七年级数学上册有理数教案
北师大版数学七年级上册2.1《有理数》教案
北师大版数学七年级上册2.1《有理数》教案一. 教材分析《有理数》是北师大版数学七年级上册第二章第一节的内容,本节课主要介绍了有理数的定义、分类以及有理数的运算。
有理数是中学数学中的基础概念,对于学生理解数学的本质和后续学习其他数学知识具有重要意义。
本节课的内容是学生进一步学习实数、方程、函数等知识的基础。
二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算也有一定的了解。
但学生在理解有理数的定义和分类方面可能会存在一定的困难。
因此,在教学过程中,教师需要引导学生从实际问题出发,理解有理数的概念,并通过具体的例子让学生掌握有理数的分类。
三. 教学目标1.了解有理数的定义,掌握有理数的分类。
2.能够进行有理数的运算。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过具体的案例,让学生理解和掌握有理数的概念和运算;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的问题和案例。
2.准备教学PPT。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过设置问题,引导学生思考:什么是整数?什么是分数?整数和分数有什么关系?从而引出有理数的概念。
2.呈现(15分钟)呈现有理数的定义和分类,让学生了解有理数的四种类型:正整数、负整数、正分数、负分数。
并通过具体的例子让学生理解和掌握有理数的分类。
3.操练(15分钟)让学生进行有理数的运算练习,包括加、减、乘、除等。
教师可以设置一些具有代表性的题目,让学生在课堂上进行讲解和讨论,从而加深对有理数运算的理解。
4.巩固(10分钟)通过一些填空题和选择题,让学生巩固所学的内容。
教师可以设置一些易错题,让学生在解答过程中发现问题,从而加深对有理数概念和运算的理解。
5.拓展(5分钟)引导学生思考:有理数和无理数有什么关系?从而引出实数的概念。
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
七年级数学上册有理数及其运算复习教案9篇
七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
七年级数学《有理数》教案模板
七年级数学《有理数》教案模板教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。
有理数指整数可以看作分母为1的分数。
下面就是整理的《有理数》教案,希望大家喜欢。
《有理数》教案1一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2,(2),(3),(4).2.(1),,,.(2)-2,,.3.(1)0,(2),(3),(4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.《有理数》教案2教学目标1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
人教版初中七年级上册数学教案(完整版)
七上数学教案有理数第一章教学目标.知识与技能 1 ①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算..过程与方法 2 通过本章的学习,培养学生应用数学知识解决实际问题的能力..情感、态度与价值观 3激励学通过师生共同参与的教学活动,结合生活实例引入新课,生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.难点、教学重点这一章的主要学习目标都可以归结到有理.重点:有理数的运算运算,数轴、相反数、绝对值---数的运算上,比如有理数的有关概念法则直接目标都是落实到有理数的运近似数等内容的学习,,运算律, 算上. . 有理数法则的理解,难点:负数概念的建立,绝对值意义课时分配课时内容1 正数和负数1 . 1 4 有理数2 . 1 5 有理数的加减法3 . 14 . 1 4 有理数的乘除法 4 有理数的乘方5 . 1 2 单元复习与验收教学建议(即联系实际生活的典型例子)教师在教学过程中注意从实际问题在教师的引导和学生大胆尝试的过程中,让学生参与数学活动,引入,从而使学生自得知识,分析问题和解决问题,使学生自觉地发现问题,自觅规律..在进行有理数的有关概念的教学时:1•)注意从实际问题引入,使学生知道数学知识来源于生活.1(如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.()注意借助数轴的直观性讲述相反数、绝对值,体会用字母2使学生对概念的认识能更深一步,,•体现代数的特点表示数的优越性,并为今后学习整式、方程打下基础..讲解有理数运算时,有理数加法及乘法法则的导出借助数轴 2在此,会更直观更形象更易于学生理解,法则要着重强调符号的确定基础上注意绝对值的运算,提高学生计算准确率.正数和负数1 .1教学目标.知识与技能 1 ①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量..过程与方法 2训练学生运,通过正负数的学习,培养学生应用数学知识的意识用新知识解决实际问题的能力..情感、态度与价值观 3让学生体激发学生学习数学的兴趣,通过师生共同的教学活动,验到数学知识来源于生活并为生活服务.教学重点难点会运用正负数表示具有相会判断一个数是正数还是负数,重点:的含义.0•反意义的量,理解难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课由同学感受高于水平面和珠穆朗玛峰和吐鲁番盆地,课件展示低于水平面的不同情况.(二)合作交流,解读探究.举出一些生活中常遇到的具有相反意义的量,如温度是零上 1米和50张课桌,汽车向东80张课桌与卖出90‣,买进5‣和零下7 米等.120向西你能用小学算术中的以上都是一些具有相反意义的量,想一想数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?. 2我们把其中一种意义的量,为了用数表示具有相反意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量(读作负)“-”负的量用学过的数前面加上用算述里学过的数表示,.号来表示(零除外)一位同学任意说出具有相反每组同学之间相互合作交流,活动意义的两个量,由其他同学用正负数表示.是正数还是负0什么样的数是负数?什么样的数是正数?讨论• 数?号的数,“-”负数是在正数前面加的数,0正数是大于【总结】既不是正数,也不是负数,是正数与负数的分界.0 (三)应用迁移,巩固提高举出几对具有相反意义的量,并分别用正、负数表示.1 例【提示】、“后”与“前”,“下降”与“上升”具有相反意义的量有“收入”与“支出”等.、“得到”与“失去”、“高于”与“低于”旨在考查学生用正负数表示具这是一道开放性试题,【点评】有相反意义量的能力.克0.02在某次乒乓球检测中,一只乒乓球超过标准质量2 例克表示什么?0.03那么-•克,0.02记作+0.03表示比标准质量低【答案】克.可记为6.4%年美国的商品进出口总额比上年减少3 2001例.7.5% +可记为7.5%,中国增长-6.4% 备选例题•个时间单位,1分钟为45²山东淄博)某项科学研究以2004( 10,0时为10并记为每天上午时以后记为正.例10时以前记为负,(应记为7:45上升依此类推,等等.1记为10:45,-1记为9:15如,) A.3 B.-3 C.-2.5 D.-7.45 分135相差10与7:45读懂题意是解决本题的关键.【点拨】钟. B 【答案】(四)总结反思,拓展升华正数就是我为了表示现实生活中具有相反意义的量引进了负数.们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能既不是正数0.另外,说“有正号的数是正数,有负号的数是负数” 也不是负数.,2,-1填空. 1,81 个数是–81…第 -8 , -7 , 6 ,-5,4,-3.2005 个数是–2005第数字绝对值的排列是按由小到大的顺序,通过观察可见,【提示】符号是负正相间,第奇数个数为负,第偶数个数为正.从绝对值和符号两方面考虑.,本题属于找规律问题【点评】(存是小张同学一周中简记储蓄罐中钱的进出情况表1-1-1表. 2 :)入记为“+”表 1-1-1 六五四三二一日星期(元)-2.6 +10 -0.9 -2.1 -1.2 +5.0 16 +)本周小张一共用掉了多少钱?存进了多少钱?1(元.31元, 6.8【答案】)储蓄罐中的钱与原来多了还是少了?2(多了.【答案】)如果不用正、负数的方法记账,你还可以怎样记账?比较3(各种记账的优劣.【答案】用文字说明,但前者更简洁.,1个同学站成一排,从左到右每个人编上号:4.数学游戏: 3.(负号)表示“蹲”“-”,.用“+”表示“站”4,3,2 个同4、第1,则第+4,-3,-2,+1)由一个同学大声喊:1( 2学站,第,-1个同学蹲,并保持这个姿势,然后再大声喊:3、第个同学中有改变姿势的,则表示输了,4、第2,如果第+4,+3,-2 ;作小小的“惩罚” 个同学顺序调整一下,但每个人记作4)增加游戏难度,把2(.的游戏;1自己原来的编号,再重复所有“命令”或“数据”•)这不仅仅是游戏哟!在电脑中,3(“翻译”没有特别的例如,表示的.(特别是二进制数)都是用有理数程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础.填空题 1(-吨记为20吨,那么浪费+30吨记为30)如果节约用水1吨.20 4)如果2(. -8 年前记作8,那么4年后记作+吨表示100吨,那么+7吨记作-7)如果运出货物3(运进货.吨100物,小阳体重减少了3,记作+3kg)一年内,小亮体重增加了4(. 2kg ,则小阳增长了2 kg米,下午0.5米,记作-0.5时,水位低于标准水位12.中午 20.5时,水位又上涨了5米,下午1水位上涨了•时,1 米.时的水位;5时和下午1)用正数或负数记录下午1(时水位高多少?12时的水位比中午5)下午2( 1时,水位-5米;下午0.5时,水位1)下午1(【答案】(米)0.5+1=1.5)2(米提升能力公斤,现测得甲、乙、丙三袋粮食重50.粮食每袋标准重量是 3公斤.如果超重部分用正数表示,49.8公斤,49公斤,52量如下:请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数..-0.2,-1, +2【答案】.有没有这样的有理数,它既不是正数,也不是负数? 4有,是【答案】.0 .下列各数中哪些是正数?哪些是负数? 5116,3.14,0,-1.3,-2,4,,,-0.02,15-37716,0.02,15;负数:-,3.14,1.3,4,正数:【答案】711 -2,-371开放探究 12.同学聚会,约定在中午 6点到会,早到的记为正,迟到的记•点,-1.5点,最迟到的同学记为3为负,结果最早到的同学记为+你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?点半到,最1点到,最迟的是下午9最早的同学上午【答案】个小时.4.5早的比最迟的早到.新中考题7‣,15‣,冷库B的温度是-5²玉林)冷库A的温度是-2004(则温度高的是冷库• .A教学反思:也是非常重要的一节课,本节课是学生进入初中的第一节数学课为学生课堂上我主要采用了体验探究的教学方式,.负数的引入-----学生在动手使学生直接参与教学活动,提供了大量亲自操作的机会,进而通过教师的引导加工操作中对抽象的数学知识获取感性的认识,使学生的学习过程变为一个再从而获得新知,总结上升为理性认识,感受在解决问题的同时让学生体会到获取知识的方法,创造的过程,为学生今后获取新知以及探索和发现新过程中与他人合作的重要性, . 知打下基础有理数2 .11 有理数1 .2.教学目标.知识与技能1 ①理解有理数的意义.②能把有理数按要求分类.在有理数分类的作用.0③了解.过程与方法 2培养学生分类讨论的意识和能正确地进行分类经历本节的学习,的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课我们认识的数除,通过上节课的学习同学们已经知道讨论交流了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究512…5.2, -7.4,-3,,,0,-10,-9,-7,5.7,3学生列举:365你能说说这些数的特点吗?议一议、分数,也有负0学生回答,并相互补充:有小学学过的整数、整数、负分数.说明:我们把所有的这些数统称为有理数.你能对以上各种类型的数作出一张分类表吗?试一试整正数零整数负整数有理数正分数分数负分数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数那么整数又包所以有理数可分为整数和分数两大类,统称为有理数,含那些数?分数呢?(正数、那可不可以按数的性质以上按整数和分数来分,做一做负数)来分呢,试一试.正整数正有理数正分数有理数零负整数负有理数负分数)数的集合3(把所有正数组成的集合,叫做正数集合.分数集合、整数集合、什么是负数集合、试着归纳总结,试一试有理数集合.(三)应用迁移,巩固提高把下列各数填入相应的集合内:1 例812 -89 ,0.67,10.l,10%,-0.23456,-,2004,0,3.1416,57… … … …分数集合整数集合负数集合正数集合【答案】228,2004,10%,,-3.1416,-7510.1,0.67,...-0.23456,-89,...负数集合正数集合812,,-3.1416,-570,2004,-89,...-0.23456,10%,10.1,0.67,...分数集合整数集合以下是两位同学的分类方法,你认为他们分类的结果正确2 例吗?为什么?正整数正有理数正分数有理数负整数负有理数负分数正数整数有理数分数负数零两者都错,前者丢掉了零,后者把正负数、整数、分【答案】 . 分类标准不清楚,数混为一谈以上是对各类有理数的特点及有理数的分类进行的训【点评】练,基础性强,需要重视以下结论中正确的有(B)3例是最小的正整数0①是最小的有理数0②既是非正数,也是非负数0④不是负数0③个 D.4个 C.3个B.2个 A.1可能是什么样的数,一定为a如果用字母表示一个数,那4 例正数吗?与你的伙伴交流一下你的看法..0可能是正数,可能是负数,也可能是a不一定,【答案】全面a要求学生能用分类的思想对此题开放性较强.【点评】 . 体会用字母表示数的意义,认识备选例题 ²浙江温州)观察下列数,按某种规律在横线上填入适当2004(6243,…你的理解是,________,,,的数,并说明你的理由.7354._________2,找出各项数的特点是本题关键所在,第一个数为【点拨】3所得的数.1后一个数是前一个数的分子,分母都加5【答案】6(四)总结反思,拓展升华提问:今天你获得了哪些知识?今天我们学习了有理数的定义然后教师总结:由学生自己小结,和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,”的含义.0要特别注意“的圈中填上适合的数,使得圈内的数依次1-2-1请你在图.1 有理数集、正数集、分数集、负数集.•为整数集、所示.1-2-2答案不唯一,如图【答案】3081120.4-5正有理数.有理数按正、负可分为 2零负有理数整数按整数分,可分为分数)你能自己再制定一个标准,对有理数进行另一种分类吗?1()生活中,我们也常常对事物进行分类,请你举例说明.2(的数,等于1的数,小于1)如将有理数分成大于1(【答案】的数.1例如对人按年龄可分为:)2(青年、少年、儿童、幼儿、婴儿、中年、老年..下面两个圈分别表示负数集和分数集,你能说出两个图的重 3 叠部分表示什么数的集合呢?分数集合负数集合负分数答案(五)课堂跟踪反馈夯实基础.把下列各数填入相应的大括号内: 111 -0.3 ,50%,0,3,-3,,0.125, -722 0} ,3,{-7)整数集合1(11 -0.3} ,50%,-3,,{0.125)分数集合2(221 -0.3} ,{-3)负分数集合3(21 50%} ,0,3,,{0.125)非负数集合4(211 -0.3} ,50%,0,3,-3,,0.125,{-7)有理数集合5(22.下列说法正确的是(D) 2 不是自然数0B.A.整数就是自然数是整数而不是正数0D.C.正数和负数统称为有理数 325(千克,)0.1±25(某商店出售的三种规格的面粉袋上写着.)千克的字样,从中任意两袋,它们质量相0.3±25(,千克)0.2•± 千克. 0.6 差最大的是提升能力可以表示数,在我们现在所学的范围内,你能否试着a.字母 4 可以表示什么样的数?a说明a【答案】,负整数或负分数.0可以表示正整数,正分数,个5.某校对初一新生的男生进行了引体向上的测试,以能做 5名男10超过的次数记为正数,不足的次数记为负数,其中•为标准,生的测试成绩如下: 2 -1 2 -1 3 0 -1 -2 1 0 -名男生有百分之几达标(即达标率)?10)这1(名男生共做了多少个引体向上?10)这2()1(【答案】(个)10-1=49³5)2(;50% 开放探究.应用创新题 68若向东再米,12如果一个人从A地出发先走+米,8米记作+米,你能判断这个人此时在何20米,最后走-18米,又走+15走-处吗?米处.5在A地西边【答案】.新中考题 7年元月某一天的天气预报中,2004²内蒙古赤峰)我市2004(克旗的最低温度是-‣,22宁城县的最低温度是-这一天宁城‣,26 (A)县的最低气温比克旗的最低气温高-8. D‣8. C‣-4. B‣4. A ‣(六)资料采撷原始的计算工具最早人类初期的计算主要是计数.计算是人类的一种思维活动,用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的,说明人们常小石头、贝壳、绳子等.中国有句古话叫“屈指可数” 用手指来计算简单的数.名珍藏着一件从秘鲁出土的古代文物,在美国纽约的博物馆里,“基普”叫传基普是古人用来计数和记事的.意即打了绳结的绳子.,波斯国王在一次征战中曾命令一支部队守桥,他•世纪,6说公元前一要他们每守一天解开一个结,把一条打了结的皮带交给留守将士,直守到皮带上的结全部解完了才准撤退.人们用在绳子上打结的方法来计数和记在没有文字的我国古代,事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例这样,晚上必须圈到栅栏里.早晨放牧到草地里,他们饲养的羊,如,傍出来一只就往罐子里扔一块小石子;早晨从栅栏里放出来的时候,如果石子全部进去一只就从罐子里拿出一块小石子.晚羊进栅栏时,拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:为学生提供合我主要采用了探究式的教学方式,这节课的教学,作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问,课堂气氛活跃,学习积极性高学生直接参与教学活动,.探寻结果,题另外教师也可以从学生的回答.抽象的问题简单化,通过学生的讨论,有方法型的,中受到启发教师参与学生的讨论可以增加.有技巧型的取长补,学生在讨论的过程中可以相互学习,学生的学习兴趣和动力 . 深刻体会到与他人合作的重要性,短2 .2.1 数轴教学目标.知识与技能 1 ①掌握数轴三要素,能正确画出数轴.能说出数轴上已知点所表示的②能将已知数在数轴上表示出来,数..过程与方法 2逐步形成应用①使学生受到把实际问题抽象成数学问题的训练,数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法..情感、态度与价值观 3反过来又服务于实践的辩证使学生进一步形成数学来源于实践,唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课 50m在一条东西方向的马路上,有一个学校,学校东课件展示 100m处分别有一个书店和一个超市,学校西150m•和西处分160m和表示书店、超市、邮局、D、C、B、A别有一个邮局和医院,分别用医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究0•师:对照大家画的图,为了使表达更清楚,我们把左右两边0的数分别用正数和负数来表示,即用一直线上的点把正数、负数、也就是本节内容──数轴.•都表示出来.)引导学生学会画数轴.1(点拨第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)由学生观察温度计的结构和数轴的结拿出教学温度计,第四步:构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?)有了以上基础,我们可以来试着定义数轴:2(规定了原点、正方向和单位长度的直线叫数轴.学生自己练习画出数轴.做一做4你能利用你自己画的数轴上的点来表示数试一试:,-3,1.5,7吗?0,-2的点在原点的什么位a则数轴上表示数是一个正数,a若讨论的点在原点的什么位置a置上?与原点相距多少个单位长度;表示-与原点又相距了多少个长度单位?•上?小结整数能在数轴上都找到点吗?分数呢?___________•都可以用数轴上的点表示__________所有的可见,都在原点的右边.______________都在原点的左边,(三)应用迁移,巩固提高下列所画数轴对不对?如果不对,指出错在哪里.1 例43-25321210-1210-1②①③001-10-321-1-2④⑤⑥021-1-2⑦④③正确②错.没有正方向①错.没有原点【答案】⑦错.正方向⑥正确⑤错.单位长度不统一错.没有单位长度标错7 0 ,-,-3,1.5,2 4试一试:用你画的数轴上的点表示例3【答案】 ABCED5-1-41-2-5420-33 7,,D点表示--3,C点表示1.5,B点表示4图中A点表示3.0E点表示的点在原点的什么a 是一个正数,则数轴上表示数a如果3 例的点在原点的什么位置上呢?a表示-•位置上?由数轴上数的特点不准得到,正数都在原点的右边,【提示】负数都在原点左边.原点所有的有理数都可以在数轴上找个点与它对应,【答案】右边的点表示正数,原点左边的点表示负数.数与数轴上的点结合,这是一种重要的数学思想,数【点评】形结合.下列语句:①数轴上的点又能表示整数;②数轴是一条直4 例③数轴上的一个点只能表示一个数;④数轴上找不到既不表示•线;正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)(注:文档可能无法思考全面,请浏览后下载,供参考。
七年级有理数教案
七年级人教版数学《有理数》教案以下是一份七年级有理数教案:一、教学目标知识与技能目标理解有理数的概念,掌握有理数的分类方法。
能正确区分正有理数、负有理数和零。
会在数轴上表示有理数,理解有理数与数轴上的点的对应关系。
过程与方法目标通过对有理数分类的讨论,培养学生的分类思想和归纳能力。
借助数轴理解有理数,提高学生的数形结合能力。
情感态度与价值观目标让学生在学习有理数的过程中,体会数学的严谨性和逻辑性。
培养学生合作交流的意识和探索精神。
二、教学重难点教学重点有理数的概念及分类。
数轴上表示有理数。
教学难点对有理数分类的理解。
有理数与数轴上的点的对应关系。
三、教学方法讲授法、讨论法、演示法、练习法。
四、教学过程导入新课(3 分钟)教师提问:我们在小学学过哪些数?这些数可以分为哪几类?学生回答后,教师引导:进入初中,我们将学习一种新的数——有理数。
引出课题。
讲解有理数的概念(5 分钟)教师讲解:整数和分数统称为有理数。
举例说明:如正整数 5、负整数-3、零、正分数、负分数等都是有理数。
有理数的分类(10 分钟)(1)教师引导学生对有理数进行分类,可以按定义分类:有理数分为整数和分数。
整数又分为正整数、零和负整数。
分数分为正分数和负分数。
(2)也可以按性质分类:有理数分为正有理数、零和负有理数。
正有理数分为正整数和正分数。
负有理数分为负整数和负分数。
(3)组织学生进行小组讨论,理解两种分类方法的异同。
(4)请小组代表发言,教师点评总结。
数轴上表示有理数(15 分钟)(1)教师介绍数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。
(2)演示在数轴上表示整数,如 2、-3 等。
(3)接着表示分数,如、等。
强调如何确定分数在数轴上的位置。
(4)让学生自己动手在数轴上表示一些有理数,教师巡视指导。
(5)提问:数轴上的点与有理数有怎样的关系?引导学生得出有理数与数轴上的点是一一对应的关系。
课堂练习(10 分钟)出示一些有理数分类的题目和在数轴上表示有理数的题目,让学生独立完成。
有理数教案(精选多篇)
有理数教案(精选多篇)第一篇:《有理数》教案2《有理数》教案教学目标1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.2、能力目标:能应用正负数表示生活中具有相反意义的量.3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系. 教学重难点重点:理解有理数的意义.难点:能用正负数表示生活中具有相反意义的量.教学过程一、创设情境、提出问题某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.二、分析探索、问题解决分组讨论扣的分怎样表示?用前面学的数能表示吗?数怎么不够用了?引出课题.讲授正数、负数、有理数的定义.用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数. 启发学生再从生活中例举出用负数表示具有相反意义的数.三、巩固练习1、用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______;(3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.2、下面说法中正确的是().a.“向东5米”与“向西10米”不是相反意义的量;b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.三、小结回顾、纳入体系学生交流回顾、讨论总结,教师补充如下:概念:正数、负数、有理数.分类:有理数的分类:两种分法.应用:有理数可以用来表示具有相反意义的量.第二篇:有理数减法教案一、课题2.4有理数的减法二、教学目标1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;2.培养学生观察、分析、归纳及运算能力.三、教学重点有理数减法法则四、教学难点有理数减法法则五、教学用具三角尺、小黑板、小卡片六、课时安排1课时七、教学过程(一)、从学生原有认知结构提出问题1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).3.填空:(1)______+6=20;(2)20+______=17;(3)______+(-2)=-20;(4)(-20)+______=-6.在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.(二)、师生共同研究有理数减法法则问题1(1)(+10)-(+3)=______ ;(2)(+10)+(-3)=______.教师引导学生发现:两式的结果相同,即 (+10)-(+3)=(+10)+(-3).教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).至此,教师引导学生归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)(三)、运用举例变式练习例1计算:(1)(-3)-(-5);(2)0-7.例2计算:(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).通过计算上面一组有理数减法算式,引导学生发现:在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?阅读课本63页例3(四)、小结1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.(五)、课堂练习1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;2.计算:(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.3.计算:(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;(4)(-5.9)-(-6.1);(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).利用有理数减法解下列问题4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?八、布置课后作业:课本习题2.6知识技能的2、3、4和问题解决1九、板书设计2.5有理数的减法(一)知识回顾(三)例题解析(五)课堂小结例1、例2、例3(二)观察发现(四)课堂练习练习设计十、课后反思第三篇:有理数的减法教案有理数的减法教案赵英俊一、教学目标:知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
七年级上册有理数教案
第一章有理数一、全章概况:本章主要分两部分:有理数的认识,有理数的运算。
二、本章教学目标1、知识与技能(1)理解有理数的有关概念及其分类。
(2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。
(4)能运用有理数的有关知识解决一些简单的实际问题。
2、过程与方法(1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。
(2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。
3、情感、态度与价值观(1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。
(2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。
三、本章重点难点:1、重点:有理数的运算。
2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。
四、本章教学要求认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。
无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。
在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。
初一上册数学《有理数》教案
初一上册数学《有理数》教案初一上册数学《有理数》教案初一上册数学《有理数》教案1《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.﹣2C.1D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评】此题主要是考查了相反数的概念和绝对值的性质.9.若|1﹣a|=a﹣1,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【考点】绝对值.【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.【解答】解:∵|1﹣a|=a﹣1,∴1﹣a≤0,∴a≥1,故选B.【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.初一上册数学《有理数》教案2教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
新人教版七年级数学上册《有理数》教学设计
新人教版七年级数学上册《有理数》教学
设计
教学设计:有理数
一、教学目标:
1.理解整数、分数、有理数和数集等概念。
2.掌握有理数的分类方法。
3.培养学生分析问题和有条理思考的能力。
二、教学重点与难点:
重点:理解整数、分数、有理数和数集等概念,准确分类给定的数。
难点:掌握有理数的分类方法。
三、教学方法:
采用教师讲授和学生自主探究相结合的方法,辅以讲练结合。
四、学法指导:
主要采取课前预独立思考、教师讲解和小组合作相结合的研究方法,选用以观察探索为主、让学生主动研究。
五、教学准备:
多媒体课件。
六、教学过程:
一、温故知新
引导学生对中国体坛名宿的辉煌历史进行分类,根据学生的回答情况,教师适当进行引导,给出相关概念:正整数、负整数、正分数、负分数、整数、分数、有理数,进而总结出有理数的第一种分类情况。
二、合作探究
1.在给定的数中,正整数有:___,负分数有:___,有理数有:___,分数有:___。
2.学生讨论,教师引导,得出如下结论:
正整数、正分数和零统称为正有理数;
负整数和负分数统称为负有理数;
整数和分数统称为有理数。
通过合作探究,学生可以掌握有理数的分类方法,同时培养分析问题和有条理思考的能力。
初一上册数学《有理数》教案精选范文五篇
初一上册数学《有理数》教案精选范文五篇教育是石,撞击生命的火花。
教育是灯,照亮夜行者踽踽独行的路。
教育是路,引领人类走向黎明。
因为有教育,一切才都那么美好,因为有教育,人类才有无穷的希望。
今天小编为大家带来的是初一上册数学《有理数》教案精选范文,供大家阅读参考。
初一上册数学《有理数》教案精选范文一教学目标:知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法教学难点:会把所给的各数填入它所属于的集合里教学方法:问题引导法学习方法:自主探究法一、情境诱导在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?把整数和分数起个名字叫有理数。
(点题并板书课题)二、自学指导学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:1.___________、____、_______统称为整数,2._______和_________统称为分数3.____ ______统称为有理数,4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数: ;正整数:、负整数: 、正分数: 、负分数: .三、展示归纳1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
2022年人教版七年级数学上册第一章有理数教案 绝对值(第1课时)
第一章有理数1.2 有理数1.2.4 绝对值第1课时一、教学目标【知识与技能】1.借助数轴初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【过程与方法】1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。
2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念3.给出一个数,能求它的绝对值。
【情感态度与价值观】1. 从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
2. 培养学生积极参与探索活动,体会数形结合的方法.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确理解绝对值的概念,能求一个数的绝对值.【教学难点】借助数轴理解绝对值的几何意义,•根据绝对值定义和相反数的概念,理解绝对值的代数意义.五、课前准备教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
六、教学过程(一)导入新课教师问1:两辆汽车从同一处O出发分别向东、西方向行驶10km,到达A、B两处.(出示课件2)它们的行驶路线的方向相同吗?学生回答:不相同.教师问2:它们行驶路程的距离(线段OA、OB的长度)相同吗?学生回答:相同在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.(二)探索新知1.师生互动,探究绝对值的概念教师问3:甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正,两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作___km,乙车向西行驶10km到达B处,记做_________km.(出示课件4)学生回答:+10,-10教师问4:以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(出示课件5)学生回答:A、B两点与原点距离都是10,线段OA表示向东行驶10千米,线段OB表示向西行驶10千米.教师问5:如果汽车每公里耗油0.15升,计算甲、乙两辆汽车各耗油多少升?学生回答:甲、乙两辆汽车各耗油1.5升.教师问6:计算汽车的耗油量时,我们考虑是+10或-10了吗?学生回答:没有.教师讲解:实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;这样我们得到了一个新的数学概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|总结点拨:(出示课件6)2.师生互动,探究绝对值的性质教师问7:观察这些表示绝对值的数,它们有什么共同点?(出示课件8)|5|=5 |-10|=10 |3.5|= 3.5|100|=100 |-3|=3 |50|=50|-4.5|=4.5 |-5000|=5000 |0|=0……学生讨论后回答:都是正数或0,也就是非负数.教师问8:观察下面正数的绝对值,想一想一个正数的绝对值是什么?|3.5|= 3.5 |100|=100 |50|=50学生回答:一个正数的绝对是它本身.教师问9:观察下面负数的绝对值,想一想一个负数的绝对值是什么?|-10|=10 |-3|=3 |-4.5|=4.5 |-5000|=5000学生回答:一个负数的绝对值是它本身的相反数.教师问10:0的绝对值是什么?学生回答:0的绝对值是0.总结点拨:(出示课件9)结论1:一个正数的绝对值是正数.一个负数的绝对值是正数.0的绝对值是0.|a|≥0任何一个有理数的绝对值都是非负数!结论2:一个正数的绝对值是它本身.一个负数的绝对值是它的相反数.教师问11:字母a表示一个有理数,你知道a的绝对值等于什么吗?(出示课件10)师生共同讨论后解答如下:(1)当a是正数时,|a|=__a__;(2)当a是负数时,|a|=_-a_;(3)当a=0时,|a|=__0_.绝对值的判断法则:教师问12:相反数、绝对值的联系是什么?(出示课件11)学生回答:互为相反数的两个数的绝对值相等. 绝对值相等,符号相反的两个数互为相反数.例1:求下列各数的绝对值.(出示课件12)12, , -7.5, 0.师生共同解答如下:解:|12|=12;正数的绝对值等于它本身.,|-7.5|=7.5;负数的绝对值等于它的相反数.|0|=0. 0的绝对值是0.总结点拨:(出示课件13)求一个数的绝对值的步骤例2:填一填:(出示课件16)(1)绝对值等于0的数是___,(2)绝对值等于5.25的正数是_____,(3)绝对值等于5.25的负数是______,(4)绝对值等于2的数是_______.师生共同解答如下:答案:(1)0,(2)5.25,(3)-5.25,(4)2或-2易错提醒:注意绝对值等于某个正数的数有两个,它们互为相反数,解题时不要遗漏负值.总结点拨:(出示课件17)绝对值的性质(1)任何有理数都有绝对值,且只有一个.(2)由绝对值的几何定义可知,数的绝对值是两点间的距离,因此,任何一个数的绝对值都是非负数;在数轴上,一个数离原点的越近,绝对值越小,离原点越远,绝对值越大.(3)互为相反数的两个数的绝对值相等.(4)绝对值相等的两个数相等或互为相反数.例3:已知|x–4|+|y–3|=0,求x+y的值.(出示课件19)师生共同解答如下:分析:一个数的绝对值总是大于或等于0,即为非负数,如果两个非负数的和为0,那么这两个数同时为0.解:根据题意可知x - 4=0,y - 3=0,所以x=4,y=3,故x+y=7.总结点拨:几个非负数的和为0,则这几个数都为0.(三)课堂练习(出示课件21-25)1.如图,点A所表示的数的绝对值是( )A.3 B.-3C.D.2. 判断并改错:(1)一个数的绝对值等于本身,则这个数一定是正数. ( )(2)一个数的绝对值等于它的相反数,这个数一定是负数. ( )(3)如果两个数的绝对值相等,那么这两个数一定相等. ( )(4)如果两个数不相等,那么这两个数的绝对值一定不等. ( )(5)有理数的绝对值一定是非负数. ( )3. -2018的绝对值是______.4. ____的相反数是它本身,_______的绝对值是它本身,_______的绝对值是它的相反数.5. 的相反数是_____;若,则a= _____.6. 求下列各数的绝对值:3,3.14,,-2.8.7. 化简:| 0.2 |=______;=______;| b |=______ (b<0);| a – b | =______(a >b).8.正式排球比赛对所用的排球重量是有严格规定的,现检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下:指出哪个排球的质量好一些,并用绝对值的知识加以说明.参考答案:1.A2.(1)×;(2)×;(3)×;(4)×;(5)√.3.20184.0,非负数,非正数.5. ,±26. 解:|3|=3;|3.14|=3.14;|-2.8|=2.8.7.0.2;,-b,a-b.8. 答:第五个排球的质量好一些,因为它的绝对值最小,也就是离标准重量的克数最近.(四)课堂小结今天我们学了哪些内容:①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.(五)课前预习预习下节课(1.2.4)12页到13页的相关内容。
人教版七年级数学上册第一章《有理数》全章教学设计
第一章有理数镇中教课设计1.1.1 正数和负数( 1)[学习目标 ]1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义[学习过程 ]一、板书课题:(一)叙述:同学们,今日我们来学习第一章有理数.1.1.1 正数和负数(教师板书)二、出示目标(一)过渡语:要达到什么教课目的呢?请看投影(二)屏幕显示学习目标1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义三、自学指导(一)过渡语:如何才能当堂达到学习目标呢?请同学们依据指导认真自学。
(二)出示自学指导认真看课本( P1-3练习前方)① 理解正数的观点,会模仿正数的观点,解说负数的含义;②理解正数、负数和0 表示的实质含义,注意黄色书签的内容;③回答 P3“思虑”中的问题。
若有疑部问,能够小声讨教同桌或举手问老师。
6分钟后,比谁能正确做出检测题。
四、先学(一)学生看书,教师巡视,师敦促每一位学生认真、紧张的自学,鼓舞学生怀疑问难。
(二)检测1、过渡语:同学们,看完的请举手。
懂了的请举手。
好下边就比一比,看谁能正确做出检测题。
2、检测题 P3:1、2、3、43、学生练习,教师巡视。
(改集错误会进行二次备课)五、后教(一)改正:请同学们认真看一看这四名同学的板演,发现错解的请举手(指名改正)(二)议论:评第 1 题:(教师要重申停题格式)①正数找的对吗?为何对?师指引生回答:比0 大的数是正数(师板书)(如对,教师打√)②你还举一些正数的例子吗?③负数找的对吗?为何?师指引生回答:在正数前加“一”的数是负数④你能模仿正数的定义来谈谈负数的吗?师指引生回答:比0 小的数是负数。
(师板书)(如对,教师打√)评 2、3、4 题答案正确吗?为何?师指引生回答:数0 既不是正数也不是负数,是正、负数的分界限。
(师板书)重申“0”的意义不单是表示“没有”,还能够表示温度读报00C(表示标准),山脚的高度 0 米等(表示起点)。
人教版七年级数学上册1.2《有理数》说课稿
人教版七年级数学上册1.2《有理数》说课稿一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的内容,本节内容是在学生已经学习了自然数、整数的基础上,引入负数和分数的概念,让学生初步理解有理数的定义及其性质。
教材通过丰富的实例和生动的语言,引导学生逐步认识和理解有理数,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于自然数和整数有一定的认识。
但负数和分数对他们来说是一个新的概念,可能存在一定的理解难度。
因此,在教学过程中,需要关注学生的认知水平,通过生动的实例和贴近生活的情境,激发学生的学习兴趣,帮助他们理解和掌握有理数的概念和性质。
三. 说教学目标1.知识与技能目标:使学生理解有理数的定义,掌握有理数的性质,能够运用有理数的概念解决一些实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生抽象思维能力,提高学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用价值。
四. 说教学重难点1.教学重点:有理数的定义及其性质。
2.教学难点:负数的概念和性质,有理数的运算。
五. 说教学方法与手段1.教学方法:采用情境教学法、问题教学法、合作学习法等,引导学生主动探究,发现知识,培养学生的抽象思维能力。
2.教学手段:利用多媒体课件、实物模型、学习卡片等辅助教学,提高课堂教学效果。
六. 说教学过程1.导入新课:通过展示生活中的一些实例,如温度、海拔等,引导学生认识负数,激发学生的学习兴趣。
2.探究新知:引导学生观察、分析、归纳有理数的定义和性质,让学生在探究过程中掌握知识。
3.巩固新知:通过一些练习题,让学生运用所学知识解决问题,巩固新知识。
4.拓展应用:出示一些实际问题,让学生运用有理数的概念解决问题,培养学生的应用能力。
5.小结:对本节课的主要内容进行总结,强化学生的记忆。
6.布置作业:布置一些有关有理数的练习题,让学生课后巩固所学知识。
七年级数学上学期教案:有理数
第1课时§具有相反意义的量教学目标:1、知识与技能:⑴借助于生活中的实例理解正数、负数及有理数的意义。
⑵体会引入负数的必要性和合理性,感受有理数应用的广泛性。
⑶能应用正、负数表示生活中具有相反意义的量;能正确对有理数进行分类。
⑷知道零是一个特殊的数,能举出实例说明它的意义;知道正数、零、负数三者的大小关系。
2、过程与方法:通过实例的引入,认识到负数的产生是示具有相反意义的量,能按要求对有理数进行分类。
教材分析:教学重点:正数、负数的意义,有理数的意义,能正确对有理数进行分类。
教学难点:对负数的理解以及正确地对有理数进行分类。
教学方法:双主互动教学法。
学案:一、预学检测:1、温度计的零上与零下的意义,支出与收入的意义。
2、为了便于区分这些具有相反意义的量,数学上规定:在具有相反意义的一对量中,把其中的一种量用表示,而另一种量用表示。
一般人们把零上温度、高出海平面、存入、上升等记为,把零下温度、低于海平面、支出、下降等记为。
3、0的数叫作正数,0的数叫作负数,那么0是正数还是负数呢。
4、数的归类:、、统称为整数;和统称为分数;和统称为有理数。
二、提升检测:知识点1:1、在横线上填上适当的文字,使其前后构成意义相反的量。
⑴收入1000元,200元。
⑵上升20米,25米。
2、怎样用数来表示相反意义的量。
(用“”、“-”号来表示)⑴答题时,答对一道得10分,记作分,那么答错一道扣10分,记作分。
⑵某人以她原来的体重为标准,体重增加2千克记作千克,体重减少5千克记作千克,知识点2:正数、0、负数的大小关系3、⑴某地2月18日凌晨1点的温度是0 ℃,凌晨4点的温度是-2 ℃,哪个时刻温度低⑵珠穆朗玛峰高出海平面8848.8 m,吐鲁番盆地艾丁湖湖面的海拔高度为-154m,海平面高度为0m,哪个地方低知识点3:数的分类4:将下列各数按要求分别填入相应的集合中,1,53-, -126, , 0, -12%,338-,3.14,5324, 729, -628,正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …};整数集合: { …};分数集合:{ …};非负数集合:{ …};非负整数集合:{ …};负数集合:{ …};有理数集合:{ …}教学流程:㈠、预学:教师提问:我们在看“天气预报”时,看到某日的温度为:长沙:-2℃~5℃,益阳:-3℃~4℃,你知道播音员是怎么播报的吗如果没有播音员的解释,你知道这些数字的含义吗学生活动:回忆天气预报,感知生活中的相反意义的量。
新人教版七年级数学上册《有理数》优质教案
1.2有理数1.2.1有理数【知识与技能】1.了解有理数的意义,并能把有理数按要求分类.2.会把给出的有理数填入集合内.【过程与方法】1.从直观认识到理性认识,从而建立有理数概念.2.通过学习有理数概念,体会对应的思想,数的分类的思想.【情感态度】通过有理数意义、分类的学习,体会数的分类、归纳思想方法.【教学重点】有理数的概念.【教学难点】从直观认识到理性认识,从而建立有理数概念.一、情境导入,初步认识问题现在,我们已经知道除了小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数?学生列举:3,5.7,-7,-9,-10,0,1/3,2/5,-536,-7.4,5.2,……议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数. 【教学说明】我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?【教学说明】以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.我们把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合?二、典例精析,掌握新知例1 把下列各数填入相应的集合内:12/7,-3.1416,0,2004,-8/5,-0.23456,10%,10.1,0.67,-89.【答案】【教学说明】以上是对数进行分类,教师应让学生上台板演,并接着做教材第6~7页的练习,以巩固知识.例2以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.【教学说明】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视.例3如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【教学说明】此题开放性较强.同时,要求学生能用分类的思想对a全面认识.例4观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.2/3,3/4,4/5,,6/7,……,你的答案是 .【分析】找出各项数的特点是本题关键所在,第一个数为2/3,后一个数是前一个数的分子、分母都加1所得的数.【答案】5/6三、运用新知,深化理解1.把下列各数填入相应的大括号内:-7,0.125,1/2,-31/2,3,0,50%,-0.3.(1)整数集合{ ……}(2)分数集合{ ……}(3)负分数集合{ ……}(4)非负数集合{ ……}(5)有理数集合{ ……}2.下列说法正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2千克),(25±0.3)千克的字样,其中任选两袋,它们质量相差最大的是千克.4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?6.若向东走8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【教学说明】这几道题均较简单,可由学生独立自主完成.【答案】四、师生互动,课堂小结今天你获得了哪些知识?【教学说明】由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.1.布置作业:从教材习题1.2中选取.2.完成练习册中本课时的练习.本课时是在引入负数概念的基础上对所学过的数按照一定的标准进行分类,再提出有理数的概念.教学中应让学生了解分类是解决数学问题的常用方法,通过本节课的学习要认识分类的思想并能对事物用已知的数学知识进行简单的分类.教学时可为学生设置不同情境,引领学生自主参与学习与探寻,体验获取新知的过程,学生间互相交流和评价,以减少“分类”给学习带来的困难.教师寄语同学们,生活让人快乐,学习让人更快乐。
人教版七年级数学上册第一章有理数的概念(教案)
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。
人教版七年级数学上册:1.2.1《有理数》教学设计1
人教版七年级数学上册:1.2.1《有理数》教学设计1一. 教材分析《有理数》是初中数学的重要内容,为学生今后学习代数、几何等数学分支打下基础。
人教版七年级数学上册1.2.1《有理数》教学设计,主要让学生了解有理数的定义、分类和性质,会进行有理数的运算。
通过本节课的学习,学生能够理解有理数的概念,掌握有理数的加、减、乘、除运算方法,为后续学习更高级的数学知识奠定基础。
二. 学情分析七年级的学生已初步掌握了实数的概念,对数学运算有一定的了解。
但部分学生对实数的概念仍模糊不清,对有理数的定义、性质和运算方法认识不足。
因此,在教学过程中,要关注学生的个体差异,针对不同学生进行有针对性的引导和讲解,提高他们的数学素养。
三. 教学目标1.理解有理数的定义,掌握有理数的分类和性质。
2.学会有理数的加、减、乘、除运算方法,能熟练进行计算。
3.培养学生的逻辑思维能力和数学运算能力。
4.激发学生学习数学的兴趣,提高他们的数学素养。
四. 教学重难点1.有理数的定义、分类和性质。
2.有理数的加、减、乘、除运算方法。
3.运用有理数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的定义和性质。
2.运用实例讲解法,让学生通过具体例子理解有理数的运算方法。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
4.运用练习法,巩固所学知识,提高学生的数学运算能力。
六. 教学准备1.准备相关课件、教案、练习题。
2.准备多媒体教学设备。
3.准备学生分组合作的材料。
七. 教学过程1.导入(5分钟)利用实例引入有理数的概念,如分数、整数等,让学生初步感知有理数。
2.呈现(10分钟)讲解有理数的定义、分类和性质,通过PPT展示相关知识点,引导学生主动探究。
3.操练(10分钟)让学生进行有理数的加、减、乘、除运算练习,教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一些有关有理数的应用题,让学生运用所学知识解决问题,巩固所学内容。
七年级数学上册《有理数的混合运算》教案3篇
七年级数学上册《有理数的混合运算》教案3篇教学目标1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力;教学重点和难点重点:有理数的混合运算;难点:准确地掌握有理数的运算顺序和运算中的符号问题;课堂教学过程设计一、从学生原有认知结构提出问题;1.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-100-27; (15)(-1)101;(16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5);2.说一说我们学过的有理数的运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac;二、讲授新课我们学习了有理数的加减乘除运算。
如果在一个表达式中有上述混合操作,那么这些操作应该按什么顺序执行?1、在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行审题:(1)运算顺序如何?(2)符号如何?说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果;带分数分成整数部分和分数部分时的符号与原带分数的符号相同;七年级数学上册《有理数的混合运算》教案2教学目的:1、要求学生理解加减混合运算**为加法运算的意义。
2、能初步掌握有关有理数的加减混合运算。
教学分析:重点:如何更准确地把加减混合运算**成加法。
难点:将一个加减混合运算式写成省略加号的和的形式。
教学过程:一、知识导向:本节是对前面学过的有理数的加法运算和减法运算的综合应用,所以一定要对相关规律有更深的理解,并能在运算中灵活运用。
二、新课:1、知识基础:其一:有理数的加法法则;其二:有理数的减法法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学反思
1.在数轴上分段讨论,取值注意等于的情况
2.分类讨论大于0或者小于0的不同情况
3.利用有理式的相乘相除法则,进行计算。
2.有理式比较大小的基本方法:相减相除法(a-b或者a/b)
2、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
三、混合运算法则:先乘方,后乘除,最后加减。(注意:怎样算简单、准确,是数学计算的最重要的原则)
3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
2.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是:;a与b差的平方是:;
(2)若a、b、c是正整数,则两位整数是:,则三位整数是:;
(3)若m、n是整数,则被5除商m余n的数是:;偶数是:,
奇数是:;三个连续整数是:;
☆知识精讲
1.正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。
4、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:精确到就是而不是.
☆课堂练习
一、选择题
3.有理数的加减法
①有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。
☆课后作业
1、一辆货车从超市出发,向东走了3km,到达小彬家,继续走了到达小颖家,又向西走了到达小明家,然后回到超市。
(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗
(2)小明家距小彬家多远
(3)货车一共行驶了多少km
学员评价
知识点掌握情况:不完全理解□完全掌握□能熟练运用□
A、(×20)mm B、×40)mm C、×2 )mm D、×20 )mm
二、计算:
(1)-40-(-19)+(-24)(2) (3)
(1)原式=-40+19-24=-45
(2)原式= = =
(3)原式=
3、应用题
1、小颖、小丽、小虎三位同学的身高如下表所示。
姓名
小虎
小颖
小丽
身高(㎝)
155
150
147
(1)以小丽身高为标准,记作0㎝,用有理数表示出小颖和小虎的身高。
答:小颖:-3cm小虎:+5㎝
(2)若小颖身高记作-8㎝,那么小虎和小丽的身高应记作多少㎝。
答:小虎:0㎝小丽:-5㎝
3、甲、乙两商场上半年经营情况如下(“+”表示盈利,“-”表示亏本,以百万为单位)
月份
一
二
三
四
五
六
甲商场
+
+
+
+
乙商场
+
+
+
(1)三月份乙商场比甲商场多亏损多少元
()=(百万)
×1000000=-200000
答:多亏损200000元
(2)六月份甲商场比乙商场多盈利多少元
+()=(百万)
×1000000=300000(元)
答:多盈利300000元
(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元
甲:(++)÷6=(百万)=200000元
A、800 mB、200 mC、2400 mD、-200 m
7、已知︱x︱=2,y =9,且x·y<0,则x+y=(D)
A、5B、-1C、-5或-1D、±1
8、已知数轴上的A点到原点的距离为2个单位长度,那么在数轴上到A点的距离是3个单位长度的点所表示的数有(B)
A、1个B、2个C、3个D、4个
10、有一张厚度是的纸,将它对折20次后,其厚度可表示为(C)
4、下列各对数互为相反数的是(B)
A、-(-8)与+(+8)B、-(+8)与+︱-8︱
C、- D、-︱-8︱与+(-8)
5、下列说法中,正确的是(C)
A、有最小的有理数B、有最小的负数
C、有绝对值最小的数D、有最小的正数
6、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m):500,-400,-700,800小明同学跑步的总路程为(C)
(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;
(2)数轴三要素:原点、正方向、单位长度;
(3)原点:在直线上任取一个点表示数0,这个点叫做原点;
(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
七年级数学上册有理数教案
学生姓名
年级
七年级
学校
辅导教师
辅导科目
数学
教材版本
人教版
课题名称
有理数
上课日期
上课时间
教学目标
正数与负数、有理数、有理数的加减法、有理数的乘除法和有理数的乘方
重点难点
有理数的乘除法和有理数的乘方
教学内容
☆课前回顾
1.代数式
用运算符号“+-×÷”连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)
乙:(++)÷6=(百万)=400000元
答:甲商场平均每月盈利200000元,乙商场平均每月盈利400000元。
☆内容小结
一、解题方法:
1.绝对值类:
首要想到化简绝对值,化简时注意绝对值里面大于等于0或者小于0
如不能化简,看绝对值能不能合并化简,移项(等号左边移动右边பைடு நூலகம்把绝对值的都移动到左边,数字移动到右边)
4.有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0;
乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;
两数相除,同号得正,异号得负,并把绝对值相除;
0除以任何一个不等于0的数,都得0。
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
2.有理数
1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;
5.有理数的乘方
1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、2008的绝对值是(A)
A、2008B、-2008C、±2008D、
2、下列计算正确的是(D)
A、-2+1=-3B、-5-2=-3
C、- D、
3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为(D)
A、× 人B、× 人
C、× 人D、× 人