圆轴扭转的切应力与强度计算变形几何关系

合集下载

圆 轴扭转时的变形和刚度计算

圆 轴扭转时的变形和刚度计算

a<[
]
60MP
a
可见强度满足要求。
目录
扭转\圆轴扭转时的变形和刚度计算
4)刚度校核。轴的单位长度最大扭转角为

max
Tmax GIp
180=
2.86103 N m
π 80109 P a 6.44106
m4
180 3.14
=0.318 / m 1.1 / m
可见刚度也满足要求。
目录
扭转\圆轴扭转时的变形和刚度计算
【例3.6】 一钢制传动圆轴。材料的切变模量G=79×103MPa,
许用切应力[τ]= 88.2 MPa,单位长度许用扭转角 0.5 /m,承受
的扭矩为T = 39.6 kN·m。试根据强度条件和刚度条件设计圆轴的直 径D。
【解】 1)按强度条件设计圆轴的直径。由强度条件
=Tmax W max
床的加工精度;机器的传动轴如有过大的扭转变形,将使机器在运
转时产生较大振动。因此,必须对轴的扭转变形加以限制,即使其
满足刚度条件:
=Tmax max GIp
式中:[ ]——单位长度许用扭转角,单位为rad/m,其数值是由轴
上荷载的性质及轴的工作条件等因素决定的,可从有关设计手册中
查到。在工程实际中,[ ]的单位通常为 /m ,因而刚度条件变为
Gπ2[ ]
3 21 8 0 3 9.6 1 03
79109 2 0.5 m 0.156m 156mm
故取D=160mm,显然轴能同时满足强度条件和刚度条件。
目录
力学
该轴的强度和刚度。
目录
扭转\圆轴扭转时的变形和刚度计算
【解】 1)计算外力偶矩。
M eA
9549

圆轴扭转时的应力和强度计算

圆轴扭转时的应力和强度计算

本章结束
延安大学西安创新学院建筑工程系
延安大学西安创新学院建筑工程系
解: 1、计算轴的扭矩T
将轴在离左端任一距离处用截面切开, 取左段为脱离体,画出其受 力图如下图, 由平衡条件可得:T=M
2、校核强度
此轴满足强度要求
延安大学西安创新学院建筑工程系
§6-3 圆轴扭转时的变形与刚度计算
目的要求:掌握圆轴扭转的变形计算和刚度条 件。
§6-1 圆轴扭转时的应力和强度计算
目的要求:掌握扭转横截面上的应力分 布规律和强度条件的应用。
教学重点:强度条件及其应用。 教学难点:切应力互等定理和剪切胡克
定律。
延安大学西安创新学院建筑工程系
一、 切应力互等定理和剪切胡克定律 1、 切应力互等定理 相互垂直两个平面上的切应力必然成 对存 在,且大小相等、方向都垂直指向 或背离两平面的交线。
延安大学西安创新学院建筑工程系 (3) 指定截面扭矩的计算方法。
延安大学西安创新学院建筑工程系
用一假想的截从要求内力处将 杆件切开 分成两段,取其中的任意一段为研究对 象,画出其受力图,利用平衡方程,求 出 内力(扭矩)
注意:在受力图中,扭矩最好假设成正 方向,如上图。
由力偶平衡得: Me-T=0 即:T=Me
一、 圆轴扭转的概念与实例

1、扭转的概念

杆件的两端受到大小相等、转向相反且作
用平面直垂于杆轴线的力偶的作用,致使杆件
各横截面都绕杆轴线发生相对转动,杆件表面
的纵向线将变成螺旋线。

2、扭转的受力特点:受一对等值、反向、
作用面在横截面内的力偶作用时,圆轴产生扭
转变形。

3、圆轴扭转的变形特点:各横截面绕杆

园轴扭转横截面上剪应力计算

园轴扭转横截面上剪应力计算

2 扭矩旳正负要求
§4-3 薄壁圆筒扭转时旳应力 剪切虎克定律 1 应力计算措施和公式 2 剪切虎克定律公式 3 E G μ之间旳关系
§4-4 圆轴扭转时旳应力和强度条件
一、圆轴扭转时旳应力
• 受扭圆轴横截面上有何应力? • 其应力公式怎样分析与推导?
应力分析措施
试验观察 几何关系 应变分布 物理关系 应力分布 平衡 方 程 应力表达式
例:三个正方形微元体受力后变形如图, 求:三者剪应变
()
(0)
(2)
2、横截面上剪应力旳计算
nm
Me
ab
cd
nm Me
Me
nm Me
nm
用一平面从mm截面处假想旳把杆件提成两部分,留左 边部分为研究对象,因为筒壁旳厚度很小——可以为沿壁厚 剪应力不变 。
因为圆周方向各点情况相同——圆周各点旳应力相等。
于是单元体abcd旳ab边相对于cd也发生了微小旳相对错 动,引起单元体abcd旳剪切变形。
如图所示:ab边对cd 边相对错动旳距离是:
m
n aa' Rd
d c
a
a
b
eR e
d
b
m
n
dx
e
e
d
m
n
d c
a
a
b
eR e
d
b
m
n
dx
aa' R d 直角abc旳角度变化量: ad dx
e
1
MB
MC
2 T2 x
B1
C2
M x 0 M B MC T2 0 T2 M B MC=477.5 2 955N m
3 MD
x

扭转—扭转轴的应力及强度计算(建筑力学)

扭转—扭转轴的应力及强度计算(建筑力学)
1.5 10 6


MPa 51.4MPa
4
WP
2.92 10
扭转
(2) 求空心轴的内径
因为要求实心轴和空心轴的扭转强度相同,故两轴的最
大切应力相等,即
'max max 51.4MPa

max
Tmax
Tmax


WP
D23 1 4 16


6
16Tmax
16
变形的能力。单位GPa,其数值可由试验测得。
切应变的其单位是 弧度(rad)
扭转
二、圆轴扭转时横截面上的应力
从几何关系、物理关系和静力学关系这三个方面来分析圆
轴受扭时横截面上的应力。
1. 几何变形方面
取一圆轴进行扭转试验
试验现象表明,圆轴表面上各点的变形与薄壁圆筒扭转
时的变形一样。
扭转
由观察到的现象,对圆轴内部的变形可做如下假设:扭转
截面(危险截面) 边缘点处。因此,强度条件也可写成 maxFra bibliotekTmax

[ ]
W
圆轴强度条件可以解决圆轴扭转时的三类强度问题,即
进行扭转强度校核、圆轴截面尺寸设计及确定许用荷载。
扭转
例9-6 一实心圆轴,承受的最大扭矩Tmax=1.5kN•m,轴
的直径d1=53mm。求:(1)该轴横截面上的最大切应力。
扭转
第四节 圆轴扭转的强度计算
一、圆轴的扭转破坏试验与极限应力
圆轴的扭转试件可分别用Q35钢、铸铁等材料做成,扭
转破坏试验是在扭转试验机上进行。试件在两端外力偶Me
作用下,发生扭转变形,直至破坏。
Q35钢
铸铁

轴的扭转-应力,强度

轴的扭转-应力,强度

T
T Ip
式中 T——所求切应力点的横截面 上的扭矩
B
B' dA

R O
max

——所求切应力点到圆心的距离
Ip=A2dA——横截面对圆心O的极惯性矩
注意:切应力公式的适用范围:max ≤p
3.最大切应力
T
max

TR Ip
B
B' dA

R O
T max Wp
´
上述公式可得到如下结论。
0
0
0 0 , 0 max
45 min , 45 0
45 max , 45 0
450
450 0 90
90 0 , 90 max
取 d = 29.7 mm。
可见:此轴的直径是由刚度条件控制的
155 N . m
圆轴扭转斜面上的应力
为什么研究斜截面应力? ☆ ☆ 逻辑上,正截面——斜截面 实际上,见下面的实验结果,原因?
扭转轴的破坏(想一想:为什么这样?)
途径:1、仿正截面过程;2、用正截面推导斜截面应力
《应力状态理论》对于
2.应力公式推导 (1) 变形几何方面 取微段dx研究
Me
p
q
Me

x A p dx
T p

B q
O

x
d (1) tg dx d ——单位长度扭转角 式中 dx
即:
q R O2 B' d B C' C q dx
T

A
O1 A'

对给定的截面,与成正比

工程力学--第八章_圆轴的扭转

工程力学--第八章_圆轴的扭转
rdf / dx
df /dx ,称为单位扭转角。
对半径为r的其它各处,可作类 似的分析。
1. 变形几何条件
MT
A
r
B r
rr
C
df
C O D
D
dx
对半径为r的其它各处,作类 似的分析。 同样有:
CC= dx=rdf
即得变形几何条件为:
rdf / dx --(1)
剪应变的大小与半径r成
2
TBC 2
B mx C
2 TBC
2
T
A
用假想截面2将圆轴切开 ,取左段或右段为隔离 体,根据平衡条件求得 :
TBC=-mx
(3)作扭矩图
2mx +
B

Cx mx
[例8-2]图示为一装岩机的后车轴,已知其行走的功率 PK=10.5kW,额定转速n=680r/min,机体上的荷载通过轴承 传到车轴上,不计摩擦,画出车轴的扭矩图
4.78
6.37
15.9
4.78
简捷画法:
MT图 10kN m 10kN m
FN图(轴力)
2kN 8kN
5kN
o
x
A
C B 20kN m
5kN 2kN 8kN
5kN
向 按右手法确定

MT / kN m
20
5kN
3kN
10
N图
5kN
A
B
C
在左端取参考正向,按载荷大小画水平线;遇集 中载荷作用则内力相应增减;至右端回到零。
G
df
dx
A
r 2dA

MT
3. 力的平衡关系
令:

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 一、扭转的概念 复习 Me
mA
阻抗力 偶
主动力 偶
me
受力特点:杆两端作用着大小相等、方向相反的力偶,且力 偶作用面垂直于杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。 主要发生扭转变形的杆——轴。
Mx 16M x 16 1.5kN m 103 max= = 3 = =50.9MPa 3 4 -3 4 WP πD 1 π 90mm 10 1 0.9传动轴的强度是安全的。
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 2.确定实心轴的直径 根据实心轴与空心轴具有同样数值的最大剪应力的要求, 实心轴横截面上的最大剪应力也必须等于 50.9MPa 。若设实 心轴直径为d1,则有
b b
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 T 一、 扭转强度计算 变截面圆轴: max W [ ] 1、强度条件: p
max
max
对脆性材料 [ ] 对韧性材料 [ ]
b
nb

名师讲义【赵堔】工程力学第9章扭转强度与刚度

名师讲义【赵堔】工程力学第9章扭转强度与刚度

d MTn x dx
GI p
AB 截面相对扭转角为:
l
d
l
MTn x dx
GI p
# 图示为变截面圆杆,A、B 两端直径分别为 d1、d2 。
从中取 dx 段,该段相邻两截 面的扭转角为:
d T dx
GI P (x)
AB 截面相对扭转角为:
d
T dx
L
L GI P ( x)
三、 扭转杆的刚度计算
圆管强度。
解:1. 计算扭矩作扭矩图
2. 强度校核
危险截面:截面 A 与 B
A
TA
2πR02d1
ml
2πR02d1
44.6
MPa [
]
ml
B
TB
2π 2
27.9
MPa [
]
圆管强度足够
例 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m,
d
5、切应力的计算公式:
dA 对圆心的矩 → dAr0
T
AdA.r0
2 0
r0
2td
r02t2
T
2r0 2t
薄壁圆筒扭转时 横截面上的切应力计算式
二、关于切应力的若干重要性质
1、剪切虎克定律
为扭转角 r0 l
l
r0 即
l
做薄壁圆筒的扭转试验可得 T
纵轴 T——
T
2r02t
核轴的刚度 解:1. 内力、变形分析
T1 MA 180 N m
AB
T1l GIp
1.5010-2
rad
T2 MC 140 N m

圆轴扭转的切应力与强度计算变形几何关系共55页文档

圆轴扭转的切应力与强度计算变形几何关系共55页文档
圆轴扭转的切应力与强度计算变形几何关 系
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
55

圆轴扭转时横截面上任一点的切应力

圆轴扭转时横截面上任一点的切应力

圆轴扭转时横截面上任一点的切应力圆轴扭转时横截面上任一点的切应力是一个重要的力学概念,它描述了在轴的截面上某一点处的剪切应力大小和方向。

下面我将按照列表的方式详细解释圆轴扭转中横截面上任一点的切应力。

一、圆轴扭转的概念和基本假设1. 圆轴扭转是指在沿轴线的方向施加一个扭矩,导致轴发生扭转变形。

2. 圆轴在扭转过程中假设为均匀材料,并且截面形状保持不变。

二、圆轴扭转中的切应力分布1. 圆轴扭转中,横截面上任一点的切应力由以下公式给出:τ = T * r / I其中,τ表示切应力,T表示扭矩,r表示距离轴心的径向距离,I为截面的惯性矩。

2. 切应力与径向距离的关系:a) 当径向距离r为0时,切应力最大,即τmax = T / Imax,此时切应力方向与径向垂直。

b) 当径向距离r为轴心到截面的最大半径时,切应力为0,即τ = 0,此时切应力方向与径向平行。

三、圆轴扭转中切应力分布的特点1. 切应力大小与施加的扭矩成正比,扭矩越大,则切应力也越大。

2. 切应力大小与距离轴心的径向距离成反比,距离轴心越远,切应力越小。

3. 切应力的分布呈线性分布,即切应力随着径向距离线性增大或减小。

四、圆轴扭转中切应力的应用1. 切应力是圆轴扭转时的关键参数,可用于设计和分析扭转轴的强度和刚度。

2. 切应力的大小决定了轴在扭转时是否能够承受外部载荷。

3. 切应力的方向决定了轴的截面上是否存在剪切面。

在圆轴扭转中,横截面上任一点的切应力是一个重要的力学概念。

了解圆轴扭转中切应力的分布特点可以帮助工程师设计和分析扭转轴的性能和稳定性。

通过合理的选择材料和几何形状,可以使扭转轴具有更好的强度和刚度,以满足实际工程应用的需求。

工程力学第9章圆轴的扭转

工程力学第9章圆轴的扭转

τ ′d x d z
d
τ
c
τ d yd z
x
∑F = 0 ∑F = 0 ∑M = 0
y x z
自动满足 存在τ'
(τ d y d z ) d x = (τ ′ d x d z ) d y

τ′ =τ
y
τ'
a dy b z
切应力互等定理 d
在相互垂直的两个面上, 在相互垂直的两个面上,切 应力总是成对出现,并且大小相 应力总是成对出现,并且大小相 等,方向同时指向或同时背离两 个面的交线。 个面的交线。
一、圆轴扭转时横截面上的应力 1、几何关系:由实验找出变形规律 应变的变化规律 几何关系 由实验找出变形规律→应变的变化规律 1)实验: 实验:
2)观察变形规律: 观察变形规律:
圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动 形状、大小、间距不变, 圆周线 形状 了一个不同的角度。 了一个不同的角度。 纵向线——倾斜了同一个角度,小方格变成了平行四边形。 倾斜了同一个角度,小方格变成了平行四边形。 纵向线 倾斜了同一个角度 扭转平面假设:变形前的横截面,变形后仍为平面, 扭转平面假设 变形前的横截面,变形后仍为平面,且形状 、大 小 以及间距不变,半径仍为直线。 以及间距不变,半径仍为直线。
3
) 16T 3 16(1.5×103N⋅m = = 0.0535 m d ≥ 6 π(50×10 Pa) π[τ ]
m 取: d = 54 m
2. 确定空心圆轴内、外径 确定空心圆轴内、
Wp =
3
πD3 16
(1−α )
4
16T π 3 D (1−α 4) 16
结论: 结论:
横截面上

工程力学基础课件:第7章 圆轴扭转时的应力变形分析及强度和刚度设计

工程力学基础课件:第7章 圆轴扭转时的应力变形分析及强度和刚度设计

实心圆截面
空心圆截面
薄壁圆环截面
t/R0<1/10
I p
d 2 23d D4
0
32
I
p
D4
32
(1
4)
I p R02 dA 2R03t
WT
D4
D
/ 32 2
D3
16
WT
I p D3 (1 4 )
D 2 16
WT
Ip R0
2R02t
例:由两种不同材料组成的圆轴,里层和外层材料的切变模
3. 静力学关系
G
G
d
dx
静力等效原理(合力矩定理)
分力系:分布于横截面上的剪应力
合力系:扭矩MT
A ( dA) MT
G
G
d
dx
MT
A ( dA)
(G d dA) G d
A dx
dx
2dA
A
引入记号
Ip
2dA
A
WT
Ip R
G
d
dx
G
MT GI p
max
MT R Ip
MT Ip /R
dx
扭转圆轴时横截面上距离圆心 处的剪应变
2. 物理关系
对线性弹性材料,根据剪切胡克定律,在弹性范围内有
G
G
d
dx
tan 1 G
O
推论一:圆轴扭转时横截面上只有垂直于半径方向的剪应力, 而无正应力。
推论二:横截面上各点剪应变与该点到轴心的距离成正比。
推论三:横截面上各点剪应力与该点到轴心的距离成正比。
d MT
dx GI p
MT
Ip
max

第九章扭转杆件的强度与刚度计算

第九章扭转杆件的强度与刚度计算

max
Tmax GIp
180
Tmax
180
G ( D4 / 32)
[]
D4
32Tmax 180
G 2 []
0.0297 m
D 30 mm
作业: 9-1; 9-2; 9-7; 9-8
BA
M x(CB)l GJp
M x(BA)l GJp
0.5 32
8.21010 0.14 (5000 2000)
1.86103弧度 1.86103 180
0.107
9-2 圆轴扭转时的强度和刚度计算
圆轴扭转强度条件
强度条件:
max
Tmax Wt
[ ]
刚度条件:
max
Tmax GIp
3.计算相对扭转角
根据dϕ/dx=Tx/(GIp),这是单位长度的扭转角,相距 dx的两个截面的扭转角为dϕ=Txdx/(GIp)。在AB和
BC中扭矩沿长度方向无变化,因此两个端截面(A和
B,B和C)的相对扭转角为ϕ=Tx/(GIp)。但二者是反
向的。于是C截面相对于A截面的相对扭转角为
C A
CB
G
G
G
d
dx
切应力沿半 径呈线性分 布。
3 静力关系 横截面上内 力系对圆心 的矩应等于 扭矩T。
A
d
A
T
即: T A d A
G d d A G d
A
dx
dx
2 d A
A

Ip
2d A
A
T
GIp
d
dx
横截面对圆心O的极惯性矩。
d T
d x GIp

Ip
2d A

扭转切应力的计算公式

扭转切应力的计算公式

扭转切应力的计算公式1. 扭转切应力基本公式。

- 对于圆轴扭转时,横截面上的扭转切应力计算公式为τ=(Tρ)/(I_p)。

- 其中τ为扭转切应力,T为横截面上的扭矩,ρ为所求切应力点到圆心的距离,I_p为极惯性矩。

- 在圆轴的外边缘处ρ = r(r为圆轴半径)时,最大扭转切应力τ_max=(T)/(W_t)。

- 这里W_t=(I_p)/(r)称为抗扭截面系数。

对于实心圆轴,I_p=(π d^4)/(32),W_t=(π d^3)/(16)(d为圆轴直径);对于空心圆轴,I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(D为空心圆轴的外径,d为空心圆轴的内径)。

2. 公式的推导依据(简单介绍)- 基于圆轴扭转时的变形几何关系、物理关系(胡克定律在切应力 - 切应变中的应用)以及静力学关系推导得出。

- 变形几何关系表明圆轴扭转时,横截面上的半径仍保持为直线,各横截面绕轴线发生相对转动,其扭转角沿轴线方向是均匀分布的。

通过对微元体的分析,建立起切应变与半径、扭转角之间的关系,再结合物理关系(切应力与切应变的关系τ = Gγ,G为切变模量),最后利用静力学关系(横截面上的扭矩等于微元面上的切应力对圆心的力矩之和)推导出上述扭转切应力公式。

3. 公式的应用条件。

- 公式适用于等直圆轴(实心或空心)的扭转问题。

- 在推导过程中使用了材料的线弹性假设(即切应力与切应变满足胡克定律),所以当应力不超过材料的比例极限时公式才适用。

- 圆轴在扭转时,横截面上没有正应力,只有切应力,并且切应力的方向垂直于半径。

如果结构不符合这些基本假设,如非圆截面轴的扭转,不能直接应用上述公式,需要采用其他的分析方法(例如对于矩形截面轴的扭转,有专门的近似理论和公式)。

圆轴扭转时的切应力应考虑的三方面关系

圆轴扭转时的切应力应考虑的三方面关系

圆轴扭转时的切应力应考虑的三方面关系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!圆轴扭转时的切应力应考虑的三方面关系引言在工程学和物理学领域中,圆轴扭转是一种常见的力学现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 扭 转 与 剪 切
【例5.2】 绘出图5.6(a)所示的悬臂梁的扭矩图。
20 00 N·m
2
1 50 0N·m
(a)
B1
C
A
2
1 50 0N·m
T1
(b)
1 2 20 00 N·m
50 0N·m
T2 (c)
2 T(N ·m)
B
C
50 0N·m
(d)
O
x
- 15 00 N·m
图 5.6
第5章 扭 转 与 剪 切 解 (1) 计算梁上各段横截面上的扭矩。 因为是悬臂梁,可取截面的自由端部分BC段, 如图5.6(b)
1
2
A MA
1Hale Waihona Puke 1B MB2
T1 MA 1
C MC
2
(c) MA
T
T2
MB
2
(d) 0
x - 47 .75N·m
图 5.7
- 14 3.24 BN·m
第5章 扭 转 与 剪 切
5.3 圆轴扭转的切应力与强度计算
5.3.1 变形几何关系 取一等截面圆轴,在其表面上作出两条平行于轴线的纵向
线aa、bb, 两条圆周线11、22,如图5.8 (a) 所示。再在圆轴 的两端分别作用一个外力偶M,使杆件发生扭转变形。由图5.8 (b)可以看到以下变形现象:各圆周线的形状、大小、间距保 持不变, 只绕轴线作相对转动;各纵向线倾斜了一个相同的角 度γ, 由圆周线与纵向线组成的原矩形变成了平形四边形。
22
C
1
2
dx
(b)
(c)
图5.8
第5章 扭 转 与 剪 切
5.3.2 横截面上的切应力
由剪切胡克定律可得τρ=Gγρ, 即
由∑m=0
T′+M2-M3=0
T′=M3-M2(M1=M3-M2)
第5章 扭 转 与 剪 切
Me (+ )
n
(+ )
T
x
(a)
n
x T
Me
(b)
图 5.5
第5章 扭 转 与 剪 切
5.2.3 扭矩图 通常圆轴上各横截面上的扭矩是不相同的。为了直观地表
示圆轴上扭矩的作用情况,把圆轴的轴线作为x轴(横坐标 轴), 以纵坐标轴表示扭矩T,这种用来表示圆轴横截面上扭 矩沿轴线方向变化情况的图形称为扭矩图。
第5章 扭 转 与 剪 切 由以上分析可知:圆轴受扭转变形后,其横截面大小和形状 不变, 由此可导出横截面上沿半径方向无切应力作用;又由于 相邻横截面的间距不变,因此横截面上无正应力作用。但因为 相邻横截面发生绕轴线的相对转动,所以横截面上必然有垂直 于半径方向的切应力。切应力用符号τ表示。
在圆轴上取一微段dx,放大后如图5.8(c)所示,右截面相对 于左截面转过了一个角度dφ,半径由O2B转至O2C位置,纵向线 AB倾斜γ角度达到AC位置,A点的切应变为
5.2.1 外力偶矩的计算
在工程中,作用于圆轴上的外力偶矩一般不是直接给出的, 通常给出的是圆轴所需传递的功率和转速。因此,需要了解功 率、 转速和外力偶矩三者之间的关系, 即
M 9549 P n
式中, M——作用于轴上的外力偶矩, 单位: N·m ;
P——轴所传递的功率, 单位: kW
n——轴的转速, 单位: r/min。
tan R d
dx
第5章 扭 转 与 剪 切
那么,距轴线为ρ的任意一点的切应变为
d
dx
对于给定的横截面,dφ/dx为常量。故由(5.2)式可知,横 截面上任意一点的切应变与该点到圆心的距离ρ成正比。
第5章 扭 转 与 剪 切
12
a
a
1
2
b 12
(a)
b
O1
O2
R
A
B
d
A
B C
11
a
aM
b
b
所示。 由平衡方程T1-500=0 T1 =500 N·m AB段:如图5.6(c)所示。
T2+2000-500=0 T2 =-1500 N·m (2) 绘制扭矩图如图5.6 (d) 所示。
第5章 扭 转 与 剪 切
【例5.3】 已知一传动轴如图5.7(a)所示,主动轮A上输入功
率为15 kW,B、C轮为输出轮,输出轮B上输出功率为10 kW,
轴的转速为n=1000 r/min。试求各段轴横截面上的扭矩,并绘出 扭矩图。
解 (1) 计算外力偶矩M。
M
A
9549
15 1000
143.24N
m
MB
9549 10 1000
95.49N
m
方向与轴的转向相同 方向与轴的转向相反
第5章 扭 转 与 剪 切 (2) 计算扭矩T。 由图5.7(b)可得
第5章 扭 转 与 剪 切
第5章 扭 转 与 剪 切
5.1 扭转的概念与实例 5.2 外力偶矩与扭矩 5.3 圆轴扭转的切应力与强度计算 5.4 圆轴扭转变形与刚度计算 5.5 剪切与挤压的实用计算 思考与练习
第5章 扭 转 与 剪 切
5.1 扭转的概念与实例
5.1.1 扭转的概念
T
T
图 5.1
第5章 扭 转 与 剪 切
T1+MA=0
由图5.7(c)可得
T1= -MA=-143.24N·m
T2+MA-MB=0 T2=MB-MA=-47.75N·m
第5章 扭 转 与 剪 切
(3) 绘 制 扭 矩 图 (a) 如 图 5.7(d) 所 示 。 由 图 可 知 , AB 段 所 承 受的扭矩最大,其值 (b) 为-143.24 N·m 。
说明:轴上输入力偶矩是主动力偶矩,其转向与轴的转向相 同; 轴上输出力偶矩是阻力偶矩, 其转向与轴的转向相反。
第5章 扭 转 与 剪 切 【例5.1】已知某传动轴传递的功率为7.5 kW,转速为300 r/min,试计算此传动轴传递的外力偶矩。 解 由公式(5.1)计算得
M 9549 7.5 238.725N m 300
其变形特点是:杆件的任意两横截面绕轴线产生相对转动, 但杆的轴线位置和形状保持不变。这种变形称为扭转。以扭转 为主要变形的杆件称为轴。
第5章 扭 转 与 剪 切 5.1.2
F A
F
M
B 图 5.2
第5章 扭 转 与 剪 切
F d F
Me
图 5.3
第5章 扭 转 与 剪 切
5.2 外力偶矩与扭矩
第5章 扭 转 与 剪 切
M1
m
M2
M3
(a)
m
M1
T
(b)
T
M2
M3
(c)
图 5.4
第5章 扭 转 与 剪 切
由力偶平衡条件可知:m-m截面上必须有一个内力偶矩与外
力偶矩M1平衡,此内力偶矩称为扭矩,用符号T表示,T的单位
为N·m。
由∑m=0得
M1 T 0 T M1
若取m-m横截面的右端部分为研究对象,画出受力图, 如图 5.4(c)所示。可求得m-m横截面上的扭矩T′,显然,T′与T大小相 等,方向相反,即为作用与反作用关系。
相关文档
最新文档