智能小车循迹报告
智能循迹小车___设计报告
![智能循迹小车___设计报告](https://img.taocdn.com/s3/m/c956753ca517866fb84ae45c3b3567ec102ddc95.png)
智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。
循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。
本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。
二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。
2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。
3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。
4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。
5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。
三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。
(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。
(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。
(4)添加温湿度传感器和光照传感器,以提供环境感知功能。
(5)将无线模块与控制器连接,以实现远程控制功能。
2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。
(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。
(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。
四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。
2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。
3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。
4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。
5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。
寻迹小车实验报告
![寻迹小车实验报告](https://img.taocdn.com/s3/m/d3cd93d36aec0975f46527d3240c844769eaa087.png)
自动寻迹小车设计报告一、系统设计1、设计要求(1)自动寻迹小车从安全区域启动。
(2)小车按检测路线运行,自动区分直线轨道和弯路轨道,在弯路处拐弯,实现灵活前进、转弯、等功能2.小车寻迹的原理这里的寻迹是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。
红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
红外探测器探测距离有限,一般最大不应超15cm。
对于发射和接收红外线的红外探头,可以自己制作或直接采用集成式红外探头。
3、模块方案根据设计要求,本系统主要由控制器模块、寻迹传感器模块、直流电机及其驱动模块等构成。
控制器模块:控制器模块由AT89C51单片机控制小车的行走。
寻迹传感器模块:寻迹传感器用光电传感器ST188检测线路并反馈给单片机执行。
ST188采用高发射功率红外光电二极管和高灵敏度双光电晶体管组成。
检测距离:4--13mm直流电机及其驱动模块:直流电机用L298来驱动。
L298N是一个具有高电压大电流的全桥驱动芯片,它相应频率高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。
用该芯片作为电机驱动,操作方便,稳定性好,性能优良。
4.系统结构框图:二、硬件实现及单元电路设计1、微控制器模块的设计在本次设计中我们采用了AT89C51位主控制器。
它具有智能化,可编程,小型便携等优点。
2.光电传感器:本次试验我们采用了ST188光电传感器,ST188采用高发射功率红外光电二极管和高灵敏度双光电晶体管组成。
检测距离:4--13mm。
其连接电路图如下:3.直流电机及其驱动模块在直流电机驱动问题上,我们采用一片L298来驱动直流电机。
循迹小车实习报告
![循迹小车实习报告](https://img.taocdn.com/s3/m/7d79575bdf80d4d8d15abe23482fb4daa58d1dd2.png)
一、实习背景随着科技的发展,自动化技术在各个领域得到了广泛应用。
智能循迹小车作为自动化技术的一个重要应用,具有广泛的前景。
为了提高我们的实践能力,培养我们的创新精神,我们参加了智能循迹小车实习课程。
通过本次实习,我们学习了智能循迹小车的设计、制作和调试方法,了解了其工作原理,提高了我们的动手能力和团队协作能力。
二、实习目的1. 熟悉智能循迹小车的结构、原理和功能。
2. 掌握智能循迹小车的制作方法,提高动手能力。
3. 学习电路设计、传感器应用、单片机编程等知识。
4. 培养团队协作精神,提高沟通能力。
三、实习内容1. 智能循迹小车原理及结构智能循迹小车主要由以下几部分组成:车体、驱动电机、传感器、单片机、控制电路等。
车体是智能循迹小车的承载部分,驱动电机负责提供动力,传感器用于检测路面信息,单片机负责处理传感器信息,控制电路负责将单片机的指令转换为电机驱动信号。
2. 电路设计电路设计主要包括以下几个方面:(1)电源电路:为智能循迹小车提供稳定的电源。
(2)驱动电路:将单片机的控制信号转换为电机驱动信号。
(3)传感器电路:将传感器信号转换为单片机可识别的信号。
(4)控制电路:对单片机输出的控制信号进行放大、滤波等处理。
3. 传感器应用智能循迹小车主要采用红外传感器进行路面检测。
红外传感器具有体积小、成本低、安装方便等优点。
在制作过程中,我们需要对红外传感器进行调试,使其能够准确检测路面信息。
4. 单片机编程单片机编程是智能循迹小车实现智能控制的关键。
我们主要学习了C语言编程,掌握了单片机的基本指令、函数、中断等知识。
在编程过程中,我们需要编写程序,使单片机能够根据传感器信息控制小车行驶。
5. 调试与优化在制作过程中,我们需要对智能循迹小车进行调试,使其能够稳定、准确地行驶。
调试过程中,我们需要对电路、传感器、单片机等部分进行调整,以达到最佳效果。
四、实习成果通过本次实习,我们成功制作了一台智能循迹小车,并使其能够稳定、准确地行驶。
智能寻迹小车实验报告
![智能寻迹小车实验报告](https://img.taocdn.com/s3/m/c207c3d4afaad1f34693daef5ef7ba0d4b736d5f.png)
智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。
实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。
2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。
3. 连接红外传感器到Arduino开发板上,以便检测黑线。
4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。
可以使用PID控制算法来控制小车的速度和方向。
5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。
6. 根据需要,可以添加避障功能。
可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。
实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。
小车的寻迹功能和避障功能能够实现预期的效果。
实验总结:
本次实验成功设计并实现了智能寻迹小车。
通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。
该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。
智能循迹小车实验报告
![智能循迹小车实验报告](https://img.taocdn.com/s3/m/ea86c5cd0342a8956bec0975f46527d3240ca6b1.png)
智能循迹小车实验报告第一篇:智能循迹小车实验报告摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。
本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。
关键词智能小车单片机红外光对管 STC89C52 L298N 1 绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。
在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。
设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。
方案设计与方案选择3.1 硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。
3.1.1 单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。
由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。
STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。
其程序和数据存储是分开的。
3.1.2 传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。
阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。
方案二:使用光电传感器来采集路面信息。
循迹小车的实验报告
![循迹小车的实验报告](https://img.taocdn.com/s3/m/cdfbf32aa88271fe910ef12d2af90242a995ab65.png)
循迹小车的实验报告循迹小车的实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够通过感知地面上的黑线,实现自主导航。
本次实验旨在探索循迹小车的工作原理及其应用,并对其性能进行评估。
一、实验背景循迹小车作为一种智能机器人,广泛应用于工业自动化、仓储物流、智能家居等领域。
其基本原理是通过光电传感器感知地面上的黑线,根据传感器信号控制电机的转动,从而实现沿着黑线行进。
二、实验过程1. 实验器材准备本次实验所需器材有循迹小车、黑线地毯、计算机等。
通过连接计算机和循迹小车,可以实现对小车的控制和数据传输。
2. 实验步骤(1)将黑线地毯铺设在实验场地上,并保证地毯表面光滑清洁。
(2)将循迹小车放置在地毯上,确保其底部的光电传感器与黑线接触。
(3)通过计算机控制循迹小车的启动,观察小车是否能够准确跟踪黑线行进。
(4)记录小车在不同条件下的行进速度、转弯半径等数据,并进行分析。
三、实验结果1. 循迹性能评估通过实验观察和数据记录,我们发现循迹小车在较为平整、光线充足的黑线地毯上表现较好,能够准确跟踪黑线行进。
然而,在黑线不明显、光线较暗的情况下,小车的循迹性能会有所下降。
2. 行进速度与转弯半径根据实验数据分析,循迹小车的行进速度受到多种因素的影响,包括地面摩擦力、电机功率等。
在实验中,我们发现增加电机功率可以提高小车的行进速度,但同时也会增大转弯半径。
3. 应用前景循迹小车作为一种智能机器人,具有广泛的应用前景。
在工业自动化领域,循迹小车可以用于物料搬运、装配线操作等任务;在仓储物流领域,循迹小车可以实现货物的自动分拣、运输等功能;在智能家居领域,循迹小车可以作为家庭服务机器人,提供家居清洁、送餐等服务。
四、实验总结通过本次实验,我们深入了解了循迹小车的工作原理和应用前景。
循迹小车的循迹性能受到地面条件和光线影响,需要进一步优化。
在实际应用中,循迹小车可以广泛应用于工业自动化、仓储物流和智能家居等领域,为人们的生活和工作带来便利。
模拟循迹小车实验报告
![模拟循迹小车实验报告](https://img.taocdn.com/s3/m/7bf8930eac02de80d4d8d15abe23482fb5da0241.png)
一、实验目的1. 理解循迹小车的工作原理,掌握模拟循迹技术。
2. 学习使用传感器检测道路情况,并根据检测结果进行小车控制。
3. 提高嵌入式系统设计和编程能力。
二、实验原理循迹小车是一种能够按照预设轨迹运行的智能小车。
其工作原理是:通过安装在车身上的传感器检测道路情况,并将检测到的信息传输给单片机,单片机根据接收到的信息对小车进行控制,使小车按照预设轨迹运行。
本实验中,我们采用红外对管作为传感器,通过检测红外对管对光线反射的强弱来判断小车是否偏离预设轨迹。
当红外对管检测到光线反射较强时,表示小车偏离了预设轨迹;当红外对管检测到光线反射较弱时,表示小车位于预设轨迹上。
三、实验器材1. 单片机开发板(如STC89C52)2. 红外对管传感器3. 电机驱动模块4. 电机5. 轮胎6. 跑道7. 电阻、电容等电子元件8. 编程软件(如Keil)四、实验步骤1. 硬件连接:将红外对管传感器连接到单片机的I/O口,将电机驱动模块连接到单片机的PWM口,将电机连接到电机驱动模块。
2. 编程:编写程序,实现以下功能:(1)初始化红外对管传感器和电机驱动模块;(2)读取红外对管传感器的状态,判断小车是否偏离预设轨迹;(3)根据红外对管传感器的状态,控制电机驱动模块使小车按照预设轨迹运行。
3. 调试:将程序烧录到单片机中,进行调试。
观察小车是否能够按照预设轨迹运行。
五、实验结果与分析1. 实验结果:经过调试,小车能够按照预设轨迹运行。
2. 分析:(1)红外对管传感器能够有效地检测道路情况,判断小车是否偏离预设轨迹;(2)单片机能够根据红外对管传感器的状态,及时调整电机的转速,使小车按照预设轨迹运行;(3)电机驱动模块能够稳定地驱动电机,使小车运动平稳。
六、实验总结通过本次实验,我们掌握了模拟循迹小车的工作原理,学会了使用传感器检测道路情况,并根据检测结果进行小车控制。
同时,我们还提高了嵌入式系统设计和编程能力。
七、改进建议1. 可以尝试使用其他类型的传感器,如光电传感器、红外线传感器等,以提高循迹精度。
智能小车循迹项目总结汇报
![智能小车循迹项目总结汇报](https://img.taocdn.com/s3/m/02d77d74effdc8d376eeaeaad1f34693dbef1062.png)
智能小车循迹项目总结汇报智能小车循迹项目总结汇报一、项目背景智能小车循迹项目是一个基于图像识别技术的智能汽车控制系统。
随着人工智能和物联网技术的快速发展,智能汽车正在成为一个热门领域。
循迹技术是智能汽车中的关键技术之一,它可以让汽车沿着指定的轨迹行驶,自动避开障碍物,给人们带来更方便、更安全的出行体验。
二、项目目标本项目的目标是设计一个能够自动循迹的智能小车。
通过使用图像识别技术,小车能够识别道路上的黑色轨迹,并沿着轨迹行驶。
同时,小车还具备自动避障功能,能够检测到前方的障碍物并自动停下来。
此外,小车还具备远程控制功能,用户可以通过手机APP控制小车的运动。
三、项目实施1. 硬件准备为了实现项目目标,我们购买了一些需要的硬件设备,包括智能小车底盘、摄像头模块、避障传感器、控制电路板等。
2. 硬件搭建我们首先进行了硬件的搭建工作。
将摄像头模块和避障传感器连接到控制电路板上,并将电路板安装到小车底盘上。
确保硬件设备能够正常工作。
3. 软件开发在硬件搭建完成后,我们开始了软件开发工作。
首先,我们搭建了一个图像识别模型,使用卷积神经网络训练来识别道路上的黑色轨迹。
然后,我们编写了控制算法,根据摄像头传回的图像识别结果,控制小车沿着轨迹行驶。
4. 测试与优化在软件开发完成后,我们进行了测试与优化工作。
通过对小车在道路上的行驶进行测试,我们发现小车在某些情况下行驶不稳定,有时无法循迹。
于是,我们对控制算法进行了优化,通过增加反馈控制机制,解决了这个问题。
四、项目成果经过一段时间的努力,我们成功地完成了智能小车循迹项目。
最终的成果是一个能够自动循迹的智能小车。
该小车能够识别道路上的黑色轨迹,并沿着轨迹行驶。
同时,小车还具备自动避障功能,能够检测到前方的障碍物并自动停下来。
另外,小车还通过手机APP实现了远程控制功能。
五、项目总结通过这个项目,我学到了许多有关智能汽车和图像识别技术的知识。
我了解到智能汽车是一个复杂的系统工程,需要涉及多个领域的知识,包括机械、电子、计算机等。
循迹小车实验报告
![循迹小车实验报告](https://img.taocdn.com/s3/m/421a51aab9f67c1cfad6195f312b3169a551ea65.png)
循迹小车实验报告循迹小车实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够根据环境中的光线变化来调整行进方向。
本实验旨在通过搭建一个循迹小车模型,探索其原理和应用。
一、实验材料和方法本次实验所需材料包括Arduino开发板、直流电机、光电传感器、电池组等。
首先,我们将Arduino开发板与直流电机、光电传感器等器件进行连接,确保电路正常。
然后,将循迹小车放置在一个光线变化较大的环境中,例如黑白相间的地面。
最后,通过编写程序,使循迹小车能够根据光电传感器的信号来判断行进方向,并实现自动循迹。
二、实验过程和结果在实验过程中,我们首先对光电传感器进行了校准,以确保其能够准确地感知光线的变化。
然后,我们编写了一段简单的程序,使循迹小车能够根据光电传感器的信号来判断行进方向。
当光线较亮时,循迹小车向左转;当光线较暗时,循迹小车向右转。
通过不断调试程序,我们成功实现了循迹小车的自动循迹功能。
在实验过程中,我们还发现了一些有趣的现象。
例如,当循迹小车行进到黑白相间的地面上时,光电传感器能够准确地感知到黑白色块的变化,并根据信号进行相应的调整。
这说明循迹小车的循迹原理基于光线的反射和吸收,具有一定的环境适应性。
三、实验结果分析通过本次实验,我们深入了解了循迹小车的原理和应用。
循迹小车通过光电传感器感知环境中的光线变化,从而判断行进方向,实现自动循迹。
这种智能机器人在工业生产、仓储物流等领域具有广泛的应用前景。
然而,循迹小车也存在一些局限性。
首先,其循迹能力受到环境光线的影响较大,当环境光线较弱或过强时,循迹小车的准确性会受到一定的影响。
其次,循迹小车只能在特定的地面上进行循迹,对于其他类型的地面可能无法正常运行。
因此,在实际应用中,需要根据具体情况进行合理选择和调整。
四、实验总结通过本次实验,我们对循迹小车的原理和应用有了更深入的了解。
循迹小车作为一种基于光电传感器的智能机器人,具有自动循迹的功能,可以在工业生产、仓储物流等领域发挥重要作用。
智能循迹小车实验报告
![智能循迹小车实验报告](https://img.taocdn.com/s3/m/740b74640812a21614791711cc7931b765ce7b98.png)
智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。
通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。
二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。
红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。
通过比较接收管的信号强度,即可判断小车是否偏离轨迹。
2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。
PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。
3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。
根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。
三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。
将直流电机与驱动模块连接,并安装在小车底盘上。
将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。
2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。
通过串口调试助手,将编写好的程序下载到单片机开发板中。
3、调试与优化启动小车,观察其在轨迹上的行驶情况。
根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。
不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。
智能循迹小车报告
![智能循迹小车报告](https://img.taocdn.com/s3/m/71d78242336c1eb91a375da1.png)
智能循迹小车队长:黎建峰队员:江福家章春金赛前辅导老师:吴桔生张荣刚林章文稿整理辅导老师:吴桔生摘要设计分为五个模块:单片机最小系统、电机驱动电源、电机驱动电路、红外循迹模块、显示模块。
电机驱动电路用于转向控制;红外循迹模块利用四个光电管,对黑色轨道进行循迹;电机驱动电源利用两个7805提供三路5v电压,一路供给最小系统,一路供给电机驱动电路,一路供给循迹模块。
本设计中为了简化电路,减少小车的负载,利用软件编程的方法控制电机的转速从而控制小车的行驶速度,这是本设计的一大特色。
一、方案论证与比较1、轨迹探测模块设计与比较方案一、使用简易光电传感器结合外围电路进行检测由于光电传感器对行驶过程中的稳定性要求非常高,而且容易受到光线环境和路面介质的影响,误测的几率非常大。
在使用中极易出现问题,给检测和调试造成很大的困难,容易因为检测的失误导致整个系统的不正常工作,所以最终并未采用此方案。
方案二、使用两只stl198光电管把两只光电管分别排列在黑色轨迹的两侧,根据其接收反射光的多少输出高低电平来控制小车的转向,以达到循迹的目的。
但是调试表明,如果两只开关的距离很小,则以约束了小车的速度来达到检测轨迹的目的,如果两只开关的距离太大,则同时传来同一电平信号的几率很大,容易使小车的行驶路线偏离轨道,达不到循迹的目的。
方案三、使用四只stl198光电管分左右两边各两只光电管一排排列,里面的两个距离靠的较远,外面的两个靠的比较近。
当小车脱离轨道时即里面的两个光电管中有一个或者两个都偏离了轨道,等待外面的那两个光电管的任何一个检测到黑线时,做出相应的转向调整。
直到中间的两个开关管的任何一个检测到黑线为止(即回到轨道上)再恢复正向行驶。
现场调试表明,小车在行驶中虽然出现摇摆(各个光电管间的距离达到1厘米),但是基本上能准确地达到循迹目的。
综合考虑实际中光电管的安装,考虑小车的行驶速度和循迹准确性,我们最终选择了方案三。
智能循迹避障小车报告
![智能循迹避障小车报告](https://img.taocdn.com/s3/m/472c443583c4bb4cf7ecd18c.png)
摘要:本智能识别小车以STC89C52单片机为控制芯片,以直流电机,光电传感器,超声波传感器,电源电路以及其他电路构成。
系统由STC89C52通过IO口,通过红外传感器检测黑线,利用单片机输出PWM脉冲控制直流电机的转速和转向,循迹由TCRT5000型光电对管完成。
一、系统设计1、小车循迹,避障原理这里的循进是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。
红外探测法,即利用红外a在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地板时,发生漫反射反射光被装在小车上的按收管按收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光,单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
红外探测器探测距离有限一殷最大不应超过3cm。
而避障则是通过超声波模块不断向前方发射超声波信号,通过接收反射回来的超声波信号,从而实现的避障。
当前方有障碍物时,超声波会向单片机串口发送一串数字,这些数字就是当前小车距离障碍物得距离。
当串口接收到信号时,会引发串口中断,单片机通过读取距离值,并且对此数值进行分析是不是距离小车很近,是的话就进行转向;否则继续循迹。
当小车遇到第一个障碍后,就计数一次,这样当遇到第二个障碍物时,小车就可以以不同的形式躲避障碍物了。
2、选用方案(1):采用成品的小车地盘,通过改装来完成任务;(2):采用STC89C52单片机作为主控制器;(3):采用7V电源经7805稳压芯片降压后为其他芯片及器件供电。
(4):采用TCRT5000型红外传感器进行循迹;(5):L298N作为直流电机的驱动芯片;(6):通过对L298N使能端输入PWM来控制电机转速和转向;3、系统机构框图如下所示:二、硬件实现及单元电路设计与分析1、微控制模块设计与分析微控制器模块我们采用STC89C52。
该芯片采用双列直插是封装,便于焊接,性能比较稳定,而且在市场上也是比较廉价的单片机。
智能循迹小车设计报告(总17页)
![智能循迹小车设计报告(总17页)](https://img.taocdn.com/s3/m/0d24a2dd5ff7ba0d4a7302768e9951e79b8969b8.png)
智能循迹小车设计报告(总17页)一、设计目的本项目旨在设计一款运用机器视觉技术的智能循迹小车,能够自主寻找指定路径并行驶,可用于实现自动化物流等应用场景。
二、设计方案2.1 系统概述本系统基于STM32F103C8T6单片机和PiCamera进行设计。
STM32F103C8T6单片机负责循迹小车的控制和编码器的反馈信息处理,PiCamera则用于实现图像识别和路径规划,两者之间通过串口进行通讯。
2.2 硬件设计2.2.1 循迹模块循迹模块采用红外传感器对黑线进行探测,通过检测黑线与白底的反差判断小车的行驶方向。
本设计采用5个红外传感器,每个传感器分别对应小车行驶时的不同位置,通过对这5个传感器的读取,可以获取小车所在的实际位置和前进方向。
电机驱动模块采用L298N电机驱动模块,通过PWM信号来控制电机的转速和方向。
左右两侧的电机分别接到L298N模块的IN1~IN4引脚,电机转向由模块内部的电路通过PWM 信号控制。
2.2.4 Raspberry PiRaspberry Pi用于图像处理和路径规划。
本设计使用PiCamera进行图像采集,在RPi 上运行OpenCV进行图像处理,识别道路上的黑线,并通过路径规划算法计算出循迹小车当前应该行驶的方向,然后将该方向通过串口传输给STM32单片机进行控制。
本设计的系统结构分为三个层次:传感器驱动层、控制层、应用层。
其中,传感器驱动层实现对循迹小车上的传感器的读取和解析,生成对应的控制指令;控制层对控制指令进行解析和执行,控制小车的运动;应用层实现图像处理和路径规划,将路径信息传输给控制层进行控制。
在应用层,本设计采用基于灰度阈值的图像处理算法,通过寻找图像中的黑色线条,将黑色线条和白色背景分离出来,以便进行路径规划。
路径规划采用最短路径算法,计算出循迹小车当前应该行驶的方向,然后将该方向发送给控制层进行控制。
2.4 可行性分析本设计的硬件设计采用常见的模块化设计,采用Arduino Mega作为基础模块,通过模块之间的串口通信实现对整个系统的控制,扩展性和可维护性良好。
智能小车循迹报告
![智能小车循迹报告](https://img.taocdn.com/s3/m/2516763c0b4c2e3f57276311.png)
电工电子实习报告学院:专业班级:学生姓名:指导教师:完成时间:成绩:智能循迹小车设计报告一. 设计要求(1).通过理论学习掌握基本的焊接知识以及电子产品的生产流程。
(2).熟悉掌握手工焊接的方法与技巧。
(3).完成循迹智能小车的安装与调试二. 设计的作用、目的1.利用所学过的基础知识,通过本次电子实习培养独立解决实际问题的能力;2.巩固本课程所学的理论知识和实验技能;3.掌握常用电子电路的一般设计方法,提高设计能力和实验、动手能力,为今后从事电子电路的设计、研制电子产品打下基础。
三.设计的具体实现1. 系统概述智能机器人小车的设计中我们使用的是一体反射式红外对管,所谓一体就是发射管和接受管固定在一起,反射式的工作原理就是接收管接收到的信号是发射管发出的红外光经过反射物的反射后得到的,所以使用红外对管进行循迹时必须是白色地板红外寻迹是利用红外光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。
(为简化操作,本次实习只安装了两侧的探头)1)行驶直线的控制:利用红外传感器的左右最外端的探头检测黑线,如果全白则说明在道中间,没有偏离轨道,走直线;一旦右侧探头检测到黑线,说明小车外侧探头已跑出轨道,让车左拐;同理一旦左侧检测到黑线,说明左侧探头已经出线,执行右拐命令。
2)拐直角弯的控制:当车前探头检测到黑线,执行直走,让车中心探头去检测,一旦探头检测到黑线开始左拐,直到车位探头检测到跳出左拐命令,继续开始执行循迹,通过设置车中间探头与车尾探头的间距,便可以实现拐弯的角度,进而顺利入弯。
小车的硬件主要包括4大模块:即电源模块、电机驱动模块、红外循迹模块、简易控制模块。
系统工作框图如下:2.单元电路设计与分析1)电源模块电源模块电路板LM2596 开关电压调节器是降压型电源管理单片集成电路,能够输出3A 的驱动电流,同时具有很好的线性和负载调节特性。
最新智能循迹小车实训报告
![最新智能循迹小车实训报告](https://img.taocdn.com/s3/m/3de8e57c76232f60ddccda38376baf1ffc4fe3ff.png)
最新智能循迹小车实训报告
本报告详细介绍了一款最新的智能循迹小车,以及开发过程中的重点工作和结果。
该智能循迹小车在物理结构、电气控制、及人工智能三个方面就具有较高水平的集成性能和功能性能。
1、物理结构。
循迹小车的整体物理结构采用双桨式结构,结构紧凑,重量轻,机身尺寸小,可以根据需要进行调节。
、内部由两个舵机控制重心位置,以保证有利于车身机动性的布局。
机身还配备了运动控制芯片、感知模块、无线传输模块、直流电机驱动系统等组成部分。
2、电气控制。
主要包括电机驱动系统、无线通信模块、ADC/DAC模块、单片机系统、传感器模块等;其中最重要的是控制系统,以便根据用户的要求实现相应的控制。
主要包括Xilinx FPGA平台、定时器模块、PWM控制模块及延时模块等。
3、人工智能。
采用机器学习和自我改进的人工智能技术,具有高效的算法,可以从环境中自动收集信息,并在环境发生改变时快速响应应对。
人工智能技术实现了比传统系统更有效率、更完善的控制模型,实现自主循迹、避障等功能,提供完整的信息结构,以及更高性能的机电一体化数字控制。
本次实训完成了一款智能循迹小车的开发,实现了高效、低成本的机电一体化控制,具有良好的环境适应能力和自主动作能力。
实训采用了多个组件,经过系统集成进行了实际测试,结果表明智能循迹小车具有良好的性能和稳定性。
综上所述,本报告详细介绍了新一代智能循迹小车开发实训的过程,在物理结构、电气控制、人工智能三个方面对其进行了设计、组装和实验,验证了其良好的环境适应能力与自主动作能力。
本实训还为今后改进智能循迹小车提供了参考意见,拓展了研究领域。
``。
智能循迹小车实验报告
![智能循迹小车实验报告](https://img.taocdn.com/s3/m/3ff8a7eedd3383c4bb4cd2de.png)
简单电子系统设计报告---------智能循迹小车学号201009130102年级10学院理学院专业电子信息科学与技术姓名马洪岳指导教师刘怀强摘要本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。
采用与白色地面色差很大的黑色路线引导小车按照既定路线前进,在意外偏离引导线的情况下自动回位。
本设计采用单片机STC89C51作为小车检测、控制、时间显示核心,以实验室给定的车架为车体,两直流机为主驱动,附加相应的电源电路下载电路,显示电路构成整体电路。
自动寻迹的功能采用红外传感器,通过检测高低电平将信号送给单片机,由单片机通过控制驱动芯片L298N驱动电动小车的电机,实现小车的动作。
关键词:STC89C51单片机;L298N;红外传感器;寻迹一、设计目的通过设计进一步掌握51单片机的应用,特别是在控制系统中的应用。
进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。
二、设计要求该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制,绕跑到行驶一周。
三、软硬件设计硬件电路的设计1、最小系统:小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。
主要包括:时钟电路、电源电路、复位电路。
其中各个部分的功能如下:(1)、电源电路:给单片机提供5V电源。
(2)、复位电路:在电压达到正常值时给单片机一个复位信号。
图1 单片机最小系统原理图2、电源电路设计:模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。
在本设计中,51单片机使用5V电源,电机及舵机使用5V电源。
考虑到电源为电池组,额定电压为4.5V,实际充满电后电压则为4-4.5V,所以单片机及传感器模块采用最小系统模块稳压后的5V电源供电,舵机及电机直接由电池供电。
循迹小车报告精选全文完整版
![循迹小车报告精选全文完整版](https://img.taocdn.com/s3/m/d473948e162ded630b1c59eef8c75fbfc67d9448.png)
可编辑修改精选全文完整版创新制作循迹小车制作报告班级:学号:姓名:一、设计方案路面检测模块电路检测路面信息,区分黑色与白面,并形成相对应的高电平与低电平提供给单片机;单片机对路面循迹模块提供的高低电平进行分析,并形成相应的对策(直行、左转、右转和停止等),并将其转化成对应的电压输出给电机驱动模块;电机驱动模块根据单片机提供的电压信号驱动对应的电机,得到与对策相同的执行动作;电源模块电路为三个模块提供所需要的电。
电路框图如下图所示:电路框图二、路面检测模块工作原理一对光电开光的发射管不停的发射红外光,经过路面发射回来的被接受管接收到。
因为白色路面和黑线对光的反射不同,所以正对白色路面的光电对管的接收管接收到更多的红外光,而正对黑线的光电对管的接收管收到较少的红外光。
经过光电开关的接收电路将接收到红外光的多少转化为正相关的电流大小,并进一步转化成接收电路的输出电压(A点电压)的较小值和较大值。
输出电压的较小值和较大值进一步与一个居中的基准电压分别进行比较,对应比较器的输出端(C点)分别为高电平还是低电平,并进一步输出给单片机,同时对应指示发光管的不亮与亮。
路面循迹模块电路如下图所示:D1路面循迹模块电路三、单片机最小系统单片机最小系统包括了时钟电路和复位电路。
时钟电路为单片机工作提供基本时钟,复位电路用于将单片机内部各电路的状态恢复到初始值。
单片机是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号下严格地按时序进行工作。
时钟电路用于产生单片机工作所需要的时钟信号。
时钟信号的产生是在MCS-51系列单片机内部有一个高增益反相放大器,其输入端引脚为XTAL1,其输出端引脚为XTAL2。
只要在XTAL1和XTAL2之间跨接晶体振荡器和微调电容,就可以构成一个稳定的自己振荡器。
复位电路由一个按键、电解电容和电阻组成,它是使CPU 和系统中的其他功能部件都恢复到一个确定的初始状态,并从这个状态开始工作。
智能循迹小车实训报告
![智能循迹小车实训报告](https://img.taocdn.com/s3/m/4ad08192b4daa58da1114ab4.png)
实训报告课程名称:单片机实训完成日期:2014 年7 月10 日任务书实训(习)题目:智能小车的功能设计与实现实训(习)目的:(1)、巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力;(2)培养针对课程需要。
锻炼学生查阅有关手册、图标及文献资料的自学能力,提高组成系统、编程、调试的动手能力;(3)对课程的方案分析、选择、比较、熟悉单片机系统开发、研制的过程,软硬件设计的方法、容及步骤。
实训(习)容:安装智能小车及相关功能设计、调试实训(习)要求:1. 本实训要求由一个团队完成,团队人员不超过8个人。
2. 通过所学知识并利用智能小车、计算机、keil软件、烧写软件等完成实训项目,并拟定实训报告。
3. 能正确组装和调试智能小车。
4. 实训完成后,根据实训容撰写实训报告书一份。
实训报告应包括的主要容(参考)1 系统硬件组成与工作原理1.1 控制器与最小系统1.2 显示模块与按键模块1.3 报警模块1.4 电机与驱动模块的工作原理与接口1.5循迹模块的工作原理与接口1.6 避障模块的工作原理与接口2 功能方案及软件设计2.1 功能设计2.2 软件设计(结合某一赛道、障碍设置说明程序设计思路,给出流程图、程序代码)3功能调试与总结3.1 功能调试排版要求:正文小4宋体;段首缩进2字,行间距固定值18磅。
容展开可以按3级标题形式,如:按1 ……、1.1 ……、1.1.1 形式(如果需要)。
每个1级标题另起一页,1级标题三号黑体居中,题序和标题之间空两个空格,不加标点,段前、段后均为1行,固定值22磅。
2级标题:四号黑体左起,四号黑体,段前、段后均为12磅。
三级标题:小四号黑体左起,段前、段后均为6磅。
图名、表名五号黑体,英文、数字字体为Times New Roman页边距:上、下、左3厘米,右2厘米,A4纸打印。
1系统硬件组成与工作原理1.1.1控制器与最小系统最小系统:要使一块单片机芯片工作起来最简陋的接线方式就是单片机的最小系统。
智能循迹小车报告
![智能循迹小车报告](https://img.taocdn.com/s3/m/17a21b6190c69ec3d5bb7581.png)
西京学院自动化1002班概要本寻迹小车是以万能板为车架,STC12C5A60S2单片机为控制核心,将各传感器的信号传至单片机分析处理,从而控制L293D电机驱动,控制小车,速度由单片机提供的PWM波控制。
利用红外传感器检测黑线,红外对管来实现循迹功能,利用超声波传感器进行检测避障。
整个系统的电路结构简单,可靠性能高。
根据小车各部分功能,模块化硬件电路,并调试电路。
将调试成功的各个模块逐个地“融合”成整体,再进行软件编程调试,直到完成。
关键词:STC12C5A60S2 直流电机红外对管传感器寻迹小车L293D电机驱动 1一、循迹小车的系统的要求和总体方案设计1.1设计要求1.1.1 基本要求利用单片机实验板,并制作一定的外围电路,编写程序设计制作一个智能循迹壁障的小车,具体要求如下:(1)具有启动、停止功能;(2)能够完成前进、后退、左转、右转单独动作和复合动作;(3)能按照规定路线循迹行驶;1.1.2 发挥要求利用超声波或红外等方式实现避障功能1.2智能循迹小车的工作原理我们知道小车的循迹原理是根据实现电位的高低来实现对前进方向的控制的。
在这里我们设定了白色和黑色的通道界面来行驶,而根据我们所学的知识通常采取的方法是红外探测法。
红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
通过查资料我们知道红外探测器探测距离有限,一般最大不应超过3cm。
1.2.1恒压恒流桥式驱动芯片L293D驱动电机原理本L293D 驱动模块,采用ST 公司原装全新的L293D 芯片,采用SMT工艺稳定性高,采用高质量铝电解电容,使电路稳定工作。
可以直接驱动4路3-16V 直流电机,并提供了5V输出接口(输入最低只要6V),可以给5V单片机电路系统供电(低纹波系数),支持3.3V MCUARM控制,可以方便的控制直流电机速度和方向,也可以控制2相步进电机,5线4相步进电机,是智能小车必备利器。
智能循迹小车报告.doc
![智能循迹小车报告.doc](https://img.taocdn.com/s3/m/c18089fd0408763231126edb6f1aff00bed5703a.png)
智能循迹小车报告.doc一、前言智能循迹小车是一款基于机器人技术的智能装备,主要实现对机器人的智能控制和追踪操作,适用于各种场景中的巡航及运输。
智能循迹小车在各类工业现场、家庭生活中得到广泛应用。
本报告将对智能循迹小车的相关技术、应用及未来发展进行分析与总结。
二、技术原理智能循迹小车的核心技术是基于计算机视觉和机器人导航领域中的视觉跟踪技术,实现对目标的追踪和路径规划。
该技术主要包括如下步骤:1. 传感器采集数据:智能循迹小车配备了多种传感器,如激光雷达、摄像头、红外线传感器等,用于采集目标物体的信息;2. 数据处理:接收传感器采集的数据后,智能循迹小车通过算法处理,将数据转化成可供计算机识别的数字信号;3. 目标检测:将数字信号传入计算机,通过人工智能、机器学习等技术实现对目标的识别、分类和跟踪;4. 路径规划:根据目标的位置和运动轨迹,智能循迹小车通过算法实现路径规划和自主导航,避开障碍物,寻找最短路径;5. 控制执行:根据路径规划生成的控制信号,智能循迹小车对轮子和电机执行精确的控制,实现移动和自动导航。
三、应用现状智能循迹小车在生产、物流、安防、家庭生活等众多领域得到广泛应用,以下列举几种应用场景。
1. 工业自动化:在工业生产自动化方面,智能循迹小车可以用于运输原材料和成品、仓库货物的自动化管理、装配线物料转移等。
机器人可以根据目标位置和运动方向,自动运行到指定位置,精准地完成操作任务。
2. 物流配送:智能循迹小车可以用于大型物流中心的快递配送、医院内的物资搬运等场景。
机器人通过自主路径规划和导航,可以自动避开障碍物,并将货物准确地送到目的地,提高了生产效率和准确性。
3. 家庭服务:智能循迹小车还可应用于家庭服务领域,如智能扫地机器人、智能花盆机器人等。
机器人自动巡航,清洁地面,喷水浇花,实现人机交互。
4. 安防监控:在安防监控领域,智能循迹小车可以应用于产品物流追踪、边境巡逻等领域。
机器人对区域进行自动巡航,通过多种传感器检测目标,将异常情况反馈给监控中心,实现精确的实时监控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能小车循迹报告电工电子实习报告学院:专业班级:学生姓名: 指导教师:完成时间:成绩:评阅意见:评阅教师日期智能循迹小车设计报告一. 设计要求(1)(通过理论学习掌握基本的焊接知识以及电子产品的生产流程。
(2)(熟悉掌握手工焊接的方法与技巧。
(3)(完成循迹智能小车的安装与调试二. 设计的作用、目的1.利用所学过的基础知识,通过本次电子实习培养独立解决实际问题的能力;2(巩固本课程所学的理论知识和实验技能;3(掌握常用电子电路的一般设计方法,提高设计能力和实验、动手能力,为今后从事电子电路的设计、研制电子产品打下基础。
三.设计的具体实现1. 系统概述智能机器人小车的设计中我们使用的是一体反射式红外对管,所谓一体就是发射管和接受管固定在一起,反射式的工作原理就是接收管接收到的信号是发射管发出的红外光经过反射物的反射后得到的,所以使用红外对管进行循迹时必须是白色地板红外寻迹是利用红外光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。
(为简化操作,本次实习只安装了两侧的探头)1)行驶直线的控制:利用红外传感器的左右最外端的探头检测黑线,如果全白则说明在道中间,没有偏离轨道,走直线;一旦右侧探头检测到黑线,说明小车外侧探头已跑出轨道,让车左拐;同理一旦左侧检测到黑线,说明左侧探头已经出线,执行右拐命令。
2)拐直角弯的控制:当车前探头检测到黑线,执行直走,让车中心探头去检测,一旦探头检测到黑线开始左拐,直到车位探头检测到跳出左拐命令,继续开始执行循迹,通过设置车中间探头与车尾探头的间距,便可以实现拐弯的角度,进而顺利入弯。
小车的硬件主要包括4大模块:即电源模块、电机驱动模块、红外循迹模块、简易控制模块。
系统工作框图如下:驱动电机检测黑线简易控制控制小车2.单元电路设计与分析1)电源模块电源模块电路板LM2596 开关电压调节器是降压型电源管理单片集成电路,能够输出 3A 的驱动电流,同时具有很好的线性和负载调节特性。
固定输出版本有 3.3V、5V、12V,可调版本可以输出小于 37V 的各种电压。
该器件内部集成频率补偿和固定频率发生器,开关频率为 150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件。
由于该器件只需 4 个外接元件,可以使用通用的标准电感,这更优化了 LM2596 的使用,极大地简化了开关电源电路的设计。
该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在?4%的范围内,振荡频率误差在?15%的范围内;可以用仅80μA 的待机电流,实现外部断电;具有自我保护电路(一个两级降频限流保护和一个在异常情况下断电的过温完全保护电路)2)电机驱动模块L298内部的原理图如下OUT1OUT3OUT2OUT46V动力电源IN4IN1IN2IN3ENBENAOUT1与OUT2与小车的一个电机的正负极相连,OUT3与OUT4与小车的另一个电机的正负极相连,单片机通过控制IN1与IN2,IN3与IN4分别控制电机的正反转。
ENA与ENB分别控制两个电机的使能L298控制表IN1 IN2 ENA 电机状态x X 0 停止1 0 1 顺时针0 1 1 逆时针0 0 1 停止1 1 1 停止注意:X表示状态不定本系统采用9V直流电动机作为智能玩具车的动力源。
用电机驱动专用芯片L298作为电机的驱动。
L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。
是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。
电机驱动模块硬件电路图电机驱动模块原理图L298有两路电源分别为逻辑电源和动力电源,上图中6V为逻辑电源, 12V为动力电源。
J4接入逻辑电源,J6接入动力电源,J1与J2分别为单片机控制两个电机的输入端,J3与J5分别与两个电极的正负极相连。
ENA与ENB直接接入6V逻辑电源也就是说两个电机时刻都工作在使能状态,控制电机的运行状态只有通过J1与J2两个接口。
由于我们使用的电机是线圈式的,在从运行状态突然转换到停止状态和从顺时针状态突然转换到逆时针状态时会形成很大的反向电流,在电路中加入二极管的作用就是在产生反向电流的时候进行泄流,保护芯片的安全。
电机驱动电路板3)红外模块循迹是指小车在白色地板上循黑线行走通常采取的方法是红外探测法,红外探测法即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射反射光被装在小车上的接收管接收,如果遇到黑线则红外光被吸收小车上的接收管接收不到红外光 ,单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线 ,从而实现小车的循迹功能。
红外探测器探测距离有限一般最大不应超过3cm。
智能机器人小车的设计中我们使用的是一体反射式红外对管,所谓一体就会发射管和接受管固定在一起,反射式的工作原理就是接收管接收到的信号是发射管发出的红外光经过反射物的反射后得到的,所以使用红外对管进行循迹时必须是白色地板加黑色引导条。
电路原理图如图所示:电路由一组红外对管、电位器、运算放大器和电阻组成的,R1起到限流的作用,用来控制反光管发出红外信号的强弱。
接收管实际上是一个光敏三极管基极的光电流经过放大后流经电阻R2产生电压与电位器调节后得到的电压进行比较。
A1与电阻组成一个比较器。
在有红外信号返回时OUT端输出高电平,反之输出低电平。
说明:信号的检测通过红外传感器发射红外线,判断接受管能否接受到反射回来的信号,若接收到说明探管下面是白线,反之由于黑线对红外线的吸收,使之不能接收到发射出去的红外线,因此判断是黑线,当接收到反射的光时,三极管c e 极导通,通过比较器输出高电平,反之截止输出低电平,这样通过将输出端与单片机的P口相接,判断P口的高低电位,进而间接的判断出检测到的信号,从而实现信号的检测功能。
4)简易控制模块VccVccRR8484776336555555IN1IN322红外OUT1红外OUT5CC51510.01uF0.01uF利用单稳态触发电路实现小车的控制,设定电机驱动模块的IN2=IN4=0;红外模块输出OUT1(OUT5)在未探测到轨迹时输出高电平,控制电路输出高电平,IN1(IN3)=1,小车前行;当有红外对管探测到轨迹时,即OUT1(OUT5)输出低电平触发信号,控制电路使得IN1(IN3)=0,小车左(右)转,由于是暂稳态,所转角度有限,避免超调,从而实现小车的基本循迹功能。
焊接示意图3.电路的安装与调试*焊锡操作(1)焊前准备烙铁头部的预处理(搪锡)应在烙铁架的小盒内准备松香及清洁块(用水浸透),(如果不是长寿命烙铁头,需要用锉刀将头部的氧化层清除),接通电源后片刻,待烙铁头部温度达到松香的熔解温度(约150?)时,将烙铁头插入松香,使其表面涂敷上一层松香, 脱离松香与锡丝接触,使烙铁头表面涂敷一层光亮的焊锡,长度约5-10mm 。
(2)焊接操作姿势与卫生一般烙铁离开鼻子的距离应至少不小于30cm,通常以40cm时为宜电烙铁拿法有三种,如图10:图10 电烙铁拿法注意:使用电烙铁要配置烙铁架,一般放置在工作台右前方,电烙铁用后一定要稳妥放于烙铁架上,并注意导线等物不要碰烙铁头。
焊锡丝一般有两种拿法,如图11 :3).五步法训练(1)准备施焊(2)加热焊件(3)熔化焊料(4)移开焊锡(5)移开烙铁图12 锡焊五步焊接要领1)烙铁头与被焊工件的接触方式(1)接触位置:烙铁头应同时接触需要互相连接的两个工件,烙铁一般倾:; 斜45(2)接触压力:烙铁头与工件接触时应略施压力,以对工件表面不造成损伤为原则)焊锡的供给方法(1)供给时间:工件升温达到焊料的熔解温度时立即送上焊锡;(2)供给位置:送锡时焊锡丝应接触在烙铁头的对侧或旁侧,而不应与烙铁头直接接触。
(3)供给数量:锡量要适中。
主要衡量标准为润湿角为15:<θ<45:;不能呈“馒头”状,否则会掩盖假焊点*注意事项:焊接真是困难重重,以前也只是看到别人焊东西,从来没自己动过手,正所谓“知易行难”,往往表面简单的东西里面包含着很多道理,焊接亦是如此。
我把焊接里面的学问大致总结了下,大概有以下几点:(1).焊接前一定要注意,烙铁的插头必须插在右手的插座上,不能插在靠左手的插座上。
烙铁通电前应将烙铁的电线拉直并检查电线的绝缘层是否有损坏,不能使电线缠在手上。
通电后应将电烙铁插在烙铁架中,并检查烙铁头是否会碰到电线等易燃用品。
烙铁加热时以及加热后不能用手接触烙铁的发热金属部分,以免烫伤或触电。
(2).新电烙铁的最初使用,新的电烙铁不能拿来就用,需要先在烙铁头镀上一层焊锡,方法是:用锉刀把烙铁头锉干净,按上电源,在温度渐渐升高的时候,用松香涂在烙铁头上;待松香冒烟,烙铁头开始能够熔化焊锡的时候,把烙铁头放在有小量松香和焊锡的砂纸上研磨、各个面都要磨到,这样就可使烙铁头镀上一层焊锡从而加强烙铁头寿命。
(3).如果烙铁头上挂有很多的锡,不易焊接,可在烙铁中带水的海绵上或者在烙铁架的钢丝上抹去多余的锡。
不可在工作台或其他地方抹去。
(4).焊接练习板是一块焊盘排列整齐的线路板,先将一根电线芯剥出,插入焊接练习板的小孔中,练习板放在焊接木架上进行焊接。
(5).焊接时先将电烙铁在线路板上加热,大约两秒后,接焊锡丝,观察焊锡丝的多少,不能太多,造成堆焊;也不能太少,造成虚焊。
但焊锡熔化,发出光泽时焊接温度最佳,应立即将焊锡丝移开,再将电烙铁移开。
为了再加热中使加热面积最大,要将烙铁头的斜面靠在元件引脚上,烙铁头的顶尖抵在电路板的焊盘上。
焊点高度一般在2毫米左右。
各硬件模块在焊接前先模拟仿真,仿真无误后按照原理图焊接电路板,焊接后用万用表检测有无虚焊,短接等错误,检测无误后小心接通电源用万用表测模块各端电压,是否与理论值一致。
检测输出是否稳定,用示波器观察纹波合理调整各个模块元器件的参数。
四.心得体会、存在问题和进一步的改进意见等1、对电子工艺的理论有了初步的系统了解。
通过电工电子实习,我了解到了焊接普通元件与电路元件的技巧、印制电路板图的设计制作与工艺流程、工作原理与组成元件的作用等,接受了电子工程师的基本焊接训练,这些使我的基本焊接技术、调试的能力得到初步的培养和锻炼,从而促进我对电工电子技术等课程的掌握有一个较全面的提高和知识能力的全面发展为以后的学习及毕业后的工作奠定基础。
2、自己的动手能力得到很大的锻炼。
在实习过程中,我锻炼了自己动手技巧,提高了自己解决问题的能力。