高三数学教学质量检测考试

合集下载

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题(含答案)

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题(含答案)

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A={x|y=log3(x2−1)},集合B={y|y=3−x},则A∩B=( )A. (0,1)B. (1,2)C. (1,+∞)D. (2,+∞)2.若sinθ(sinθ+cosθ)=25,则tanθ=( )A. 2或−13B. −2或13C. 2D. −23.已知函数f(x)=a−e x1+ae x⋅cos x,则“a=1”是“函数f(x)的是奇函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.函数f(x)={ax2+e x,x≥0x3−ax2+a,x<0在R上单调,则a的取值范围是( )A. (0,1)B. (0,1]C. [0,1)D. [0,1]5.在▵ABC中,内角A,B,C的对边分别为a,b,c,已知▵ABC的外接圆半径为1,且a2+c2−b2=2ac,1+2sin A 1−2cos A =sin2C1+cos2C,则▵ABC的面积是( )A. 22B. 32C. 1D. 26.已知一个正整数N=a×1010(1≤a<10),且N的15次方根仍是一个整数,则这个数15次方根为().(参考数据:lg2≈0.3,lg3≈0.48,lg5≈0.7)A. 3B. 4C. 5D. 67.已知函数f(x)=x ln x,g(x)=e x−x2+a,若∃x1,x2∈[1,2],使得f(x1)=g(x2),则实数a的取值范围是( )A. (4−e2,ln4+1−e)B. [4−e2,ln4+1−e]C. (ln4+4−e2,1−e)D. [ln4+4−e2,1−e]8.已知正数x,y满足9x2−1+9y2−1=9xy,则4x2+y2的最小值为( )A. 1B. 2C. 3D. 4二、多选题:本题共3小题,共18分。

高三数学:石家庄市2024年普通高中学校毕业年级教学质量检测试卷和答案

高三数学:石家庄市2024年普通高中学校毕业年级教学质量检测试卷和答案

2024年普通高中学校毕业年级教学质量检测(一)数学(时间120分钟,满分150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知抛物线21:2C y x =,则C 的准线方程为( ) A .18x =B .18x =− C .18y =D .18y =−2.已知复数121iz =+,复数22i z =,则12z z −=( )A .1BCD .103.已知命题():0,,e ln xp x x ∀∈+∞>,则( )A .p 是假命题,():,0,ln xp x e x ¬∃∈−∞≤ B .p 是假命题,():0,,ln xp x e x ¬∃∈+∞≤C .p 是真命题,():,0,ln xp x e x ¬∃∈−∞≤ D .p 是真合题,():0,,ln xp x e x ¬∃∈+∞≤4.已知圆台,O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为( ) A .8πB .16πC .26πD .32π5.下列不等式成立的是( ) A .66log 0.5log 0.7> B .0.50.60.6log 0.5> C .65log 0.6log 0.5>D .0.6050.60.6>6.集校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:身高x (单位:cm) 167 173 175 177 178 180 181 体重y (单位:kg) 90545964677276由表格制作成如图所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为11ˆˆy b x a =+,其相关系数为1r ;经过残差分析,点()167,90对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线2l 的方程为22ˆˆˆy b x a =+,相关系数为2r .则下列选项正确的是( )A .121212ˆˆˆˆ,,b b a a r r <<>B .121212ˆˆˆˆ,,b b a a r r <><C .121212ˆˆˆˆ,,b b a a r r >>< D .121212ˆˆˆˆ,,b b a a r r >>< 7.函数()y f x =的导数()y f x =′仍是x 的函数,通常把导函数()y f x =′的导数叫做函数的二阶导数,记作()y f x =′′,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数…….一般地,1n −阶导数的导数叫做n 阶导数,函数()y f x =的n 阶导数记为()()n y fx =,例如e x y =的n 阶导数()()e e n xx =.若()cos2x f x xe x =+,则()()500f =( ) A .49492+B .49C .50D .50502−8.已知函数()()cos f x x ωϕ=+的部分图象如下,12y =与其交于,A B 两点.若3AB π=,则ω=( )A .1B .2C .3D .4二、选择题:本题共3小题,每小题6分,共18分。

2025届西安市高三数学上学期第一次质量检测考试卷附答案解析

2025届西安市高三数学上学期第一次质量检测考试卷附答案解析

2025届西安市高三数学上学期第一次质量检测考试卷本卷满分:150分考试时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,1=-=-A x x B x log x x ,则A B ⋂=()A.{}10x x - B.{}10x x -< C.{}10x x -< D.{}10x x -<<2.“01a <<”是“函数()log (2)a f x a x =-在(,1)-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数()()2sin x xf x x e e x-=-+-在区间[]2.8,2.8-的大致图像为()A. B. C. D.4.已知5log 2a =,2log b a =,1()2bc =,则()A.c b a >> B.c a b>> C.a b c>> D.b c a>>5.已知定义在R 上的函数()f x 满足3(2)()f x f x +=,且(2)1f =-,则(100)f =()A.3B.1C.1-D.3-6.已知函数1,0,()()12,0,x e x f x g x kx x x⎧-⎪==-⎨<⎪⎩ ,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[,)e +∞ C.1(,0){}8e -⋃ D.1(,){}8e -∞-⋃7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.直线2y x =是曲线()y f x =的切线D.点(0,1)是曲线()y f x =的对称中心8.已知函数24,0(),0x x f x x log x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28-B.28C.14- D.14二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211(x x'=- B.()x xe e '--= C.21(tan )x cos x'=D.1(ln ||)x x'=10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种11.已知0c b a <<<,则()A.ac b bc a+<+ B.333b c a +< C.a c ab c b+<+ D.>三、填空题:本题共3小题,每小题5分,共15分.12.某班的全体学生参加化学测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则该班学生化学测试成绩的第40百分位数为__________.13.若曲线x y e x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =__________.14.5(1)(2)y x y x-+的展开式中,23x y 的系数为__________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()2.32a f x x x ax +=-+(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线bx a y e +=的附近,请根据下表中的数据求出(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数a 和b 的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.月份x 123456体重超标人数y987754483227ln z y= 4.58 4.37 3.98 3.87 3.46 3.29附:经验回归方程:ˆˆˆybx a =+中,1221ˆniii nii x ynx y b xnx ==-⋅=-∑∑,ˆˆay bx =-;参考数据:6123.52i i z ==∑,6177.72i ii x z==∑,62191i i x ==∑,ln10 2.30.≈17.已知函数()log (1)a f x x =+,()2log (2)(a g x x t t =+∈R ),0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x 的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布2(,)N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布2(,)N μσ,则()0.6827P μσξμσ-<<+≈,(22)0.9545P μσξμσ-<<+≈,(33)0.9973.)P μσξμσ-<<+≈(2)(ⅰ)从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ⅱ)该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.19.已知函数1()ln (1).x f x ae x a x -=+-+(1)当0=a 时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.一.选择题(本题共8小题,每小题5分,共40分)二.选择题(本题共3小题,每小题6分,共18分)三、填空题:(本题共3小题,每小题5分,共15分.)12.6513.ln 214.40三、解答题:(本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分)15.(本小题满分13分)解:(1)1a =时,3213()2,()(1)(2)32f x x x x f x x x '=-+=--,所以1x <或2x >时,()0f x '>;12x <<时,()0f x '<则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞上递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =...............................5分陕西省西安中学高2025届高三第一次质量检测数学参考答案题号12345678答案CBABDCDA题号91011答案ACDBCDABD3212(2)()232a f x x x ax +=-+,则()()(2)f x x a x '=--,当2a =时,()0f x ' ,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,()0f x '>;2x a <<时,()0f x '<,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,()0f x '>;2a x <<时,()0f x '<所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减................................8分(2)令-+<=≈,所以,解得,由于,所以,所以从第十个月开始,该年级体重超标的人数降至10人以下................................5分17.(本小题满分15分)解:(1)1=- t 时,()()2log 1log 21a a x x +- ,又01a <<,21(21)210x x x ⎧+-∴⎨->⎩,2450151242x x x x ⎧-⎪∴∴<⎨>⎪⎩,∴解集为:15{|}24x x <;...............................6分(2)解法一:()222F x tx x t =+-+,由()0F x =得:22(2x t xx +=-≠-且12)x -< ,22(2)4(2)2x t x x +∴=-+-++,设2U x =+(14U < 且2U ≠,则212424U t U U U U=-=--+-+,令2()U U Uϕ=+, 当1U <<时,()U ϕ4U <<时,()U ϕ单调递增,且9(1)3,(4).2ϕϕϕ===9()2U ϕ∴且() 4.U ϕ≠12402U U∴---< 或2044U U<--- ,t 的取值范围为:2t - 或224t +解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得:24t =,又1212x x t ==-(]1,2,∈-24t +∴=;②()F x 在(1,2]-上只有一个零点,且不是方程的重根,则有()()120F F -<,解得:2t <-或1t >,又经检验:2t =-或1t =时,()F x 在(1,2]-上都有零点;2t ∴- 或 1.t ③方程()0F x =在(1,2]-上有两个相异实根,则有0,01122(1)0(2)0t t F F >∆>⎧⎪⎪-<-<⎪⎨⎪->⎪>⎪⎩或0,01122(1)0(2)0t t F F <∆>⎧⎪⎪-<-<⎪⎨⎪-<⎪<⎪⎩,解得:214t +<<,综上可知:t 的取值范围为2t - 或224t +...............................15分18.(本小题满分17分)(1)(1)由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69.x =⨯⨯+⨯+⨯+⨯+⨯=即69x μ≈=11s σ≈≈,所以X ∽2(69,11)N ,因为质量指标值X 近似服从正态分布2(69,11)N ,所以1(69116911)1()(80)22P X P X P X μσμσ--<<+--<<+== 10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16................................5分(2)()(0.010.01)1010020i +⨯⨯=,所以所取样本的个数为20件,质量指标值在[85,95]的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:3010103202(0)19C C P C η===,21101032015(1)38C C P C η===,12101032015(2)38C C P C η===,0310103202(3)19C C P C η===,随机变量η的分布列为:η0123P21915381538219所以η的数学期望2151523()0123.193838192E η=⨯+⨯+⨯+⨯=...............................11分()ii 设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以Y ∽(100,0.16)B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))()100ln(25)m m E Y m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-,令()1684ln(25)(124)f x x x x =+-<<84()16025f x x '=-=-得,794x =,又79(1,)4x ∈,()0f x '>,()f x 递增79;(,24)4x ∈,()0f x '<,()f x 递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大................................17分19.(本小题满分17分)(1)解:当0=a 时,()ln =-f x x x ,且知11()1-'=-=xf x x x,在(0,1)上,()0'>f x >,()f x 在(0,1)上单调递增;在(1,)+∞上,()0'<f x ,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞..............................4分(2)证明:因为1a =,所以1()ln 2x f x e x x -=+-,且知11()2x f x e x-'=+-,要证函数()f x 单调递增,即证()0f x ' 在(0,)+∞上恒成立,设11()2x g x ex -=+-,0x >,则121()x g x e x-'=-,注意1x y e -=,21y x=-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g = ,即()0f x ' ,因此函数()f x 在(0,)+∞上单调递增;...............................10分(3)由11()1x f x ae a x -'=+--,有(1)0f '=,令11()1x h x ae a x -=+--,有121()x h x ae x-'=-,①当0a 时,11()0x xh x aex -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1x y ae -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞..........................17分。

河南省信阳市2024-2025学年高三上学期第一次质量检测试题 数学含答案

河南省信阳市2024-2025学年高三上学期第一次质量检测试题 数学含答案

2024-2025学年普通高中高三第一次教学质量检测数学(答案在最后)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B 铅笔将准考证号填涂在相应位置.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.第I 卷一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2230A x x x =--=∣,{1,}B a =,若{3}A B ⋂=,则A B = ()A.{1,3}B.{1,3}-C.{}113-,, D.{3,1,3}--2.记等差数列{}n a 的前n 项和为n S ,若1620a a +=,39a =,则10S =()A.60B.80C.140D.1603.已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是()A.x y z <<B.y z x <<C.z y x<< D.z x y<<4.荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”在“进步率”和“退步率”都是1%的前提下,我们可以把()36511%+看作是经过365天的“进步值”,()36511%-看作是经过365天的“退步值”,则大约经过()天时,“进步值”大约是“退步值”的100倍(参考数据:lg101 2.0043≈,lg 99 1.9956≈)A.100B.230C.130D.3655.若p :实数a 使得“2000R,20x x x a ∃∈++=”为真命题,q :实数a 使得“[)0,+,20x x a ∞∀∈->”为真命题,则p 是q 的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件6.已知函数()f x 的定义域为R ,且()21f x -为奇函数,()1f x +为偶函数,当[]1,1x ∈-时,()1f x ax =+,则()2025f =()A.0B.1C.2D.20257.已知函数2()32ln (1)3f x x x a x =-+-+在区间(1,2)上有最小值,则实数a 的取值范围是()A.3a >-B.49103a -<<-C.4933a -<<- D.103a -<<-8.已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28- B.28C.14- D.14二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.已知函数()32xf x x =+,则()A.()f x 为奇函数B.()f x在区间(.-∞-内单调递增C.()f x 在区间()1,+∞内单调递减D.()f x 有极大值10.已知0a >,0b >,2a b +=,则()A.222b a a b+≥ B.222a b b a+≥C.2232a b ab +-≥D.224a b ab ++<11.设函数32()1f x x x ax =-+-,则()A.当1a =-时,()f x 有三个零点B .当13a ≥时,()f x 无极值点C.a ∃∈R ,使()f x 在R 上是减函数D.,()a f x ∀∈R 图象对称中心的横坐标不变第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.已知不等式()220ax a x c +++>的解集为{|12}x x -<<,则函数y =__________.13.曲线e x y =在0x =处的切线恰好是曲线()ln y x a =+的切线,则实数a =______.14.函数()f x 满足:任意()*N ,5n f n n ∈≥.且()()()10f x y f x f y xy +=++.则101()i f i =∑的最小值是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知{}n a 是各项均为正数,公差不为0的等差数列,其前n 项和为n S ,且21373,,,a a a a =成等比数列.(1)求数列{}n a 的通项公式;(2)定义在数列{}n a 中,使()3log 1n a +为整数的n a 叫做“调和数”,求在区间[1,2024]内所有“调和数”之和.16.某公园有一块如图所示的区域OACB ,该场地由线段OA 、OB 、AC 及曲线段BC 围成.经测量,90AOB ∠=︒,100OA OB ==米,曲线BC 是以OB 为对称轴的抛物线的一部分,点C 到OA 、OB 的距离都是50米.现拟在该区域建设一个矩形游乐场OEDF ,其中点D 在曲线段BC 上,点E 、F 分别在线段OA 、OB 上,且该游乐场最短边长不低于30米.设DF x =米,游乐场的面积为S 平方米.(1)试建立平面直角坐标系,求曲线段BC 的方程;(2)求面积S 关于x 的函数解析式()S f x =;(3)试确定点D 的位置,使得游乐场的面积S 最大.17.已知函数()()22log log 1442x x f x x =⋅≤≤,()44221x x x xg x a a --=+-⋅-⋅+.(1)求函数()f x 的最大值;(2)设不等式()0f x ≤的解集为A ,若对任意1x A ∈,存在[]20,1x ∈,使得()12x g x =,求实数a 的值.18.已知()()21ln 12f x ax x x =-+-+,其中0a >.(1)若函数()f x 在3x =处的切线与x 轴平行,求a 的值;(2)求()f x 的极值点;(3)若()f x 在[)0,+∞上的最大值是0,求a 的取值范围.19.若数列()12:,,,3n A a a a n ≥ 中()*N 1i a i n ∈≤≤且对任意的1121,2k k k k n a a a +-≤≤-+>恒成立,则称数列A 为“U -数列”.(1)若数列1,,,7x y 为“U -数列”,写出所有可能的x y 、;(2)若“U -数列”12:,,,n A a a a L 中,121,1,2017n a a a ===,求n 的最大值;(3)设0n 为给定的偶数,对所有可能的“U -数列”012:,,,n A a a a ,记{}012max ,,,n M a a a = ,其中{}12max ,,,s x x x L 表示12,,, s x x x 这s 个数中最大的数,求M 的最小值.2024-2025学年普通高中高三第一次教学质量检测数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B铅笔将准考证号填涂在相应位置.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.第I卷一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】D【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ABD 【11题答案】【答案】BD第II 卷三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】()0,2【13题答案】【答案】2【14题答案】【答案】1925四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)1n a n =+(2)1086【16题答案】【答案】(1)()2110005050y x x =-+≤≤(2)3110050S x x =-+,3050x ≤≤.(3)点D 在曲线段BC 上且到OB 的距离为5062米时,游乐场的面积最大.【17题答案】【答案】(1)2(2)12【18题答案】【答案】(1)14 a=;(2)答案见解析;(3)[)1,+∞.【19题答案】【答案】(1)12xy=⎧⎨=⎩或13xy=⎧⎨=⎩或24xy=⎧⎨=⎩(2)65(3)200288n n-+。

河南省濮阳市2024-2025学年高三9月质量检测考试数学试题(含解析)

河南省濮阳市2024-2025学年高三9月质量检测考试数学试题(含解析)

2024—2025学年高三9月质量检测考试数 学全卷满分150分,考试时间120分钟.注意事项:1. 答卷前,考生务必将自己的姓名、班级、考场号、座位号、考生号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,i 为虚数单位,为z 的共轭复数,则( )A.B. 4C. 3D.2.已知集合,,则( )A. B. C. D. 3. 半径为4的实心球与半径为2的实心球体积之差的绝对值为( )A.B. C. D.4. 已知向量,,其中,若,则( )A. 40B. 48C. 51D. 625. 已知的内角A ,B ,C 的对边a ,b ,c 成等差数列,且,,则( )A. 5B. C. 4D. 36. 已知点在抛物线C:上,则C 的焦点与点之间的距离为( )A. 4B.C. 2D.7. 已知a ,且,,,则( )24i z =+z 1z -=(){}3log 22M x y x ==+<{}2024x N y y ==M N = ()2,7-()2,3-()0,7()7,+∞1O 2O 224π376π75π215π3()1,54a λ=+ ()2,8b λ=+ 0λ≥a b ∥ ()a ab ⋅+=ABC △20ac =4cos 5B =b =121,34A p p ⎛⎫++ ⎪⎝⎭()220x py p =>()1,2b ∈R 0b ≠1a b ≠-1sin 1a b a bα-=+ab =A.B. C.D. 8. 已知当时,恒成立,则实数a 的取值范围为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知直线与圆D :有两个交点,则整数m 的可能取值有( )A. 0B. -3C. 1D. 310. 已知对数函数,则下列说法正确的有( )A. 的定义域为B. 有解C. 不存在极值点D. 11. 北京时间2024年8月12日凌晨,第33届法国巴黎奥运会闭幕式正式举行,中国体育代表团以出色的表现再次证明了自己的实力,最终取得了40枚金牌、27枚银牌和24枚铜牌的最佳境外参赛成绩,也向世界展示了中国体育的蓬勃发展和运动员们顽强拼搏的精神.某校社团为发扬奥运体育精神举办了竞技比赛,此比赛共有5名同学参加,赛后经数据统计得到该5名同学在此次比赛中所得成绩的平均数为8,方差为4,比赛成绩,且,则该5名同学中比赛成绩的最高分可能为( )A. 13B. 12C. 11D. 10三、填空题:本题共3小题,每小题5分,共15分.12. 曲线在点处的切线方程为______.13. 被10除的余数为______.14. 在中,若,,三点分别在边,,上(均不在端点上),则,,的外接圆交于一点O ,称为密克点.在梯形ABCD 中,,,M 为CD 的中点,动点P 在BC 边上(不包含端点),与的外接圆交于点Q (异于点P ),则BQ 的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知椭圆C :的焦距为.(1)求C 的标准方程;1cos 1cos αα-+πtan 4α⎛⎫+⎪⎝⎭1sin 1sin αα-+2πtan 42α⎛⎫+ ⎪⎝⎭0x >ln e ln x x x x a -≥(],1-∞(21,e ⎤⎦(],2-∞[)e,+∞y x =22224x y my m +-=-()()log 1x f x x =+()f x ()0,+∞()2f x =()f x ()()()11f x f x x >+>[]0,15x ∈*x ∈N 21e1x y x -=-()1,0203111A B C △1M 1N 1P 11A B 11B C 11C A 111A M P △111B M N △111C N P △60B C ∠=∠=︒22AB AD ==ABP △CMP △()222210x y a b a b +=>>(2)若,直线l :交椭圆C 于E ,F 两点,且,求t 的值.16.(15分)交通强国,铁路先行,每年我国铁路部门都会根据运输需求进行铁路调图,一铁路线l 上有自东向西依次编号为1,2,…,21的21个车站.(1)为调查乘客对调图的满意度,在编号为10和11两个站点多次乘坐列车P 的旅客中,随机抽取100名旅客,得出数据(不完整)如下表所示:车站编号满意不满意合计102840113合计85完善表格数据并计算分析:依据小概率值的独立性检验,在这两个车站中,能否认为旅客满意程度与车站编号有关联?(2)根据以往调图经验,列车P 在编号为8至14的终到站每次调图时有的概率改为当前终到站的西侧一站,有的概率改为当前终到站的东侧一站,每次调图之间相互独立.已知原定终到站编号为11的列车P 经历了3次调图,第3次调图后的终到站编号记为X ,求X 的分布列及均值.附:,其中.0.10.010.0012.7066.63510.82817.(15分)如图,四棱锥的底面为平行四边形,且,.(1)仅用无刻度直尺作出四棱锥的高PH ,写出作图过程并证明;(2)若平面平面PCD ,平面平面PBC ,证明:四边形ABCD 是菱形.18.(17分)已知.(1)证明:是奇函数;5,02A ⎛⎫- ⎪⎝⎭()302x ty t =+>AEF △0.001α=1323()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++αx αP ABCD -AP CP =BP DP =P ABCD -PAB ⊥PAD ⊥()()ln 0x a f x ax a x a -⎛⎫=+>⎪+⎝⎭()f x(2)若,证明在上有一个零点,且.19.(17分)对于一个正项数列,若存在一正实数,使得且,有,我们就称是-有限数列.(1)若数列满足,,,证明:数列为1-有限数列;(2)若数列是-有限数列,,使得且,,证明:.()()()12120f x f x x x =<<()f x (),a +∞0x 2102x x x -≤{}n a λ*n ∀∈N 2n ≥121n n a a a a λ-+++≥ {}n a λ{}n a 11a =21a =()123n n n a a a n --=+≥{}n a {}n a λ0M ∃>*n ∀∈N 2n ≥n a M ≤222111121111n i in a a M a a a a λ=⎛⎫≥+- ⎪+++⎝⎭∑2024—2025学年高三9月质量检测考试数学参考答案1. A 【解析】由,可得.故选A.2. C 【解析】由可得,则;,故,则.故选C.3. A【解析】由题意可知体积之差的绝对值为.故选A.4. C 【解析】因为,,且,故,解得或(舍去),经检验当时,,故.故选C.5. B 【解析】由题意可得,,由余弦定理可得,,解得.故选B.6. D 【解析】因为点在抛物线C 上,所以,整理得,解得或(舍去),故焦点为,故C 的焦点与点之间的距离为故选D.7. D 【解析】由题意可得,解得.24i z =+24i 11i 14z --=-==-=()3log 22x +<029x <+<()2,7M =-20240xy =>()0,N =+∞()0,7M N = 334425632224π4π2πππ33333⨯-⨯=-=()1,54a λ=+ ()2,8b λ=+a b ∥ ()()54218λλ++=⨯0λ=145-0λ=a b ∥ ()()()1,43,121341251a a b ⋅+=⋅=⨯+⨯= 20ac =2b a c =+()2222282cos 24725b ac ac B a c ac ac b =+-=+--=-b =121,34A p p ⎛⎫++⎪⎝⎭()2121234p p p ⎛⎫+=+ ⎪⎝⎭272102p p --=2p =14-()0,1()1,2=1sin 1ab a bα-=+2222sin cos 2sincos1sin 22221sin sin cos 2sin cos 2222a b αααααααααα+++==-+-22222sin cos 1tan π222tan 42sin cos 1tan 222ααααααα⎛⎫⎛⎫++ ⎪ ⎪⎛⎫⎝⎭⎝⎭==+ ⎪⎝⎭⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=故选D.8. A 【解析】由对恒成立,令,则,令,得,当时,,当时,,所以在上单调递减,在上单调递增,所以,即.令,,,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以.故选A.9. AC 【解析】联立,消去x 可得,则,解得故选AC.10. BCD 【解析】对于A 选项,由对数函数的定义知的定义域为,故A 错误.对于B 选项,令,则,即,解得(负值舍去),故B 正确.对于C 选项,,可知,ln e ln x x x x a -≥0x >()ln f x x x =()ln 1f x x ='+()0f x '=1ex =10e x <<()0f x '<1e x >()0f x '>()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()11e ef x f ⎛⎫≥=-⎪⎝⎭1ln e x x ≥-ln t x x =()1e e t g t t t ⎛⎫=-≥- ⎪⎝⎭()e 1t g t '=-10e t -≤<()0g t '<0t >()0g t '>()g t 1,0e ⎡⎫-⎪⎢⎣⎭()0,+∞()()min 01g t g ==1a ≤22224y xx y my m=⎧⎨+-=-⎩222240y my m -+-=()()222840m m ∆=--->m -<<()f x ()()0,11,+∞ ()log 12x x +=21x x =+210x x --=x =()()()ln 1log 1ln x x f x x x+=+=()()()()2ln 1ln 11ln x x x x f x x x x-+++'=设函数,可知,令,解得,则在上单调递减,在上单调递增,且在上,则的图象为的图象向左平移一个单位长度,易得两者无交点,则无零点,即不存在极值点,故C 正确.对于D 选项,方法一:由的单调性可知,D 正确.方法二:作差有,且,故,D 正确.故选BCD.11. BC 【解析】设该5名同学在此次比赛中所得成绩分别为,,,,,易得,则,且,则,不妨设最大.对于A 选项,若,则不成立,故A 错误;对于B 选项,若,例如7,7,7,7,12,满足题意,故B 正确;对于C 选项,若,例如5,7,8,9,11,满足题意,故C 正确;对于D 选项,若,则,可得,可知该方程组无正整数解,故D 错误.故选BC.12. 【解析】,故时,,故曲线在点处的切线方程为.13. 1 【解析】()ln g x x x =()ln 1g x x ='+()0g x '=1e x =()g x 10,e ⎛⎫⎪⎝⎭1,e⎛⎫+∞ ⎪⎝⎭()0,1()0g x <()()1ln 1y x x =++()g x ()f x '()f x ()f x ()()()()()11log 1log 2x x f x f x x x +-+=+-+()()()2ln 1ln ln 2ln ln 1x x x x x +-⋅+⋅+=()()()()222ln ln 22ln 1ln ln 2ln 122x x x x x x ⎡⎤⎡⎤+++⋅+<<=+⎢⎥⎢⎥⎣⎦⎣⎦()()()11f x f x x >+>1x 2x 3x 4x 5x ()12345185x x x x x x =++++=1234540x x x x x ++++=()()()()()2222212243588814588x s x x x x -+-+-+-+⎡⎤==⎣⎦-()()()()()22222123458888820x x x x x -+-+-+-+-=5x 513x =()()()()2222123488885x x x x -+-+-+-=-512x =511x =510x =()()()()22221234888816x x x x -+-+-+-=12342222123430496x x x x x x x x +++=⎧⎨+++=⎩33y x =-()212e x y x x -'=+1x =3y '=21e 1x y x -=-()1,033y x =-()10201010192891010103910110C 10C 10C 101==-=-⨯+⨯--⨯+,所以被10除的余数为1.14.【解析】如图,延长BA ,CD 交于点E ,则为正三角形.由题设结论,,,的外接圆有唯一公共点,该公共点即为题中的点Q ,故点Q 在的外接圆上.由题意得,,则是直角三角形,故其外接圆半径.在中,由余弦定理可知,,当Q 在线段BD 上,且时,BQ.15. 解:(1)由题意得,,(2分)又,(4分)则,(5分)所以C 的标准方程为.(6分)(2)由题意设,,联立,整理得,(7分)则,,(8分)故.(10分)设直线l 与x 轴的交点为,()9182791010101010C 10C 10C 1⨯-⨯+⨯--=+ 2031-EBC △ABP △CMP △AME △AME △120BAD ∠=︒90BAM ∠=︒AME △1R AD ==ABD △BD ==1QD =1-2c =c =c e a ==2a =2222b a c =-=22142x y +=()11,E x y ()22,F x y 2232142x ty x y ⎧=+⎪⎪⎨⎪+=⎪⎩()2272304t y ty ++-=12232ty y t +=-+()122742y y t =-+12y y -===3,02D ⎛⎫⎪⎝⎭又,则,(11分)故,(12分)解得.(13分)16. 解:(1)补充列联表如下:车站编号满意不满意合计102812401157360合计8515100(3分)零假设为:旅客满意程度与车站编号无关,则,(6分)所以根据小概率值的独立性检验,推断不成立,即认为旅客满意程度与车站编号有关联.(7分)(2)经分析,X 的可能取值为8,10,12,14.(8分);(9分);(10分);(11分),(12分)则X 的分布列为X 8101214P(13分)所以.(15分)17. 解:(1)连接AC ,BD 交于点H ,连接PH ,5,02A ⎛⎫-⎪⎝⎭35422AD ⎛⎫=--= ⎪⎝⎭12122AEF S AD y y =⋅-==△t =0H ()220.001100283571220010.8284060851517x χ⨯⨯-⨯==>=⨯⨯⨯0.001α=0H ()3288327P X ⎛⎫=== ⎪⎝⎭()2214103339P X ⎛⎫==⨯⨯= ⎪⎝⎭()2122123339P X ⎛⎫==⨯⨯= ⎪⎝⎭()31114327P X ⎛⎫===⎪⎝⎭8274929127()8421810121410279927E X =⨯+⨯+⨯+⨯=则PH 是四棱锥的高.(2分)由于该四棱锥底面为平行四边形,故点H 为AC 与BD 的中点.(3分)又,,故有,,(4分)又,AC ,平面ABCD ,故平面ABCD ,即PH 为四棱锥的高.(6分)(2)(方法一)证明:以H 为原点,以、的方向分别为x 轴、z 轴的正方向,以垂直于BC 的直线为y 轴,建立如图所示的空间直角坐标系.(7分)设,,,,.则,,.(8分)设平面PAB 、平面PCD 的法向量分别为,,则,,(9分)令,解得,.所以,.(10分)因为平面平面PCD ,所以,①(11分)同理可得平面PAD 、平面PBC 的一个法向量分别为,.故,即,②(12分)P ABCD -AP CP =BP DP =PH AC ⊥PH BD ⊥AC BD H = BD ⊂PH ⊥P ABCD -BC HP (),,0A a d (),,0B b d -(),,0C a d --(),,0D b d -()0,0,P h (),2,0BA CD a b d ==- (),,BP b d h =- (),,DP b d h =-()1111,,n x y z = ()2222,,n x y z =()11111200a b x dy bx dy hz ⎧-+=⎨-++=⎩()22222200a b x dy bx dy hz ⎧-+=⎨-+=⎩122x x dh ==1112()()x dh y b a h z b a d =⎧⎪=-⎨⎪=+⎩2222()()x dh y b a h z b a d =⎧⎪=-⎨⎪=-+⎩()()()12,,n dh b a h b a d =-+ ()()()22,,n dh b a h b a d =--+PAB ⊥()()2222221240n n d h b a h a b d ⋅=+--+= ()30,,n h d = ()40,,n h d =-22340n n h d ⋅=-= h d =①②联立解得.(13分)因此,.(14分)故,而四边形ABCD 是平行四边形,故四边形ABCD 是菱形.(15分)(方法二)证明:过点H 作交AB 于点E ,交CD 于点F ,过点H 作交BC 于点M ,交AD 于点N ,连接PE ,PF ,PM ,PN ,因为平面ABCD ,AB ,平面ABCD ,所以,.(7分)因为EF ,平面PEF ,所以平面PEF ,又平面PEF ,所以.(8分)易得平面PAB 与平面PCD 的交线平行于AB ,又平面平面PCD ,平面PAB ,所以平面PCD ,又平面PCD ,所以.(10分)因为MN ,平面PMN ,所以平面PMN ,又平面PMN ,所以.(11分)易得平面PAD 与平面PBC 的交线平行于BC ,又平面平面PBC ,平面PBC ,所以平面PAD ,又平面PAD ,所以.(13分)因为H 为平行四边形ABCD 对角线的交点,所以,,所以,所以,(14分)又,所以,所以平行四边形ABCD 是菱形.(15分)18. 证明:(1)易得的定义域为,(2分).由奇函数的定义知是奇函数.(6分)2ab d =AD a b =--AB a b ===--AB AD =EF AB ⊥MN BC ⊥PH ⊥BC ⊂PH AB ⊥PH BC ⊥PH ⊂AB ⊥PE ⊂AB PE ⊥PAB ⊥PE ⊂PE ⊥PF ⊂PE PF ⊥PH ⊂BC ⊥PM ⊂BC PM ⊥PAD ⊥PM ⊂PM ⊥PN ⊂PM PN ⊥HE HF =HM HN =1122PH EF MN ==EF MN =AB EF BC MN ⋅=⋅AB BC =()f x ()(),,a a -∞-+∞ ()()ln x a f x a x x a --⎛⎫--=--- ⎪-+⎝⎭()ln ln x a x a ax ax f x x a x a -+-⎛⎫⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭=--()f x(2)由对称性,不妨取,则,(7分)而.(8分)下证,设,,,,则(当且仅当,,即时取等号).(14分)另一方面,的定义域为,.由对称性,不妨取,则,故在上单调递增.(15分)当时,;当时,.由零点存在定理知在上有一个零点,(16分)故.(17分)19. 证明:(1)当时,;(2分)当时,,(6分)故数列是1-有限数列.(7分)(2)由,得,(9分)31x x =-()()()()()()()23232323ln 0x a x a f x f x a x x x a x a ⎡⎤--+=++=⎢⎥++⎢⎥⎣⎦()()()()()2232323232ln 2x a x a x x f a x x x a x a ⎡⎤-+-+⎛⎫=++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦()()2323202x x f f x f x +⎛⎫≥=+ ⎪⎝⎭2x a m -=3x a n -=2x a p +=3x a q +=()()()()()()()()()()22232322323x a x a x a x a m n mn x a x a x a x a pq p q ⎡⎤-+---+-=-⎢⎥++++++⎢⎥⎣⎦()()()()()()2222pq m n mn p q pm qn qm pn p q pq p q pq +-+--++==()()()22323220a x x x x p q pq +-=≥+m n =p q =23x x =()f x ()(),,a a -∞-+∞ ()()()2a f x a x a x a =++-'x a >()0f x a '>>()f x (),a +∞x a →()f x →-∞x →+∞()f x →+∞()f x (),a +∞0x 2102x x x -≤2n =121a a ==2n >122121n n n n n a a a a a a a ----++++>+= {}n a 121n n a a a a λ-+++≥ ()2221211n n a a a a λ-≥+++于是有(13分).(17分)()222212112111nn i i i i a a a a a λ==-≥++++∑∑ ()()2221121121n i i i a a a a a a a λ=-≥+++++++∑ 222112112111n i i i i a a a a a a a a λ=-⎛⎫+⋅-≥ ⎪++⋅⋅⋅+++⋅⋅⋅+⎝⎭=∑222112112111n i i i a M a a a a a a λ=-⎛⎫+⋅- ⎪++⋅⋅⋅+++⋅⋅⋅+⎝⎭∑221112111n a M a a a a λ⎛⎫+- ⎪+=++⎝⎭。

广西玉林市2025届高三第一次教学质量监测数学试卷

广西玉林市2025届高三第一次教学质量监测数学试卷

2025届高三第一次教学质量监测数学(本试卷满分150分,考试时间120分钟)注意事项:1.答题前,务必将自己的姓名、班级、准考证号填写在答题卡规定的位置上.2、答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数是( )A. B. C. D.2.已知集合,则( )A. B. C. D.3.已知平面向量满足,则( )A.3D.14.某校举行数学竞赛,现将100名参赛学生的成绩(单位:分)整理如下:成绩频数52530201010根据表中数据,下列结论正确的是()A.100名学生成绩的极差为60分B.100名学生成绩的中位数大于70分C.100名学生成绩的平均数大于60分D.100名学生中成绩大于60分的人数所占比例超过5.一动圆与圆外切,同时与圆内切,则动圆圆心的轨迹方程为( )A. B.C. D.2i 1-1i --1i -+1i +1i-{}{}0,2,4,6,0381x A B x ==<≤∣A B ⋂={}0,2,4{}2,4{}2{}2,3,4,a b ()1,2,a b b a a ==-⊥ a b += [)40,50[)50,60[)60,70[)70,80[)80,90[]90,10080%2240x y x ++=224600x y x +--=22195x y +=22195y x +=2212521x y +=2212521y x +=6.圆锥的顶点为为底面直径,若,则该圆锥的外接球的表面积为( )A. B.7.设函数,若曲线与恰有一个公共点,则()A. B. C.1 D.28.黄金不仅可以制成精美的首饰佩戴,还因其价值高,并且是一种稀少的资源,长久以来也是一种投资工具.小李计划投资黄金,根据自身实际情况,他决定分两次进行购买,并且制定了两种不同的方案:方案一是每次购入一定数量的黄金:方案二是每次购入一定金额的黄金.己知黄金价格并不稳定,所以他预设两次购入的单价不同.现假设他两次购入的单价分别为,且,则下列说法正确的是()A.当且仅当时,方案一的平均购买成本比方案二更低B.当且仅当时,方案二的平均购买成本比方案一更低C.无论的大小关系如何,方案一的平均购买成本比方案二更低D.无论的大小关系如何,方案二的平均购买成本比方案一更低二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数中,对称中心为的有()A.B.C. D.10.已知抛物线,过的焦点作直线,若与交于两点,,则下列结论正确的有( )A.B.C.或D.线段中点的横坐标为11.下列关于函数的说法,正确的有(),S AB π2,3AB ASB ∠==4π316π3()()()()22e e ,421x xf x ag x x a -=+=+-()y f x =()y g x =a =2-1-12,a a 12a a ≠12a a >12a a >12,a a 12,a a ()1,0sin πy x =()cos 1y x =-1122y x =-3231y x x x =-++()2:20C y px p =>C F :1l x ty =+C l ,A B 2AF FB = 2p =3AF =t =-AB 54()ln f x x x x =-A.是的极大值点B.函数有两个零点C.若方程有两根,则D.若方程有两根,则三、填空题:本题共3小题,每小题5分,共15分.12.甲、乙、丙三名工人加工同一型号的零件,甲加工的正品率为,乙加工的正品率为,丙加工的正品率为,加工出来的零件混放在一起.已知甲、乙加工的零件数相同,丙加工的零件数占总数的.现任取一个零件,则它是正品的概率为__________.13.已知双曲线的左、右焦点分别为,若双曲线的左支上一点满足,以为圆心的圆与的延长线相切于点,且,则双曲线的离心率为__________.14.已知,函数.落曲线与直线交于两点,设的横坐标分别为,写出与的一个关系式:__________;分别过点作轴的垂线段,垂足分别为,则四边形的面积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在中,角所对的边分别为.已知.(1)求;(2)若,且的面积为,求的周长.16.(15分)中国共产党第二十届中央委员会第三次全体会议,于2024年7月15日至18日在北京举行.全会提出,中国式现代化是物质文明和精神文明相协调的现代化.必须增强文化自信,发展社会主义先进文化,弘扬革命文化,传承中华优秀传统文化,加快适应信息技术迅猛发展新形势,培育形成规模宏大的优秀文化人才队伍,激发全民族文化创新创造活力.为此,某学校举办了“传承中华优秀传统文化”宣传活动,学校从全体学生中抽取了100人对该宣传活动的了解情况进行问卷调查,统计结果如下:男女合计了解201x =()f x ()fx ()f x m =12,x x 12ex x +>()f x m =12,x x 12ex x +<90%80%85%40%()2222:10,0x y C a b a b-=>>12F F 、P 1221sin 3sin PF F PF F ∠∠=2F 1F P M 113F M F P = 0a >()()0a f x x x x=->()y f x =2y =,A B ,A B 12,x x 12,x x a ,A B x 11,AA BB 11,A B 11AA B B ABC V ,,A B C ,,a b c 1tan 21tan A A+=+-A ∠3c =ABC V ABC V不了解2040合计(1)将列联表补充完整;(2)根据的独立性检验,能否认为该校学生对该宣传活动的了解情况与性别有关联?(3)若把上表中的频率视作概率,现从了解该活动的学生中随机抽取3人参加传统文化知识竞赛.记抽取的3人中女生人数为,求随机变量的分布列和数学期望.附:,其中0.1000.0500.0100.0012.7063.841 6.63510.82817.(15分)如图,在三棱柱中,为正三角形,四边形为菱形.(1)求证:平面;(2)若,且为的中点,求平面与平面的夹角的余弦值.18.(17分)已知数列满足,点在直线上.(1)设,证明为等比数列:(2)求数列的前项和;(3)设的前项和为,证明:.19.(17分)已知:①定积分的定义:设为定义在上的连续非负函数,为求轴围成的曲边梯形的面积,可采取如下方法:将区间分为个小区间,每个小区间长度为,每个区间即可表示为,再分别过每个区间的左右端点作轴的垂线与图象相交,即可得到一个小的曲边梯形.如图,0.05α=X X ()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++()20P k χ≥0k 111ABC A B C -1AB C V 11AA B B 1AB ⊥1A BC 4AC BC ==,AC BC E ⊥1CC 1AB E ABC {}n a 11a =()1,n n a a +31y x =+12n n b a =+{}n b {}n a n n S 1n a ⎧⎫⎨⎬⎩⎭n n T 32n T <()y f x =[],a b ()y f x x a x b x ===、、、[],a b n b a n-()()1,1,2,3,b a b a a i a i i n n n --⎡⎤+-+=⎢⎥⎣⎦x ()y f x =当时,每个小曲边梯形可近似看作矩形,矩形的宽即为每个小区间的长度,长可由每个小区间内的任一点的函数值近似代替(一般用区间端点的函数值),将这样无穷多个小矩形的面积相加,所得之和即为所求的由轴围成的曲边梯形的面积,即,上式也记为,即对在上求定积分.②定积分的计算:其中.根据以上信息,回答以下问题:(1)已知,求证:.(2)将轴围成的图形面积分别表示为定积分的形式与面积和的极限形式,并求其值;(3)试证明:n ∞→+()y f x x a x b x ===、、、1lim nn i b a b a S f a i n n →∞=⎡--⎤⎛⎫=+⋅ ⎪⎢⎥⎝⎭⎣⎦∑()ba f x dx ⎰()y f x =[],ab ()()()ba f x dx Fb F a =-⎰()()()F x f x ='π02α<<0cos xdx αα<⎰112x x y x x ===、、、111111ln2101102200100101199+++<<+++。

河北省石家庄市2025届高三上学期教学质量摸底检测数学试卷(含答案)

河北省石家庄市2025届高三上学期教学质量摸底检测数学试卷(含答案)

石家庄市2025届普通高中学校毕业年级教学质量摸底检测数学(本试卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A .B .C .D .2.已知复数z 满足,则复数z 的虚部为( )A .B .C .D .3.已知平面向量a ,b 满足,且,,则向量a ,b 的夹角为( )A .B .C .D .4.已知正四棱锥底面边长为2,且其侧面积的和是底面积的2倍,则此正四棱锥的体积为()A BCD .5.已知,,则( )A .3B .C .D .6.若数列为等差数列,为数列的前n 项和,,,则的最小值为( )A .B .C .D .7.已知双曲线的左、右焦点分别为、,过坐标原点的直线与双曲线C 交于A 、B 两点,若,则( ){}|15A x x =∈≤<R {}2|340B x x x =∈--<R A B = (]1,1-()1,4-[)1,4[)1,5(1i)23i z +=+125212-52-()2⋅-=a a b 1=a 2=b 6π23π3π56πsin()2cos()αβαβ+=-4tan tan 3αβ+=tan tan αβ⋅=3-1313-{}n a n S {}n a 490a a +>110S <n S 5S 6S 7S 8S 22:148x y C -=1F 2F 112F A F B =AB =A .B .C .D .48.已知函数为定义在R 上的奇函数,且在上单调递减,满足,则实数a 的取值范围为( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知实数a ,b ,c 满足,则下列选项正确的是( )A.B .C .D .10.已知函数,则下列说法正确的是( )A .当时,在上单调递增B.若,且,则函数的最小正周期为C .若的图象向左平移个单位长度后,得到的图象关于y 轴对称,则的最小值为3D .若在上恰有4个零点,则的取值范围为11.如图,曲线C 过坐标原点O ,且C 上的动点满足到两个定点,的距离之积为9,则下列结论正确的是( )A .B .若直线与曲线C 只有一个交点,则实数k 的取值范围为C .周长的最小值为12D .面积的最大值为三、填空题:本题共3小题,每小题5分,共15分()F x [)0,+∞212(log )(log )2(3)f a f a f -≤10,8⎛⎫ ⎪⎝⎭1,88⎡⎤⎢⎥⎣⎦(]0,8[)8,+∞0a b c >>>a c ab c b+>+lg0a cb c->-b ca b a c>--a b ++>()sin()(0)6f x x πωω=+>3ω=()f x 47,99ππ⎛⎫⎪⎝⎭12()()2f x f x -=12min2x x π-=()f x π()f x 12πω()f x []0,2πω2329,1212⎡⎫⎪⎢⎣⎭(,)P x y 1(,0)F a -2(,0)(0)F a a >3a =y kx =[)1,+∞12PF F △12PF F △9212.在等比数列中,,,则____________.13.已知函数,若与的图象相切于A 、B 两点,则直线的方程为____________.14.金字塔在埃及和美洲等地均有分布,现在的尼罗河下游,散布着约80座金字塔遗迹,大小不一,其中最高大的是胡夫金字塔,如图,胡夫金字塔可以近似看做一个正四棱锥,则该正四棱锥的5个面所在的平面将空间分成____________部分(用数字作答).四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知抛物线的焦点为F ,A 是抛物线上横坐标为2且位于x 轴上方的点,A 到抛物线焦点的距离为.(1)求抛物线C 的方程;(2)若过点F 的直线l 交抛物线C 于B 、D 两点(异于O 点),连接、,若,求的长.16.(本小题满分15分)如图,在直四棱柱中,,,,,(1)设过点G 、B 、D 的平面交直线于点M ,求线段的长;(2)若,当二面角为直二面角时,求直四棱柱的体积.{}n a 11a =23464a a a ⋅⋅=5a =231,0()44,0x x x f x x x ⎧-+-≥⎪=⎨+<⎪⎩y x =()y f x =AB 2:2(0)C y px p =>52OB OD 12OBF ODF S S =△△BD ABCD A B C D ''''-13A G A D '''=AB BC ⊥1AB =BC =BD =A B ''GM AC BD ⊥B AC D ''--ABCD A B C D ''''-17.(本小题满分15分)在中,,,点D 在边上,且.(1)若,求的长;(2)若,点E 在边上,且,与交于点M ,求.18.(本小题满分17分)已知函数.(1)当时,求函数的最小值;(2)设方程的所有根之和为T ,且,求整数n 的值;(3)若关于x 的不等式恒成立,求实数a 的取值范围.19.(本小题满分17分)母函数(又称生成函数)就是一列用来展示一串数字的挂衣架.这是数学家赫伯特·维尔夫对母函数的一个形象且精妙的比喻.对于任意数列,即用如下方法与一个函数联系起来:,则称是数列的生成函数.例如:求方程的非负整数解的个数.设此方程的生成函数为,其中x 的指数代表的值.,则非负整数解的个数为.若,则,可得,于是可得函数的收缩表达式为:.故(广义的二项式定理:两个数之和的任意实数次幂可以展开为类似项之和的恒等式)则根据以上材料,解决下述问题:定义“规范01数列”如下:共有项,其中m 项为0,m 项为1,且对任意,ABC △AB =AC =BC BD CD =2BAD π∠=BC 3BAC π∠=AC 12AE EC =BE AD cos AMB ∠e ()x f x x=0x >()f x 21()x f x x+=(,1)T n n ∈+()ln e 1f x ax a x ≥-+-012,,,,n a a a a 2012()n n G x a a x a x a x =++++ ()G x {}n a 1210100t t t =+++ 210()(1)G x x x =+++ (1,2,3,,10)i t i = 210()(1)n n n G x x x a x +∞==+++=∑ 100a 2()1f x x x =+++ 23()xf x x x x =+++ (1)()1x f x -=()f x 1()1f x x=-101000111001001010101()((1)()()()1G x x C x C x C x x----==-=-+-++-+- 10010010010109(10)(11)(101001)10910810100!100!a C C --⨯-⨯⨯--+⨯⨯⨯==== {}n a {}n a 2m 2k m ≤,不同的“规范01数列”个数记为.(1)判断以下数列是否为“规范01数列”;①0,1,0,1,0,1;②0,0,1,1,1,0,0,1;③0,1,0,0,0,1,1,1.(2)规定,计算,,,的值,归纳数列的递推公式;(3)设数列对应的生成函数为①结合与之间的关系,推导的收缩表达式;②求数列的通项公式.石家庄市2025届普通高中学校毕业年级教学质量摸底检测数学答案一、单选题:1-5CABCD6-8BAD 二、多选题:9.BCD10.ABD11.AD三、填空题:本题共3小题,每小题5分,共15分12.1613.14.23四、解答题:本题共5小题,共77分。

福建省漳州市2025届高三毕业班第一次教学质量检测 数学试题(含解析)

福建省漳州市2025届高三毕业班第一次教学质量检测 数学试题(含解析)

福建省漳州市2025届高三毕业班第一次教学质量检测数学试题一、单选题(本大题共8小题)1.若集合{}2340A x x x =-->∣,则A =R ð()A.{}14xx -≤≤∣B.{14}xx -<<∣C.{41}xx -<<∣D.{}41xx -≤≤∣2.设复数3i1iz -=+,则复数z 的虚部为()A.-2i B.2-C.2iD.23.已知,a b 为单位向量,若0a b a b +--= ,则a b -= ()A.2B.C.1D.04.若()tan 2tan ,sin t αβαβ=-=,则()sin αβ+=()A.2tB.2t-C.3tD.3t-5.已知双曲线22:4C x y -=,点M 为C 上一点,过M 分别作C 的两条渐近线的垂线,垂足分别为,A B ,则四边形OAMB (O 为原点)的面积为()A.1B.2C.4D.66.在正四棱锥1111P A B C D -中,11PB PD ⊥.用一个平行于底面的平面去截该正四棱锥,得到几何体111111,1,2ABCD A B C D AB A B -==,则几何体1111ABCD A B C D -的体积为()A.6B.3C.6D.97.已知函数()πtan (0)4f x x ωω⎛⎫=+> ⎪⎝⎭,若方程()1f x =在区间()0,π上恰有3个实数根,则ω的取值范围是()A.(]2,3B.[)2,3C.(]3,4D.[)3,48.已知函数()222cos x x f x x x -=+++,若()()()3,e ,πa f b f c f =-==,则()A.b a c <<B.b c a <<C.c a b<<D.c b a<<二、多选题(本大题共3小题)9.已知()2,X N μσ~,则()A.()E X μ=B.()D X σ=C.()()1P X P X μσμσ≤++≤-=D.()()2P X P X μσμσ≥+>≤-10.已知定义在R 上的函数()f x 不恒等于()0,π0f =,且对任意的,x y ∈R ,有()()()()222f x f y f x y f x y +=+-,则()A.()01f =B.()f x 是偶函数C.()f x 的图象关于点()π,0中心对称D.2π是()f x 的一个周期11.在2024年巴黎奥运会艺术体操项目集体全能决赛中,中国队以69.800分的成绩夺得金牌,这是中国艺术体操队在奥运会上获得的第一枚金牌.艺术体操的绳操和带操可以舞出类似四角花瓣的图案,它可看作由抛物线2:2(0)C y px p =>绕其顶点分别逆时针旋转90180270 、、后所得三条曲线与C 围成的(如图阴影区域),,A B 为C 与其中两条曲线的交点,若1p =,则()A.开口向上的抛物线的方程为212y x =B.4AB =C.直线x y t +=截第一象限花瓣的弦长最大值为34D.阴影区域的面积大于4三、填空题(本大题共3小题)12.(x ﹣1x)4的展开式中的常数项为.13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.2024年新高考数学Ⅰ卷多选题的计分标准如下:①本题共3小题,每小题6分,共18分;②每小题的四个选项中有两个或三个正确选项,全部选对的得6分,有选错或不选的得0分;③部分选对的得部分分(若某小题正确选项为两个,漏选一个正确选项得3分;若某小题正确选项为三个,漏选一个正确选项得4分,漏选两个正确选项得2分).考生甲在此卷多选题的作答中,第一小题选了三个选项,第二小题选了两个选项,第三小题选了一个选项,则他多选题的所有可能总得分(相同总分只记录一次)的第80百分位数为.四、解答题(本大题共5小题)15.在ABC V 中,,,A B C 的对边分别为,,a b c ,且满足__________.请在①()()()()sin sin sin a b A C a c A C -+=-+;②ππ1sin cos 634C C ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,这两个中任选一个作为条件,补充在横线上,并解答问题.(1)求C ;(2)若ABC V 的面积为D 为AC 的中点,求BD 的最小值.16.某学校食堂有,A B 两家餐厅,张同学第1天选择A 餐厅用餐的概率为13.从第2天起,如果前一天选择A 餐厅用餐,那么次日选择A 餐厅用餐的概率为34;如果前一天选择B 餐厅用餐,那么次日选择A 餐厅用餐的概率为12.设他第n 天选择A 餐厅用餐的概率为n P .(1)求2P 的值及1n P +关于n P 的表达式;(2)证明数列23n P ⎧⎫-⎨⎬⎩⎭是等比数列,并求出{}n P 的通项公式.17.已知边长为4的菱形ABCD (如图1),π,3BAD AC ∠=与BD 相交于点,O E 为线段AO 上一点,将三角形ABD 沿BD 折叠成三棱锥A BCD -(如图2).(1)证明:BD CE ⊥;(2)若三棱锥A BCD -的体积为8,二面角B CE O --的余弦值为10,求OE 的长.18.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为12,F F ,离心率为2,点P为C 上一点,12PF F 周长为2,其中O 为坐标原点.(1)求C 的方程;(2)直线:l y x m =+与C 交于,A B 两点,(i)求OAB △面积的最大值;(ii)设OQ OA OB =+,试证明点Q 在定直线上,并求出定直线方程.19.定义:如果函数()f x 在定义域内,存在极大值()1f x 和极小值()2f x ,且存在一个常数k ,使()()()1212f x f x k x x -=-成立,则称函数()f x 为极值可差比函数,常数k 称为该函数的极值差比系数.已知函数()1ln f x x a x x=--.(1)当52a =时,判断()f x 是否为极值可差比函数,并说明理由;(2)是否存在a 使()f x 的极值差比系数为2?a -若存在,求出a 的值;若不存在,请说明理由;(3)若522a ≤≤,求()f x 的极值差比系数的取值范围.参考答案1.【答案】A【分析】解出一元二次不等式可得集合A ,再由补集定义即可求得结果.【详解】解不等式2340x x -->可得4x >或1x <-,即{4A xx =>∣或}1x <-,因此可得{}14A xx =-≤≤R ∣ð.故选A.2.【答案】D【解析】根据复数的除法运算化简求出z 即可.【详解】23i (3i)(1i)34i i 12i 1i 22z ----+====-+,12iz ∴=+∴z 的虚部为2.故选D.3.【答案】B【分析】先由已知条件得a b a b +=- ,两边平方得0a b⋅= ,进而由向量模长公式即可计算求解a b -.【详解】因为0a b a b +--=,故a b a b +=- ,所以22a b a b +=- 即()()22a ba b +=- ,所以22a b a b ⋅=-⋅ 即0a b⋅= ,所以a b -故选B.4.【答案】C【分析】利用同角的三角函数关系以及两角差的正弦公式求出sin cos 2,cos sin t t αβαβ==,再利用两角和的正弦公式即可求得答案.【详解】由tan 2tan αβ=,得sin 2sin cos cos αβαβ=,即sin cos 2cos sin αβαβ=,由()sin t αβ-=,得sin cos cos sin t αβαβ-=,故sin cos 2,cos sin t t αβαβ==,则()sin sin cos cos sin 3t αβαβαβ+=+=.故选C.5.【答案】B【分析】先确定四边形OAMB 为矩形,然后点(),M m n ,求出其到两个渐近线的距离,相乘计算即可得答案.【详解】双曲线C :224x y -=,即22144x y -=,为等轴双曲线,渐近线的夹角为90 ,则四边形OAMB 为矩形,设点(),M m n ,且224m n -=,点(),M m n 到渐近线0x y -=的距离为,点(),M m n 到渐近线0x y +=的距离为,则四边形的面积为2222m n -=.故选B.6.【答案】C【分析】由题可知,几何体1111ABCD A B C D -为正四棱台,求出正四棱台高,再由台体的体积公式即可得出答案.【详解】设正四棱锥1111P A B C D -的侧棱长为a ,连接11A C 与11B D 交于点1O ,连接1PO ,则1PO ⊥平面ABCD ,因为112A B =,所以11B D ==因为11PB PD ⊥,所以在Rt 11PB D !中,(222a a +=,解得:2a =,所以1PO =又因为用一个平行于底面的平面去截该正四棱锥,得到几何体1111,1ABCD A B C D AB -=,则几何体1111ABCD A B C D -为正四棱台,连接,AC BD 交于点O ,所以O 为1PO 的中点,所以122PO OO ==,所以几何体1111ABCD A B C D -的体积为:(22121326⋅+⋅=.故选C.7.【答案】C【分析】借助正切型函数的图象性质计算即可得.【详解】当()0,πx ∈时,πππ,π444x ωω⎛⎫+∈+ ⎪⎝⎭,则由题意可得tan 1y x =-在ππ,π44x ω⎛⎫∈+ ⎪⎝⎭上有3个实数根,即可得πππ3ππ4π444ω+<+≤+,解得34ω<≤,即ω的取值范围是(]3,4.故选C.8.【答案】A【分析】先求出函数()f x 的奇偶性,由奇偶性得()()33a f f =-=,接着利用导数工具二次求导研究函数()f x 在()0,+∞上单调性,由单调性即可判断,,a b c 的大小关系.【详解】因为()222cos x x f x x x -=+++,所以函数定义域为R ,()()()()2222cos 22cos x x x x f x x x x x f x ---=++-+-=+++=,所以函数()f x 为偶函数,故()()33a f f =-=,当0x >时,()()()()22ln 22sin x xf x x xg x -=+'--=,所以()()()()222ln 22cos x xg x x -=++-',因为()()222ln 20,2cos 0x xx -+>->,所以()0g x '>,所以()g x 在()0,+∞单调递增,故()()00g x g >=即()0f x '>,所以()f x 在()0,+∞单调递增,又e 3π<<,所以()()()e 3πf f f <<,所以b a c <<.故选A.【思路导引】比较函数值大小问题通常通过研究函数的奇偶性和单调性来分析,故本题先求出函数()f x 的奇偶性,接着利用导数工具研究函数()f x 在()0,+∞上单调性,进而由函数奇偶性和单调性即可判断,,a b c 的大小关系.9.【答案】AC【分析】正确理解正态分布的概念,即可判断A,B 两项,利用正态分布曲线的对称性以及概率分布的特点易推理判断C,D 两项.【详解】由()2,X N μσ~可得()E X μ=,()2D X σ=,故A 正确;B 错误;对于C,利用正态曲线的对称性可知,()()P X P X μσμσ≤-=≥+,故()()()()1P X P X P X P X μσμσμσμσ≤++≤-=≤++≥+=,即C 正确;对于D,利用正态曲线的对称性可知,()()P X P X μσμσ≤-=≥+,而()()2P X P X μσμσ≥+>≥+,故()()2P X P X μσμσ≥+<≤-,故D 错误.故选AC.10.【答案】ABC【分析】利用赋值法令x y =根据表达式可判断A 正确,再根据偶函数定义可得B 正确;取πx y +=并根据对称中心定义可得C 正确,由对称中心以及偶函数性质可判断4π是()f x 的一个周期,可得D 错误.【详解】对于A,根据题意令x y =,则由()()()()222f x f y f x y f x y +=+-可得()()()()22220f x f x f x f +=,解得()01f =,即A 正确;对于B,令x y =-可得()()()()()2220222f x f x f f x f x +-==,所以()()22f x f x =-,即可得对任意的x ∈R 满足()()f x f x =-,即()f x 是偶函数,所以B 正确;对于C,令πx y +=,则由()()()()222f x f y f x y f x y +=+-可得()()()()2π222ππ20f y f y f f y -+=-=,即()f x 满足()()2π0f x f x -+=,因此可得()f x 的图象关于点()π,0中心对称,即C 正确;对于D,由于()f x 是偶函数且()()2π0f x f x -+=,所以满足()()2π0f x f x -+=,即()()2π0f x f x ++=,可得()()2π2πf x f x -=+,也即()()4πf x f x =+,所以4π是()f x 的一个周期,即D 错误.故选ABC.11.【答案】ABD【分析】对于A,利用旋转前后抛物线焦点和对称轴变化,即可确定抛物线方程;对于B,联立抛物线方程,求出点,A B 的坐标,即得;对于C,将直线与抛物线方程联立求出,M N 的坐标,由两点间距离公式求得弦长,利用换元和函数的图象即可求得弦长最大值;对于D,利用以直线近似取代曲线的思想求出三角形面积,即可对阴影部分面积大小进行判断.【详解】由题意,开口向右的抛物线方程为2:2C y x =,顶点在原点,焦点为11(,0)2F ,将其逆时针旋转90 后得到的抛物线开口向上,焦点为21(0,)2F ,则其方程为22x y =,即212y x =,故A 正确;对于B,根据A 项分析,由2222y xx y ⎧=⎨=⎩可解得,0x =或2x =,即2A x =,代入可得2A y =,由图象对称性,可得(2,2),(2,2)A B -,故4AB =,即B 正确;对于C,如图,设直线x y t +=与第一象限花瓣分别交于点,M N ,由22y x t y x =-+⎧⎨=⎩解得11M M x t y ⎧=+⎪⎨=⎪⎩22y x t x y =-+⎧⎨=⎩解得,11N N x y t ⎧=⎪⎨=+⎪⎩,即得(11),1,1M t N t +--+,则弦长为:|||2|MN t =+-,由图知,直线x y t +=经过点A 时t 取最大值4,经过点O 时t 取最小值0,即在第一象限部分满足04t <≤,不妨设u =13u <≤,且212u t -=,代入得,221|||22||(2)1|22u MN u u -=+---,(13u <≤)由此函数的图象知,当2u =时,||MN取得最大值为2,即C 错误;对于D,根据对称性,每个象限的花瓣形状大小相同,故可以先求18部分面积的近似值.如图,在抛物线21,(0)2y x x =≥上取一点P ,使过点P 的切线与直线OA 平行,由1y x '==可得切点坐标为1(1,)2P ,因:0OA l x y -=,则点P 到直线OA的距离为124d =,于是11242OPA S = ,由图知,半个花瓣的面积必大于12,故原图中的阴影部分面积必大于1842⨯=,故D 正确.故选ABD.【思路导引】本题主要考查曲线与方程的联系的应用问题,解题思路是,理解题意,结合图形对称性特征,通过曲线方程联立,计算判断,并运用函数的图象单调性情况,有时还需要以直代曲的思想进行估算、判断求解.12.【答案】6;【分析】先得出二项式的展开式中的通项()42+141rr r r T C x -=-,令420r -=,可得答案.【详解】因为(x ﹣1x )4的展开式中的通项为:()442+14411rr r r r r r T C x C x x --⎛⎫=-=- ⎪⎝⎭,令420r -=,得2r =,所以(x ﹣1x)4的展开式中的常数项为()223416T C =-=,故答案为:6.13.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.【答案】13【分析】根据多选题的计分标准,结合甲在此卷多选题的作答情况、百分位数的定义进行求解即可.【详解】甲在此卷多选题的作答中,第一小题选了三个选项,因此甲此题的得分可以是0分,或6分;第二小题选了两个选项,因此甲此题的得分可以是0分,或4分,或6分;第三小题选了一个选项,因此甲此题的得分可以是0分,或2,或3,因此甲多选题的所有可能总得分为0分,2分,3分,4分,6分,7分,8分,9分,12分,13分,14分,15分,共12种情况,因为1280%=9.6⨯,所以甲多选题的所有可能总得分(相同总分只记录一次)的第80百分位数为13分,故答案为:13.15.【答案】(1)任选一条件,都有π3C =(2)【分析】(1)选①,由正弦定理角化边结合余弦定理,即可求得答案;选②,利用三角函数诱导公式求出2π1cos 34C ⎛⎫+= ⎪⎝⎭,结合角的范围即可求得答案;(2)利用三角形面积可求出20ab =,再将BD BC CD =+ 平方后结合基本不等式,即可求得答案;另外,也可利用BCD △的面积以及在BCD △中利用余弦定理求解.【详解】(1)选择条件①,()()()()sin sin sin a b A C a c A C -+=-+,则()()()sin sin sin a b B a c A C -=-+,由正弦定理可得()()()a b b a c a c -=-+,即222a b c ab +-=,所以2221cos 22a b c C ab +-==,由()0,πC ∈,所以π3C =.选择条件②,ππ1sin cos 634C C ⎛⎫⎛⎫-+= ⎪ ⎝⎭⎝⎭,即πππ1sin cos 2343C C ⎡⎤⎛⎫⎛⎫-++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2π1cos 34C ⎛⎫+= ⎪⎝⎭,由()ππ4π0,π,333C C ∈<+<,则π1cos 32C ⎛⎫+=- ⎪⎝⎭,所以π2π33C +=,则π3C =.(2)由11sin 22S ab C ab ===20ab =.又BD BC CD =+ ,所以2222()2BD BC CD BC BC CD CD =+=+⋅+ 222211111122224222b a a b b a ab ab ab ab ⎛⎫⎛⎫=+⨯⨯-+=+-≥-= ⎪ ⎪⎝⎭⎝⎭10=所以BD ≥ ,当且仅当a b ==时等式成立,所以BD 的最小值是.另解:因为ABC S D = 为AC 中点,所以111πsin 22223BDC ABC S S a b ===⋅⋅⋅ ,得20ab =,在BCD △中,由余弦定理得2222cos BD BC CD BC CD C=+-⋅⋅221111121042222a b ab a b ab ab =+-≥⋅-==所以BD ≥a b ==所以BD 的最小值是.16.【答案】(1)2712P =,11142n n P P +=+.(2)证明见解析,121334n n P -=-⨯.【分析】(1)根据题意,利用互斥事件的概率公式可求得2P ,再根据第n 天选择A 餐厅用餐的概率得到1n P +关于n P 的表达式;(2)由(1)可得到123n P +-是等比数列,利用等比数列的通项公式可求得n P .【详解】(1)设n A =“第n 天去A 餐厅用餐”,n B =“第n 天去B 餐厅用餐”,则Ωn n A B = ,且n A 与n B 互斥.根据题意得()()()()()111112,1,133n n P P A P B P A P B P A ===-==-,()()1131,42n n n n P A A P A B ++==∣∣,()()()()()2212112113217343212P P A P A P A A P B P A B ==+=⨯+⨯=∣∣,()()()()()()111131142n n n n n n n n n n P P A P A P A A P B P A B P P ++++==+=+-∣∣,即11142n n P P +=+.(2)12112111234234643n n n n P P P P +⎛⎫⎛⎫-=+-=-=- ⎪ ⎪⎝⎭⎝⎭又因为121033P -=-≠,所以23n P ⎧⎫-⎨⎬⎩⎭是以13-为首项,14为公比的等比数列,所以1211334n n P -⎛⎫⎛⎫-=-⨯ ⎪ ⎪⎝⎭⎝⎭,从而121334n n P -=-⨯.17.【答案】(1)证明见解析(2)2OE =【分析】(1)要证BD CE ⊥,只需证BD ⊥平面ACO ,只需证,AO BD CO BD ⊥⊥,由题易证;(2)由体积求出AO 的长,建立空间直角坐标系,假设()0,0,(0)E n n >,求出平面BCE CEO 、的法向量,由余弦值为10,求出n ,进而可求OE 的长.【详解】(1)因为四边形ABCD 是边长为4的菱形,并且π3BAD ∠=,所以,ABD BCD 均为等边三角形,故,AO BD CO BD ⊥⊥,且AO CO ==因为AO ⊂平面,ACO CO ⊂平面ACO ,且AO CO O = ,所以BD ⊥平面ACO因为CE ⊂平面ACO ,所以BD CE ⊥.(2)设A 到平面BCD 的距离为h ,因为等边三角形BCD △的边长为4,所以三棱锥A BCD -的体积为214834h ⨯⨯=,所以h =因为AO =AO ⊥平面BCD ,以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系O xyz -;则()()0,0,0,2,0,0O B,()(0,,0,0,C A ,设()0,0,(0)E n n >因为BD ⊥平面ACO ,所以()11,0,0m = 是平面ECO 的一个法向量,设平面BCE 的法向量为()2,,m x y z = ,又()()2,,2,0,BC BE n =-=- ,故222020m BC x m BE x nz ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩取x =1,y z ==得2m =⎭ ,因为二面角B CE O --的余弦值为所以1212m m m m ⋅=⋅解得:2n =或n =2OE =.18.【答案】(1)2212x y +=(2)(i)2;(ii)证明见解析,12y x =-.【分析】(1)根据题意,列出关于,,a b c 的方程组,即可求解;(2)(ⅰ)直线与椭圆方程联立,利用韦达定理求弦长AB ,并求点到直线的距离,结合三角形的面积公式,以及基本不等式,即可求面积的最大值;(ⅱ)利用韦达定理,结合向量的坐标公式,表示点Q 的坐标,即可求解定直线方程.【详解】(1)设焦距为2c,依题意,222,c a a c ⎧=⎪⎨⎪+=+⎩解得1,a c ⎧=⎪⎨=⎪⎩又222a b c =+,所以2221b a c =-=,所以C 的方程为2212x y +=.(2)(i)设()()1122,,,A x y B x y ,因为2212x y y x m ⎧+=⎪⎨⎪=+⎩,所以2234220x mx m ++-=,()221643220Δm m =-⨯⨯->,解得23m <,所以21212422,33m m x x x x -+=-=,3AB ===点O 到直线:0l x y m -+=的距离dOAB △的面积123S=⨯()2233322m m -+=⨯=当且仅当223mm -=,即m =OAB △面积的最大值为2.(ii)设(),Q x y ,由OQ OA OB =+ ,有()()1212,,x y x x y y =++,即1212x x x y y y =+⎧⎨=+⎩因为1243m x x +=-,所以1212223m y y x x m +=++=,故4323m x my ⎧=-⎪⎪⎨⎪=⎪⎩,于是有12y x =-,所以点Q 在定直线12y x =-.【关键点拨】本题第二问的关键是利用韦达定理表示弦长,以及坐标.19.【答案】(1)()f x 是极值可差比函数,理由见解析;(2)不存在a 使()f x 的极值差比系数为2a -,理由见解析;(3)102ln2,23ln23⎡⎤--⎢⎥⎣⎦.【分析】(1)利用函数的导函数求出单调区间,由此得出极大值与极小值,由“极值可差比函数”的定义,求出极值差比系数k 的值,这样的值存在即可判断.(2)反证法,假设存在这样的a ,又根据“极值可差比函数”的定义列出等量关系,证明无解即可.(3)由(2)得到参数a 与极值点的关系式,对关系式进行转化,得出相应函数,利用导函数求出单调性即可得出函数取值范围.【详解】(1)当52a =时,()15ln (0)2f x x x x x =-->,所以()()()2221215122x x f x x x x -='-=+-,当()10,2,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>;当1,22x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,所以()f x 在10,2⎛⎫ ⎪⎝⎭和()2,+∞上单调递增,在1,22⎛⎫ ⎪⎝⎭上单调递减,所以()f x 的极大值为153ln2222f ⎛⎫=- ⎪⎝⎭,极小值为()352ln222f =-,所以()110122ln22232f f ⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,因此()f x 是极值可差比函数.(2)()f x 的定义域为()()210,,1a f x x x+∞=+-',即()221x ax f x x -+'=,假设存在a ,使得()f x 的极值差比系数为2a -,则12,x x 是方程210x ax -+=的两个不等正实根,21212401Δa x x a x x ⎧=->⎪+=⎨⎪=⎩,解得2a >,不妨设12x x <,则21x >,由于()()1211221211ln ln f x f x x a x x a x x x ⎛⎫-=----- ⎪⎝⎭()11212211ln x x x a x x x ⎛⎫=-+- ⎪⎝⎭()()11121221222ln2ln ,x x a x x a x x x x x x ⎛⎫=--=-- ⎪-⎝⎭所以112222ln x a a x x x -=--,从而11221ln 1x x x x =-,得()22212ln 0,*x x x --=令()()2222121(1)2ln (1),0x x x g x x x x g x x x x -+-=-->==>',所以()g x 在()1,+∞上单调递增,有()()10g x g >=,因此()*式无解,即不存在a 使()f x 的极值差比系数为2a -.(3)由(2)知极值差比系数为11222ln x a x x x --,即1211222ln x x x x x x +--,不妨设120x x <<,令()12,0,1x t t x =∈,极值差比系数可化为12ln 1t t t +--,()2122121221122x x x x a t x x x x t+==++=++,又52a ≤≤,解得1142t ≤≤,令()()212ln 1112ln ,142(1)t t t t p t t t p t t t +-+⎛⎫=-≤≤= '⎪--⎝⎭,设()()2221121212ln 1,14t t h t t t t h t t t t t --⎛⎫=+-≤≤=--= ⎪'⎝⎭22(1)0t t -=-≤所以()h t 在1,14⎡⎤⎢⎥⎣⎦上单调递减,当1,14t ⎡⎤∈⎢⎥⎣⎦时,()()1102h t h h ⎛⎫≥>= ⎪⎝⎭,从而()0p t '>,所以()p t 在11,42⎡⎤⎢⎥⎣⎦上单调递增,所以()1142p p t p ⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭,即()102ln223ln23p t -≤≤-.故()f x 的极值差比系数的取值范围为102ln2,23ln23⎡⎤--⎢⎥⎣⎦.【思路导引】合理利用导函数和“极值可差比函数”定义,在(2)利用极值点的性质找到几个变量间的基本关系,利用函数单调性判断方程无解.(3)中的需要重复利用(2)几个重要的数量关系,对变量进行转化,利用导函数求出单调区间,得出取值范围是关键.。

山东省聊城市2024-2025学年高三上学期11月期中教学质量检测数学试题

山东省聊城市2024-2025学年高三上学期11月期中教学质量检测数学试题

山东省聊城市2024-2025学年高三上学期11月期中教学质量检测数学试题一、单选题1.若集合{}{4},128x A x x B x =∈≤=<≤N∣∣,则A B = ()A .(0,4]B .(1,3]C .{1,2,3}D .{0,1,2,3,4}2.若(1i)2i z +=-,则||z z -=()A .1B .3C .6D .93.已知,,,a b c a b ∈>R ,则下列不等式一定成立的是()A .22a b>B .2b a a b+>C .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22ac bc >4.已知51cos(),cos cos 1212αβαβ+==,则cos(22)αβ-=()A .78-B .4772-C .4772D .785.若向量(23,),(,1)a x x b x =+= ,则“3x =”是“//a b”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件6.在ABC V 中,π,4A AB AC =⋅=O ,则2AO AB AO AC ⋅+⋅ 的最小值为()A .4B .C .16D .7.设2(),1,()e , 1.x x a x f x x a x ⎧+≤-=⎨-+>-⎩,若(1)f -为()f x 的最小值,则实数a 的取值范围是()A .[]0,1B .[]0,2C .[]0,3D .[1,0]-8.若函数()f x 的定义域为(0,)+∞,且()()()2(),(1)1xf x y x y f x x x y f +-+=+=,则(2024)f =()A .20232024⨯B .20242046⨯C .20244047⨯D .20244048⨯二、多选题9.数列{}n a 中,记n S 为数列{}n a 的前n 项和,n T 为数列{}n a 的前n 项积,若116a =,()*120N n n a a n +-=∈,则()A .512n n a -⎛⎫= ⎪⎝⎭B .51322n n S -=-C .数列{}2log n a 是单调递增数列D .当n T 取最大值时,4n =或5n =10.若函数2()sin cos cos (0)f x x x x ωωωω=>,则()A .1(0)2f =B .当1ω=时,函数()f x 在区间π,04⎡⎤-⎢⎥⎣⎦上单调递增C .当2ω=时,将sin 4y x =图象向左平移π12个单位后得到()f x 的图象D .当函数()f x 在(0,π)上恰有2个零点和2个极值点时,ω的取值范围是513,612⎛⎫⎪⎝⎭11.若点()()()112212,,,A x y B x y x x ≠是函数()sin 2(R)f x x ax a =+∈图像上的两点,则()A .对任意点A ,存在无数点B ,使曲线()y f x =在点A ,B 处的切线的倾斜角相等B .当函数()y f x =存在极值点时,实数a 的取值范围为[2,2]-C .当120x x ≠且()y f x =在点A ,B 处的切线都过原点时,1212tan 2tan 22x x x x -=-D .当直线AB 的斜率恒小于1时,实数a 的取值范围为(,1]-∞-三、填空题12.函数()sin 23x f x π⎛⎫=+ ⎪⎝⎭的最小正周期为.13.我国火力发电厂大气污染物排放标准规定:排放废气中二氧化硫最高允许浓度为320mg /m .已知我国某火力发电厂排放废气中二氧化硫的初始浓度为3100mg /m ,现通过某种工艺对排放废气进行过滤处理,处理后废气中剩余二氧化硫的浓度y (单位:3mg /m )与处理时间t (单位:分钟)满足关系式:0910ty N ⎛⎫= ⎪⎝⎭,那么从现在起至少经过分钟才能达到排放标准.(参考数据:lg 20.3010,lg 30.4771≈≈,结果取整数)14.设()22e x f x ax b =-+,若,a b ∃∈R ,使得()1f x ≤-对x ∀∈R 恒成立,则2a ba-的取值范围是.四、解答题15.已知函数3211()(,R)32f x x x mx n m n =+++∈在1x =处取得极小值76-.(1)求m ,n 的值;(2)若函数()y f x λ=-有3个不同零点,求实数λ的取值范围.16.记ABC V 的内角A ,B ,C 的对边分别是a ,b ,c ,已知2cos cos cos a A b C c B =+.(1)求A ;(2)若ABC V 的面积为29a ,求sin sin B C +.17.函数()y f x =图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,可以将其推广为:函数()y f x =图象关于点(,)P m n 成中心对称图形的充要条件为函数()y f x m n =+-为奇函数,已知函数11()2(1)x x f x a a a --=-+>.(1)证明:函数()f x 的图象关于点(1,2)成中心对称图形;(2)判断函数()f x 的单调性,若()2(43)4f t f t +-<,求实数t 的取值范围.18.数列{}n a 中,若d ∃∈R ,使得*n ∀∈N ,都有212n n n a a a d ++++=成立,则称数列{}n a 为“三合定值数列”,已知125,3,0a a d ==-=.(1)求345,,a a a ;(2)设1n n n b a a +=+,证明:数列{}n b 为等比数列,并求n a ;(3)设(2)nn n c a =-,求数列{}n c 的前n 项和n S .19.设函数()()()()1ln 1R f x a x a x a =+-+Î,()()e R x g x b b =+∈已知曲线()y g x =在点()()1,1g 处的切线方程为e 1y x =-.(1)求b 的值;(2)讨论函数()f x 的单调性;(3)若()()g x f x ≥对[)0,x ∞∀∈+恒成立,求实数a 的取值范围.。

浙江省台州市2025届高三第一次教学质量评估数学试题(含答案)

浙江省台州市2025届高三第一次教学质量评估数学试题(含答案)

浙江省台州市2025届高三第一次教学质量评估数学试题本试题卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分 (共58分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知t anα=2, 则c os 2α的值为A. A.255 B. 45C.35D.−352. 椭圆E1:x29+y24=1与椭圆E2:x29−k+y24−k=1(0<k<4)的A. 长轴长相等B. 短轴长相等C. 离心率相等D. 焦距相等3.若复数z是方程x²−2x+5=0的一个虚根,则. z+z=A. - 2B. 2C. - 4iD. 4i4.已知集合 A=x|x²+2x<3,B=x|2ˣ+x<3,则 “x∈A”是“x∈B”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.已知变量x与y的成对样本数据具有线性相关关系,由一元线性回归模型根据最小二乘法, 计算得经验回归方程为y=1.6x+a, 若∑=10, y=15, 则a=A. 6.6B. 5C. - 1D. - 146.已知f(x)是定义在R 上的奇函数, 当x∈(0,+∞)时, f(x)=log₃x,则f(-9)=A. - 3B. - 2C. 2D. 37.已知球O的半径为3,P是球O表面上的定点,S是球O表面上的动点,且满足( (2SO+SP)⋅OP=0,则线段OS 轨迹的面积为A. 32πB. 35πC. 62πD. 65π8.台州某校为阳光体育设计了一种课间活动,四位同学(两男两女) 随机地站到4×4的方格场地中(每人站一格,每格至多一人),则两个男生既不同行也不同列,同时两个女生也既不同行也不同列的概率是A. 2465 B. 1235C. 2165D. 3391二、选择题:本大题共3小题,每小题6分,共18分。

山东省济宁市2024-2025学年高三上学期期中教学质量检测数学试题

山东省济宁市2024-2025学年高三上学期期中教学质量检测数学试题

山东省济宁市2024-2025学年高三上学期期中教学质量检测数学试题一、单选题1.已知集合{P x y ==,{Q y y ==,则()R P Q = ð()A .∅B .[)1,+∞C .(),0-∞D .(],1-∞-2.若复数12i=-z (i 为虚数单位),则z =()A .21i55-B .21i55+C .33i55-D .33i55+3.已知角α的顶点与原点重合,始边与x 轴正半轴重合,终边经过点()1,2--,则tan 2α=()A .34B .43C .34-D .43-4.已知函数()f x 的定义域为R ,满足()()()2024f x y f x f y +-+=⎡⎤⎣⎦,则下列说法正确的是()A .()f x 是偶函数B .()f x 是奇函数C .()2024f x +是奇函数D .()2024f x +是偶函数5.向量()1,2a = ,()1,1b =- ,则a 在b上的投影向量是()A.2-B.C .11,22⎛⎫- ⎪⎝⎭D .12,55⎛⎫-- ⎪⎝⎭6.已知函数()21,11,11x x f x x x ⎧-≤⎪=⎨>⎪-⎩,则()()3f f =()A .8B .34-C .109-D .127.已知πcos 5a =,πsin 4b =,3log 2c =,则()A .b a c<<B .b c a <<C .c a b <<D .c b a<<8.如图,在ABC V中,AC =AB =90A ∠=︒,若PQ 为圆心为A 的单位圆的一条动直径,则BP CQ ⋅的最大值是()A .2B .4CD 1二、多选题9.下列说法正确的是()A .命题“x ∀∈R ,210x x ++>”的否定形式是“x ∃∈R ,210x x ++≤”B .当()0,πx ∈时,4sin sin y x x=+的最小值为4C .tan 25tan 20tan 25tan 201︒+︒+︒︒=D .“ππ4k θ=±(k ∈Z )”是“π4k θ=(k ∈Z )”的必要不充分条件10.已知函数()cos f x x x =+,则()A .函数()f x 在π2,6π3⎡⎤⎢⎣⎦上单调递减B .函数()f x 的图象关于点5π,06⎛⎫⎪⎝⎭对称C .函数()f x 的图象向左平移m (0m >)个单位长度后,所得的图象关于y 轴对称,则m 的最小值是π3D .若实数m 使得方程()f x m =在[]0,2π上恰好有三个实数解1x ,2x ,3x ,则1238π3x x x ++=11.设数列{}n a 前n 项和为n S ,满足()()214100n n a S -=-,*N n ∈且10a >,10n n a a -+≠(2n ≥),则下列选项正确的是()A .223n a n =-B .数列n S n ⎧⎫⎨⎩⎭为等差数列C .当10n =时,n S 有最大值D .设12n n n n b a a a ++=,则当8n =或10n =时,数列{}n b 的前n 项和取最大值三、填空题12.已知a ,b 都是正数,且230a b ab +-=,则a b +的最小值为.13.已知函数()21ln 22x f x x ax =-+在区间()2,+∞上没有零点,则实数a 的取值范围是.14.已知函数e 1()e 1x x f x -=+,()(1)2g x f x =-+,则()g x 的对称中心为;若12321()()()()n n a g g g g n n n n-=+++⋅⋅⋅+(*n ∈N ),则数列{}n a 的通项公式为.四、解答题15.已知在ABC V 中,角A ,B ,C ,所对的边分别为a ,b ,c ,()2cos 3cos cos b B a C c A =+.(1)求角B ;(2)过点A 作AD BC ∥,连接CD ,使A ,B ,C ,D 四点组成四边形ABCD ,若7AB =,2AC =,2CD =,求AD 的长.16.已知数列{}n a 的前n 项和为n S ,22n n a S =+,(*n ∈N ).(1)求数列{}n a 的通项公式;(2)记2log n n c a =,数列n n c a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若关于n 的不等式()()221n n n T n λ+-≤+恒成立,求实数λ的取值范围.17.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩(1)请在网格纸中画出()f x 的简图,并写出函数的单调区间(无需证明);(2)定义函数()()2241,2012,022f x x x xg x x x ⎧--+-≤≤⎪=⎨-<≤⎪⎩在定义域内的0x ,若满足()00g x x =,则称0x 为函数()g x 的一阶不动点,简称不动点;若满足()()00g g x x =,则称0x 为函数()g x 的二阶不动点,简称稳定点.①求函数()g x 的不动点;②求函数()g x 的稳定点.18.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要24min.(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求t 为何值时高度差h 最大.(参考公式:sin sin 2cos sin 22θϕθϕθϕ+--=,cos cos 2sin sin 22θϕϕθθϕ+--=)19.已知a ∈R ,函数()ln af x x x=+,()ln 2g x ax x =--.(1)当()f x 与()g x 都存在极小值,且极小值之和为0时,求实数的值;(2)若()()()12122f x f x x x ==≠,求证:12112x x a+>.。

大庆市2024届高三年级第三次教学质量检测数学试卷答案

大庆市2024届高三年级第三次教学质量检测数学试卷答案

大庆市高三年级第三次教学质量检测数学答案及评分标准一、单项选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.B 因为{1,2,3,6}UB =,所以(){1,3}U A B =.故选:B .2.D 【解析】因为复数z 对应的点的坐标是(2,3),所以23z i =+,所以(23)32i z i i i ⋅=⋅+=−+. 故选:D . 3.A 【解析】设等差数列{}n a 的公差为d ,由2525a S =−⎧⎨=−⎩,得1125105a d a d +=−⎧⎨+=−⎩,解得131a d =−⎧⎨=⎩,所以12121112(3)1302S ⨯=⨯−+⨯=.故选:A . 4.C 【解析】因为880% 6.4⨯=,由图可知8次成绩由小到大排序,第7个位置的数是110,所以这8次成绩的第80 百分位数是110.故选:C . 5.D 【解析】函数()f x 的图象如下,由图可知()f x 在R 上单调递增.因为2()(6)f a f a <−,所以26a a <−,解得32a −<<.故选:D .6.B 【解析】由已知()6636n Ω=⨯=,()3633324n B =−⨯−=,23()6n AB A == 则61()244P A B ==.故选:B . 7.D 【解析】已知函数()ln 2f x x kx =−−有2个零点,所以方程ln 2x kx =+有两个根,即函数ln y x =与2y kx =+的图象有两个公共点.(1)当01x <<时,()ln ln f x x x ==−,1()f x x'=−.若直线2y kx =+与曲线()ln f x x =相切,设切点坐标为11(,ln )P x x −,则曲线在点P 处的切线方程为1111ln ()()y x x x x +=−−.又因为切线过点(0,2),所以11112ln ()(0)x x x +=−−,解得11x e=,即k e =−. (2)当1x >时,()ln ln f x x x ==,1()f x x'=.若直线2y kx =+与曲线()ln f x x =相切,设切点坐标为22(,ln )Q x x ,则曲线在点Q 处的切线方程为2221ln ()y x x x x −=−.又因为切线过点(0,2),所以22212ln (0)x x x −=−,解得32x e =,即31k e=. 综上,结合函数ln y x =与函数2y kx =+的图象及增长速度可知,当两个函数的图象有两公共点时31(,0]k e e ⎧⎫∈−⎨⎬⎩⎭. 故选:D .8.A 【解析】法一:由题可知12BF BF a ==,所以12122AF AF aAF a AF ⎧+=⎪⎨+=⎪⎩,解得12232a AF a AF ⎧=⎪⎪⎨⎪=⎪⎩.由1212cos cos 0AF F BF F ∠+∠=得2222223()(2)()(2)22022222a ac a c a a a c c +−+−+=⋅⋅⋅⋅,整理得223a c =,所以3c e a ==.故选:A . 法二:由题可知12BF BF a ==,由已知得12122AF AF aAF a AF ⎧+=⎪⎨+=⎪⎩,解得12232a AF a AF ⎧=⎪⎪⎨⎪=⎪⎩.记2BF 中点为E ,因为2AB AF =,所以2AE BF ⊥.在△12F BF 和△AEB 中,由12cos cos F BF ABE ∠=∠得22224123232aa a c a a +−==,解得2213c a =,所以c e a ==A . 二、多项选择题:本大题共3小题,每小题6分,共18分。

吉林省敦化市实验中学校2024届高三上学期教学质量检测考试数学试题

吉林省敦化市实验中学校2024届高三上学期教学质量检测考试数学试题

吉林省敦化市实验中学校2024届高三上学期教学质量检测考试数学试题一、单选题1.设i z a =+(a ∈R ),若i 0z z +=,则z =( )AB .1C D .22.设集合{A x y ==,{}22xB y y ==+,则A B ⋃=( )A .{}1x x >B .{}1x x ≥C .{}2x x ≥D .{}2x x >3.已知()f x 是R 上的奇函数,则函数()()12g x f x =+-的图象恒过点( ) A .()1,2-B .()1,2C .()1,2-D .()1,2--4.某校举办歌唱比赛,将200名参赛选手的成绩整理后画出频率分布直方图如图,根据频率分布直方图,第40百分位数估计为( )A .64B .65C .66D .675.如图,在平行四边形ABCD 中,O 为对角线的交点,E 为AD 的中点,F 为CO 的中点,若EF xOC yOD =+u u u r u u u r u u u r,则2x y -=( )A .1B .2C .53D .326.过点()1,1A ,()3,3B 且圆心在直线3y x =上的圆与y 轴相交于P ,Q 两点,则PQ =( )A .3B .C .D .47.已知函数()()πsin 03f x x ωω⎛⎫=-> ⎪⎝⎭在5π0,12⎡⎤⎢⎥⎣⎦上单调递增,在5π5π,126⎛⎤ ⎥⎝⎦上单调递减,将函数()f x 的图象向左平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ=( )A .π6B .π4C .π3D .5π128.如图,A ,B 分别是椭圆()2222:10x y C a b a b+=>>的左、右顶点,点P 在以AB 为直径的圆O 上(点P 异于A ,B 两点),线段AP 与椭圆C 交于另一点Q ,若直线BP 的斜率是直线BQ 的斜率的4倍,则椭圆C 的离心率为( )A B .12C D .34二、多选题9.已知等差数列{}n a 的前n 项和为n S ,公差为d ,314a a =-,7154S =,则( ) A .2d =-B .130a =C .320-是数列{}n a 中的项D .n S 取得最大值时,14n =10.如图,已知圆台的上底面半径为1,下底面半径为2,母线长为2,AB ,CD 分别为上、下底面的直径,AC ,BD 为圆台的母线,E 为弧AB 的中点,则( )A .圆台的侧面积为6πB .直线AC 与下底面所成的角的大小为π3CD .异面直线AC 和DE 所成的角的大小为π411.已知函数3()(3ln 1)f x x x =-,则( )A .函数()f x 的最小值为1-B .若函数()f x 在点(,())m f m 处的切线与直线29e 1y x =-平行,则3()2e f m =C .函数()()(0)g x f x a a =->有且仅有两个零点D .()23e 3ln log 322f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过y 轴上异于坐标原点的任意一点P 作抛物线C 的一条切线,切点为Q ,且直线PQ 的斜率存在,O 为坐标原点.则( )A .2p =B .当线段PF 的中点在抛物线C 上时,点P 的坐标为(0, C .PF PQ ⊥D .PQ OF OP PF ⋅=⋅三、填空题13.3名男生和3名女生站成一排照相,则男生站在一起,且女生站在一起的概率为.14.曲线()322f x x x =-过原点的切线方程为.15.已知cos 0α≠,3sin 2cos21αα-=,则tan2α=.16.如图,已知球C 与圆锥VO 的侧面和底面均相切,且球的体积为圆锥体积的一半.若球的半径为1,则该圆锥的侧面积为.四、解答题17.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1sin (cos )sin 2c B c a BC =-. (1)求A ;(2)若D 为边AB 上一点,2AD DB =,2AC =,BC =ACD V 的面积. 18.已知数列{}n a 满足11a =,1113n n a a n+=+. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .19.如图,在正三棱柱111ABC A B C -中,12AB AA ==,D 为1CC 的中点.(1)证明:1A B AD ⊥;(2)求平面ABD 与平面1A BD 的夹角的余弦值.20.有三种不同的果树苗A ,B ,C ,经引种试验后发现,引种树苗A 的自然成活率为0.6,引种树苗B ,C 的自然成活率均为()0.60.8p p ≤≤.(1)任取树苗A ,B ,C 各一株,设自然成活的株数为X ,求X 的分布列及()E X ; (2)将(1)中()E X 的取得最小值时的p 的值作为B 种树苗自然成活的概率.该农户决定引种()n n *∈N 株B 种树苗,引种后没有自然成活的树苗中有80%的树苗可经过人工栽培技术处理,处理后成活的概率为0.5,其余的树苗不能成活. ①求一株B 种树苗最终成活的概率;②若每株树苗引种最终成活后可获利400元,不成活的每株亏损60元,该农户为了获利不低于30万元,应至少引种B 种树苗多少株? 21.已知函数1()e ln (1)x f x a x a x -=+-+.(1)当1a =时,证明:函数()f x 在(0,)+∞上单调递增; (2)若1x =是函数()f x 的极大值点,求实数a 的取值范围.22.已知双曲线C :()222210,0x y a b a b-=>>的焦距为8.过左焦点F 的直线与C 的左半支交于A ,B 两点,过A ,B 作直线l :=1x -的垂线,垂足分别为M ,N ,且当AB 垂直于x 轴时,12MN =. (1)C 的标准方程;(2)设点()1,0P ,判断是否存在0t >,使得11PM t PN t+--为定值?若存在,求t 的值;若不存在,说明理由.。

2024—2025学年度上学期普通高中高三第一次联合教学质量检测高三数学

2024—2025学年度上学期普通高中高三第一次联合教学质量检测高三数学

2024—2025学年度上学期普通高中高三第一次联合教学质量检测高三数学试卷本试卷共4页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.若集合{}260M x x x =+−=∣,{}20,N x ax a =+=∈R ∣,且N M ⊆,则a 的取值不可以是( ). A .2 B .23 C .0D .1− 2.已知向量()cos ,sin a θθ= ,()2,1b =− ,若a b ⊥ ,则sin cos sin 3cos θθθθ++的值为( ) A .13 B .35C .45D .233.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,若342n n S n T n +=+,则62102a b b +( ) A .11113 B .3713 C .11126 D .37264.甲、乙、丙、丁、戊共5名同学进行数学建模比赛,决出了第1名到第5名的名次(无并列情况).甲、乙、丙去询问成绩.老师对甲说:“你不是最差的.”对乙说:“很遗憾,你和甲都没有得到冠军.”对丙说:“你不是第2名.”从这三个回答分析,5名同学可能的名次排列情况种数为( )A .44B .46C .48D .545.已知直线1:0l x y C ++=与直线2:0l Ax By C ++=均过点()1,1,则原点到直线2l 距离的最大值为( ) AB .1 CD .126.已知双曲线22:13x C y −=的右焦点为F ,过点F 的直线交C 于,A B 两点,若3FA FB ⋅= ,则直线AB 的斜率为( )ABC.D.7.已知函数()331f x x x =++,若关于x 的方程()()sin cos 2f x f m x ++=有实数解,则m 的取值范围为( )A . −B .[]1,1−C .[]0,1D .8.如图,在三棱锥A BCD −中,45ABC ∠=°,点P 在平面BCD 内,过P 作PQ AB ⊥于Q ,当PQ 与面BCD PQ 与平面ABC 所成角的余弦值是( )A B C D 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.设1z ,2z 为复数,且120z z ≠,则下列结论正确的是( )A .1212z z z z =B .1212z z z z +=+C .若12=z z ,则2212z z =D .1212z z z z ⋅=⋅10.已知2n >,且*n ∈N ,下列关于二项分布与超几何分布的说法中,错误的有( )A .若1(,)3XB n ,则()22113E X n ++ B .若1(,)3X B n ,则()4219D X n += C .若1(,)3X B n ,则()()11P X P X n ===− D .当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布11.“曼哈顿距离”是十九世纪的赫尔曼·闵可夫斯省所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点()()1122,,,A x y B x y 的曼哈顿距离()1212,d A B x x y y =−+−,则下列结论正确的是( )A .若点()()1,3,2,4P Q ,则(),2d P Q =B .若对于三点,,A BC ,则“()()(),,,d A B d A C d B C +=”当且仅当“点A 在线段BC 上”C .若点M 在圆224x y +=上,点P 在直线280x y −+=上,则(),d P M 的最小值是8−D .若点M 在圆224x y +=上,点P 在直线280x y −+=上,则(),d P M 的最小值是4 三、填空题(本大题共3小题,每小题5分,共15分)12.已知12,34a b a b ≤−≤≤+≤则93a b +的取值范围为 .13.已知函数()cos 2sin 2sin f x x x x ωωω=−(0ω>)在()0,2π上有最小值没有最大值,则ω的取值范围是 .14.函数2e 12()e 21x x x h x −=++,不等式()22(2)2h ax h ax −+≤对R x ∀∈恒成立,则实数a 的取值范围是 四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题13分)在锐角ABC 中,a ,b ,c 分别为内角A 、B ,C 的对边,且()2sin 2sin a A b c B =−+()2sin c b C −. (1)求A 的大小;(2)求cos 2cos B C +的取值范围.16.(本小题15分)已知数列{}n a ,{}n b ,(1)2n n a =−+,1(0)n n n b a a λλ+=−>,且{}n b 为等比数列. (1)求λ的值;(2)记数列{}2n b n ⋅的前n 项和为n T .若()*2115N i i i T T T i ++⋅=∈,求i 的值.17.(本小题15分)如图,棱长为2的正方体1111ABCD A B C D −中,E F 、分别是棱,AB AD 的中点,G 为棱1DD 上的动点.(1)是否存在一点G ,使得1BC ∥面EFG ?若存在,指出点G 位置,并证明你的结论,若不存在,说明理由;(2)若直线EF 与平面CFG,求三棱锥1G EBC −的体积; (3)求三棱锥1B ACG −的外接球半径的最小值.18.(本小题17分) 已知椭圆C :()222210x y a b a b +=>>经过点(M −,其右焦点为FF (cc ,0),下顶点为B ,直线BF 与椭圆C 交于另一点D ,且3BF FD = . (1)求椭圆C 的方程;(2)O 为坐标原点,过点M 作x 轴的垂线1l ,垂足为A ,过点A 的直线与C 交于P ,Q 两点,直线OP 与1l 交于点H .直线OQ 与1l 交于点G ,设APH 的面积为1S ,AQG 的面积为2S ,试探究1212S S S S +是否存在最小值.若存在,求出此时直线PQ 的方程;若不存在,请说明理由.19.(本小题17分)设()h x ′为()h x 的导函数,若()h x ′在区间D 上单调递减,则称()h x 为D 上的“凸函数”.已知函数()2sin f x x ax ax =−++.(1)若()f x 为π0,2上的“凸函数”,求a 的取值范围; (2)证明:当1a =−时,()()()213ln 22g x f x x x x =++++++有且仅有两个零点.。

河北省石家庄市2024届高三教学质量检测(三)数学试卷

河北省石家庄市2024届高三教学质量检测(三)数学试卷

河北省石家庄市2024届高三教学质量检测(三)数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知复数2iiz -=,则|z |=( )AB C .3 D .52.已知圆221:1C x y +=和圆2226890C x y x y +--+=:,则两圆公切线的条数为( ) A .1B .2C .3D .43.已知等差数列{}n a 的前n 项和为195,1,627n S a S a ==+,则5S =( ) A .25B .27C .30D .354.已知双曲线()2222:10,0y x C a b a b -=>>线的距离为3,则双曲线C 的渐近线方程为( )A .y =B .y =C .y =D .y x = 5.设,,αβγ是三个不同的平面,,m l 是两条不同的直线,则下列命题为真命题的是( ) A .若,,m l αβαβ⊥⊂⊥,则m l ∥ B .若,,m l αβαβ⊂⊂P ,则m l ∥ C .若,,m l m αβαβ⊥⋂=⊥,则l β⊥D .若,,l m l m αβγ⋂=⊥P ,则αγ⊥6.某项活动在周一至周五举行五天,现在需要安排甲、乙、丙、丁四位负责人值班,每个人至少值班一天,每天仅需一人值班,已知甲不能值第一天和最后一天,乙要值班两天且这两天必须相邻,则不同安排方法的种数为( ) A .24B .10C .16D .127.已知角,αβ满足()1tan ,2sin cos sin 3αβαβα==+,则tan β=( )A .13B .16C .17D .28.已知抛物线2:8C y x =的焦点为F ,斜率为()0k k >的直线过F 与C 交于,P Q 两点,若FP FQ -=k 的值为( ) A.1B C .2D .3二、多选题9.某校“五一田径运动会”上,共有12名同学参加100米、400米、1500米三个项目,其中有8人参加“100米比赛”,有7人参加“400米比赛”,有5人参加“1500米比赛”,“100米和400米”都参加的有4人,“100米和1500米”都参加的有3人,“400米和1500米”都参加的有3人,则下列说法正确的是( ) A .三项比赛都参加的有2人 B .只参加100米比赛的有3人 C .只参加400米比赛的有3人D .只参加1500米比赛的有1人10.函数()()ππ4sin 02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭的部分图象如图所示,则下列说法中正确的是( )A .π6ϕ=-B .()f x 的图象关于直线πx =对称C .()12π4cos 23f x x ⎛⎫=- ⎪⎝⎭D .若方程()2f x =在()0,m 上有且只有5个根,则26π,10π3m ⎛⎤∈ ⎥⎝⎦11.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为11B C 的中点,则下列说法正确的有( )A .若点O 为BD 中点,则异面直线MO 与1CCB .若点N 为线段BC 上的动点(包含端点),则MN DN +C .若点P 为CD 的中点,则平面AMP 与四边形11CDD CD .若点Q 在侧面正方形11ADD A 内(包含边界)且1MQ AC ⊥,则点Q三、填空题12.为了解全市高三学生的体能素质情况,在全市高三学生中随机抽取了1000名学生进行体能测试,并将这1000名学生的体能测试成绩整理成如下频率分布直方图.则直方图中实数a 的值为 .13.给定函数()()21,f x x x g x x x=+=+,用()M x 表示()(),f x g x 中的较大者,记()()(){}max ,M x f x g x =.若函数()y M x =的图象与y a =有3个不同的交点,则实数a 的取值范围是 .14.已知数列{}n a 满足:12211,2,2n n n a a a a a ++==-=,定义:()mod4a b ≡表示整数a 除以4的余数与整数b 除以4的余数相同,例:()()19mod4,622mod4≡≡.设()()42,0mod4,123mod4k k k k a b k a ⎧⎪≡=⎨≡⎪⎩或或,其中*k ∈N ,数列{}n b 的前n 项和为n S ,则4b = ;满足2024m S ≥的m 最小值为 .四、解答题15.在ABC V 中,角、、A B C 所对的边分别为,4,9a b c c ab ==、、. (1)若2sin 3C =,求sin sin A B ⋅的值; (2)求ABC V 面积的最大值.16.在推动电子制造业高质量发展的大环境下,某企业统筹各类资源,进行了积极的改革探索.下表是该企业每月生产的一种核心产品的产量()315x x ≤≤(件)与相应的生产总成本y(万元)的四组对照数据.企业研究人员建立了y 与x 的两种回归模型,利用计算机算得近似结果如下: 经验回归方程①:311733ˆx y=+;经验回归方程②:26860ˆ1y x =-. 其中经验回归方程①的残差图如图所示(残差=观测值-预测值):(1)在下表中填写经验回归方程②的残差,根据残差分析,判断哪一个经验回归方程更适宜作为y 关于x 的回归方程,并说明理由;(2)从该企业在过去几年生产的该产品中随机抽取100件,优等品有60件,合格品有40件.每件优等品利润为20万元,每件合格品利润为15万元.若视频率为概率,该企业某月计划生产12件该产品,记优等品件数为X ,总利润为Y . (ⅰ)求Y 与X 的关系式,并求()E X 和()E Y ;(ⅱ)记该月的成本利润率p ,在(1)中选择的经验回归方程下,求p 的估计值.(结果保留2位小数) 附:成本利润率=总利润总成本.17.已知函数()()()211ln 02f x x a x a x a =-++>. (1)讨论函数()f x 的单调性;(2)当2a =时,若函数()()211e 2x g x f x x -=-+,求函数()g x 极值点的个数.18.如图,在五棱锥S ABCDE -中,平面SAE ⊥平面AED ,,AE ED SE AD ⊥⊥.(1)证明:SE ⊥平面AED ;(2)若四边形ABCD 为矩形,且1,3SE AB AD ===,2BN NC =u u u ru u u r.当直线DN 与平面SAD 所成的角最小时,求三棱锥D SAE -体积.19.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12(F F O -为坐标原点,直线l 与C 交于,A B 两点,点A 在第一象限,点B 在第四象限且满足直线OA 与直线OB 的斜率之积为14-.当l 垂直于x 轴时,1232F A F B =-u u u r u u u u r g .(1)求C 的方程;(2)若点P 为C 的左顶点且满足(0,0)OP OA OB λμλμ=+<<u u u r u u u r u u u r,直线PA 与OB 交于1B ,直线PB 与OA 交于1A .①证明:22λμ+为定值;②证明:四边形11AB A B 的面积是AOB V 面积的2倍.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省临沂市2011年高三教学质量检测考试
数学试题(理科)
本试卷分为选择题和非选择题两部分,满分150分,考试时间120分钟。

注意事项:
1.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,
用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

2.非选择题必须用0.5毫米的黑色签字笔作答,答案必须写在答题卡各题目指定区域内相
应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一
项是符合题目要求的。

1.已知1{||3|4},{
0,},2x M x x N x x Z M N x -=-<=<∈+则=ﻩ( ) A.φﻩB.{0}ﻩC.{2}ﻩD.{|27}x x ≤≤
2.若i 为虚数单位,图中复平面内点Z 则表示复
数1z i
-的点是( ) ﻩA.E B.F ﻩ
C .G ﻩ
D .H
3.某空间几何体的三视图如图,则该几何体
的体积是 ( )
ﻩA.3 B.2ﻩ
ﻩC .32
ﻩD .1 4.已知直线20ax by --=与曲线3y x =在点P (1,1)处的切线互相垂直,则
a b 为( ) ﻩA .13ﻩB .23 C.23- D.13
- 5.在样本的频率分布直方图中,一共有n 个小矩形,若中间一个小矩形的面积等于其余(n-1)
个小矩形面积之和的
15,且样本容量为240,则中间一组的频数是ﻩﻩ( ) A .32
B.30ﻩC .40ﻩD .60 6.设2
04sin ,n xdx π=⎰则二项式1()n x x -的展开式的常数项是ﻩ ( ) ﻩA.12 B.6 C.4ﻩD.1
7.一个盒子中装有4张卡片,上面分别写着如下四个定义域为R 的函
数:31234(),()||,()sin ,()cos f x x f x x f x x f x x ====现从盒子中任取2张卡片,将卡片
上的函数相乘得到一个新函数,所得函数为奇函数的概率是ﻩ
( ) ﻩA.16ﻩB .13 C .23ﻩD .56
8.已知三条不重合的直线m 、n 、l 两个不重合的平面,αβ,有下列命题
ﻩ①若//,//,//,//l m l m αβαβ且则ﻩ②,,//,//l m l m αβαβ⊥⊥若且则
ﻩ③若,,//,//,//m n m n ααββαβ⊂⊂则
④若,,,,m n n m αβαββα⊥=⊂⊥⊥则n
其中真命题的个数是ﻩ ﻩﻩ( )
A .4 B.3 C.2ﻩD.1
9.已知0a b <<,且1a b +=,则下列不等式中,正确的是
( ) ﻩA.2log 0a >ﻩB .122a b -<ﻩC .122a b b a +< D.22log log 2a b +<- 10.设函数122log ,0()()()log (),0
x x f x f m f m x x >⎧⎪=<-⎨⎪-<⎩若,则实数m 的取值范围是ﻩ( ) A.(1,0)(1,0)- ﻩB.{,1}{1,}-∞-+∞
ﻩC.(1,0)(1,)-+∞ D.{,1}{0,1}-∞-
11.设P 是椭圆22
1258
x y +=上一点,M、N 分别是两圆:22(4)1x y ++=和23(4)1x y -+=上的点,则||||PM PN +的最小值、最大值的分别为
ﻩ ( )
ﻩA.9,12 B.8,11ﻩC.8,12ﻩD .10,12 12.设函数()f x 在R 上满足(2)(2),(7)(7)f x f x f x f x -=+-=+,且在闭区间[0,7]上,只
有(1)(3)0f f ==,则方程()0f x =在闭区间[—2011,2011]上的根的个数为
ﻩ ﻩ( ) ﻩA .802ﻩB.803
C .804 D.805
第Ⅱ卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题4分,共16分,把正确答案填在答题纸给定的横线上。

13.双曲线的渐近线方程为34y x =±
,则双曲线的 离心率是 。

相关文档
最新文档