维随机变量(X,Y)的性质不仅与X及Y的性质有关,且还依赖于 X和Y的相互关系,因此, 必须把(X,Y)作为一个整体加以研究。 为此, 首先需要引入二维随机变量(X,Y)的分布函数的概念。
从本讲起,我们开始第三章的学习. 它是第二章内容的推广. 一维随机变量及其分布
多维随机变量及其分布 由于从二维推广到多维一般无实质性的 困难,故我们重点讨论二维随机变量 ,3.6节 的n维随机变量留待大家自习。
有些随机现象只用一个随机变量来描述是不够 的,需要用几个随机变量同时来描述。例如:
1. 某人的体检数据——血压(X)和心律(Y);
P X , Y A p
xi , y j
应用见p97例2
ij
性质→
4.(X,Y) 的联合分布律有如下性质:
1 p 0, i , j 1,2, 2 p 1
ij i j ij
5.分布函数与分布律的关系:
F x , y PX x , Y y p
1
2
21
22
2 j
2
p
i1
p
i2
p p
j ij
1

p
1
p
2
应用见p99例4,p102习题2
三、独立性
X Y
两个随机变量独立是指它们所代表的随机事件彼此独立。
定义:设F x , y , F x , F y 分别为X和Y的联合分布律和边缘分 布律, 如果对任意实数x , y,有 F x , y F x F y
F , y F x , F , 0, F , 1
3.F x , y 分别对x , y是右连续的,即
F x , y F x 0, y , F x , y F x , y 0
1 2 1 2
p
P Y y P X , Y y p p
j x i ij i
j
ij
分布律及边缘分布的表格形式 →
Y X x x x p
j i 1
y p p
1
y p p
2

y p p
j

p p p
i
11
12
1j
相关文档
最新文档