数字信号处理实验4

合集下载

数字信号 实验四

数字信号 实验四

一、 实验目的和要求:(1)进一步掌握线性卷积的计算机编程方法,利用卷积的方法观察系统响应的时域特性。

(2)掌握循环卷积的计算机编程方法,并比较与线性卷积的差别,验证二者之间的关系。

利用循环卷积的方法观察、分析系统响应的时域特性。

二、 实验内容与原理:1.实验原理:(1)线性卷积:线性时不变系统(Linear Time-Invariant System, or L. T. I 系统)输入、输出间的关系为:当系统输入序列为)(n x ,系统的单位脉冲响应为)(n h ,输出序列为)(n y ,则系统输出为:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(;上式称为线性卷积。

(2)循环卷积设两个有限长序列)(1n x 和)(2n x ,长度分别为1N 和2N ,)()(11k X n x D FTN −−−→←点 )()(22k X n x D F T N −−−→←点。

如果)()()(21k X k X k X ⋅=,则∑---==121)())(()()]([)(N m N N n R m n x m x k X IDFT n x上式称为)(1n x 和)(2n x 的循环卷积。

(3)两个有限长序列的线性卷积序列)(1n x 和)(2n x ,长度分别为L 点和P 点,)(3n x 为这两个序列的线性卷积,则)(3n x 为∑∞-∞=-=*=m m n xm x n x n x n x )()()()()(21213且线性卷积)(3n x 的非零值长度为1-+P L 点。

(4)循环卷积与线性卷积的关系序列)(1n x 为L 点长,序列)(2n x 为P 点长,若序列)(1n x 和)(2n x 进行N 点的循环卷积)(n x c ,其结果是否等于该两序列的线性卷积)(n x l ,完全取决于循环卷积的长度。

由教材相关推导,得∑∞-∞=+=q Nlc n RqN n x n x )()()(,也就是说,循环卷积是线性卷积的周期延拓序列再取主值区间。

北邮-DSP数字信号处理 实验-实验报告

北邮-DSP数字信号处理 实验-实验报告

北京邮电大学电子工程学院电子实验中心<数字信号处理实验>实验报告班级: xxx学院: xxx实验室: xxx 审阅教师:姓名(班内序号): xxx 学号: xxx 实验时间: xxx评定成绩:目录一、常规实验 (3)实验一常用指令实验 (3)1.试验现象 (3)2.程序代码 (3)3.工作原理 (3)实验二数据储存实验 (4)1.试验现象 (4)2.程序代码 (4)3.工作原理 (4)实验三I/O实验 (5)1.试验现象 (5)2.程序代码 (5)3.工作原理 (5)实验四定时器实验 (5)1.试验现象 (5)2.程序代码 (6)3.工作原理 (9)实验五INT2中断实验 (9)1.试验现象 (9)2.程序代码 (9)3.工作原理 (13)实验六A/D转换实验 (13)1.试验现象 (13)2.程序代码 (14)3.工作原理 (18)实验七D/A转换实验 (19)1.试验现象 (19)2.程序代码 (19)3.工作原理 (37)二、算法实验 (38)实验一快速傅里叶变换(FFT)算法实验 (38)1.试验现象 (38)2.程序代码 (38)3.工作原理 (42)实验二有限冲击响应滤波器(FIR)算法实验 (42)1.试验现象 (42)2.程序代码 (42)3.工作原理 (49)实验三无限冲击响应滤波器(IIR)算法实验 (49)1.试验现象 (49)2.程序代码 (49)3.工作原理 (56)作业设计高通滤波器 (56)1.设计思路 (56)2.程序代码 (57)3.试验现象 (64)一、常规实验实验一常用指令实验1.试验现象可以观察到实验箱CPLD右上方的D3按一定频率闪烁。

2.程序代码.mmregs.global _main_main:stm #3000h,spssbx xf ;将XF置1,D3熄灭call delay ;调用延时子程序,延时rsbx xf ;将XF置0,D3点亮call delay ;调用延时子程序,b _main ;程序跳转到"_MAIN"nopnop;延时子程序delay:stm 270fh,ar3 ;将0x270f(9999)存入ar3loop1:stm 0f9h,ar4 ;将0x0f9(249)存入ar4loop2:banz loop2,*ar4- ;*ar4自减1,不为0时跳到loop2的位置banz loop1,*ar3- ;*ar3自减1,不为0时跳到loop1的位置ret ;可选择延迟的返回nopnop.end3.工作原理主程序循环执行:D3熄灭→延时→D3点亮→延时。

数字信号处理实验(民航无线电监测关键技术研究)

数字信号处理实验(民航无线电监测关键技术研究)

《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。

二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。

1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。

在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。

为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。

这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。

而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。

2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。

但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。

数字信号处理实验四报告

数字信号处理实验四报告

实验4 IIR滤波器设计
一、实验目的
1、掌握双线性变换法及脉冲相应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线
性变换法及脉冲响应不变法设计低通、高通与带通IIR 数字滤波器的计算机编程。

2、观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变
法的特点。

3、熟悉巴特沃思滤波器、切比雪夫滤波器与椭圆滤波器的频率特性。

二、实验内容
1)fc=0、3kHz,δ=0、8dB,fr=0、2kHz,At=20dB,T=1ms;设计一切比雪夫高通滤波器,观察其通带损耗与阻带衰减就是否满足要求。

2)fc=0、2kHz,δ=1dB,fr=0、3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线性变换法设计一
巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽与衰减量,检查就是否满足要求。

比较这两种方法的优缺点。

3)利用双线性变换法分别设计满足下列指标的巴特沃思型、切比雪夫型与椭圆型数字低通滤波器,并作图验证设计结果: fc =1、2kHz,δ≤0、5dB,fr =2kHz,,At≥40dB,fs =8kHz。

比较这三种滤波器的阶数。

(4) 分别用脉冲响应不变法与双线性变换法设计一巴特沃思型数字带通滤波器,已知fs=30kHz,其等效的模拟滤波器指标为δ<3dB,2kHz<f≤3kHz;At≥5dB, f ≥6kHz;At≥20dB,f≤1、5kHz 。

由上图可以瞧出,用脉冲响应不变法由于滤波器的混叠作用在过度带与阻带都衰减的较双线性变换法慢。

数字信号处理EXPIV型教学实验系统实验四常规实验exp4_常规

数字信号处理EXPIV型教学实验系统实验四常规实验exp4_常规

第四章常规实验指导实验一常用指令实验一、实验目的1、了解DSP开发系统的组成和结构;2、熟悉DSP开发系统的连接;3、熟悉CCS的开发界面;4、熟悉C54X系列的寻址系统;5、熟悉常用C54X系列指令的用法。

二、实验设备计算机,CCS 2.0版软件,DSP仿真器,实验箱。

三、实验步骤与内容1、系统连接进行DSP实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示:2、上电复位在硬件安装完成后,确认安装正确、各实验部件及电源连接正常后,接通仿真器电源,启动计算机,此时,仿真器上的“红色小灯”应点亮,否则DSP开发系统有问题。

3、运行CCS程序待计算机启动成功后,实验箱后面220V输入电源开关置“ON”,实验箱上电,启动CCS,此时仿真器上的“绿色小灯”应点亮,并且CCS正常启动,表明系统连接正常;否则仿真器的连接、JTAG接口或CCS相关设置存在问题,掉电,检查仿真器的连接、JTAG 接口连接,或检查CCS相关设置是否正确。

注:如在此出现问题,可能是系统没有正常复位或连接错误,应重新检查系统硬件并复位;也可能是软件安装或设置有问题,应尝试调整软件系统设置,具体仿真器和仿真软件CCS的应用方法参见第三章。

●成功运行程序后,首先应熟悉CCS的用户界面●学会CCS环境下程序编写、调试、编译、装载,学习如何使用观察窗口等。

4、修改样例程序,尝试DSP其他的指令。

注:实验系统连接及CCS相关设置是以后所有实验的基础,在以下实验中这部分内容将不再复述。

5、填写实验报告。

6、样例程序实验操作说明仿真口选择开关K9拨到右侧,即仿真器选择连接右边的CPU:CPU2;启动CCS 2.0,在Project Open菜单打开exp01_cpu2目录下面的工程文件“exp01.pjt”注意:实验程序所在的目录不能包含中文,目录不能过深,如果想重新编译程序,去掉所有文件的只读属性。

用下拉菜单中Project/Open,打开“exp01.pjt”,双击“Source”,可查看源程序在File Load Program菜单下加载exp01_cpu2\debug目录下的exp01.out文件:加载完毕,单击“Run”运行程序;实验结果:可见指示灯D1定频率闪烁;单击“Halt”暂停程序运行,则指示灯停止闪烁,如再单击“Run”,则指示灯D1又开始闪烁;注:指示灯D1在CPLD单元的右上方关闭所有窗口,本实验完毕。

数字信号处理实验4 离散时间系统的频域分析

数字信号处理实验4  离散时间系统的频域分析

实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。

二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。

三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMz N a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。

如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。

格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。

其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。

zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。

②roots 函数。

用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。

2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。

数字信号处理实验四

数字信号处理实验四

实验一:DFS 、DFT 与FFT一、实验内容2、已知某周期序列的主值序列为x(n)=[0,1,2,3,2,1,0],编程显示2个周期的序列波形。

要求:① 用傅里叶级数求信号的幅度谱和相位谱,并画出图形 ② 求傅里叶级数逆变换的图形,并与原序列进行比较。

N=7;xn=[0,1,2,3,2,1,0]; xn=[xn,xn]; n=0:2*N-1; k=0:2*N-1;Xk=xn*exp(-j*2*pi/N).^(n'*k); x=(Xk*exp(j*2*pi/N).^(n'*k))/N; subplot(2,2,1);stem(n,xn);title('x(n)');axis([-1,2*N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2);stem(n,abs(x));title('IDFS|X(k)|');axis([-1,2*N,1.1*min(x),1.1*max(x)]); subplot(2,2,3),stem(k,abs(Xk));title('|X(k)|');axis([-1,2*N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4),stem(k,angle(Xk));title('arg|X(k)|');axis([-1,2*N,1.1*min(angle(Xk)),1.1*max(angle(Xk))]);课程名称 数字信号 实验成绩 指导教师 王丽霞实 验 报 告院系 信息工程学院 班级 11专升本通信工程 学号 1103100068 姓名 周海霞日期 2011年10月17日12351051015|X (k)|510-2-1012arg|X (k)|3、已知有限长序列x(n)=[1,0.5,0,0.5,1,1,0.5,0],要求: ① 求该序列的DFT 、IDFT 的图形;xn=[1,0.5,0,0.5,1,1,0.5,0]; N=length(xn); n=0:N-1; k=0:N-1;Xk=xn*exp(-1i*2*pi/N).^(n'*k); x=(Xk*exp(1i*2*pi/N).^(n'*k))/N; subplot(2,2,1);stem(n,xn);title('x(n)');axis([-1,N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2);stem(n,abs(x));title('IDFT|X(k)|');axis([-1,N,1.1*min(x),1.1*max(x)]); subplot(2,2,3),stem(k,abs(Xk));title('|X(k)|');axis([-1,N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4),stem(k,angle(Xk));title('arg|X(k)|');axis([-1,N,1.1*min(angle(Xk)),1.1*max(angle(Xk))]);0.510.5124681234|X (k)|2468-2-1012arg|X (k)|② 用FFT 算法求该序列的DFT 、IDFT 的图形;xn=[1,0.5,0,0.5,1,1,0.5,0]; N=length(xn);subplot(2,2,1);stem(n,xn); title('x(n)'); k=0:N-1; Xk=fft(xn,N);subplot(2,1,2);stem(k,abs(Xk)); title('Xk=DFT(xn)'); xn1=ifft(Xk,N);subplot(2,2,2);stem(n,xn1);title('x(n)=IDFT(Xk)');x(n)1234567X k=DFT(xn)x(n)=IDFT(X k)③ 假定采用频率Fs=20Hz ,序列长度N 分别取8、32和64,用FFT 计算其幅度谱和相位谱。

数字信号处理实验报告(实验1-4)

数字信号处理实验报告(实验1-4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法实验容1、帮助命令使用 help 命令,查找 sqrt (开方)函数的使用方法;2、MATLAB 命令窗口(1)在MATLAB 命令窗口直接输入命令行计算31)5.0sin(21+=πy 的值;(2)求多项式 p(x) = x3 + 2x+ 4的根;3、矩阵运算(1)矩阵的乘法已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B(2)矩阵的行列式已知 A=[1 2 3;4 5 6;7 8 9],求A(3)矩阵的转置及共轭转置已知A=[1 2 3;4 5 6;7 8 9],求A'已知 B=[5+i,2-i,1;6*i,4,9-i], 求 B.' , B'(4)特征值、特征向量、特征多项式已知 A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵 A的特征值、特征向量、特征多项式;(5)使用冒号选出指定元素已知: A=[1 2 3;4 5 6;7 8 9];求 A 中第 3 列前 2 个元素;A 中所有列第 2,3 行的元素;4、Matlab 基本编程方法(1)编写命令文件:计算 1+2+…+n<2000 时的最大 n 值;(2)编写函数文件:分别用 for 和 while 循环结构编写程序,求 2 的 0 到 15 次幂的和。

5、MATLAB基本绘图命令(1)绘制余弦曲线 y=cos(t),t∈[0,2π](2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π](3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求:(a)线形为点划线、颜色为红色、数据点标记为加号;(b)坐标轴控制:显示围、刻度线、比例、网络线(c)标注控制:坐标轴名称、标题、相应文本;>> clear;t=0:pi/10:4*pi;y=10*sin(t);plot(t,y);plot(t,y,'-+r');grid>> xlabel('X'),ylabel('Y');>> title('Plot:y=10*sin(t)');>> text(14,10,'完整图形');实验二常见离散信号的MATLAB产生和图形显示实验容与步骤1. 写出延迟了np个单位的单位脉冲函数impseq,单位阶跃函数stepseq, n=ns:nf function [x,n]=impseq[np,ns,nf];function [x,n]=stepseq[np,ns,nf];2. 产生一个单位样本序列x1(n),起点为ns= -10, 终点为nf=20, 在n0=0时有一单位脉冲并显示它。

数字信号处理米特拉第四版实验四答案

数字信号处理米特拉第四版实验四答案
Name: SOLUTION (Havlicek) Section:
Laboratory Exercise 4
LINEAR, TIME-INVARIANT DISCRETE-TIME SYSTEMS: FREQUENCY-DOMAIN REPRESENTATIONS
4.1 TRANSFER FUNCTION AND FREQUENCY RESPONSE
M=3
Magnitude Spectrum |H(ej)| 1
0.5
0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 / Phase Spectrum arg[H(ej)]
4 2 0 -2 -4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 /
I shall choose the filter of Question Q4._36__ for the following reason - It can be both causal and BIBO stable, whereas the filter of Q4.37 cannot be both because the two poles are both outside of the unit circle.
Q4.5
The plots of the first 100 samples of the impulse responses of the two filters of Questions 4.2
2
Amplitude
Phase in radians
Amplitude
Phase in radians
M=10
Magnitude Spectrum |H(ej)| 1

数字信号处理实验

数字信号处理实验
实验一:抽样定理与信号恢复
抽样定理: 1、分别对三角波和正弦波抽样,至少给出三 个抽样频率的结果。一个满足抽样定理,一个 不满足抽样定理,另一个随意。 信号恢复 2、分别对三个抽样结果进行信号恢复。
要求:实验报告中有理论分析。 可以用信号与系统实验箱做,也可以用matlab或C 做。
实验2:FFT频谱分析实验
1、用matlab或C编程计算N点序列x(n)的N 点DFT和FFT。 2、设x(n)=R8(n),求x(n)的离散傅立叶变换, 给出幅频图像和相频图像,然后用上述程序 求16点和32点的DFT及FFT. 给出
要求:实验报告中有理论分析(要有计算量的表 示)。
实验3:IIR滤波器设计实验
1、已知通带截止频率为5KHz,通带最大衰减2dB, 阻带截止频率12KHz,阻带最小衰减30dB,按照如 上指标设计巴特沃斯低通滤波器。 2、用双线性变换法设计一个带通数字滤波器,通带 频率为20~ 30Hz,在通带内的最大衰减为0.5dB在 频率为10Hz和40Hz的最小衰减为50dB,在阻带内, 采样频率为150Hz。 要求:实验报告中有理论分析(要有双线性变换 法的变换式,说明模拟频率和数字频率的关系)。
实验4:窗函数法FIR滤波器设计实验
• 利用矩形窗、汉宁窗(Hanning)、海明窗(Hamming) 设计线性相位FIR低通滤波器,要求通带截止频率 c 4 • 求出分别对应的单位脉冲响应,并进行比较。
• 画出单位脉冲响应图形和对数幅度响应图形。

数字信号处理实验报告四IIR数字滤波器设计及软件实现

数字信号处理实验报告四IIR数字滤波器设计及软件实现

数字信号处理实验报告四IIR数字滤波器设计及软件实现实验目的:本实验的目的是了解IIR数字滤波器的设计原理和实现方法,通过MATLAB软件进行数字滤波器设计和信号处理实验。

一、实验原理IIR数字滤波器是一种使用有限数量的输入样本和前一次输出值的滤波器。

它通常由差分方程和差分方程的系数表示。

IIR滤波器的特点是递归结构,故其频率响应是无限长的,也就是说它的频率响应在整个频率范围内都是存在的,而不像FIR滤波器那样只有在截止频率处才有响应。

根据设计要求选择合适的滤波器类型和滤波器结构,然后通过对滤波器的模型进行参数化,设计出满足滤波要求的IIR滤波器。

常见的IIR滤波器设计方法有模拟滤波器设计方法和数字滤波器设计方法。

在本实验中,我们主要使用数字滤波器设计方法,即离散时间滤波器设计方法。

二、实验内容(一)设计IIR数字滤波器的步骤:1.确定滤波器类型:根据滤波要求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

2.确定滤波器的阶数:根据滤波要求确定滤波器的阶数。

阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。

3. 设计滤波器原型:根据滤波要求,设计滤波器的原型。

可以选择Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等作为原型。

4.选择滤波器结构:根据计算机实现条件和算法复杂度,选择合适的滤波器结构。

常见的滤波器结构有直接形式I、直接形式II、级联形式等。

5.参数化滤波器模型:根据原型滤波器的差分方程,选择合适的参数化方法。

常见的参数化方法有差分方程法、极点/零点法、增益法等。

6.根据参数化的滤波器模型,计算出所有的滤波器系数。

(二)用MATLAB软件实现IIR数字滤波器设计:1.打开MATLAB软件,并创建新的脚本文件。

2. 在脚本文件中,使用MATLAB提供的滤波器设计函数,如butter、cheby1、ellip等,选择合适的滤波器类型进行设计。

数字信号处理上机实验 作业结果与说明 实验三、四、五

数字信号处理上机实验 作业结果与说明 实验三、四、五

上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。

2、观察对实际正弦组合信号的滤波作用。

二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。

要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。

抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。

(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。

frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。

dsp实验报告

dsp实验报告

dsp实验报告DSP实验报告一、引言数字信号处理(Digital Signal Processing,DSP)是一种对数字信号进行处理和分析的技术。

它在许多领域中被广泛应用,如通信、音频处理、图像处理等。

本实验旨在通过实际操作,探索和理解DSP的基本原理和应用。

二、实验目的1. 理解数字信号处理的基本概念和原理;2. 掌握DSP实验平台的使用方法;3. 进行一系列DSP实验,加深对DSP技术的理解。

三、实验器材和软件1. DSP开发板;2. 电脑;3. DSP开发软件。

四、实验内容1. 实验一:信号采集与重构在此实验中,我们将通过DSP开发板采集模拟信号,并将其转换为数字信号进行处理。

首先,我们需要连接信号源和开发板,然后设置采样频率和采样时间。

接下来,我们将对采集到的信号进行重构,还原出原始模拟信号,并进行观察和分析。

2. 实验二:滤波器设计与实现滤波器是DSP中常用的模块,用于去除或增强信号中的特定频率成分。

在此实验中,我们将学习滤波器的设计和实现方法。

首先,我们将选择合适的滤波器类型和参数,然后使用DSP开发软件进行滤波器设计。

最后,我们将将设计好的滤波器加载到DSP开发板上,并进行实时滤波处理。

3. 实验三:频谱分析与频域处理频谱分析是DSP中常用的方法,用于分析信号的频率成分和能量分布。

在此实验中,我们将学习频谱分析的基本原理和方法,并进行实际操作。

我们将采集一个包含多个频率成分的信号,并使用FFT算法进行频谱分析。

然后,我们将对频谱进行处理,如频率选择、频率域滤波等,并观察处理后的效果。

4. 实验四:音频处理与效果实现音频处理是DSP中的重要应用之一。

在此实验中,我们将学习音频信号的处理方法,并实现一些常见的音频效果。

例如,均衡器、混响、合唱等。

我们将使用DSP开发软件进行算法设计,并将设计好的算法加载到DSP开发板上进行实时处理。

五、实验结果与分析通过以上实验,我们成功完成了信号采集与重构、滤波器设计与实现、频谱分析与频域处理以及音频处理与效果实现等一系列实验。

数字信号处理实验报告 (实验四)

数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。

2. 运用MA TLAB 验证离散时间傅立叶变换的性质。

二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。

由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。

在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。

为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。

例3.1 运用MA TLAB 画出以下系统的频率响应。

y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。

数字信号处理MATLAB实验

数字信号处理MATLAB实验

出该信号,并讨论信号的混叠情况。
(3) 令
,其中 f/fs=1/16,即每个周期有 16 个
点。试利用 MATLAB 编程实现:
○1 作 M=4 倍的抽取,使每个周期变成 4 点。
○2 作 L=3 倍的插值,使每个周期变成 48 点。
(4)输入信号 x(n)为归一化频率分别为 f1=0.04,f2=0.3 的正 弦信号相加而成,N=50,插因子为 5,抽取因子为 3,给出 按有理因子 5/3 做采样率变换的输入输出波形。
(8) 用 FFT 分别计算 xa (n)( p 8, q 2) 和 xb(n) (a=0.1,f=0.0625)的自 相关函数。
三、思考题
(1)实验中的信号序列 xc(n)和 xd(n),在单位圆上的 z 变换频谱
和 一些,为什么?
会相同吗?如果不同,说明哪一个低频分量更多
(2)对一个有限长序列进行 DFT 等价于将该序列周期延拓后进行
0≤n≤15
c)x(n)=3cos(0.125πn+0.2π)+2sin(0.25πn+0.1π) 0≤n≤15 d)将c)中的x(n)扩展为以16为周期的函数x16(n)=x(n+16),绘出四个周 期。 e)将c)中的x(n)扩展为以10为周期的函数x10(n)=x(n+10),绘出四个周 期。 (3)x(n)=[1,-1,3,5],产生并绘出下列序列的样本。
(6)产生一 512 点的随机序列 xe(n),并用 xc(n)和 xe(n)做线性卷积, 观察卷积前后 xe(n)频谱的变化。要求将 xe(n)分成 8 段,分别采用重 叠相加法和重叠保留法。
(7) 用 FFT 分别计算 xa (n)( p 8, q 2) 和 xb(n) (a=0.1,f=0.0625)的 16 点循环相关和线性相关,问一共有多少种结果,他们之间有何异同点。

数字信号处理实验报告4

数字信号处理实验报告4

专业: 学号: 姓名: 成绩: 实验题目: 窗函数法设计FIR 数字滤波器实验目的: 了解和掌握线性相位FIR 数字滤波器的设计方法实验原理与内容:1. 设计具有指标ωp =0.2π,R p =0.25dB,ωs =0.3π,A s =50dB 的低通数字滤波器2. 根据指标选择合适的窗函数,确定冲激响应,画出滤波器的频率响应3. 由于在设计过程中,并没有用到Rp=0.25dB 值,因此设计后必须对此进行校验实验结果:1. 绘出理想低通滤波器的冲激响应图12. 绘出Hamming 窗图2010203040506070-0.0500.050.10.150.20.250.3n h d (n )01020304050600.10.20.30.40.50.60.70.80.91n H a m (n )3. 绘出加窗后的滤波器冲激响应图34. 绘出该滤波器的幅频响应图4010203040506070-0.0500.050.10.150.20.250.3Actual Impulse Responsen h (n )00.20.31-100-90-80-70-60-50-40-30-20-10010Magnitude Response in dB w/pi 20l g |H g (w )|思考题:1如果没有给定h(n)的长度N,而是给定了通带边缘截止频率ωc和阻带临界频率ωp,以及相应的衰减,你能根据这些条件用窗函数法设计线性相位FIR低通滤波器吗?2窗函数的傅式变换W(e jω)的主瓣和旁瓣分别决定了H(e jω)的什么特性?程序附录:function hd=ideal_lp(wc,N)alpha=(N-1)/2;n=0:N-1;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);function [db,mag,pha,grd,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);pha=angle(H);db=20*log10((mag+eps)/max(mag));grd=grpdelay(b,a,w);clcwp=0.2*pi;ws=0.3*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width);N=0:M-1;wc=(4*ws+6*wp)/10;w_ham=(hamming(M))';hd=ideal_lp(wc,M);h=hd.*w_ham;[db,mag,pha,grd,w]=freqz_m(h,1);delta_w=2*pi/1000;subplot(2,2,1)stem(N,hd,'.');xlabel('n');ylabel('hd(n)');subplot(2,2,2)stem(N,w_ham,'.');axis([0 M-1 0.1 1])xlabel('n');ylabel('Ham(n)');subplot(2,2,3)stem(N,h,'.')title('Actual Impulse Response');xlabel('n');ylabel('h(n)');subplot(2,2,4)plot(w/pi,db)axis([0 1 -100 10])title('Magnitude Response in dB')xlabel('w/pi');ylabel('20lg|Hg(w)|');gridset(gca,'XTickMode','manual','XTick',[0,0.2,0.3 1]) Rp=-(min(db(1:1:wp/delta_w+1)))As=-round(max(db(ws/delta_w+1:1:501)))function hd=ideal_lp(wc,N)alpha=(N-1)/2;n=0:N-1;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);。

数字信号处理实验(吴镇扬)答案4

数字信号处理实验(吴镇扬)答案4

实验四 有限长单位脉冲响应滤波器设计朱方方 03 通信四班(1) 设计一个线性相位FIR 高通滤波器,通带边界频率为π,阻带边界频率为π,阻带衰减不小于40dB 。

要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。

解:(1)求数字边界频率:0.6 , 0.4c r ωπωπ== (2)求理想滤波器的边界频率:0.5n ωπ=(3)求理想单位脉冲响应:[]d sin ()sin[()]()()1n n n n n n h n n παωααπαωαπ⎧---≠⎪⎪-=⎨⎪-=⎪⎩(4) 选择窗函数。

阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤波器的过渡带宽为ππ=π,因此6.210.231 , 152N N N ππα-=⇒=== (5) 求FIR 滤波器的单位脉冲响应h(n):[]31d sin (15)sin[0.5(15)]1cos ()15()()()15(15)115n n n R n n h n w n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪ ⎪⎢⎥==-⎝⎭⎨⎣⎦⎪=⎩程序:clear;N=31; n=0:N-1;hd=(sin(pi*(n-15))-sin*pi*(n-15)))./(pi*(n-15)); hd(16)=; win=hanning(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3plot(w/pi,H);axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB');grid;title('FIR 高通滤波器,hanning 窗,N=31');51015202530nh (n )FIR 高通滤波器的单位脉冲响应h(n)0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 高通滤波器,hanning 窗,N=31分析:由图知阻带衰减最小值大于40,满足要求。

数字信号处理第四次实验报告

数字信号处理第四次实验报告

数字信号处理第四次试验实验报告任务一 IIR 系统的特性某线性系统用差分方程表示为()()()()()10.910.812y n x n x n y n y n =+-+---1、求出系统函数,编程调用函数zplane 画出系统函数的零极图;2、调用函数freqz ,画出此系统的频率响应的幅度和相位。

3、能否用编写的DTFT 子函数无误差地计算此系统的频率响应特性?1.1.1原理及公式()()()()()10.910.812y n x n x n y n y n =+-+---两边进行Z 变化 ()()()()()1120.90.81Y z X z z X z z Y z z Y z ---=++-整理得:()()()12122110.90.810.90.81Y z z z zH z X z z z z z ---++===-+-+ 1.1.2程序脚本clear all ;b=[1 1 0];a=[1 -0.9 0.81]; zplane(b,a);1.1.3程序运行结果Real PartI m a g i n a r y P a r t1.2.1原理和思路在ω的一个周期()~ππ-内取1024个点,用freqz 函数求出系统的频率响应,用1.2.2程序脚本和注释clear all ; M=1024;w=-pi:2*pi/M:pi; b=[1 1 0]; a=[1 -0.9 0.81]; h=freqz(b,a,w); mag=abs(h);pha=phase(h); % 提取滤波器频率响应的幅度mag 和相位pha plot(w,mag); xlabel('w/rad'); ylabel('Magnitude'); title('Magnitude(幅度)'); figure; plot(w,pha); xlabel('w/rad'); ylabel('Phase'); title('Phase (相位)');1.2.3程序运行结果w/rad M a g n i t u d eMagnitude(幅度)w/radP h a s ePhase (相位)1.3不能用编写的DTFT 子函数无误差地计算此系统的频率响应特性。

数字信号处理MATLAB实验报告 4

数字信号处理MATLAB实验报告 4
这就是经常称之为傅立叶级数的变换形式。在这里, 也是模拟角频率。可以看到,
时域的连续函数造成频率域的非周期谱,频域函数的离散造成时域函数的周期性。 结论:周期连续时间函数对应于一非周期离散频域变换函数。
3、非周期离散时间信号 x(n) 的傅立叶变换 X (e j ) 可以表示为

X (e j ) x(n)e jn n
DFT 的性质
两个序列 x1(n) 和 x2 (n) 都是 N 点有限长序列,设
X1(k) DFT[x1],
X 2 (k) DFT[x2 ]
线性
DFT[ax1(n) bx2 ] aX1(k) bX 2 (k), 式中 a,b 为任意常数。
圆周移位
一个有限长序列 x (n) 的圆周移位定义

x x
(n)] (n)]
用 X R (k ) 和 X I (k ) 分别表示实部和虚部序列的 DFT ,即
X R (k) DFT[xr (n)] X I (k) DFT[xi (n)]
而且可以证明得到
X R (k ) X R[(N K )]N X I (k ) X I [(N K )]N 通常称 X R (k) 为 X (k) 的共轭偶部, X I (k) 为 X (k) 的共轭奇部。所以说,对于时 域、频域的 DFT 对应关系来说,序列 x(n) 实部对应于 X (k ) 的共轭偶部,序列 x(n) 的虚
其逆变换为
x(n)

1 N
N 1
X (k )WN nk
k 0
k 0,1,2 N 1 n 0,1, N 1
上机练习:
1. 试 用 Mablab 求 其 有 限 长 序 列 x1(n) (0.8)n (0 n 10) 与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验四
第一题结果:
(1)没有增加过渡点
源码如下:
N = 15;
H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小
%H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点
k = 0:N-1;
A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小
HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n)
freqz(hn,1,256); %画出幅频相频曲线figure(2);
stem(real(hn),'.'); %绘制单位冲激响应的实部
line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))');
单位脉冲响应曲线
幅频和相频特性曲线
(2)增加过渡点
源码如下:
N = 15;
H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小
H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点
k = 0:N-1;
A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小
HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2);
stem(real(hn),'.'); %绘制单位冲激响应的实部
line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))');
单位脉冲响应曲线
幅频和相频特性曲线
第二题结果:
源码如下:
N=35;
M = N-1;L = M/2;
F = [0:1/L:1]; %设置抽样点的频率,抽样频率必须含0和1。

A = [ones(1,8),zeros(1,L-7)]; %设置抽样点相应的幅值
B = fir2(M,F,A);
[H,W]=freqz(B); %画出滤波器幅频相频曲线
subplot(2,1,1),plot(W/pi,10*log10(abs(H)));grid on;
subplot(2,1,2),plot(W/pi,unwrap(angle(H)));grid on;
% figure,plot(F,A,W/pi,abs(H));grid on;
figure(2);
stem(real(B),'.'); %绘制单位冲激响应的实部% line([0,25],[0,0]);
xlabel('n');ylabel('Real(h(n))');
单位脉冲响应曲线
幅频和相频特性曲线。

相关文档
最新文档