最全面的ANSYS命令流使用手册
ansys命令流操作大全
ansys命令流操作大全ansys——ANSYS命令流(Ⅰ)1. A,P1,P2,…,P17,P18(以点定义面)2. AADD,NA1,NA2,…NA8,NA9(面相加)3. AATT,MAT,REAL,TYPE,ESYS,SECN(指定面的单元属性)【注】ESYS为坐标系统号、SECN为截面类型号。
4. *ABBR,Abbr,String(定义一个缩略词)5. ABBRES,Lab,Fname,Ext(从文件中读取缩略词)6. ABBSAVE,Lab,Fname,Ext(将当前定义的缩略词写入文件)7. ABS,IR,IA,--,--,Name,--,--,FACTA(取绝对值)【注】*************8. ACCAT,NA1,NA2(连接面)9. ACEL,ACEX,ACEY,ACEZ(定义结构的线性加速度)10. ACLEAR,NA1,NA2,NINC(清除面单元网格)11. ADAMS,NMODES,KSTRESS,KSHELL【注】*************12. ADAPT, NSOLN, STARGT, TTARGT, FACMN, FACMX, KYKPS, KYMAC【注】*************13. ADD,IR, IA, IB, IC, Name, --,-- , FACTA, FACTB, FACTC(变量加运算)14. ADELE,NA1,NA2,NINC,KSWP(删除面)【注】KSWP =0删除面但保留面上关键点、1删除面及面上关键点。
15. ADRAG,NL1,NL2,…,NL6,NLP1,NLP2,…,NLP6(将既有线沿一定路径拖拉成面)16. AESIZE,ANUM,SIZE(指定面上划分单元大小)17. AFILLT,NA1,NA1,RAD(两面之间生成倒角面)18. AFSURF,SAREA,TLINE(在既有面单元上生成重叠的表面单元)19. *AFUN, Lab(指定参数表达式中角度单位)20. AGEN, ITIME, NA1, NA2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE(复制面)21. AGLUE,NA1,NA2,…,NA8,NA9(面间相互粘接)22. AINA,NA1,NA2,…,NA8,NA9(被选面的交集)23. AINP,NA1,NA2,…,NA8,NA9(面集两两相交)24. AINV,NA,NV(面体相交)25. AL,L1,L2,…,L9,L10(以线定义面)26. ALIST,NA1,NA2,NINC,Lab(列表显示面的信息)【注】Lab=HPT时,显示面上硬点信息,默认为空。
ansys命令流最全详细介绍二
三生成关键点和线部分1.生成关键点K,关键点编号,X坐标,Y坐标,Z坐标例:K,1,0,0,02.在激活坐标系生成直线LSTR,关键点P1,关键点P2例LSTR,1,23.在两个关键点之间连线L,关键点P1,关键点P2例L,1,2注:此命令会随当前的激活坐标系不同而生成直线或弧线4.由三个关键点生成弧线LARC,关键点P1,关键点P2,关键点PC,半径RAD例LARC,1,3,2,0.05注:关键点PC是用来控制弧线的凹向5.通过圆心半径生成圆弧CIRCLE,关键点圆心,半径RAD,,,,圆弧段数NSEG例:CIRCLE,1,0.05,,,,46.通过关键点生成样条线BSPLIN,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6例:BSPLIN,1,2,3,4,5,67.生成倒角线LFILLT,线NL1,线NL2,倒角半径RAD例LFILLT,1,2,0.0058.通过关键点生成面A,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6,P7,P8...例:A,1,2,3,49.通过线生成面AL,线L1,线L2,线L3,线L4,线L5,线L6,线L7,线L8,线L9,线L10例:AL,5,6,7,810.通过线的滑移生成面ASKIN,线NL1,线NL2,线NL3,线NL4,线NL5,线NL6,线NL7,线NL8,线NL9例:ASKIN,1,4,5,6,7,8注:线1为滑移的导向线四目标:掌握常用的实体-面的生成生成矩形面1.通过矩形角上定位点生成面BLC4,定位点X方向坐标XCORNER,定位点Y方向坐标YCORNER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH例:BLC4,0,0,5,3,02.通过矩形中心定位点生成面BLC5,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH注:与上条命令的不同就在于矩形的定位点不一样例:BLC5,2.5,1.5,5,3,03.通过在工作平面定义矩形X.Y坐标生成面RECTNG,矩形左边界X坐标X1,矩形右边界X坐标X2,矩形下边界Y坐标Y1,矩形上边界Y坐标Y2例:RECTNG,0,5,0,3生成圆面4.通过中心定位点生成实心圆面CYL4,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,圆面的内半径RAD1,内圆面旋转角度THETA1,圆面的外半径RAD2,外圆面旋转角度THETA2,圆面的深度DEPTH注:如要实心的圆面则不用RAD2,THETA2,DEPTH例:CYL4,0,0,5,3605.生成扇形圆面命令介绍如上例1实心扇形:CYL4,0,0,5,60例2扇形圆环:CYL4,0,0,5,60,10,60例3整的圆环:CYL4,0,0,5,360,10,360注:同时可通过定义圆面的深度以生成柱体6.通过在工作平面定义起始点生成圆面CYL5,开始点X坐标XEDGE1,开始点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2,圆面深度DEPTH例:CYL5,0,0,2,2,7.通过在工作平面定义内外半径和起始角度来生成圆面PCIRC,内半径RAD1,外半径RAD2,起始角度THETA1,结束角度THETA2例LCIRC,2,5,30,1808.生成面与面的倒角AFILLT,面1的编号NA1,面2的编号NA2,倒角半径RAD例:AFILLT,2,5,2下一讲:多边形面的生成。
ansys命令流使用方法
ansys命令流使用方法
在ANSYS中,命令流是一种用于执行特定操作的自动化工具。
以下是ANSYS命令流使用的一般步骤:
1. 打开ANSYS软件并加载您要使用的工程文件。
2. 在ANSYS Graphical User Interface (GUI) 中,将鼠标指针放
在工具栏上。
在“Run”下拉菜单中选择“Command Line”。
3. 在命令行窗口中,输入和编辑您想执行的命令。
您可以使用ANSYS的命令语言以及相关命令进行模型操作、网格生成、
求解等。
4. 您可以通过多种方式输入命令:直接在命令行中输入、从脚本文件中读取、从ANSYS GUI中的日志文件中复制粘贴等。
5. 您可以使用命令流中的参数和变量来进行自动化操作。
使用“!VARIABLE”语句定义变量,并通过“!VARIABLE = value”语
句赋值。
6. 使用ANSYS的各种功能命令对模型进行操作。
例如,在预
处理阶段,您可以使用命令生成几何体、定义材料属性、设定网格、添加边界条件等。
7. 在求解阶段,使用命令启动求解器,设置求解器选项,运行求解器,并监视求解器的输出。
8. 在结果后处理阶段,使用命令读取并处理结果数据,生成图形、报告等。
9. 执行命令流,您可以一次性执行整个命令流,或者逐个执行命令。
10. 您还可以将命令流保存为脚本文件,以便将来再次使用。
以上是ANSYS命令流的一般用法,具体的命令和语法取决于您的特定需求和ANSYS的版本。
建议您参考ANSYS的官方文档和教程,以获得更详细和准确的使用说明。
有限元分析软件ANSYS命令流中文说明4 4
有限元分析软件ANSYS命令流中文说明4 4有限元分析软件ANSYS命令流中文说明4/42010-05-23 21:151设置分析类型ANTYPE,Antype,status,ldstep,action其中antype表示分析类型STATIC:静态分析MODAL:模态分析TRANS:瞬态分析SPECTR:谱分析2 KBC,KEY制定载荷为阶跃载荷还是递增载荷EKY=0递增方式KEY=1阶跃方式3 SOLVE开始一个求解运算4 LSSOLVE读入并求解多个载荷步5 TIME,time设置求解时间有时在分析中需要进入后处理,然后在保持进入后处理之前的状态的情况下接着算下去,可以使用以下的方法:PARSAV,ALL,PAR,TXT!PARSAV命令是储存ANSYS的参数,ALL代表所有参数,PAR是文件名,TXT是扩展名/SOLU ANTYPE,REST,CruStep-1,,CONTINUE!ANTYPE是定义分析类型的命令,REST代表重启动,CruStep代表本载荷步的编号PARRES,NEW,PAR,TXT!PARRES是恢复参数的命令,NEW表示参数是以刷新状态恢复,PAR和TXT 代表了储存了参数的文件名和扩展名如果有单元生死的问题,可以这样处理:ALLSEL,ALL*GET,E_SUM_MAX,ELEM,NUM,MAX!得到单元的最大编号,即单元的总数ESEL,S,LIVE!选中"生"的单元*GET,E_SUM_AL,ELEM,COUNT*DIM,E_POT_AL,E_SUM_MAX!单元选择的指示*DIM,E_NUM_AL,E_SUM_AL!单元编号的数组J=0!读出所选单元号*DO,I,1,E_SUM_MAX*VGET,E_POT_AL(I),ELEM,I,ESEL!对所有单元做循环,被选中的单元标志为"1"*IF,E_POT_AL(I),EQ,1,THEN J=J+1 E_NUM_AL(J)=I*ENDIF*ENDDO ALLSEL,ALL在重启动之后恢复单元生死状态*if,E_SUM_AL,ne,0,then*do,i,1,Num_Alive esel,a,E_NUM_AL(i)*enddo ealive,all allsel*endif/WINDOW,WN,XMIN,XMAX,YMIN,YMAX,NCOPY注意x的坐标是-1到1.67,y坐标是-1到1 Xmin=off on,FULL,LEFT,RIGH,TOP,BOT,LTOP,LBOT,RTOP,RBOT注意一个问题,除了1号窗口外,其他的不能用鼠标操作,只用先发/view 和/dist,然后用/replot。
Ansys命令流大全(整理)
Ansys命令流大全(整理)1、A,P1,P2,P3,P4,P5,P6,P7,P8,P9此命令用已知的一组关键点点(P1~P9)来定义面(Area),最少使用三个点才能围成面,同时产生转围绕些面的线。
点要依次序输入,输入的顺序会决定面的法线方向。
如果超过四个点,则这些点必须在同一个平面上。
Menu Paths:Main Menu>Preprocessor>Create>Arbitrary>Through KPs2、*ABBR,Abbr,String--定义一个缩略语.Abbr:用来表示字符串"String"的缩略语,长度不超过8个字符.String:将由"Abbr"表示的字符串,长度不超过60个字符.3、ABBRES,Lab,Fname,Ext-从一个编码文件中读出缩略语.Lab:指定读操作的标题,NEW:用这些读出的缩略语重新取代当前的缩略语(默认)CHANGE:将读出的缩略语添加到当前缩略语阵列,并替代现存同名的缩略语.Ext:如果"Fname"是空的,则缺省的扩展命是"ABBR".4、ABBSA V,Lab,Fname,Ext-将当前的缩略语写入一个文本文件里Lab:指定写操作的标题,若为ALL,表示将所有的缩略语都写入文件(默认)5、add, ir, ia,ib,ic,name,--,--,facta, factb, factc将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称6、Adele,na1,na2,ninc,kswp !kswp=0时只删除掉面积本身,=1时低单元点一并删除。
7、Adrag, nl1,nl2,nl3,nl4,nl5,nl6, nlp1,nlp2,nlp3,nlp4,nlp5,nlp6 !面积的建立,沿某组线段路径,拉伸而成。
8、Afillt,na1,na2,rad !建立圆角面积,在两相交平面间产生曲面,rad为半径。
ANSYS命令流解释大全
一、定义材料号及特性mp,lab, mat, co, c1,…….c4lab: 待定义的特性项目ex,alpx,reft,prxy,nuxy,gxy,mu,dens ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号缺省为当前材料号c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表这里不考虑温度:TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:afun,deg三、单元生死载荷步第一个载荷步TIME,... 设定时间值静力分析选项NLGEOM,ON 打开大位移效果NROPT,FULL 设定牛顿-拉夫森选项ESTIF,... 设定非缺省缩减因子可选ESEL,... 选择在本载荷步中将不激活的单元EKILL,... 不激活选择的单元ESEL,S,LIVE 选择所有活动单元NSLE,S 选择所有活动结点NSEL,INVE 选择所有非活动结点不与活动单元相连的结点D,ALL,ALL,0 约束所有不活动的结点自由度可选NSEL,ALL 选择所有结点ESEL,ALL 选择所有单元D,... 施加合适的约束F,... 施加合适的活动结点自由度载荷SF,... 施加合适的单元载荷BF,... 施加合适的体载荷SAVESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D,F,SF和BF命令得到更详细的解释;后继载荷步在后继载荷步中,用户可以随意杀死或重新激活单元;象上面提到的,要正确的施加和删除约束和结点载荷;用下列命令杀死单元:Command:EKILLGUI: Main Menu>Solution>-Load Step Opts-Other>Kill Elements用下列命令重新激活单元:Command: EALIVEGUI: Main Menu>Solution>-Load Step Opts-Other>Activate Elem第二个或后继载荷步:TIME,...ESEL,...EKILL,... 杀死选择的单元ESEL,...EALIVE,... 重新激活选择的单元...FDELE,... 删除不活动自由度的结点载荷D,... 约束不活动自由度...F,... 在活动自由度上施加合适的结点载荷DDELE,... 删除重新激活的自由度上的约束SAVESOLVE四、u /grid, keykey: “0”或“off”无网络“1”或“on” xy网络“2”或“x”只有x线“3”或“y”只有y线u xvar, nn: “0”或“1”将x轴作为时间轴“n”将x轴表示变量“n”“-1”u /axlab, axis, lab 定义轴线的标志axis: “x”或“y”lab: 标志,可长达30个字符u plvar, nvar, nvar2, ……,nvar10 画出要显示的变量作为纵坐标五、Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点缺省R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值六、VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体nv1:初始体号nv2:最终的体号ninc:体号之间的间隔kswp=0:只删除体kswp=1:删除体及组成关键点,线面如果nv1=all,则nv2,ninc不起作用七、VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPType,是选择的方式,有选择s,补选a,不选,全选all、反选inv等,其余方式不常用Item, Comp 是选取的原则以及下面的子项如 volu 就是根据实体编号选择,loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标其余还有材料类型、实常数等MIN, VMAX, VINC,这个就不必说了吧,例:vsel,s,volu,,14vsel,a,volu,,17,23,2上面的命令选中了实体编号为 14,17,19,21,23的五个实体u rforce, nvar, node, item, comp, name 指定待存储的节点力数据nvar: 变量号node: 节点号item compF x,M x, y,zname: 给此变量一个名称,8个字符u add, ir, ia,ib,ic,name,--,--,facta, factb, factc 将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称Fini退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1.定义参数、数组,并赋值.2. /prep7进入前处理定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号;设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表存盘3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1通用后处理5./post26 时间历程后处理菜单命令7.参数化设计语言8.理论手册Fini退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1 定义参数、数组,并赋值.u dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type: array 数组,如同fortran,下标最小号为1,可以多达三维缺省char 字符串组每个元素最多8个字符tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane当type为table时2 /prep7进入前处理定义几何图形:关键点、线、面、体u csys,kcnkcn , 0 迪卡尔zuobiaosi1 柱坐标2 球4 工作平面5 柱坐标系以Y轴为轴心n 已定义的局部坐标系u numstr, label, value 设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstru K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号u Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0”如果附有节点及单元,则一起拷贝;“1”不拷贝节点和单元imove:“0”生成拷贝“1”移动原关键点至新位置,并保持号码,此时itime,kinc,noelem被忽略注意:MAT,REAL,TYPE 将一起拷贝,不是当前的MAT,REAL,TYPEu A, P1, P2, ……… P18 由关键点生成面u AL, L1,L2, ……,L10 由线生成面面的法向由L1按右手法则决定,如果L1为负号,则反向;线需在某一平面内坐标值固定的面内u vsba, nv, na, sep0,keep1,keep2 用面分体u vdele, nv1, nv2, ninc, kswp 删除体kswp: 0 只删除体1 删除体及面、关键点非公用u vgen, itime, nv1, nv2, ninc, dx, dy, dz, kinc, noelem, imove 移动或拷贝体itime: 份数nv1, nv2, ninc:拷贝对象编号dx, dy, dz :位移增量kinc: 对应关键点号增量noelem,:0:同时拷贝节点及单元1:不拷贝节点及单元imove: 0:拷贝体1:移动体u cm, cname, entity 定义组元,将几何元素分组形成组元cname: 由字母数字组成的组元名entity: 组元的类型volu, area, line, kp, elem, nodeu cmgrp, aname, cname1, ……,cname8 将组元分组形成组元集合aname: 组元集名称cname1……cname8: 已定义的组元或组元集名称u cmlist,nameu cmdele,nameu cmplot, label1定义几个所关心的节点,以备后处理时调用节点号;u n,node,x,y,z,thxy, thyz, thzx 根据坐标定义节点号如果已有此节点,则原节点被重新定义,一般为最大节点号;设材料线弹性、非线性特性u mp,lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目ex,alpx,reft,prxy,nuxy,gxy,mu,dens ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号缺省为当前材料号c 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数u Tb, lab, mat, ntemp,npts,tbopt,eosopt 定义非线性材料特性表Lab: 材料特性表之种类Bkin: 双线性随动强化Bis 双线性等向强化Mkin: 多线性随动强化最多5个点Mis 多线性等向强化最多100个点Dp: dp模型Mat: 材料号Ntemp: 数据的温度数对于bkin: ntemp缺省为6mis ntemp缺省为1,最多20bis ntemp缺省为6,最多为6dp: ntemp, npts, tbopt 全用不上Npts: 对某一给定温度数据的点数u TBTEMP,temp,kmod 为材料表定义温度值temp: 温度值kmod: 缺省为定义一个新温度值如果是某一整数,则重新定义材料表中的温度值注意:此命令一发生,则后面的TBDATA和TBPT均指此温度,应该按升序若Kmod为crit, 且temp为空,则其后的tbdata数据为solid46,shell99,solid191中所述破坏准则如果kmod为strain,且temp为空,则其后tbdata数据为mkin中特性;u TBDATA, stloc, c1,c2,c3,c4,c5,c6给当前数据表定义数据配合tbtemp,及tb使用stloc: 所要输入数据在数据表中的初始位置,缺省为上一次的位置加1 每重新发生一次tb或tbtemp命令上一次位置重设为1,发生tb后第一次用空闲此项,则c1赋给第一个常数u tbpt, oper, x,y 在应力-应变曲线上定义一个点oper: defi 定义一个点dele 删除一个点x,y:坐标设置单元类型及相应KEYOPTu ET, itype, ename, kop1……kop6, inopr 设定当前单元类型Itype:单元号Ename:单元名设置实常数u Keyopt, itype, knum, valueitype: 已定义的单元类型号knum: 单元的关键字号value: 数值注意:如果 ,则必须使用keyopt命令,否则也可在ET命令中输入设置网格划分,划分网格映射网格划分1.面映射网格划分条件:a. 3或4条边b.面的对边必须划分为相同的单元或其划分与一个过渡形网格的划分相匹配c. 该面如有3条边,则划分的单元不必须为偶数,并且各边单元数相等d. mahkeye. mshpattern如果多于四条边,可将线合并成Lcomb可用amap命令,先选面,再选4个关键点即可指定面的对边的分割数,以生成过渡映射四边形网格,只适用于有四条边的面2. 体映射网格划分1若将体划分为六面体单元,必须满足以下条件a. 该体的外形为块状六面体、楔形或棱形五面体、四面体b. 对边必须划分为相同的单元数,或分割符合过渡网格形式c. 如果体是棱形或四面体,三角形面上的单元分割数必须是偶数2 当需要减少围成体的面数以进行映射网格划分时,可以对面相加或连接;如果连接而有边界线,线也必须连接在一起;3体扫掠生成网格步骤:a. 确定体的拓扑是否能够进行扫掠;侧面不能有孔;体内不能有封闭腔;源面与目标面必须相对b. 定义合适的单元类型c. 确定扫掠操作中如何控制生成单元层的数目 lesized. 确定体的哪一个边界面作为源面、目标面e. 有选择地对源面、目标面和边界面划分网格3. 关于连接线和面的一些说明连接仅是映射网格划分的辅助工具4. 用desize定义单元尺寸时单元划分应遵守的级别高:lesizekesizeesizedesize用smartzing定义单元尺寸时单元划分应遵守的级别高:lesizekesizesmartsizeu LESIZE,NL1,Size, Angsiz,ndiv,space,kforc,layer1,layer2,kyndiv 为线指定网格尺寸NL1: 线号,如果为all,则指定所有选中线的网格;Size: 单元边长,程序据size计算分割份数,自动取整到下一个整数Angsiz: 弧线时每单元跨过的度数Ndiv: 分割份数Space: “+”: 最后尺寸比最先尺寸“-“: 中间尺寸比两端尺寸free: 由其他项控制尺寸kforc 0: 仅设置未定义的线,1:设置所有选定线,2:仅改设置份数少的,3:仅改设置份数多的kyndiv: 0,No,off 表示不可改变指定尺寸1,yes,on 表示可改变u ESIZE,size,ndiv 指定线的缺省划分份数已直接定义的线,关键点网格划分设置不受影响u desize, minl, minh,……控制缺省的单元尺寸minl: n 每根线上低阶单元数缺省为3defa 缺省值stat 列出当前设置off 关闭缺省单元尺寸minh: n 每根线上高阶单元数缺省为2u mshape, key, dimension 指定单元形状key: 0 四边形2D,六面体3D1 三角形 2D, 四面体3DDimension: 2D 二维3D 三维u smart,off 关闭智能网格u mshkey, key 指定自由或映射网格方式key: 0 自由网格划分1 映射网格划分2 如果可能的话使用映射,否则自由即使自由smartsizing也不管用了u Amesh, nA1,nA2,ninc 划分面单元网格nA1,nA2,ninc 待划分的面号,nA1如果是All,则对所有选中面划分u SECTYPE, ID, TYPE, SUBTYPE, NAME, REFINEKEY定义一个截面号,并初步定义截面类型ID: 截面号TYPE: BEAM:定义此截面用于梁SUBTYPE: RECT 矩形CSOLID:圆形实心截面CTUBE: 圆管I: 工字形HREC: 矩形空管ASEC: 任意截面MESH: 用户定义的划分网格NAME: 8字符的截面名称字母和数字组成REFINEKEY: 网格细化程度:0~5对于薄壁构件用此控制,对于实心截面用SECDATA控制u SECDATA, VAL1, VAL2, …….VAL10 描述梁截面说明:对于SUBTYPE=MESH, 所需数据由SECWRITE产生,SECREAD读入u SECNUM,SECID 设定随后梁单元划分将要使用的截面编号u LATT, MAT, REAL, TYPE, --, KB, KE, SECNUM为准备划分的线定义一系列特性MAT: 材料号REAL: 实常数号TYPE: 线单元类型号KB、KE: 待划分线的定向关键点起始、终止号SECNUM: 截面类型号u SECPLOT,SECID,MESHKEY 画梁截面的几何形状及网格划分SECID:由SECTYPE命令分配的截面编号MESHKEY:0:不显示网格划分1:显示网格划分u /ESHAPE, SCALE 按看似固体化分的形式显示线、面单元SCALE: 0:简单显示线、面单元1:使用实常数显示单元形状u esurf, xnode, tlab, shape 在已存在的选中单元的自由表面覆盖产生单元xnode: 仅为产生surf151 或surf152单元时使用tlab: 仅用来生成接触元或目标元top 产生单元且法线方向与所覆盖的单元相同,仅对梁或壳有效,对实体单元无效Bottom产生单元且法线方向与所覆盖的单元相反,仅对梁或壳有效,对实体单元无效Reverse 将已产生单元反向Shape: 空与所覆盖单元形状相同Tri 产生三角形表面的目标元注意:选中的单元是由所选节点决定的,而不是选单元,如同将压力加在节点上而不是单元上u Nummrg,label,toler, Gtoler,actiontch 合并相同位置的itemlabel: 要合并的项目node: 节点, Elem,单元,kp: 关键点也合并线,面及点mat: 材料,type: 单元类型,Real: 实常数cp:耦合项,CE:约束项,CE: 约束方程,All:所有项toler: 公差Gtoler:实体公差Action: sele 仅选择不合并空合并注意:可以先选择一部分项目,再执行合并;如果多次发生合并命令,一定要先合并节点,再合并关键点;合并节点后,实体荷载不能转化到单元,此时可合并关键点解决问题;u Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线type: s 从全部线中选一组线r 从当前选中线中选一组线a 再选一部线附加给当前选中组aunoneuunselectinve: 反向选择item: line 线号loc 坐标length 线长comp: x,y,zkswp: 0 只选线1 选择线及相关关键点、节点和单元u Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点缺省R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值u NSLL,type, nkey 选择与所选线相联系的节点u nsla, type, nkey: 选择与选中面相关的节点type:s 选一套新节点r 从已选节点中再选a 附加一部分节点到已选节点u 从已选节点中去除一部分nkey: 0 仅选面内的节点1 选所有和面相联系的节点如面内线,关键点处的节点u esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元Type: S: 选择一组单元缺省R: 在当前组中再选一部分作为一组A: 为当前组附加单元U: 在当前组中不选一部分单元All: 选所有单元None: 全不选Inve: 反向选择当前组Stat: 显示当前选择状态Item: Elem: 单元号Type: 单元类型号Mat: 材料号Real: 实常数号Esys: 单元坐标系号u ALLSEL, LABT, ENTITY 选中所有项目LABT: ALL: 选所有项目及其低级项目BELOW: 选指定项目的直接下属及更低级项目ENTITY: ALL: 所有项目缺省VOLU:体高级AREA:面LINE :线KP:关键点ELEM:单元NODE:节点低级u Tshap,shape 定义接触目标面为2D、3D的简单图形Shape: line:直线Arc:顺时针弧Tria:3点三角形Quad:4点四边形………….根据需要耦合某些节点自由度u cp, nset, lab,,node1,node2,……node17nset: 耦合组编号lab: ux,uy,uz,rotx,roty,rotznode1-node17: 待耦合的节点号;如果某一节点号为负,则此节点从该耦合组中删去;如果node1=all,则所有选中节点加入该耦合组;注意:1,不同自由度类型将生成不同编号2,不可将同一自由度用于多套耦合组u CPINTF, LAB, TOLER 将相邻节点的指定自由度定义为耦合自由度LAB:UX,UY,UZ,ROTX,ROTY,ROTZ,ALLTOLER: 公差,缺省为说明:先选中欲耦合节点,再执行此命令定义单元表说明:1,单元表仅对选中单元起作用,使用单元表之前务必选择一种类型的单元2,单元表各行为选中各单元,各列为每单元的不同数据u ETABLE, LAB, ITEM, COMP 定义单元表,添加、删除单元表某列LAB:用户指定的列名REFL, STAT, ERAS 为预定名称ITEM: 数据标志查各单元可输出项目COMP: 数据分量标志存盘u save, fname, ext,dir, slab 存盘fname : 文件名最多32个字符缺省为工作名ext: 扩展名最多32个字符缺省为dbdir: 目录名最多64个字符缺省为当前slab: “all”存所有信息“model”存模型信息“solv”存模型信息和求解信息3 /soluu /solu 进入求解器加边界条件u D, node, lab, value, value2, nend, ninc, lab2, lab3, ……lab6 定义节点位移约束Node : 预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc.Lab: ux,uy,uz,rotx,roty,rotz,allValue,value2: 自由度的数值缺省为0Nend, ninc: 节点范围为:node-nend,编号间隔为nincLab2-lab6: 将lab2-lab6以同样数值施加给所选节点;注意:在节点坐标系中讨论设置求解选项u antype, status, ldstep, substep, actionantype: static or 1 静力分析buckle or 2 屈曲分析modal or 3 模态分析trans or 4 瞬态分析status: new 重新分析缺省,以后各项将忽略rest 再分析,仅对static,full transion 有效ldstep: 指定从哪个荷载步开始继续分析,缺省为最大的,runn数指分析点的最后一步substep: 指定从哪个子步开始继续分析;缺省为本目录中,runn文件中最高的子步数action, continue: 继续分析指定的ldstep,substep说明:继续以前的分析因某种原因中断有两种类型singleframe restart: 从停止点继续需要文件:必须在初始求解后马上存盘单元矩阵或 .osav : 如果.esav坏了,将.osav改为.esavresults file: 不必要,但如果有,后继分析的结果也将很好地附加到它后面注意:如果初始分析生成了.rdb, .ldhi, 或rnnn 文件;必须删除再做后继分析步骤: 1进入anasys 以同样工作名2进入求解器,并恢复数据库3antype, rest4指定附加的荷载5指定是否使用现有的矩阵缺省重新生成kuse: 1 用现有矩阵6求解multiframe restart:从以有结果的任一步继续用不着u pred,sskey, --,lskey….. 在非线性分析中是否打开预测器sskey: off 不作预测当有旋转自由度时或使用solid65时缺省为offon 第一个子步后作预测除非有旋转自由度时或使用solid65时缺省为on -- :未使用变量区lskey: off 跨越荷载步时不作预测缺省on 跨越荷载步时作预测此时sskey必须同时on注意:此命令的缺省值假定solcontrol为onu autots, key 是否使用自动时间步长key:on: 当solcontrol为on时缺省为onoff: 当solcontrol为off时缺省为off1: 由程序选择当solcontrol为on且不发生autots命令时在 .log文件中纪录“1”注意:当使用自动时间步长时,也会使用步长预测器和二分步长u NROPT, option,--,adptky 指定牛顿拉夫逊法求解的选项OPTION: AUT程序选择FULL:完全牛顿拉夫逊法MODI:修正的牛顿拉夫逊法INIT:使用初始刚阵UNSYM:完全牛顿拉夫逊法,且允许非对称刚阵ADPTKY:ON: 使用自适应下降因子OFF:不使用自适应下降因子u NLGEOM,KEYKEY: OFF:不包括几何非线性缺省ON:包括几何非线性u ncnv, kstop, dlim, itlim, etlim, cplim 终止分析选项kstop: 0 如果求解不收敛,也不终止分析1 如果求解不收敛,终止分析和程序缺省2如果求解不收敛,终止分析,但不终止程序dlim:最大位移限制,缺省为itlim: 累积迭代次数限制,缺省为无穷多etlim:程序执行时间秒限制,缺省为无穷cplim:cpu时间秒限制,缺省为无穷u solcontrol ,key1, key2,key3,vtol 指定是否使用一些非线性求解缺省值key1: on 激活一些优化缺省值缺省CNVTOL Toler=%Minref=对力和弯矩NEQIT 最大迭代次数根据模型设定在15~26之间ARCLEN 如用弧长法则用较更先进的方法PRED 除非有rotx,y,z或solid65,否则打开LNSRCH 当有接触时自动打开CUTCONTROL Plslimit=15%, npoint=13SSTIF 当NLGEOM,on时则打开NROPT,adaptkey 关闭除非:摩擦接触存在;单元12,26,48,49,52存在;当塑性存在且有单元20,23,24,60存在AUTOS 由程序选择off 不使用这些缺省值key2: on 检查接触状态此时key1为on此时时间步会以单元的接触状态据keyopt7的假定为基础当keyopt2=on 时,保证时间步足够小key3: 应力荷载刚化控制,尽量使用缺省值空:缺省,对某些单元包括应力荷载刚化,对某些不包括查nopl:对任何单元不包括应力刚化incp:对某些单元包括应力荷载刚化查vtol:u outres, item, freq, cname 规定写入数据库的求解信息item: all 所有求解项basic 只写nsol, rsol, nload, strsnsol 节点自由度rsol 节点作用荷载nload 节点荷载和输入的应变荷载strs 节点应力freq: 如果为n,则每n步包括最后一步写入一次none: 则在此荷载步中不写次项all: 每一步都写last: 只写最后一步静力或瞬态时为缺省定义载荷步u nsubst, nsbstp, nsbmx, nsbmn, carry 指定此荷载步的子步数nsbstp: 此荷载步的子步数如果自动时间步长使用autots,则此数定义第一子步的长度;如果solcontrol打开,且3D面-面接触单元使用,则缺省为1-20步;如果solcontrol打开,并无3D接触单元,则缺省为1子步;如果solcontrol关闭,则缺省为以前指定值;如以前未指定,则缺省为1nsbmx, nsbmn:最多,最少子步数如果自动时间步长打开u time, time 指定荷载步结束时间注意:第一步结束时间不可为“0”u f, node, lab, value, value2, nend, ninc 在指定节点加集中荷载node:节点号lab: Fx,Fy,Fz,Mx,My,Mzvalue: 力大小value2: 力的第二个大小如果有复数荷载nend,ninc:在从node到nend的节点增量为ninc上施加同样的力注意:1节点力在节点坐标系中定义,其正负与节点坐标轴正向一致u sfa, area, lkey, lab, value, value2 在指定面上加荷载area: n 面号all 所有选中号lkey: 如果是体的面,忽略此项lab: presvalue: 压力值u SFBEAM, ELEM, LKEY, LAB, VALI, VALJ, VAL2I, VAL2J, IOFFST, JOFFST 对梁单元施加线荷载ELEM: 单元号,可以为ALL,即选中单元LKEY: 面载类型号,见单元介绍;对于BEAM188,1为竖向;2为横向;3为切向VALI,VALJ: I, J节点处压力值VAL2I,VAL2J: 暂时无用IOFFST, JOFFST: 线载距离I, J 节点距离u lswrite, lsnum 将荷载与荷载选项写入荷载文件中lsnum :荷载步文件名的后缀,即荷载步数当 stat 列示当前步数init 重设为“1”缺省为当前步数加“1”注意1. 尽量加面载,不加集中力,以免奇异点2. 面的切向荷载必须借助面单元求解载荷步u lssolve, lsmin, lsmax, lsinc 读入并求解多个荷载步lsmin, lsmax, lsinc :荷载步文件范围4 /post1通用后处理u set, lstep, sbstep, fact, king, time, angle, nset 设定从结果文件读入的数据lstep :荷载步数sbstep:子步数,缺省为最后一步time:时间点如果弧长法则不用nset: data set numberu dscale, wn, dmult 显示变形比例wn: 窗口号或all,缺省为1dmult, 0或auto : 自动将最大变形图画为构件长的5%u pldisp, kund 显示变形的结构kund: 0 仅显示变形后的结构1 显示变形前和变形后的结构2 显示变形结构和未变形结构的边缘u get, par, node, n, u, xy,z 获得节点n的xy,z位移给参数par等价于函数 ux,uy,uznodex,y,z: 获得x,y,z节点号arnodex,y,z:获得和节点n相连的面注意:此命令也可用于/solu模块u fsum, lab, item 对单元之节点力和力矩求和lab: 空在整体迪卡尔坐标系下求和rsys 在当前激活的rsys坐标系下求和item: 空对所有选中单元不包括接触元求和cont: 仅对接触节点求和u PRSSOL, ITEM, COMP 打印BEAM188、BEAM189截面结果说明:只有刚计算完还未退出ANSYS时可用,重新进入ANSYS时不可用item comp 截面数据及分量标志S COMP X,XZ,YZ应力分量PRIN S1,S2,S3主应力SINT应力强度,SEQV等效应力EPTO COMP 总应变PRIN 总主应变,应变强度,等效应变EPPL COMP 塑性应变分量PRIN 主塑性应变,塑性应变强度,等效塑性应变u plnsol, item, comp, kund, fact 画节点结果为连续的轮廓线item: 项目见下表comp: 分量kund: 0 不显示未变形的结构1 变形和未变形重叠2 变形轮廓和未变形边缘fact: 对于接触的2D显示的比例系数,缺省为1item comp discriptionu x,y,z,sum 位移rot x,y,z,sum 转角s x,y,z,xy,yz,xz 应力分量1,2,3 主应力Int,eqv 应力intensity,等效应力epeo x,y,z,xy,yz,xz 总位移分量1,2,3 主应变Int,eqv 应变intensity,等效应变epel x,y,z,xy,yz,xz 弹性应变分量1,2,3 弹性主应变Int,eqv 弹性intensity,弹性等效应变eppl x,y,z,xy,yz,xz 塑性应变分量u PRNSOL, item, comp 打印选中节点结果item: 项目见上表comp: 分量u PRETAB, LAB1, LAB2, ……LAB9 沿线单元长度方向绘单元表数据LABn : 空:所有ETABLE命令指定的列名列名:任何ETABLE命令指定的列名u PLLS, LABI, LABJ, FACT, KUND 沿线单元长度方向绘单元表数据LABI:节点I的单元表列名LABJ:节点J的单元表列名FACT: 显示比例,缺省为1kund: 0 不显示未变形的结构1 变形和未变形重叠2 变形轮廓和未变形边缘5 /post26 时间历程后处理u nsol, nvar, node, item, comp,name在时间历程后处理器中定义节点变量的序号nvar:变量号从2到nv根据numvar定义node: 节点号item compu x, y,zrot x, y,zu ESOL, NVAR, ELEM, NODE, ITEM, COMP, NAME 将结果存入变量NVAR: 变量号,2以上ELEM: 单元号NODE: 该单元的节点号,决定存储该单元的哪个量,如果空,则给出平均值ITEM:COMP:NAME: 8字符的变量名, 缺省为ITEM加COMPu rforce, nvar, node, item, comp, name 指定待存储的节点力数据nvar: 变量号node: 节点号item compF x,M x, y,zname: 给此变量一个名称,8个字符u add, ir, ia,ib,ic,name,--,--,facta, factb, factc将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称u /grid, keykey: “0”或“off”无网络“1”或“on” xy网络“2”或“x”只有x线“3”或“y”只有y线u xvar, nn: “0”或“1”将x轴作为时间轴“n”将x轴表示变量“n”“-1”u /axlab, axis, lab 定义轴线的标志axis: “x”或“y”lab: 标志,可长达30个字符u plvar, nvar, nvar2, ……,nvar10 画出要显示的变量作为纵坐标u prvar, nvar1, ……,nvar6 列出要显示的变量6 PLOTCONTROL菜单命令u pbc, ilem, ……,key, min, max, abs 在显示屏上显示符号及数值item: u 所加的位移约束rot 所加的转角约束key: 0 不显示符号1 显示符号2 显示符号及数值u /SHOW, FNAME, EXT, VECT, NCPL 确定图形显示的设备及其他参数FNAME: X11:屏幕文件名:各图形将生成一系列图形文件JPEG: 各图形将生成一系列JPEG图形文件说明:没必要用此命令,需要的图形文件可计算后再输出7 参数化设计语言u do, par, ival, fval, inc 定义一个do循环的开始par: 循环控制变量ival, fval, inc:起始值,终值,步长正,负u enddo 定义一个do循环的结束u if,val1, oper, val2, base: 条件语句val1, val2: 待比较的值也可是字符,用引号括起来oper: 逻辑操作当实数比较时,误差为1e-10eq, ne, lt, gt, le, ge, ablt, abgtbase: 当oper结果为逻辑真时的行为lable: 用户定义的行标志stop: 将跳出anasysexit: 跳出当前的do循环cycle: 跳至当前do循环的末尾then: 构成if-then-else结构。
ansys命令流中文说明
ansys命令流中文说明KB、KE: 待划分线的定向关键点起始、终止号SECNUM: 截面类型号u SECPLOT,SECID,MESHKEY 画梁截面的几何形状及网格划分SECID:由SECTYPE命令分配的截面编号MESHKEY:0:不显示网格划分1:显示网格划分u /ESHAPE, SCALE 按看似固体化分的形式显示线、面单元SCALE: 0:简单显示线、面单元1:使用实常数显示单元形状u esurf, xnode, tlab, shape 在已存在的选中单元的自由表面覆盖产生单元xnode: 仅为产生surf151 或surf152单元时使用tlab: 仅用来生成接触元或目标元top 产生单元且法线方向与所覆盖的单元相同,仅对梁或壳有效,对实体单元无效Bottom产生单元且法线方向与所覆盖的单元相反,仅对梁或壳有效,对实体单元无效Reverse 将已产生单元反向Shape: 空与所覆盖单元形状相同Tri 产生三角形表面的目标元注意:选中的单元是由所选节点决定的,而不是选单元,如同将压力加在节点上而不是单元上u Nummrg,label,toler, Gtoler,action,switch 合并相同位置的itemlabel: 要合并的项目node: 节点, Elem,单元,kp: 关键点(也合并线,面及点)mat: 材料,type: 单元类型,Real: 实常数cp:耦合项,CE:约束项,CE: 约束方程,All:所有项toler: 公差Gtoler:实体公差Action: sele 仅选择不合并空合并switch: 较低号还是较高号被保留(low, high)注意:可以先选择一部分项目,再执行合并。
如果多次发生合并命令,一定要先合并节点,再合并关键点。
合并节点后,实体荷载不能转化到单元,此时可合并关键点解决问题。
u Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线type: s 从全部线中选一组线r 从当前选中线中选一组线a 再选一部线附加给当前选中组aunoneu(unselect)inve: 反向选择item: line 线号loc 坐标length 线长comp: x,y,zkswp: 0 只选线1 选择线及相关关键点、节点和单元u Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点(缺省)R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0” 使用正负号“1”仅用绝对值u NSLL,type, nkey 选择与所选线相联系的节点u nsla, type, nkey: 选择与选中面相关的节点type:s 选一套新节点r 从已选节点中再选a 附加一部分节点到已选节点u 从已选节点中去除一部分nkey: 0 仅选面内的节点1 选所有和面相联系的节点(如面内线,关键点处的节点)u esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元Type: S: 选择一组单元(缺省)R: 在当前组中再选一部分作为一组A: 为当前组附加单元U: 在当前组中不选一部分单元All: 选所有单元None: 全不选Inve: 反向选择当前组(?)Stat: 显示当前选择状态Item: Elem: 单元号Type: 单元类型号Mat: 材料号Real: 实常数号Esys: 单元坐标系号u ALLSEL, LABT, ENTITY 选中所有项目LABT: ALL: 选所有项目及其低级项目BELOW: 选指定项目的直接下属及更低级项目ENTITY: ALL: 所有项目(缺省)VOLU:体高级AREA:面LINE :线KP:关键点ELEM:单元NODE:节点低级u Tshap,shape 定义接触目标面为2D、3D的简单图形Shape: line:直线Arc:顺时针弧Tria:3点三角形Quad:4点四边形………….2.6 根据需要耦合某些节点自由度u cp, nset, lab,,node1,node2,……node17nset: 耦合组编号lab: ux,uy,uz,rotx,roty,rotznode1-node17: 待耦合的节点号。
ANSYS命令流使用方法(中文)
ANSYS常用命令Fini(退出四大模块,回到BEGIN层)/cle (清空存,开始新的计算)1.定义参数、数组,并赋值.2. /prep7(进入前处理)定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号。
设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1(通用后处理)5./post26 (时间历程后处理)6.PLOTCONTROL菜单命令7.参数化设计语言8.理论手册Fini(退出四大模块,回到BEGIN层)/cle (清空存,开始新的计算)1定义参数、数组,并赋值.u dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type: array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane(当type为table时) 2 /prep7(进入前处理)2.1 定义几何图形:关键点、线、面、体u csys,kcnkcn , 0 迪卡尔zuobiaosi1 柱坐标2 球4 工作平面5 柱坐标系(以Y轴为轴心)n 已定义的局部坐标系u numstr, label, value设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstru K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号u Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0”如果附有节点及单元,则一起拷贝。
(完整版)ANSYS命令流使用方法(中文)修改
Finish(退出四大模块,回到BEGIN层)/clear (清空内存,开始新的计算)1.定义参数、数组,并赋值.2./prep7(进入前处理)定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号。
设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1(通用后处理)5./post26 (时间历程后处理)6.PLOTCONTROL菜单命令7.参数化设计语言8.理论手册Finish(退出四大模块,回到BEGIN层)/clear (清空内存,开始新的计算)1.定义参数、数组,并赋值.dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane(当type为table时) 2./prep7(进入前处理)2.1 设置单元类型及相应KEYOPTET, itype, ename, kop1……kop6, inopr 设定当前单元类型Itype:单元号Ename:单元名设置实常数Keyopt, itype, knum, valueitype: 已定义的单元类型号knum: 单元的关键字号value: 数值注意:如果,则必须使用keyopt命令,否则也可在ET命令中输入2.2 定义几个所关心的节点,以备后处理时调用节点号。
n,node,x,y,z,thxy, thyz, thzx 根据坐标定义节点号如果已有此节点,则原节点被重新定义,一般为最大节点号。
(完整版)ANSYS命令流总结(全)
ANSYS结构解析单元功能与特征/POST1/可以构成一一些命令,一般是一种整体命令( session),三十也有特别,比方是办理 ! 是说明说明符号,,与其余软件的说明是相同的, ansys 不作为命令读取,*此符号一般是 APDL 的表记符,也就是 ansys 的参数化语言,如 *do ,,,*enddo 等等NSEL 的意思是node select,即选择节点。
s 就是 select,选择。
DIM是定义数组的意思。
array 数组。
MP 命令用来定义资料参数。
K 是建立要点点命令。
K, 要点点编号 ,x 坐标 ,y 坐标, z 坐标。
K, NPT, X, Y , Z 是定义要点点, K 是命令, NPT 是要点点编号, XYZ 是坐标。
NUMMRG , keypoint 用这个命令,要保证要点点的地点完整相同,不过要点点号不一样样的才行。
这个命令关于重复的线面都可以用。
这个很简单,压缩要点。
Ngen 复制节点e,节点号码:这个命令式经过节点来形成单元NUMCMP,ALL :压缩所有编号,这样你所有的线都会挨次次重新编号 ~你若是需要固定的线固定的标号NSUBST,100,500,50 :经过指定子步数来设置载荷步的子步LNSRCH 线性搜寻是求解非线性代数方程组的一种技巧,此法会在一段区间内,以必定的步长逐渐搜寻根,对比常用的牛顿迭代法所要耗费的计算量大得多,但它可以防备在一些状况下牛顿迭代法出现的跳跃现象。
LNSRCH激活线性搜寻PRED 激活自由度求解展望NEQIT 指定一个荷载步中的最大子步数AUTOTS自动求解控制打开自动时间步长.KBC -指定阶段状也许用跳板装载里面一个负荷步骤。
SPLINE :P1, P2, P3,P4, P5, P6, XV1 , YV1 , ZV1 , XV6 ,YV6 , ZV6 (生成分段样条曲线)*DIM , Par,Type ,IMAX ,JMAX , KMAX , Var1,Var2, Var3(定义载荷数组的名称)【注】 Par: 数组名Type: array 数组,仿佛fortran, 下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8 个字符)tableIMAX , JMAX , KMAX各维的最大下标号Var1, Var2,Var3 各维变量名,缺省为row,column,plane( 当 type 为 table 时 )/config 是设置 ansys 配置参数的命令格式为 /CONFIG, Lab, V ALUELab 为参数名称value 为参数值比方: /config , MXEL ,10000 的意思是最大单元数为10000杆单元 : LINK1、 8、 10、 11、 180梁单元: BEAM3、 4、 23、 24,44, 54, 188, 189管单元 : PIPE16, 17, 18, 20, 59, 602D实体元 : PLANE2, 25, 42, 82, 83, 145,146, 182, 1833D实体元 : SOLID45, 46, 64,65, 72, 73,92, 95, 147,148, 185, 186,187, 191壳单元 : SHELL28, 41, 43, 51, 61, 63, 91, 93, 99, 143, 150, 181,208, 209弹簧单元 : COMBIN7, 14, 37,39, 40质量单元 : MASS21接触单元 : CONTAC12, 52, TARGE169, 170, CONTA171, 172, 173, 174, 175, 178矩阵单元 : MATRIX27, 50表面效应元 : SURF153, 154粘弹实体元 : VISCO88, 89, 106, 107, 108,超弹实体元 : HYPER56, 58, 74, 84, 86, 158耦合场单元 : SOLID5, PLANE13, FLUID29, 30,38, SOLID62, FLUID79, FLUID80,81,SOLID98, FLUID129, INFIN110 , 111, FLUID116,130界面单元 : INTER192, 193, 194, 195显式动力解析单元 : LINK160, BEAM161, PLANE162, SHELL163, SOLID164, COMBI16杆单元单元名称简称节点数节点自由度特征备注LINK12D杆2Ux,Uy EPCSDGB常用杆元LINK83D杆Ux,Uy,Uz EPCSDGBLINK103D仅受拉EDGB模拟缆索的废弛及或仅受压杆缝隙LINK113D线性调理EGB模拟液压缸和大转器动LINK1803D有限应变杆EPCDFGB另可考虑粘弹塑性E- 弹性 (Elasticity),P-塑性(Plasticity),C-蠕变(Creep),S-膨胀(Swelling),D-大变形或大挠度deflection), F- 大应变 (Large strain)或有限应变(Finite strain),B-单元存亡(Birth and dead),G-化 (Stress stiffness)或几何刚度(Geometric stiffening),A-自适应降落(Adaptive descent)等。
有史以来最全最详细的ansys命令流中文说明
有史以来最全最详细的ansys命令流中文说明CommandVSBV, NV1, NV2, SEPO, KEEP1, KEEP2 — Subtracts volumes from volumes,用于2个solid相减操作,最终目的是要nv1-nv2=?通过后面的参数设置,可以得到很多种情况:sepo项是2个体的边界情况,当缺省的时候,是表示2个体相减后,其边界是公用的,当为sepo 的时候,表示相减后,2个体有各自的独立边界。
keep1与keep2是询问相减后,保留哪个体?当第一个为keep时,保留nv1,都缺省的时候,操作结果最终只有一个体,比如:vsbv,1,2,sepo,,keep,表示执行1-2的操作,结果是保留体2,体1被删除,还有一个1-2的结果体,现在一共是2个体(即1-2与2),且都各自有自己的边界。
如vsbv,1,2,,keep,,则为1-2后,剩下体1和体1-2,且2个体在边界处公用。
同理,将v换成a及l是对面和线进行减操作!mp,lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)co: 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数定义DP材料:首先要定义EX和泊松比:MP,EX,MA T,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MA T进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPType,是选择的方式,有选择(s),补选(a),不选(u),全选(all)、反选(inv)等,其余方式不常用Item, Comp 是选取的原则以及下面的子项如volu 就是根据实体编号选择,loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标!其余还有材料类型、实常数等MIN, VMAX, VINC,这个就不必说了吧!,例:vsel,s,volu,,14vsel,a,volu,,17,23,2上面的命令选中了实体编号为14,17,19,21,23的五个实体VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体nv1:初始体号nv2:最终的体号ninc:体号之间的间隔kswp=0:只删除体kswp=1:删除体及组成关键点,线面如果nv1=all,则nv2,ninc不起作用其后面常常跟着一条显示命令VPLO,或aplo,nplo,这个湿没有参数的命令,输入后直接回车,就可以显示刚刚选择了的体、面或节点,很实用的哦!Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点(缺省)R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0” 使用正负号“1”仅用绝对值下面是单元生死第一个载荷步中命令输入示例:!第一个载荷步TIME,... !设定时间值(静力分析选项)NLGEOM,ON !打开大位移效果NROPT,FULL !设定牛顿-拉夫森选项ESTIF,... !设定非缺省缩减因子(可选)ESEL,... !选择在本载荷步中将不激活的单元EKILL,... !不激活选择的单元ESEL,S,LIVE !选择所有活动单元NSLE,S !选择所有活动结点NSEL,INVE !选择所有非活动结点(不与活动单元相连的结点)D,ALL,ALL,0 !约束所有不活动的结点自由度(可选)NSEL,ALL !选择所有结点ESEL,ALL !选择所有单元D,... !施加合适的约束F,... !施加合适的活动结点自由度载荷SF,... !施加合适的单元载荷BF,... !施加合适的体载荷SA VESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D,F,SF和BF命令得到更详细的解释。
全套完整版ANSYS命令流教学手册
目录1ANSYS结构分析单元功能与特性 (1)1.1杆单元: LINK1、8、10、11、180 (1)1.2梁单元:BEAM3、4、23、24,44,54,188,189 (2)1.3管单元:PIPE16,17,18,20,59,60 (3)1.42D实体单元:PLANE2,25,42,82,83,145,146,182,183 41.53D实体元:SOLID45,46,64,65,72,73,92,95,147,148,185,186,187,191 (5)1.6壳单元:SHELL28,41,43,51,61,63,91,93,99,143,150,181,208,209 (6)1.7弹簧单元:COMBIN7,14,37,39,40 (6)1.8质量单元:MASS21 (6)1.9接触单元:CONTAC12,52,TARGE169,170,CONTA171,172,173,174,175,178 (6)1.10 矩阵单元:MATRIX27,50 (7)1.11 表面效应元:SURF153,154 (7)1.12 粘弹实体元:VISCO88,89,106,107,108, (8)1.13 超弹实体元:HYPER56,58,74,84,86,158 (8)1.14 耦合场单元:SOLID5,PLANE13,FLUID29,30,38,SOLID62,FLUID79,FLUID80,81,SOLID98,FLUID129,INFIN110,111,FLUID116,130 (8)1.15 界面单元:INTER192,193,194,195 (8)1.16 显式动力分析单元:LINK160,BEAM161,PLANE162,SHELL163,SOLID164,COMBI16 (8)1.17 预紧、多点约束、网分单元 (8)2ANSYS 的基本使用 (10)2.1ANSYS环境简介 (10)2.2有限元法的基本构架 (12)2.3ANSYS架构及命令 (13)2.4典型的分析过程 (16)2.5ANSYS 文件及工作文件名 (16)2.6图形控制 (18)3第三章有限元模型的建立 (20)3.1建模方法 (20)3.2坐标系统及工作平面 (21)3.2.1局部坐标系 (21)3.2.1.1 激活总体和局部坐标系(声明坐标系统) (21)3.2.1.2 根据总体坐标系定义局部坐标系 (22)3.2.1.3 根据已有的三个节点定义局部坐标系 (22)3.2.1.4 根据已有的三个关键点定义局部坐标系 (22)3.2.1.5 根据当前工作平面定义局部坐标系 (22)3.2.1.6 根据激活的坐标系定义局部坐标系 (23)3.2.1.7 删除局部坐标系 (23)3.2.1.8 查看激活坐标系和局部坐标系 (23)3.2.2节点坐标系的旋转与修改 (23)3.2.2.1 将某些节点的坐标系旋转到与当前激活坐标系(简称“当前坐标系”)方向一致 (23)3.2.2.2 将既有节点的节点坐标系旋转某个角度 (23)3.2.2.3 在创建节点时直接定义其坐标系的旋转角度 (24)3.2.2.4 按方向余弦旋转节点坐标系 (24)3.2.2.5 节点坐标系列表 (24)3.2.3单元坐标系的定义与修改 (24)3.2.3.1 设置单元坐标系 (24)3.2.3.2 修改单元坐标系方向 (24)3.2.3.3 激活显示坐标系 (25)3.2.3.4 激活结果坐标系 (25)3.2.4工作平面 (25)3.2.4.1 定义工作平面 (25)3.2.4.2 通过3个坐标点定义工作平面 (25)3.2.4.3 通过3个节点定义工作平面 (26)3.2.4.4 通过3个关键点定义工作平面 (26)3.2.4.5 通过垂直于线上的某个位置定义工作平面 (26)3.2.4.6 查看工作平面的当前状态 (26)3.2.4.7 恢复到ANSYS默认状态 (26)3.2.4.8 移动工作平面 (26)3.2.5声明单位系统 (27)3.3节点定义 (28)3.3.1创建节点 (28)3.3.2删除节点 (28)3.3.3节点显示 (28)3.3.4节点列式 (29)3.3.5节点的填充 (29)3.3.6节点复制 (29)3.4单元的定义 (30)3.4.1定义单元类型 (30)3.4.2定义材料的属性 (31)3.4.3定义实常数 (31)3.4.4定义单元的连接方式 (31)3.4.5单元复制 (32)3.4.6单元显示 (32)3.4.7单元列示 (32)3.4.8声明使用已定义单元类型 (32)3.4.9声明使用已定义的实常数 (33)3.4.10声明使用已定义的单元属性, (33)3.5负载定义 (33)3.5.1进入解题处理器 (34)3.5.2声明分析类型 (34)3.5.3定义节点的集中力 (35)3.5.4定义节点自由度 (35)3.5.5定义在梁单元上的分布力 (36)3.5.6定义分布力作用于单元上的方式和大小 (37)3.5.7定义节点间分布力 (37)3.5.8对象选择 (38)3.6求解 (40)3.7用POST1进行结果后处理 (40)3.7.1进入POST1 (40)3.7.2读取结果 (40)3.7.3绘变形图 (40)3.7.4变形动画 (41)3.7.5列表支反力 (41)3.7.6应力等值线与应力等值线动画 (41)3.7.7应力等值线动画 (41)4实体模型的建立 (45)4.1实体模型简介 (45)4.2实体模型的建立方法 (45)4.3群组命令介绍 (46)4.4点定义 (47)4.4.1创建关键点 (47)4.4.1.1 在给定坐标点创建关键点 (47)4.4.1.2 在两关键点之间创建一个关键点 (47)4.4.1.3 在两关键点之间填充多个点 (48)4.4.1.4 复制创建关键点 (48)4.4.1.5 镜像创建关键点 (49)4.4.1.6 列表显示关键点信息 (49)4.4.1.7 屏幕上显示关键点 (50)4.4.1.8 删除关键点 (50)4.4.1.9 选择关键点 (50)4.4.1.10 选择与所选线相关的关键点 (51)4.4.1.11 修改关键点坐标 (52)4.4.1.12 定义点(NPT)于已知节点上 (52)4.4.2创建线 (52)4.4.2.1通过两关键点创建线 (52)4.4.2.2 通过两关键点创建直线 (53)4.4.2.3 通过关键点创建圆弧线 (53)4.4.2.4 创建圆或圆弧线 (54)4.4.2.5 两条相交线倒角创建圆弧线 (55)4.4.2.6 复制创建线 (56)4.4.2.7 合并两条或多条线 (57)4.4.2.8 将一条线分为多条线 (57)4.4.2.9 延长一条线 (58)4.4.2.10 通过多个关键点按样条创建一条曲线 (58)4.4.2.11 关键点绕轴线创建旋转线 (59)4.4.2.12 通过坐标轴镜像创建线 (59)4.4.2.13 显示线和删除线 (59)4.4.2.14 列表输出线信息 (60)4.4.2.15 选择一组线 (60)4.4.2.16 选择与面相关的线 (61)4.4.2.17 选择与关键点相关的线 (61)4.4.2.18 练习点和线段的生成 (61)4.4.3创建面 (64)4.4.3.1 通过关键点创建面 (64)4.4.3.2 通过线创建面 (65)4.4.3.3 沿路径拖拉创建面 (65)4.4.3.4 线绕轴旋转生成弧面 (66)4.4.3.5 既有面偏移创建新面 (66)4.4.3.6 蒙皮创建光滑曲面 (67)4.4.3.7 复制创建面 (67)4.4.3.8 通过坐标轴对称创建面 (68)4.4.3.9 列表输出面信息 (68)4.4.3.10 显示面 (68)4.4.3.11 删除面 (68)4.4.3.12 选择一组面 (69)4.4.3.13 选择与所选线相关的面 (69)4.4.3.14 选择与所选体相关的面 (70)4.4.3.15 通过两角点坐标创建矩形面 (70)4.4.3.16 通过一角点坐标和尺寸创建矩形面 (70)4.4.3.17 通过中心坐标和尺寸创建矩形面 (70)4.4.3.18 在工作平面原点创建圆面或环面 (71)4.4.3.19 通过圆心坐标和半径等创建圆或环面 (71)4.4.3.20 通过圆上直径端点坐标创建圆面 (72)4.4.3.21 在工作平面原点创建正多边形面 (72)4.4.3.22 在工作平面任意位置创建正多边形面 (72)4.4.4创建体 (73)4.4.4.1 通过关键点创建体 (74)4.4.4.2 通过面创建体 (75)4.4.4.3 沿路径拖拉面创建体 (76)4.4.4.4 面绕轴旋转创建柱体 (76)4.4.4.5 面偏移创建体 (77)4.4.4.6 通过面延伸创建体 (78)4.4.4.7 复制创建体 (78)4.4.4.8 通过坐标轴镜像创建体 (79)4.4.4.9 列表输出体信息 (79)4.4.4.10 显示体 (79)4.4.4.11 删除体 (79)4.4.4.12 创建长方体 (79)4.4.4.13 通过一角点坐标和尺寸创建长方体 (80)4.4.4.14 通过面中心坐标和尺寸创建长方体 (80)4.4.4.15 在工作平面原点创建圆柱体或部分圆柱体 (80)4.4.4.16 通过圆心坐标和半径等创建圆柱体 (80)4.4.4.17 通过圆上直径两端点坐标创建圆柱体 (80)4.4.4.18 在工作平面原点创建正棱柱体 (81)4.4.4.19 在工作平面任意位置创建正棱柱体 (81)4.4.4.20 在工作平面原点创建球体 (81)4.4.4.21 在工作平面任意位置创建球体 (81)4.4.4.22 通过直径端点生成球体 (81)4.4.4.23 以工作平面原点为圆心创建圆锥体 (81)4.4.4.24 在工作平面任意位置创建圆锥体 (82)4.4.4.25 以工作平面原点为环心创建环体 (82)4.5布尔操作 (84)4.5.1布尔运算的一般设置 (84)4.5.1.1 布尔运算的容差设置 (85)4.5.1.2 交运算Intersection (85)4.5.1.3 加运算Addition (86)4.5.1.4 减运算Subtract (87)4.5.1.5 用工作平面切分图素Subtract (88)4.5.1.6 分割运算Partition (89)4.5.1.7 分类运算Classify (90)4.5.1.8 搭接运算Overlap (90)4.5.1.9 粘接Glue (或Merge) (91)4.5.2几何建模的其它常用命令 (93)4.5.2.1 图形平移、缩放和旋转 (93)4.5.2.2 设置坐标轴方向 (93)4.5.2.3 设置视图方向 (93)4.5.2.4 设置视图旋转角度 (94)4.5.2.5 编号显示控制 (94)4.5.2.6 颜色显示控制 (95)4.5.2.7 显示边界条件和荷载的符号及数值 (95)4.5.2.8 显示边界条件及数值 (96)4.5.2.10 单元尺寸和形状 (97)4.5.2.11 图素收缩显示控制 (97)4.5.2.12 显示单元形状 (97)4.5.2.13 等值线显示控制 (97)4.5.2.14 均匀等值线设置 (98)4.5.2.15 设置等值线的文字标注 (98)4.5.2.16 颜色设置 (98)4.5.2.17 设置图形中浮点数显示方式 (100)4.5.2.18 设置变形放大系数 (100)4.5.2.19 设置矢量显式长度 (101)4.5.2.20 设置窗口布局 (101)4.5.2.21 图素显示控制 (102)4.5.2.22 显示所有图素 (102)4.5.2.23 图形擦除 (102)5网格划分 (103)5.1区分实体模型和有限元模型 (103)5.2网格化的步骤 (104)5.2.1定义单元类型 (106)5.2.1.1 单元类型的KEYOPT (106)5.2.1.2 自由度集 (106)5.2.1.3 改变单元类型 (106)5.2.1.4 单元类型的删除与列表 (106)5.2.2实常数 (107)5.2.2.1 定义实常数 (107)5.2.2.2 变厚度壳实常数定义 (107)5.2.2.3 实常数组的删除与列表 (107)5.2.3材料属性 (108)5.2.3.1 定义线性材料属性 (108)5.2.3.2 定义线性材料属性的温度表 (108)5.2.3.3 定义与温度对应的线性材料特性 (108)5.2.3.4 复制线性材料属性组 (108)5.2.3.5 改变指定单元的材料参考号 (109)5.2.3.6 线性材料属性列表和删除 (109)5.2.3.7 修改与线胀系数相关的温度 (109)5.2.3.8 计算生成线性材料温度表 (109)5.2.3.9 绘制线性材料特性曲线 (109)5.2.3.10 设置材料库读写的缺省路径 (109)5.2.3.11 读入材料库文件 (109)5.2.3.12 将材料属性写入文件 (109)5.2.3.13 激活非线性材料属性的数据表 (109)5.2.3.15 定义TB数据表中的数据 (110)5.2.3.16 定义非线性数据曲线上的一个点 (110)5.2.3.17 非线性材料数据表的删除和列表 (110)5.2.3.18 非线性材料数据表的绘图 (110)5.2.4定义截面类型和截面ID (110)5.2.4.1 定义梁截面几何数据(Type=BEAM) (111)5.2.4.2 定义变截面梁几何数据(Type=TAPER) (113)5.2.4.3 定义截面偏移 (113)5.2.4.4 梁截面特性列表 (114)5.2.4.5 删除所定义的截面 (114)5.2.4.6 绘制所定义截面 (114)5.2.4.7 自定义截面的存盘和读入 (115)5.2.4.8 定义层壳单元的数据(Type=SHELL) (115)5.2.4.9 定义预紧截面的数据(Type= PRETENSION) (115)5.2.4.10 修改预紧截面数据 (116)5.2.4.11 定义连接数据(Type=JOINT) (116)5.2.5设置几何模型的单元属性 (116)5.2.5.1 设置关键点单元属性 (116)5.2.5.2 设置线的单元属性 (116)5.2.5.3 设置面的单元属性 (117)5.2.5.4 设置体的单元属性 (117)5.2.5.5 单元形状控制 (117)5.2.5.6 网格类型选择 (118)5.2.5.7 中间节点的位置控制 (118)5.2.6单元尺寸控制 (119)5.2.6.1 映射网格单元尺寸控制的DESIZE命令 (119)5.2.6.2 自由网格单元尺寸控制的SMRTSIZE命令 (119)5.2.6.3 线的单元尺寸定义 (120)5.2.6.4 关键点最近处单元边长定义 (121)5.2.6.5 面内部的单元尺寸定义 (122)5.3网格划分工具 (122)5.3.1在关键点处生成点单元 (124)5.3.2在几何线上生成线单元 (124)5.3.3在几何面上生成面单元 (124)5.3.4在几何体上生成体单元 (124)5.3.4.1 单元有效性检查--单元形状参数限值设置 (126)5.3.5网格修改 (127)5.3.5.1 关键点网格清除 (127)5.3.5.3 面网格清除 (127)5.3.5.4 体网格清除 (127)5.3.6细化局部网格 (128)5.3.6.1 节点附近细化 (128)5.3.6.2 单元附近细化 (128)5.3.6.3 关键点附近细化 (128)5.3.6.4 线附近细化 (128)5.3.6.5 面附近细化 (128)6第六章实体模型的外力 (129)6.1对节点施加自由度约束 (129)6.2关键点自由度约束及相关命令 (130)6.2.1列表和删除关键点自由度约束的命令 (130)6.3对线施加自由度约束 (130)6.3.1而列表和删除线上自由度约束 (131)6.4对面施加自由度约束 (131)6.4.1列表和删除面上自由度约束 (132)6.5约束转换命令 (132)6.5.1仅转换约束自由度 (132)6.5.2边界条件和荷载转换 (132)6.6施加集中荷载 (132)6.6.1施加节点集中荷载 (132)6.6.1.1 节点集中荷载列表:FLIST (132)6.6.1.2 删除节点集中荷载:FDELE (132)6.6.2施加关键点集中荷载 (132)6.6.3施加面荷载 (133)6.6.3.1 对节点群施加面荷载 (133)6.6.3.2 定义节点号与面荷载的函数关系 (133)6.6.3.3 定义面荷载梯度 (133)6.6.4在单元上施加面荷载 (134)6.6.5在梁单元施加面荷载 (134)6.6.6在线上施加面荷载 (135)6.6.7在面上施加面荷载 (136)6.6.8施加体荷载 (136)6.6.9施加惯性荷载 (137)6.6.10施加耦合场荷载 (137)6.6.11初应力荷载及施加 (137)6.6.11.1 施加初始常应力荷载 (137)6.6.11.2 从文件施加初应力荷载 (137)7输出选项 (141)7.1控制写入数据库和结果文件的结果数据 (141)7.2结果输出控制 (142)7.3图形求解追踪器 (142)8分析类型与求解控制选项 (142)9通用与时间历程后处理技术 (143)9.1定义矢量和主轴的计算方法 (143)9.2定义结果数据平均处理 (143)9.3控制壳或层壳单元数据的位置 (144)9.4定义数据输出格式 (144)9.5每页的标题输出控制 (144)9.6显示结构变形图 (145)9.7显示节点结果 (145)9.8显示单元结果 (146)9.9以矢量方式显示结果图 (146)9.10显示裂缝或压碎图 (147)9.11列出节点结果 (147)9.12列出单元结果 (147)9.13生成单元表 (147)9.14云图显示单元表结果 (148)9.15列表显示单元表结果 (148)9.16单元表绝对值操作 (148)9.17计算并输出单元表数据之和 (148)9.18映射结果到路径上 (149)9.19图形显示路径项数据 (150)9.20沿路径几何形状显示路径项数据 (150)9.21列表显式路径项数据 (150)9.22对路径项数据运算 (150)9.22.1加运算 (151)9.22.2乘运算 (151)9.22.3除运算 (151)9.22.4幂运算 (151)9.22.5求导运算 (151)9.22.6积分运算 (151)10文件管理 (151)1ANSYS结构分析单元功能与特性1.1杆单元: LINK1、8、10、11、180注:E-弹性(Elasticity),P-塑性(Plasticity),C-蠕变(Creep),S-膨胀(Swelling),D-大变形或大挠度(Large deflection),F-大应变(Large strain)或有限应变(Finite strain),B-单元生死(Birth and dead),G-应力刚化(Stress stiffness)或几何刚度(Geometric stiffening),A-自适应下降(Adaptive descent)等。
(完整版)史上最全的ANSYS命令流大全
《史上最全的ANSYS命令流查询与解释》【1】*************************************************************************************对ansys主要命令的解释1,/PREP7 ! 加载前处理模块2,/CLEAR,NOSTART ! 清除已有的数据, 不读入启动文件的设置(不加载初始化文件)初始化文件是用于记录用户和系统选项设置的文本文件/CLEAR, START !清除系统中的所有数据,读入启动文件的设置/FILENAME, EX10.5 ! 定义工程文件名称/TITLE, EX10.5 SOLID MODEL OF AN AXIAL BEARING ! 指定标题4,F,2,FY,-1000 ! 在2号节点上施加沿着-Y方向大小为1000N的集中力6,FINISH ! 退出模块命令7,/POST1 ! 加载后处理模块8,PLDISP,2 ! 显示结构变形图,参数“2”表示用虚线绘制出原来结构的轮廓9,ETABLE,STRS,LS,1 ! 用轴向应力SAXL的编号”LS,1”定义单元表STRSETABLE, MFORX,SMISC,1 ! 以杆单元的轴力为内容, 建立单元表MFORXETABLE, SAXL, LS, 1 ! 以杆单元的轴向应力为内容, 建立单元表SAXLETABLE, EPELAXL, LEPEL, 1 ! 以杆单元的轴向应变为内容, 建立单元表EPELAXLETABLE,STRS_ST,LS,1 !以杆件的轴向应力“LS,1”为内容定义单元表STRS_STETABLE, STRS_CO, LS,1 !以杆件的轴向应力“LS,1”定义单元表STRS_COETABLE,STRSX,S,X ! 定义X方向的应力为单元表STRSXETABLE,STRSY,S,Y ! 定义Y方向的应力为单元表STRSY*GET,STRSS_ST,ELEM,STEEL_E, ETAB, STRS_ST !从单元表STRS_ST中提取STEEL_E单元的应力结果,存入变量STRSS_ST;*GET, STRSS_CO,ELEM,COPPER_E,ETAB,STRS_CO”从单元表STRS_CO中提取COPPER_E单元的应力结果,存入变量STRSS_CO10 FINISH !退出以前的模块11, /CLEAR, START ! 清除系统中的所有数据,读入启动文件的设置12 /UNITS, SI !申明采用国际单位制14 /NUMBER, 2 !只显示编号, 不使用彩色/NUMBER, 0 ! 显示编号, 并使用彩色15 /SOLU ! 进入求解模块:定义力和位移边界条件,并求解ANTYPE, STATIC ! 申明分析类型是静力分析(STA TIC或者0)OUTPR, BASIC, ALL ! 在输出结果中, 列出所有荷载步的基本计算结果OUTPR,BASIC,ALL !指定输出所有节点的基本数据OUTPR,BASIC,LAST ! 选择基本输出选项,直到最后一个荷载步OUTPR,,1 ! 输出第1个荷载步的基本计算结果OUTPR,BASIC,1 ! 选择第1荷载步的基本输出项目OUTPR,NLOAD,1 ! 指定输出第1荷载步的内容OUTRES,ALL,0 !设置将所有数据不记录到数据库。
(完整版)ANSYS最常用命令流+中文注释(超级大全)
ANSYS最常用命令流+中文注释VSBV, NV1, NV2, SEPO, KEEP1, KEEP2 —Subtracts volumes from volumes,用于2个solid相减操作,最终目的是要nv1-nv2=?通过后面的参数设置,可以得到很多种情况:sepo项是2个体的边界情况,当缺省的时候,是表示2个体相减后,其边界是公用的,当为sepo的时候,表示相减后,2个体有各自的独立边界。
keep1与keep2是询问相减后,保留哪个体?当第一个为keep时,保留nv1,都缺省的时候,操作结果最终只有一个体,比如:vsbv,1,2,sepo,,keep,表示执行1-2的操作,结果是保留体2,体1被删除,还有一个1-2的结果体,现在一共是2个体(即1-2与2),且都各自有自己的边界。
如vsbv,1,2,,keep,,则为1-2后,剩下体1和体1-2,且2个体在边界处公用。
同理,将v换成a 及l是对面和线进行减操作!mp,lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)co: 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数定义DP材料:首先要定义EX和泊松比:MP,EX,MA T,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MA T进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,degVSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP Type,是选择的方式,有选择(s),补选(a),不选(u),全选(all)、反选(inv)等,其余方式不常用Item, Comp 是选取的原则以及下面的子项如volu 就是根据实体编号选择,loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标!其余还有材料类型、实常数等MIN, VMAX, VINC,这个就不必说了吧!,例:vsel,s,volu,,14vsel,a,volu,,17,23,2上面的命令选中了实体编号为14,17,19,21,23的五个实体VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体nv1:初始体号nv2:最终的体号ninc:体号之间的间隔kswp=0:只删除体kswp=1:删除体及组成关键点,线面如果nv1=all,则nv2,ninc不起作用其后面常常跟着一条显示命令VPLO,或aplo,nplo,这个湿没有参数的命令,输入后直接回车,就可以显示刚刚选择了的体、面或节点,很实用的哦!Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点(缺省)R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0” 使用正负号“1”仅用绝对值下面是单元生死第一个载荷步中命令输入示例:!第一个载荷步TIME,... !设定时间值(静力分析选项)NLGEOM,ON !打开大位移效果NROPT,FULL !设定牛顿-拉夫森选项ESTIF,... !设定非缺省缩减因子(可选)ESEL,... !选择在本载荷步中将不激活的单元EKILL,... !不激活选择的单元ESEL,S,LIVE !选择所有活动单元NSLE,S !选择所有活动结点NSEL,INVE !选择所有非活动结点(不与活动单元相连的结点)D,ALL,ALL,0 !约束所有不活动的结点自由度(可选)NSEL,ALL !选择所有结点ESEL,ALL !选择所有单元D,... !施加合适的约束F,... !施加合适的活动结点自由度载荷SF,... !施加合适的单元载荷BF,... !施加合适的体载荷SA VESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D, F,SF和BF命令得到更详细的解释。
全套完整版ANSYS命令流教学手册
全套完整版ANSYS命令流教学手册目录1ANSYS结构分析单元功能与特性 (1)1.1杆单元: LINK1、8、10、11、180 (1)1.2梁单元:BEAM3、4、23、24,44,54,188,189 (2)1.3管单元:PIPE16,17,18,20,59,60 (3)1.42D实体单元:PLANE2,25,42,82,83,145,146,182,183 41.53D实体元:SOLID45,46,64,65,72,73,92,95,147,148,185,186,187,191 (5)1.6壳单元:SHELL28,41,43,51,61,63,91,93,99,143,150,181,208,209 (6)1.7弹簧单元:COMBIN7,14,37,39,40 (6)1.8质量单元:MASS21 (6)1.9接触单元:CONTAC12,52,TARGE169,170,CONTA171,172,173,174,175,178 (6)1.10 矩阵单元:MATRIX27,50 (7)1.11 表面效应元:SURF153,154 (7)1.12 粘弹实体元:VISCO88,89,106,107,108, (8)1.13 超弹实体元:HYPER56,58,74,84,86,158 (8)1.14 耦合场单元:SOLID5,PLANE13,FLUID29,30,38,SOLID62,FLUID79,FLUID80,81,SOLID98,FLUID129,INFIN110,111,FLUID116,130 (8)1.15 界面单元:INTER192,193,194,195 (8)1.16 显式动力分析单元:LINK160,BEAM161,PLANE162,SHELL163,SOLID164,COMBI16 (8)1.17 预紧、多点约束、网分单元 (8)2ANSYS 的基本使用 (10)2.1ANSYS环境简介 (10)2.2有限元法的基本构架 (12)2.3ANSYS架构及命令 (13)2.4典型的分析过程 (16)2.5ANSYS 文件及工作文件名 (16)2.6图形控制 (18)3第三章有限元模型的建立 (20)3.1建模方法 (20)3.2坐标系统及工作平面 (21)3.2.1局部坐标系 (21)3.2.1.1 激活总体和局部坐标系(声明坐标系统) (21)3.2.1.2 根据总体坐标系定义局部坐标系 (22)3.2.1.3 根据已有的三个节点定义局部坐标系 (22)3.2.1.4 根据已有的三个关键点定义局部坐标系 (22)3.2.1.5 根据当前工作平面定义局部坐标系 (22)3.2.1.6 根据激活的坐标系定义局部坐标系 (23)3.2.1.7 删除局部坐标系 (23)3.2.1.8 查看激活坐标系和局部坐标系 (23)3.2.2节点坐标系的旋转与修改 (23)3.2.2.1 将某些节点的坐标系旋转到与当前激活坐标系(简称“当前坐标系”)方向一致 (23)3.2.2.2 将既有节点的节点坐标系旋转某个角度 (23)3.2.2.3 在创建节点时直接定义其坐标系的旋转角度 (24)3.2.2.4 按方向余弦旋转节点坐标系 (24)3.2.2.5 节点坐标系列表 (24)3.2.3单元坐标系的定义与修改 (24)3.2.3.1 设置单元坐标系 (24)3.2.3.2 修改单元坐标系方向 (24)3.2.3.3 激活显示坐标系 (25)3.2.3.4 激活结果坐标系 (25)3.2.4工作平面 (25)3.2.4.1 定义工作平面 (25)3.2.4.2 通过3个坐标点定义工作平面 (25)3.2.4.3 通过3个节点定义工作平面 (26)3.2.4.4 通过3个关键点定义工作平面 (26)3.2.4.5 通过垂直于线上的某个位置定义工作平面 (26) 3.2.4.6 查看工作平面的当前状态 (26)3.2.4.7 恢复到ANSYS默认状态 (26)3.2.4.8 移动工作平面 (26)3.2.5声明单位系统 (27)3.3节点定义 (28)3.3.1创建节点 (28)3.3.2删除节点 (28)3.3.3节点显示 (28)3.3.4节点列式 (29)3.3.5节点的填充 (29)3.3.6节点复制 (29)3.4单元的定义 (30)3.4.1定义单元类型 (30)3.4.2定义材料的属性 (31)3.4.3定义实常数 (31)3.4.4定义单元的连接方式 (31)3.4.5单元复制 (32)3.4.6单元显示 (32)3.4.7单元列示 (32)3.4.8声明使用已定义单元类型 (32)3.4.9声明使用已定义的实常数 (33)3.4.10声明使用已定义的单元属性, (33)3.5负载定义 (33)3.5.1进入解题处理器 (34)3.5.2声明分析类型 (34)3.5.3定义节点的集中力 (35)3.5.4定义节点自由度 (35)3.5.5定义在梁单元上的分布力 (36)3.5.6定义分布力作用于单元上的方式和大小 (37) 3.5.7定义节点间分布力 (37)3.5.8对象选择 (38)3.6求解 (40)3.7用POST1进行结果后处理 (40)3.7.1进入POST1 (40)3.7.2读取结果 (40)3.7.3绘变形图 (40)3.7.4变形动画 (41)3.7.5列表支反力 (41)3.7.6应力等值线与应力等值线动画 (41)3.7.7应力等值线动画 (41)4实体模型的建立 (45)4.1实体模型简介 (45)4.2实体模型的建立方法 (45)4.3群组命令介绍 (46)4.4点定义 (47)4.4.1创建关键点 (47)4.4.1.1 在给定坐标点创建关键点 (47)4.4.1.2 在两关键点之间创建一个关键点 (47) 4.4.1.3 在两关键点之间填充多个点 (48)4.4.1.4 复制创建关键点 (48)4.4.1.5 镜像创建关键点 (49)4.4.1.6 列表显示关键点信息 (49)4.4.1.7 屏幕上显示关键点 (50)4.4.1.8 删除关键点 (50)4.4.1.9 选择关键点 (50)4.4.1.10 选择与所选线相关的关键点 (51)4.4.1.11 修改关键点坐标 (52)4.4.1.12 定义点(NPT)于已知节点上 (52)4.4.2创建线 (52)4.4.2.1通过两关键点创建线 (52)4.4.2.2 通过两关键点创建直线 (53)4.4.2.3 通过关键点创建圆弧线 (53)4.4.2.4 创建圆或圆弧线 (54)4.4.2.5 两条相交线倒角创建圆弧线 (55)4.4.2.6 复制创建线 (56)4.4.2.7 合并两条或多条线 (57)4.4.2.8 将一条线分为多条线 (57)4.4.2.9 延长一条线 (58)4.4.2.10 通过多个关键点按样条创建一条曲线 (58) 4.4.2.11 关键点绕轴线创建旋转线 (59)4.4.2.12 通过坐标轴镜像创建线 (59)4.4.2.13 显示线和删除线 (59)4.4.2.14 列表输出线信息 (60)4.4.2.15 选择一组线 (60)4.4.2.16 选择与面相关的线 (61)4.4.2.17 选择与关键点相关的线 (61)4.4.2.18 练习点和线段的生成 (61)4.4.3创建面 (64)4.4.3.1 通过关键点创建面 (64)4.4.3.2 通过线创建面 (65)4.4.3.3 沿路径拖拉创建面 (65)4.4.3.4 线绕轴旋转生成弧面 (66)4.4.3.5 既有面偏移创建新面 (66)4.4.3.6 蒙皮创建光滑曲面 (67)4.4.3.7 复制创建面 (67)4.4.3.8 通过坐标轴对称创建面 (68)4.4.3.9 列表输出面信息 (68)4.4.3.10 显示面 (68)4.4.3.11 删除面 (68)4.4.3.12 选择一组面 (69)4.4.3.13 选择与所选线相关的面 (69)4.4.3.14 选择与所选体相关的面 (70)4.4.3.15 通过两角点坐标创建矩形面 (70)4.4.3.16 通过一角点坐标和尺寸创建矩形面 (70) 4.4.3.17 通过中心坐标和尺寸创建矩形面 (70) 4.4.3.18 在工作平面原点创建圆面或环面 (71) 4.4.3.19 通过圆心坐标和半径等创建圆或环面 (71) 4.4.3.20 通过圆上直径端点坐标创建圆面 (72) 4.4.3.21 在工作平面原点创建正多边形面 (72) 4.4.3.22 在工作平面任意位置创建正多边形面 (72) 4.4.4创建体 (73)4.4.4.1 通过关键点创建体 (74)4.4.4.2 通过面创建体 (75)4.4.4.3 沿路径拖拉面创建体 (76)4.4.4.4 面绕轴旋转创建柱体 (76)4.4.4.5 面偏移创建体 (77)4.4.4.6 通过面延伸创建体 (78)4.4.4.7 复制创建体 (78)4.4.4.8 通过坐标轴镜像创建体 (79)4.4.4.9 列表输出体信息 (79)4.4.4.10 显示体 (79)4.4.4.11 删除体 (79)4.4.4.12 创建长方体 (79)4.4.4.13 通过一角点坐标和尺寸创建长方体 (80)4.4.4.14 通过面中心坐标和尺寸创建长方体 (80)4.4.4.15 在工作平面原点创建圆柱体或部分圆柱体 (80) 4.4.4.16 通过圆心坐标和半径等创建圆柱体 (80)4.4.4.17 通过圆上直径两端点坐标创建圆柱体 (80) 4.4.4.18 在工作平面原点创建正棱柱体 (81)4.4.4.19 在工作平面任意位置创建正棱柱体 (81)4.4.4.20 在工作平面原点创建球体 (81)4.4.4.21 在工作平面任意位置创建球体 (81)4.4.4.22 通过直径端点生成球体 (81)4.4.4.23 以工作平面原点为圆心创建圆锥体 (81)4.4.4.24 在工作平面任意位置创建圆锥体 (82)4.4.4.25 以工作平面原点为环心创建环体 (82)4.5布尔操作 (84)4.5.1布尔运算的一般设置 (84)4.5.1.1 布尔运算的容差设置 (85)4.5.1.2 交运算Intersection (85)4.5.1.3 加运算Addition (86)4.5.1.4 减运算Subtract (87)4.5.1.5 用工作平面切分图素Subtract (88)4.5.1.6 分割运算Partition (89)4.5.1.7 分类运算Classify (90)4.5.1.8 搭接运算Overlap (90)4.5.1.9 粘接Glue (或Merge) (91)4.5.2几何建模的其它常用命令 (93)4.5.2.1 图形平移、缩放和旋转 (93)4.5.2.2 设置坐标轴方向 (93)4.5.2.3 设置视图方向 (93)4.5.2.4 设置视图旋转角度 (94)4.5.2.5 编号显示控制 (94)4.5.2.6 颜色显示控制 (95)4.5.2.7 显示边界条件和荷载的符号及数值 (95) 4.5.2.8 显示边界条件及数值 (96)4.5.2.9 显示风格设置 (96)4.5.2.10 单元尺寸和形状 (97)4.5.2.11 图素收缩显示控制 (97)4.5.2.12 显示单元形状 (97)4.5.2.13 等值线显示控制 (97)4.5.2.14 均匀等值线设置 (98)4.5.2.15 设置等值线的文字标注 (98)4.5.2.16 颜色设置 (98)4.5.2.17 设置图形中浮点数显示方式 (100) 4.5.2.18 设置变形放大系数 (100)4.5.2.19 设置矢量显式长度 (101)4.5.2.20 设置窗口布局 (101)4.5.2.21 图素显示控制 (102)4.5.2.22 显示所有图素 (102)4.5.2.23 图形擦除 (102)5网格划分 (103)5.1区分实体模型和有限元模型 (103)5.2网格化的步骤 (104)5.2.1定义单元类型 (106)5.2.1.1 单元类型的KEYOPT (106)5.2.1.2 自由度集 (106)5.2.1.3 改变单元类型 (106)5.2.1.4 单元类型的删除与列表 (106)5.2.2实常数 (107)5.2.2.1 定义实常数 (107)5.2.2.2 变厚度壳实常数定义 (107)5.2.2.3 实常数组的删除与列表 (107)5.2.3材料属性 (108)5.2.3.1 定义线性材料属性 (108)5.2.3.2 定义线性材料属性的温度表 (108) 5.2.3.3 定义与温度对应的线性材料特性 (108) 5.2.3.4 复制线性材料属性组 (108)5.2.3.5 改变指定单元的材料参考号 (109) 5.2.3.6 线性材料属性列表和删除 (109)5.2.3.7 修改与线胀系数相关的温度 (109) 5.2.3.8 计算生成线性材料温度表 (109)5.2.3.9 绘制线性材料特性曲线 (109)5.2.3.10 设置材料库读写的缺省路径 (109) 5.2.3.11 读入材料库文件 (109)5.2.3.12 将材料属性写入文件 (109)5.2.3.13 激活非线性材料属性的数据表 (109)。
(完整版)ANSYS命令流使用方法(中文)修改
Finish(退出四大模块,回到BEGIN层)/clear (清空内存,开始新的计算)1.定义参数、数组,并赋值.2./prep7(进入前处理)定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号。
设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1(通用后处理)5./post26 (时间历程后处理)6.PLOTCONTROL菜单命令7.参数化设计语言8.理论手册Finish(退出四大模块,回到BEGIN层)/clear (清空内存,开始新的计算)1.定义参数、数组,并赋值.dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane(当type为table时) 2./prep7(进入前处理)2.1 设置单元类型及相应KEYOPTET, itype, ename, kop1……kop6, inopr 设定当前单元类型Itype:单元号Ename:单元名设置实常数Keyopt, itype, knum, valueitype: 已定义的单元类型号knum: 单元的关键字号value: 数值注意:如果,则必须使用keyopt命令,否则也可在ET命令中输入2.2 定义几个所关心的节点,以备后处理时调用节点号。
n,node,x,y,z,thxy, thyz, thzx 根据坐标定义节点号如果已有此节点,则原节点被重新定义,一般为最大节点号。
(完整版)ansys命令流
八天学会Ansys命令流为方便大家的交流和学习,特推出"跟我学命令流"课程本课程分为三部分:前处理,加载求解,后处理每部分的学习时间:10天,共计30天每天学习大约10个命令希望本课程对大家能有所帮助第一天目标:熟悉ANSYS基本关键字的含义k --> Keypoints 关键点l --> Lines 线a --> Area 面v --> Volumes 体e --> Elements 单元n --> Nodes 节点cm --> component 组元et --> element type 单元类型mp --> material property 材料属性r --> real constant 实常数d --> DOF constraint 约束f --> Force Load 集中力sf --> Surface load on nodes 表面载荷bf --> Body Force on Nodes 体载荷ic --> Initial Conditions 初始条件第二天目标:了解命令流的整体结构,掌握每个模块的标识!文件说明段/BATCH/TITILE,test analysis !定义工作标题/FILENAME,test !定义工作文件名/PREP7 !进入前处理模块标识!定义单元,材料属性,实常数段ET,1,SHELL63 !指定单元类型ET,2,SOLID45 !指定体单元MP,EX,1,2E8 !指定弹性模量MP,PRXY,1,0.3 !输入泊松比MP,DENS,1,7.8E3 !输入材料密度R,1,0.001 !指定壳单元实常数-厚度......!建立模型K,1,0,0,, !定义关键点K,2,50,0,,K,3,50,10,,K,4,10,10,,K,5,10,50,,K,6,0,50,,A,1,2,3,4,5,6, !由关键点生成面......!划分网格ESIZE,1,0,AMESH,1......FINISH !前处理结束标识/SOLU !进入求解模块标识!施加约束和载荷DL,5,,ALLSFL,3,PRES,1000SFL,2,PRES,1000......SOLVE !求解标识FINISH !求解模块结束标识/POST1 !进入通用后处理器标识....../POST26 !进入时间历程后处理器……/EXIT,SAVE !退出并存盘以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助/ANGLE !指定绕轴旋转视图/DIST !说明对视图进行缩放/DEVICE !设置图例的显示,如:风格,字体等/REPLOT !重新显示当前图例/RESET !恢复缺省的图形设置/VIEW !设置观察方向/ZOOM !对图形显示窗口的某一区域进行缩放第三天生成关键点和线部分1.生成关键点K,关键点编号,X坐标,Y坐标,Z坐标例:K,1,0,0,02.在激活坐标系生成直线LSTR,关键点P1,关键点P2例LSTR,1,23.在两个关键点之间连线L,关键点P1,关键点P2例L,1,2注:此命令会随当前的激活坐标系不同而生成直线或弧线4.由三个关键点生成弧线LARC,关键点P1,关键点P2,关键点PC,半径RAD例LARC,1,3,2,0.05注:关键点PC是用来控制弧线的凹向5.通过圆心半径生成圆弧CIRCLE,关键点圆心,半径RAD,,,,圆弧段数NSEG例:CIRCLE,1,0.05,,,,46.通过关键点生成样条线BSPLIN,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6 例:BSPLIN,1,2,3,4,5,67.生成倒角线LFILLT,线NL1,线NL2,倒角半径RAD例LFILLT,1,2,0.0058.通过关键点生成面A,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6,P7,P8...例:A,1,2,3,49.通过线生成面AL,线L1,线L2,线L3,线L4,线L5,线L6,线L7,线L8,线L9,线L10例:AL,5,6,7,810.通过线的滑移生成面ASKIN,线NL1,线NL2,线NL3,线NL4,线NL5,线NL6,线NL7,线NL8,线NL9例:ASKIN,1,4,5,6,7,8注:线1为滑移的导向线第四天目标:掌握常用的实体-面的生成生成矩形面1.通过矩形角上定位点生成面BLC4,定位点X方向坐标XCORNER,定位点Y方向坐标YCORNER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH例:BLC4,0,0,5,3,02.通过矩形中心定位点生成面BLC5,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH注:与上条命令的不同就在于矩形的定位点不一样例:BLC5,2.5,1.5,5,3,03.通过在工作平面定义矩形X.Y坐标生成面RECTNG,矩形左边界X坐标X1,矩形右边界X坐标X2,矩形下边界Y坐标Y1,矩形上边界Y坐标Y2例:RECTNG,0,5,0,3生成圆面4.通过中心定位点生成实心圆面CYL4,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,圆面的内半径RAD1,内圆面旋转角度THETA1,圆面的外半径RAD2,外圆面旋转角度THETA2,圆面的深度DEPTH注:如要实心的圆面则不用RAD2,THETA2,DEPTH例:CYL4,0,0,5,3605.生成扇形圆面命令介绍如上例1实心扇形:CYL4,0,0,5,60例2扇形圆环:CYL4,0,0,5,60,10,60例3整的圆环:CYL4,0,0,5,360,10,360注:同时可通过定义圆面的深度以生成柱体6.通过在工作平面定义起始点生成圆面CYL5,开始点X坐标XEDGE1,开始点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2,圆面深度DEPTH例:CYL5,0,0,2,2,7.通过在工作平面定义内外半径和起始角度来生成圆面PCIRC,内半径RAD1,外半径RAD2,起始角度THETA1,结束角度THETA2例LCIRC,2,5,30,1808.生成面与面的倒角AFILLT,面1的编号NA1,面2的编号NA2,倒角半径RAD例:AFILLT,2,5,2下一讲:多边形面的生成第五天目标:掌握多边形面和体的生成1.生成多边形面命令:RPR4,多边形的边数NSIDES,中心定位点X坐标XCENTER,中心定位点Y坐标YCENTER,中心定位点距各边顶点的距离RADIUS,多边形旋转角度THETA例:RPR4,4,0,0,0.15,30注:这条命令可通过定义不同的NSIDES生成三边形,四边形,...,八边形2.生成多边形体命令:RPR4,多边形的边数NSIDES,中心定位点X坐标XCENTER,中心定位点Y坐标YCENTER,中心定位点距各边顶点的距离RADIUS,多边形旋转角度THETA,多边形的深度DEPTH例:RPR4,4,0,0,0.15,30,0.1注:多边形体和面命令唯一的不同就在于深度DEPTH的定义到此,关键点,线,面的生成讲解已结束,下一讲:体的生成第六天目标:掌握体的生成命令1.通过关键点生成体命令:V,关键点P1,关键点P2, P3, P4, P5, P6, P7, P8例:V,4,5,6,7,15,24,252.通过面生成体命令:VA,面A1,面A2, A3, A4, A5, A6, A7, A8, A9, A10例:VA,3,4,5,8,103.通过长方形角上定位点生成体命令:BLC4该命令前面在讲生成面的时候已作介绍,唯一的不同在于深度DEPTH的定义.4.通过长方形中心定位点生成面命令:BLC55.通过定义长方体起始位置生成体命令:BLOCK,开始点X坐标X1,结束点X坐标X2, Y1, Y2, Z1, Z2例:BLOCK,2,5,0,2,1,36.生成圆柱体基本命令通生成圆形面,不同在于DEPTH的定义基本命令:CYL4基本命令:CYL5基本命令:CYLIND7.生成棱柱基本命令通生成多边形,不同在于DEPTH的定义基本命令:RPR48.通过球心半径生成球体命令:SPH4,球心X坐标XCENTER,球心Y坐标YCENTER,半径RAD1,半径RAD2例:SPH4,1,1,2,59.通过直径上起始点坐标生成球体命令:SPH5,起点X坐标XEDGE1,起点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2例:SPH5,2,5,7,610.在工作平面起点通过半径和转动角度生成球体命令:SPHERE,半径RAD1,半径RAD2,转动角度THETA1,转动角度THETA2例:SPHERE,2,5,0,6011.生成圆锥体命令:CONE,底面半径RBOT,顶面半径RTOP,底面高Z1,顶面高Z2,转动角度THETA1,转动角度THETA2例:CONE,10,20,0,50,0,180下一讲:布尔操作第七天目标:掌握常用的布尔操作命令1.沿法向延伸面生成体命令:VOFFST,面的编号NAREA,面拉伸的长度DIST,关键点增量KINC例:VOFFST,1,2,,2.通过坐标的增量延伸面生成体命令:VEXT,面1的编号NA1,面2的编号NA2,增量NINC,X方向的增量DX,Y方向的增量DY,Z 方向的增量DZ, RX, RY, RZ例:VEXT,1,5,1,1,2,2,3.面绕轴旋转生成体命令:VROTAT,面1的编号NA1,面2的编号NA2,NA3, NA4, NA5, NA6,定位轴关键点1编号PAX1,定位轴关键点2编号PAX2,旋转角度ARC,生成体的段数NSEG例:VROTAT,1,2,,,,,4,5,360,44.沿线延伸面生成体命令:VDRAG,面1的编号NA1,面2的编号NA2, NA3, NA4, NA5, NA6,导引线1的编号NLP1,导引线2的编号NLP2, NLP3, NLP4, NLP5, NLP6例:VDRAG,2,3,,,,,8,5.线绕轴旋转生成面命令:AROTAT,线1的编号NL1, NL2, NL3, NL4, NL5, NL6,定位轴关键点1的编号PAX1,定位轴关键点2的编号PAX2,旋转角度ARC,生成面的段数NSEG例:AROTAT,3,4,,,,,6,8,360,46.沿线延伸线生成面命令:ADRAG,线1的编号NL1,NL2, NL3, NL4, NL5, NL6,导引线1的编号NLP1, NLP2, NLP3, NLP4, NLP5, NLP6例:ADRAG,3,,,,,,87.同理可以延伸关键点,相应的命令如下:LROTAT, NK1, NK2, NK3, NK4, NK5, NK6, PAX1, PAX2, ARC, NSEGLDRAG, NK1, NK2, NK3, NK4, NK5, NK6, NL1, NL2, NL3, NL4, NL5, NL6各选项的含义雷同于上.8.延伸一条线命令LEXTND,线的编号NL1,定位关键点编号NK1,延伸的距离DIST,原有线是否保留控制项KEEP例LEXTND,5,2,1.5,09.布尔操作:加命令LCOMB,线编号NL1,线编号NL2,是否修改控制项KEEP例LCOMB,2,5注:对面和体的相应为:VADD,AADD.选项的含义都类似10.布尔操作:粘接和搭接搭接的核心关键字为:OVLAP,随实体的不同略有不同,如:对体为VOVLAP对面为AOVLAP对线为LOVLAP粘接的核心关键字为:GLUE,随实体的不同略有不同,如:对体为VGLUE对面为AGLUE对线为LGLUE但其他的选项的含义是类似的,这里就不再累述.下一讲:移动,复制,映射,删除...第八天目标:掌握体素的移动,复制,删除,映射一.移动关键点命令:KMODIF,关键点编号NPT,移动后的坐标X,移动后的坐标Y,移动后的坐标Z例:KMODIF,5,0,0,2二.移动复制关键点命令:KGEN,复制次数选项ITIME,起始关键点编号NP1,结束关键点编号NP2,增量NINC,偏移DX,偏移DY,偏移DZ,关键点编号增量KINC,生成节点单元控制项NOELEM,原关键点是否被修改选项IMOVE例:KGEN,2,1,10,1,2,2,2,,,,注:IMOVE选项说明,设置为0时,不修改原关键点,即为复制,设置为1时,修改原关键点,即为移动,从而通过控制IMOVE选项实现移动或复制.三.移动复制线命LGEN,ITIME,NL1,NL2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上四.移动复制面命:AGEN,ITIME,NA1,NA2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上五.移动复制体命令:VGEN,ITIME,NV1,NV2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上六.修改面的法向方向命令:ANORM,面的编号ANUM,单元的法向方向是否修改选项NOEFLIP例:ANORM,2七.体素的删除基本的命令为:*DELE组合不同的关键字形成不同的命令如:KDELE,LDELE,ADELE,VDELE基本的命令格式为:*DELE,起始体素编号N*1,结束体素编号N*2,增量NINC,是否删除体素下层的元素选项KSWP如LDELE,2,5,1,1八.体素的映射基本的命令为:*SYMM组合不同的关键字形成不同的命令如:KSYMM,LSYMM,ARSYM,VSYMM基本的命令格式为:*SYMM,映射轴选项NCOMP,起始体素编号N*1,结束体素编号N*2,增量NINC,关键点编号增量KINC,NOELEM, IMOVE如:VSYMM,X,1,10,1,,,,。
ansys命令流入门教程
ansys命令流入门教程在 ANSYS 中,荷载包括边界条件和作用力,对结构分析可以是以下内容:位移、力、压力、温度、重力一般可将荷载分为六类,如表 4-1 所示。
★ 荷载即可施加在几何模型(关键点、硬点、线、面、体)上,也可施加在有限元模型(节点、单元)上,或者二者混合使用。
★ 施加在几何模型上的荷载独立于有限元网格,不必为修改网格而重新加载;★ 施加在有限元模型上且要修改网格,则必须先删除荷载再修改网格,然后重新施加荷载。
★ 不管施加到何种模型上,在求解时荷载全部转换(自动或人工)到有限元模型上。
在结构分析中自由度共有7 个,自由度的方向均依从节点坐标系。
约束可施加在节点、关键点、线和面上。
一、施加自由度约束1. 节点自由度约束及相关命令(1) 对节点施加自由度约束命令:D, NODE, Lab, VALUE, VALUE2, NEND, NINC, Lab2, Lab3, Lab4, Lab5, Lab6NODE - 拟施加约束的节点号,其值可取 ALL、组件名。
Lab - 自由度标识符,如UX、ROTZ等。
如为ALL,则为所有适宜的自由度。
VALUE - 自由度约束位移值或表式边界条件的表格名称。
VALUE2 - 约束位移值的第二个数,如为复数输入时,VALUE 为实部,而 VALUE2 为虚部。
NEND,NINC - 节点编号范围和编号增量,缺省时 NEND=NODE,NINC=1。
Lab2,Lab3,Lab4,Lab5,Lab6 - 其它自由度标识符,VALUE 对这些自由度也有效。
各自由度的方向用节点坐标系确定,转角约束用弧度输入例如:D,ALL,ALL ! 对所选节点的全部自由度施加约束D,18,UX,,,,,UY,UZ ! 对节点 18 的 3 个平动自由度全部施加约束D,20,UX,1.0e-4 ! 对节点20 的UX 施加约束,且约束位移值为1.0e-4D,22,UX,0.1,,25,,UY,ROTY ! 对节点 22~25 的 UX,UY,ROTY 施加约束,且位移值均为 0.1(2) 在节点上施加对称和反对称约束命令:DSYM, Lab, Normal, KCNLab - 对称标识,如为 SYMM 则生成对称约束,如为 ASYM 则生成反对称约束。
ansys使用手册
ANSYS使用手册目录第1章开始使用ANSYS (1)1.1完成典型的ANSYS分析 (1)1.2建立模型 (1)1.2.1 指定作业名和分析标题 (1)1.2.2 定义单元的类型 (1)1.2.3 定义单元实常数 (2)1.2.4 定义材料特性 (3)1.2.5 创建几何模型 (13)1.2.6 加载和求解 (14)1.2.7 检查分析结果 (15)第2章加载 (16)2.1 载荷概述 (16)2.2 什么是载荷 (16)2.3 载荷步、子步和平衡迭代 (16)2.4 跟踪中时间的作用 (17)2.5 阶跃载荷和坡道载荷 (18)2.6 如何加载 (18)2.6.1 实体模型载荷:优点和缺点 (19)2.6.2 有限单元载荷:优点和缺点 (19)2.6.3 DOF约束 (19)2.6.4施加对称或反对称边界条件 (20)2.6.5 传递约束 (21)2.6.6 力(集中载荷) (23)2.6.7表面载荷 (24)2.6.8 体积载荷 (29)2.6.9 惯性载荷 (33)2.6.10 耦合场载荷 (35)2.6.11 轴对称载荷和反作用力 (35)2.6.12 施加到不产生任何阻力的DOF上的载荷 (36)2.6.13 初应力载荷 (36)2.6.14 用表格型矩阵参数施加载荷 (41)2.6.15 用函数边界条件加载 (43)2.7如何指定载荷步选项 (53)2.7.1 通用选项 (53)2.7.2 动力学分析选项 (56)2.7.3 非线性选项 (57)2.7.4 输出控制 (58)2.7.5 Biot-Savart 选项 (59)2.7.6 谱分析选项 (59)2.8 创建多载荷步文件 (59)2.9 定义接头固定处预拉伸 (61)2.9.1使用PSMESH 命令 (61)2.9.2 使用EINTF 命令 (62)第3章求解 (67)3.1 什么是求解 (67)3.2 选择求解器 (67)3.3 使用波前求解器 (68)3.4 使用稀疏阵直接解法求解器 (68)3.5使用雅可比共轭梯度法求解器(JCG) (68)3.6 使用不完全乔列斯基共轭梯度法求解器(ICCG) (68)3.7 使用预条件共轭梯度法求解器(PCG) (69)3.8 使用代数多栅求解器(AMG) (69)3.9使用分布式求解器(DDS) (70)3.10自动迭代(快速)求解器选项 (70)3.11在某些类型结构分析使用特殊求解控制 (70)3.11.1 使用简化求解菜单 (71)3.11.2使用求解控制对话框 (71)3.11.3获得更多的信息 (73)3.12使用PGR文件存储后处理数据 (73)3.12.1 PGR 文件功能 (74)3.12.2 为PGR文件选择信息 (74)3.12.3 PGR命令 (75)3.13获得解答 (75)3.14 求解多载荷步 (76)3.14.1 使用多步求解法 (76)3.14.2 使用载荷步文件法 (76)3.14.3使用数组参数法 (77)3.15 中断正在运行的作业 (78)3.16 重新启动一个分析 (79)3.16.1 一般重启动 (79)3.16.2多点重启动 (82)3.17 实施部分求解步 (88)3.18 估计运行时间和文件大小 (90)3.18.1 估计运算时间 (90)3.18.2估计文件的大小 (91)3.18.3 估计内存需求 (91)3.19 奇异解 (91)第4章后处理概述 (92)4.1 什么是后处理 (92)4.2 结果文件 (92)4.3 后处理可用的数据类型 (93)第5章通用后处理器(POST1) (94)5.1 概述 (94)5.2 将数据结果读入数据库 (94)5.2.1 读入结果数据 (94)5.2.2 其他用于恢复数据的选项 (94)5.2.3 创建单元表 (96)5.2.4 对主应力的专门研究 (100)5.3 在POST1中观察结果 (100)5.3.1图象显示结果 (100)5.3.2 合成表面结果 (106)5.3.3 用表格形式列出结果 (106)5.3.4 映射结果到某一路径上 (113)5.3.5 分析计算误差 (118)5.4 在POST1中使用PGR文件 (118)5.4.1 在POST1中指定一个新的PGR文件 (118)5.4.2 在POST1中向已存在PGR文件添加数据 (120)5.4.3 使用结果观察器访问结果文件数据 (120)5.5 POST1的其他后处理内容 (125)5.5.1 将计算结果旋转到不同坐标系中 (125)5.5.2 在结果数据中进行数学运算 (127)5.5.3 产生及组合载荷工况 (129)5.5.4 将计算结果映射到不同网格上或已划分网格的边界上 (133)5.5.5在数据库中创建或修改结果数据 (134)5.5.6用于磁场后处理的宏命令 (134)第6章时间历程后处理器(POST26) (136)6.1 时间历程变量观察器 (136)6.2 进入时间历程处理器 (137)6.2.1 交互式 (138)6.2.2 批处理方式 (138)6.3 定义变量 (138)6.3.1 交互式 (138)6.3.2 批处理方式 (139)6.4 处理变量并进行计算 (140)6.4.1 交互式 (140)6.4.2 批处理方式 (141)6.5 数据的输入 (141)6.5.1 交互式 (142)6.5.2 批处理方式 (142)6.6 数据的输出 (143)6.6.1 交互式 (143)6.6.2 批处理方式 (143)6.7 变量的评价 (144)6.7.1 图形显示结果 (144)6.7.2 列表显示结果 (145)6.8 POST26后处理器的其它功能 (146)6.8.1 PSD响应和协方差计算 (146)6.8.1.1 交互式 (146)6.8.1.2 批处理方式 (146)6.8.2 产生响应谱 (146)6.8.2.1 交互式 (146)6.8.2.2 批处理方式 (146)6.8.3.2 批处理方式 (147)第7章选择和元件 (148)7.1 什么是选择 (148)7.2 选择实体 (148)7.2.1 利用命令来选择实体 (149)7.2.2 用GUI选择实体 (149)7.2.3 选择线条来修改CAD几何图形 (150)7.2.4 其它用于选择的命令 (150)7.3 为有意义的后处理选择 (150)7.4 将几何项目组集成元件与组件 (151)7.4.1 镶嵌组件 (152)7.4.2 通过元件和组件来选择实体 (152)7.4.3 增加和删除组件 (152)7.4.4 自动更新部件与组件 (152)第8章图形使用入门 (153)8.1概述 (153)8.2交互式图形与“外部”图形 (153)8.3标识图形设备名(UNIX系统) (153)8.3.1可用的图形设备名 (153)8.3.2UNIX系统支持的图形驱动程序和功能 (154)8.3.3 UNIX系统支持的图形设备类型 (154)8.3.4 图形环境变量 (155)8.4 指定图形显示设备的类型(WINDOWS系统) (155)8.5与系统相关的图形信息 (155)8.5.1 调整输入焦点 (155)8.5.2不激活备份存储 (155)8.5.3 设置IBM RS/6000 Sabine 图形适配器 (156)8.5.4 在网络上显示X11图形 (156)8.5.5 HP图形驱动程序 (156)8.5.6 在HP 喷墨打印机上产生图形显示 (156)8.5.7 PostScript 硬拷贝选项 (157)8.5.8 IBM RS/6000 图形驱动程序 (157)8.5.9 Silicon Graphics图形驱动程序 (157)8.5.10 Sun SPARC(32位和64位版本)图形驱动程序 (157)8.6产生图形显示 (157)8.6.1 GUI驱动的图形功能 (158)8.6.2 命令驱动的图形功能 (158)8.6.3 快速模式的图形 (158)8.6.4 重绘制当前显示 (158)8.6.5 擦除当前显示 (158)8.6.6 放弃正在进行的显示 (158)8.7 多重绘图技术 (158)8.7.1 定义窗口布局 (159)8.7.2 选择每个窗口显示的实体 (159)第9章通用图形规范 (161)9.1 概述 (161)9.2 用GUI控制显示 (161)9.3 多个ANSYS窗口,叠加显示 (161)9.3.1定义ANSYS窗口 (161)9.3.2 激活和释放ANSYS窗口 (161)9.3.3 删除ANSYS窗口 (161)9.3.4 在窗口之间拷贝显示规约 (161)9.3.5 重叠(覆盖)多个显示 (161)9.3.6 消除边框 (161)9.4 改变观察角、缩放及平移 (161)9.4.1 改变观察方向 (162)9.4.2 绕指定轴旋转显示 (162)9.4.3 确定模型坐标系参考方位 (162)9.4.4 平移显示 (162)9.4.5 放大(Zooming in 打开)图像 (163)9.4.6 利用Control键来平移、缩放、旋转--动态操作模式 (163)9.4.7 重新设置自动比例缩放与焦点 (163)9.4.8 “冻结”比例(距离)和焦点 (163)9.5控制各种文本和符号 (163)9.5.1 显示中使用图例 (163)9.5.2 控制实体字体 (165)9.5.3 控制整体坐标XYZ图的位置 (165)9.5.4打开或关掉坐标符号 (165)9.5.5 改变工作平面的网格类型 (165)9.5.6 打开或关闭ANSYS标识 (165)9.6 图形规约杂项 (165)9.6.1 观察图形控制规约 (165)9.6.2 为图形"/"命令恢复缺省值 (165)9.6.3 将显示规约存于文件中 (165)9.6.4 从文件中调用显示规约 (166)9.6.5 暂停ANSYS程序 (166)9.7 3D输入设备支持 (166)第10章增强型图形 (167)10.1 图形显示的两种方法 (167)10.2 PowerGraphics的特性 (167)10.3 何时用PowerGraphics (167)10.4 激活和释放PowerGraphics (167)10.5怎样使用PowerGraphics (167)10.6希望从PowerGraphics中做什么 (168)观察单元模型 (168)第11章创建几何显示 (170)11.1 用GUI显示几何体 (170)11.2 创建实体模型实体的显示 (170)11.3.2 应用Styles来增强模型显示 (173)11.3.3 打开或关闭编号与颜色 (175)11.3.4显示载荷和其它特殊的符号 (176)第12章创建几何模型结果显示 (177)12.1 利用GUI来显示几何模型结果 (177)12.2 创建结果的几何显示 (177)12.3 改变POST1结果显示规范 (178)12.3.1 控制变形后形状显示 (179)12.3.2 在结果显示中控制矢量符号 (179)12.3.3 控制等值线显示 (179)12.3.4 改变等值线数目 (180)12.4 Q-Slice 技术 (181)12.5 等值面技术 (181)12.6 控制粒子流或带电粒子的轨迹显示 (181)第13章生成图形 (183)13.1 使用GUI生成及控制图形 (183)13.2 图形显示动作 (183)13.3 改变图形显示指定 (184)13.3.1 改变图形显示的类型,风格和颜色 (184)13.3.2 给图形加上标签(注) (185)13.3.3 定义变量X Y及其取值范围 (186)第14章注释 (187)14.1 注释概述 (187)14.2 二维注释 (187)14.3 为ANSYS模型生成注释 (187)14.4 三维注释 (188)14.5 三维查询注释 (188)第15章动画 (189)15.1 动画概述 (189)15.2 在ANSYS中生成动画显示 (189)15.3 使用基本的动画命令 (189)15.4 使用单步动画宏 (189)15.5 离线捕捉动画显示图形序列 (190)15.6 独立的动画程序 (190)15.7 WINDOWS环境中的动画 (191)15.7.1 ANSYS怎样支持AVI文件 (191)15.7.2 DISPLAY程序怎样支持AVI文件 (191)15.7.3 用AVI 文件能做的其他事情 (192)第16章外部图形 (193)16.1 外部图形概述 (193)16.1.1 在Windows中打印图形 (193)16.1.2 在Windows中输出图形 (193)16.1.3 在Unix 系统中打印图形 (193)16.1.4 在Unix系统中输出图形 (194)16.3 DISPLAY程序观察及转换中性图形文件 (194)16.3.1 开始使用DISPLAY程序 (194)16.3.2 在终端屏幕上观察静态图像 (195)16.3.3 在屏幕上观看动画演示序列 (195)16.3.4 离线捕捉动画序列 (196)16.3.5 将文件输出到桌面出版系统或字处理软件中 (196)16.4 获得硬拷贝图形 (197)16.4.1 在UNIX系统的终端上激活硬拷贝功能 (197)16.4.2 使用DISPLAY程序获得外部设备上的硬拷贝 (197)16.4.3 在WINDOWS支持的打印机上打印图形显示 (197)第17章报告生成器 (198)17.1 启动报告生成器 (198)17.1.1 指定抓取数据和报告的位置 (198)17.1.2 了解ANSYS图形窗口的功能 (198)17.1.3 关于对图形文件格式的注意 (199)17.2 抓取图象 (199)17.2.1 交互方式 (199)17.2.2 批处理方式 (199)17.3 捕捉动画 (199)17.3.1 交互式方式 (199)17.3.2 批处理方式 (199)17.4 获得数据表格 (199)17.4.1 交互式方式 (200)17.4.2 批处理方式 (200)17.5 获取列表 (202)17.5.1交互方式 (202)17.5.2批处理方式 (202)17.6 生成报告 (202)17.6.1 激活报告生成 (202)17.6.2 报告生成的批处理方式 (204)17.6.3 使用JAVA语言界面的报告生成器 (204)17.7报告生成器的默认设置 (205)第18章CMAP程序 (206)18.1 CMAP概述 (206)18.2 作为独立程序启动CMAP (206)18.2.1 从UNIX系统的启动器中启动CMAP (206)18.2.2 在WINDOWS系统启动CMAP程序 (206)18.2.3 从UNIX系统的命令行中启动CMAP (207)18.3 在ANSYS内部使用CMAP (207)18.4 用户化彩色图 (207)第19章文件和文件管理 (210)19.1 文件管理概述 (210)WINDOWS浏览器运行交互式显示程序 (210)19.2 更改缺省文件名 (210)19.3 将输出送到屏幕、文件或屏幕及文件 (210)19.4.1 基于NFS格式的ANSYS二进制文件 (211)19.4.2 ANSYS写入的文件 (211)19.4.3 文件压缩 (213)19.5 将自己的文件读入ANSYS程序 (213)19.6 在ANSYS程序中写自己的ANSYS文件 (214)19.7 分配不同的文件名 (214)19.8 观察二进制文件内容(AXU2) (215)19.9 在结果文件上的操作(AUX3) (215)19.10 其它文件管理命令 (215)第20章内存管理与配置 (216)20.1 内存管理 (216)20.2 基本概念 (216)20.2.1 ANSYS工作空间和交换空间的需求 (216)20.2.2 ANSYS如何使用工作空间 (216)20.3怎样及何时进行内存管理 (217)20.3.1 改变ANSYS工作空间值 (217)20.3.2 重新分配数据库空间 (218)20.3.3 在64位结构的系统中分配内存 (219)20.4 配置文件(CONFIG60.ANS) (219)第1章开始使用ANSYS1.1完成典型的ANSYS分析ANSYS软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。
ansys命令流最全详细介绍四
七目标:掌握常用的布尔操作命令1.沿法向延伸面生成体命令:VOFFST,面的编号NAREA,面拉伸的长度DIST,关键点增量KINC 例:VOFFST,1,2,,2.通过坐标的增量延伸面生成体命令:VEXT,面1的编号NA1,面2的编号NA2,增量NINC,X方向的增量DX,Y方向的增量DY,Z方向的增量DZ, RX, RY, RZ例:VEXT,1,5,1,1,2,2,3.面绕轴旋转生成体命令:VROTAT,面1的编号NA1,面2的编号NA2,NA3, NA4, NA5, NA6,定位轴关键点1编号PAX1,定位轴关键点2编号PAX2,旋转角度ARC,生成体的段数NSEG例:VROTAT,1,2,,,,,4,5,360,44.沿线延伸面生成体命令:VDRAG,面1的编号NA1,面2的编号NA2, NA3, NA4, NA5, NA6,导引线1的编号NLP1,导引线2的编号NLP2, NLP3, NLP4, NLP5, NLP6例:VDRAG,2,3,,,,,8,5.线绕轴旋转生成面命令:AROTAT,线1的编号NL1, NL2, NL3, NL4, NL5, NL6,定位轴关键点1的编号PAX1,定位轴关键点2的编号PAX2,旋转角度ARC,生成面的段数NSEG例:AROTAT,3,4,,,,,6,8,360,46.沿线延伸线生成面命令:ADRAG,线1的编号NL1,NL2, NL3, NL4, NL5, NL6,导引线1的编号NLP1, NLP2, NLP3, NLP4, NLP5, NLP6例:ADRAG,3,,,,,,87.同理可以延伸关键点,相应的命令如下:LROTAT, NK1, NK2, NK3, NK4, NK5, NK6, PAX1, PAX2, ARC, NSEG LDRAG, NK1, NK2, NK3, NK4, NK5, NK6, NL1, NL2, NL3, NL4, NL5, NL6各选项的含义雷同于上.8.延伸一条线命令LEXTND,线的编号NL1,定位关键点编号NK1,延伸的距离DIST,原有线是否保留控制项KEEP例LEXTND,5,2,1.5,09.布尔操作:加命令LCOMB,线编号NL1,线编号NL2,是否修改控制项KEEP 例LCOMB,2,5注:对面和体的相应为:VADD,AADD.选项的含义都类似10.布尔操作:粘接和搭接搭接的核心关键字为:OVLAP,随实体的不同略有不同,如:对体为VOVLAP对面为AOVLAP对线为LOVLAP粘接的核心关键字为:GLUE,随实体的不同略有不同,如:对体为VGLUE对面为AGLUE对线为LGLUE但其他的选项的含义是类似的,这里就不再累述.下一讲:移动,复制,映射,删除...八目标:掌握体素的移动,复制,删除,映射一.移动关键点命令:KMODIF,关键点编号NPT,移动后的坐标X,移动后的坐标Y,移动后的坐标Z例:KMODIF,5,0,0,2二.移动复制关键点命令:KGEN,复制次数选项ITIME,起始关键点编号NP1,结束关键点编号NP2,增量NINC,偏移DX,偏移DY,偏移DZ,关键点编号增量KINC,生成节点单元控制项NOELEM,原关键点是否被修改选项IMOVE 例:KGEN,2,1,10,1,2,2,2,,,,注:IMOVE选项说明,设置为0时,不修改原关键点,即为复制,设置为1时,修改原关键点,即为移动,从而通过控制IMOVE选项实现移动或复制.三.移动复制线命LGEN,ITIME,NL1,NL2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上四.移动复制面命:AGEN,ITIME,NA1,NA2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上五.移动复制体命令:VGEN,ITIME,NV1,NV2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE 各选项的含义同上六.修改面的法向方向命令:ANORM,面的编号ANUM,单元的法向方向是否修改选项NOEFLIP例:ANORM,2七.体素的删除基本的命令为:*DELE组合不同的关键字形成不同的命令如:KDELE,LDELE,ADELE,VDELE基本的命令格式为:*DELE,起始体素编号N*1,结束体素编号N*2,增量NINC,是否删除体素下层的元素选项KSWP如LDELE,2,5,1,1八.体素的映射基本的命令为:*SYMM组合不同的关键字形成不同的命令如:KSYMM,LSYMM,ARSYM,VSYMM基本的命令格式为:*SYMM,映射轴选项NCOMP,起始体素编号N*1,结束体素编号N*2,增量NINC,关键点编号增量KINC,NOELEM, IMOVE如:VSYMM,X,1,10,1,,,,。