概率论课后作业及答案

合集下载

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

习 题 一1. 写出下列随机试验得样本空间及下列事件中得样本点: (1)掷一颗骰子, 记录出现得点数、 ‘出现奇数点’; (2)将一颗骰子掷两次, 记录出现点数、 ‘两次点数之与为10’, ‘第一次得点数, 比第二次得点数大2’;鼉礬釹碍衛環叶。

(3)一个口袋中有5只外形完全相同得球, 编号分别为1,2,3,4,5;从中同时取出3只球, 观察其结果, ‘球得最小号码为1’;澀課詰訓壢贷绫。

(4)将 两个球, 随机地放入到甲、乙、丙三个盒子中去, 观察放球情况, ‘甲盒中至少有一球’;(5)记录在一段时间内, 通过某桥得汽车流量, ‘通过汽车不足5台’, ‘通过得汽车不少于3台’。

解 (1) 其中 ‘出现 点’ , 135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------, 其中‘ ’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

概率论课后答案

概率论课后答案

第 一 章 习 题 一1(4)解:设1B =“两件都是不合格品”,2B =“一件是合格品,另一件是不合格品”,A =“已知所取两件中有一件是不合格品”,则12A B B =+,由题意知,1226442210101112()()282,,()()()15153C C C P B P B B B C C P A P P =====+=故P{1B |A}=11()()()()2/1512/35P AB P B P A P A ===3. 解:A:表示两个一级队被分在不同组,则A :表示两个一级队被分在同一组192181020()()1()0.4740.526,C C P A P A P A C ==-==5.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足:0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14CDEOABS S=. 6.解:设所取两数为,,X Y 样本空间占有区域Ω,两数之积小于14:14XY <,故所求概率()()1()()1S S D S D P S Ω--==Ω,而11411()(1)1(1ln 4)44S D dx x =-=-+⎰,故所求概率为1(1l n4)4+.8.解:设A —某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生 算起活到25年以上,()0.4P B =,则所求的概率为()()0.4()()0.5()()0.8P AB P B BBP P A A P A P A ===== 9.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为 ()()0.15()1()1110.250.2()()P BA P B B B P P A A P A P A =-=-=-=-=.10.解:设A={收报台收到信号“.”},则A ={收报台收到信号“-”},设B={发报台发出信号“.”},则B ={发报台发出信号“-”},由题意知道:()0.4,(|)0.8,(|)0.2,(|)0.1,(|)0.9,P B P A B P A B P A B P A B =====P(B)=0.6,1()0.65,AP B =32()0.7,()0.85AAP P B B ==由贝叶斯公式得:()(|)(|)0.923()(|)()(|)P B P A B P B A P B P A B P B P A B =≈+()(|)(|)0.75()(|)()(|)P B P A B P B A P B P A B P B P A B =≈+12.解:设1A :所抽螺钉来自甲厂 , 2A :所抽螺钉来自乙厂,3A :所抽螺钉来自丙厂,B :所抽螺钉是次品,则1()25%P A =,2()35%P A =,3()40%P A =,1(|)5%P B A =,2(|)4%P B A =,3(|)2%P B A =(1)由全概率公式:112233()()(|)()(|)()(|)0.0345P B P A P B A P A P B A P A P B A =⋅+⋅+⋅=(2)由贝叶斯公式:111(|)()(|)0.3623()P B A P A P A B P B ==.13.解:设A:{直到第n 次才取k 次()k n ≤红 球}={第n 次取到红球}{前n-1次取到k-1次红球},则所求的概率为11111119()101010191010k n kk n kn kk n P A C C -------⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭14.解:设A 表示灯泡使用寿命在1000h 以上,则由题意得()0.2P A =,()0.8P A =,设事件B 表示三个灯泡使用1000h 后恰有i 个坏了,则“三个灯泡使用1000h 后最多只有一个坏了”这一事件课表示为01B B +,由二项概率公式所求概率为01()P B B +=31230313()()0.2(0.2)0.80.104P B P B C +=+⋅= 15.解:设试验E —从二盒火柴中任取一盒,A —取到先用完的哪盒,1()2P A =,则所求概率为将E 重复独立作2n r -次A 发生n 次的概率,故所求的概率为222211()()()222nnn n r n r n rn r n rC P n C-----==.16.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球. 1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少?解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+=⋅+⋅=(/)()2/92) (/)()/()2/5()5/9P A B P B P B A P AB P A P A ====17.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率. 解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1A A AP P P B B B ===,由于3个射手射击是互相独立的,所以1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯= 2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯=3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是 (1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)iii P B P A B P B A P B P A B ====∑. 第 二 章1(4).设随机变量X 的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,{2}__P Y ==.解:(3,)Yp B ,1211{}224p P X xdx =≤==⎰,由二项概率公式 223139{2}()()4464P Y C ===.2.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.解:设X 表示取出次品的只数,则(1)X 的分布律为{}31331322035C P X C ===,{}1221331312135C C P X C ===,{}212133131235C C P X C ===或者(2)X 的分布函数为0 ,022{0} = ,0135()34{0}{1} ,1235{0}{1}x P X x F x P X P X x P X P X <=≤<==+==≤<=+={2} =1 ,2P X x ⎧⎪⎪⎪⎨⎪⎪⎪+=≥⎩,则分布律的图像即为F(x)的分段函数图像。

概率论与数理统计课后习题参考答案

概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。

2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。

3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。

概率论·课后答案(绝对详解)

概率论·课后答案(绝对详解)

i习题一3 设,,B A 为二事件,化简下列事件:B B B A B BA B A B A B A =⋃=⋃⋃=⋃⋃)()())()(1(B B A B B A A A B A B A =⋃⋃⋃=⋃⋃)())()(2(4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。

3024.010302410427210678910445==⋅=⋅⋅⋅⋅=p5 n 张奖券中有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

答案:.1k n k mn C C --6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少?解;将这五双靴子分别编号分组},,,,{};,,,,{5432154321b b b b b B a a a a a A ==,则C 表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有.45C不能配对只能是:一组中选i 只,另一组中选4-i 只,且编号不同,其可能选法为)0,1,2,3,4(;455=--i C C i i i41045341523251235451)(1)(C C C C C C C C C C P C P ++++-=-= 2113218177224161247720104060401011234789105453245224551=-=⋅⋅-=⋅++++-=⋅⋅⋅⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅+-= 7在[—1,1]上任取一点,求该点到原点的距离不超过51的概率。

答案:518在长度为a 的线段内任取两点,将其分成三段,求它们可以构成三角形的概率。

,0,0a y a x <<<<且a y x <+<0,又41222,,=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+⇒⎪⎩⎪⎨⎧--<---<--->+P ay a x a y x y x a x y y x a y x y x a y x 9在区间)1,0(内任取两个数,求这两个数的积小于41的概率。

概率论与数理统计及其应用课后习题答案

概率论与数理统计及其应用课后习题答案

第一章 随机事件及其概率1、解:(1){}67,5,4,3,2=S(2){} ,4,3,2=S(3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P )])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂ 218185=-= 3、解:用A 表示事件“取到的三位数不包含数字1” 25189********)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。

解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330” (1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球;(2)4只中至少有2只红球;(3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338 (2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单” nkn k n M M C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。

概率论与数理统计课后题参考答案

概率论与数理统计课后题参考答案

第一章 基本概念1、试对下列随机试验各写出一个样本空间: (1)掷一颗骰子;(2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球; (3)10只产品中有3只是次品,每次从中任取一只(取出后不放回),直到将3只次品全部取出,记录抽取的次数;(4)对某工厂生产的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如果查出2件次品就停止检查,或者查满4件也就停止检查,记录检查结果。

解:(1)}6,5,4,3,2,1{=Ω(2))}5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1{(=Ω5个球中选3各球进行组合,有1035=C 种。

(3)}109876543{,,,,,,,=Ω最少抽取的次数是每次取出的都是次品;最多抽取的次数是把10只产品全部取出,总能抽出3个是次品。

(4)用数字1代表正品,数字0代表次品;样本空间包括查出2件是次品和查满4件产品这两种情况。

)}1,1,1,0(),1,1,1,1(),1,0,1,1(),1,1,0,1(),0,1,1,1(),0,0,1,1(),0,1,0,1(),0,1,1,0(),0,0,1(),0,1,0(),0,0{(=Ω2、工厂对一批产品作出厂前的最后检查,用抽样检查方法,约定,从这批产品中任意取出4件产品来做检查,若4件产品全合格就允许这批产品正常出厂;若有1件次品就再作进一步检查;若有2件次品则将这批产品降级后出厂;若有2件以上次品就不允许出厂。

试写出这一试验的样本空间,并将“正常出厂”、“再作检查”、“降级出厂”、“不予出厂”这4个事件用样本空间的子集表示。

解:用数字1代表正品,数字0代表次品设=“正常出厂”; =“再作检查”; =“降级出厂”;D =“不予出厂”)}1,1,1,1{(=A)}0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0{(=B)}0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0{(=C )}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{(=D)}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0(),0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0(),0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0(),1,1,1,1{(=⋃⋃⋃=ΩDC B A3、设A 、B 、C 是三个事件,试用A 、B 、C 的运算关系表示下列事件: (1)A 与B 都发生,但C 不发生;(2)A 发生,但B 与C 可能发生也可能不发生; (3)这三个事件都发生; (4)这三个事件都不发生; (5)这三个事件中至少有一个发生; (6)这三个事件中最多有一个发生; (7)这三个事件中至少有两个发生; (8)这三个事件中最多有两个发生; (9)这三个事件中恰有一个发生; (10)这三个事件中恰有两个发生。

概率论课后习题答案

概率论课后习题答案

习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。

概率论第7~10章课后习题集答案解析

概率论第7~10章课后习题集答案解析

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计.【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n. 1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L nx θθ==+=∏知 11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑4.从一批炒股票的股民一年收益率的数据中随机抽取10人的收益率数据,结果如下:1-求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】 0.094x =- 0.101893s = 9n =0.094.EX x ==-由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有ˆσ=于是ˆ0.101890.0966σ===所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966.5.随机变量X服从[0,θ]上的均匀分布,今得X的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.【解】(1) ()2E Xθ=,令()E X X=,则ˆ2Xθ=且ˆ()2()2()E E X E Xθθ===,所以θ的矩估计值为ˆ220.6 1.2xθ==⨯=且ˆ2Xθ=是一个无偏估计.(2) 似然函数8811(,)iiL f xθθ=⎛⎫== ⎪⎝⎭∏,i=1,2, (8)显然L=L(θ)↓(θ>0),那么18max{}iixθ≤≤=时,L=L(θ)最大,所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E(18max{}iix≤≤)≠θ,所以ˆθ=18max{}iix≤≤不是θ的无偏计.6.设X1,X2,…,X n是取自总体X的样本,E(X)=μ,D(X)=σ2,2ˆσ=k1211()ni iiX X-+=-∑,问k为何值时2ˆσ为σ2的无偏估计.【解】令1,i i iY X X+=-i=1,2,…,n-1,则21()()()0,()2,i i i iE Y E X E X D Yμμσ+=-=-==于是1222211ˆ[()](1)2(1),niiE E k Y k n EY n kσσ-===-=-∑那么当22ˆ()Eσσ=,即222(1)n kσσ-=时,有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间.【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19) 2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫±-=±= ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪ ⎪--⎝⎭⎝⎭11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=-所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0nn ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L n x θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量ˆθ; (2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑其他.由d ln 20ln (),d Ln L θθ=>↑知那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤= 14. 设总体X 的概率分布为其中θ(0<θ<2)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值.【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).i i L P x θθθθ===--∏ 2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,2θ=. 由于71,122> 所以θ的极大似然估计值为 7ˆ2θ-=15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本 (1) 当α=1时,求β的矩估计量; (2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0, 1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i n i i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏其他显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰z【解】26~ 3.4,X N n⎛⎫⎪⎝⎭,则~(0,1),X Z N = {1.4 5.4}33210.95333Z P X PP Z ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛⎫⎛⎛⎫=-=-≥- ⎪ ⎪⎝⎭⎝⎭⎝⎭于是0.975Φ≥则 1.963≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求:(1) θ的矩估计; (2) θ的最大似然估计. 解 (1) 由于 121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-.似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令d ln ()0,d L θθ=得 Nnθ=, 所以θ的最大似然估计为Nnθ=.18.19.习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H 0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s 2=0.1(g 2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35) 2.0301.H H n t n t n x s x t t t αμμμμα==≠===-=========<=所以接受H 0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05).【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H H n z x x z z z μμμασ≥<======-===->-=- 所以接受H 0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x =0.452(%),s =0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1) H 0:μ=0.5(%);H 1:μ<0.5(%).(2)0:H σ' =0.04(%);1:H σ'<0.04(%).00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,20.005).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05)01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9. 10. 11. 12.1灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平0.05下检验灯泡寿命是否因灯丝材料不同而有显著差异?试验批号1 2 3 4 5 678灯丝材料水平A1A2A3A416001580146015101610 1640 1550 15201650 1640 1600 15301680 1700 1620 15701700 1750 1640 16001720 1660 16801800 17401820【解】14,26;====∑ri i r n n2442..11===-∑∑T iji j T S x n =69895900-69700188.46=195711.54, 242...11==-∑A i i iT S T n n =69744549.2-69700188.46=44360.7,=-E T A S S S =151350.8,0.05/(1)44360.7/32.15/()151350.8/22(3,22) 3.05.-===-=>A E S r F S n r F F ,故灯丝材料对灯泡寿命无显著影响. 表9-1-1方差分析表2. 一个年级有三个小班,他们进行了一次数学考试,现从各个班级随机地抽取了一些学生,记录其成绩如下:试在显著性水平0.05下检验各班级的平均分数有无显著差异.设各个总体服从正态分布,且方差相等.【解】13,40,====∑ri i r n n232..11in T iji j T S x n ===-∑∑=199462-185776.9=13685.1, 232...11==-∑A i i iT S T n n =186112.25-185776.9=335.35, =-E T A S S S =13349.65,0.05/(1)167.70.465/()360.8(2,37) 3.23.-===-=>A E S r F S n r F F故各班平均分数无显著差异. 表9-2-1方差分析表3. 下面记录了3位操作工分别在不同机器上操作3天的日产量.取显著性水平α=0.05,试分析操作工之间,机器之间以及两者交互作用有无显著差异?【解】由已知r =4,s =3,t =3........,,,ij i j T T T T 的计算如表9-3-1.表9-3-122 (111)22 (12)2.....122....111106510920.25144.75,11092310920.25 2.75,110947.4210920.2527.17,173.50=====⨯===-=-==-=-==-=-=⎛⎫-=--= ⎪⎝⎭∑∑∑∑∑∑∑rstT ijki j k r A i i s B j j r s ij A B A B i j T S x rst T S T st rst T S T rt rst T T S S S t rst ,41.33.⨯=---=E T A B A B S S S S S表9-3-2得方差分析表0.050.050.05(3,24) 3.01,(2,24) 3.40,(6,24) 2.51.===F F F接受假设01H ,拒绝假设0203,H H .即机器之间无显著差异,操作之间以及两者的交互作用有显著差异.4. 为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影响?假定其体重增长量服从正态分布,且各种配比的方差相等.【解】由已知r =s =3,经计算x =52, 1.x =50.66, 2.x =533.x =52.34, .1x =52, .2x =57, .3x =47,2112.12.1()162;()8.73,()150,3.27.r sT ij i j rA i i rB j j E T A B S x x S s x x S r x x S S S S =====-==-==-==--=∑∑∑∑表9-4-1得方差分析表由于0.050.05(2,4) 6.94,(2,4).A B F F F F =>< 因而接受假设01H ,拒绝假设02H .即不同饲料对猪体重增长无显著影响,猪的品种对猪体重增长有显著影响. 5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A )、防老剂(B )、硫化系统(C )3个因素(各取3个水平),根据专业理论经验,交互作用全忽略,根据选用L 9(34)表作9次试验及试验结果见下表:试作最优生产条件的直观分析,并对3因素排出主次关系. 给定α=0.05,作方差分析与(1)比较.【解】(1) 对试验结果进行极差计算,得表9-5-1.表9-5-1由于要求油体膨胀越小越好,所以从表9-5-1的极差R j 的大小顺序排出因素的主次顺序为:主→次B ,A ,C最优工艺条件为:223A B C .(2) 利用表9-5-1的结果及公式2211==-∑r j ij i T S T r P,得表9-5-2.表9-5-2表9-5-2中第4列为空列,因此40.256==e S S ,其中2=e f ,所以eeS f =0.128方差分析表如表9-5-3.表9-5-3由于0.05(2,2)19.00F,故因素C作用较显著,A次之,B较次,但由于要求油体膨胀越小越好,所以主次顺序为:BAC,这与前面极差分析的结果是一致的.6. 某农科站进行早稻品种试验(产量越高越好),需考察品种(A),施氮肥量(B),氮、磷、钾肥比例(C),插植规格(D)4个因素,根据专业理论和经验,交互作用全忽略,早稻试验方案及结果分析见下表:(1) 试作出最优生产条件的直观分析,并对4因素排出主次关系.(2) 给定α=0.05,作方差分析,与(1)比较.【解】被考察因素有4个:A,B,C,D每个因素有两个水平,所以选用正交表L8(27),进行极差计算可得表9-6-1.表9-6-1从表9-6-1的极差R j 的大小顺序排出因素的主次为:,,,→主次B C A D 最优方案为:1222A B C D(2) 利用表9-6-1的结果及公式2211n j ij i T s T r P==-∑得表9-6-2.表9-6-2表9-6-2中第1,3,7列为空列,因此s e =s 1+s 3+s 7=18.330,f e =3,所以ees f =6.110.而在上表中其他列中j ejes s f f <.故将所有次均并入误差,可得 ΔΔ18.895,7.===e T e s s f整理得方差分析表为表9-6-3. 表9-6-3由于0.05(1.7) 5.59=F ,故4因素的影响均不显著,但依顺序为:,,,→主次B C A D 与(1)中极差分析结果一致.习题十1. 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100份水中的硝酸钠份数y 的数据如下,试求y 关于x 的线性回归方程.【解】经计算得,9999211112234,811.3,10144,24628.6,110144(234)4060,9124628.6234811.33534.8.9ii ii i i i i i xx xy xy x x y S S =========-==-⨯⨯=∑∑∑∑故^^^811.32340.8706,67.5078,99xyxx S b a b S ===-⨯=从而回归方程:^67.50780.8706.y x =+2. 测量了9对父子的身高,所得数据如下(单位:英寸).求(1) 儿子身高y 关于父亲身高x 的回归方程.(2) 取α=0.05,检验儿子的身高y 与父亲身高x 之间的线性相关关系是否显著. (3) 若父亲身高70英寸,求其儿子的身高的置信度为95%的预测区间. 【解】经计算得,9999922111112291603,604.6,40569,40584.9,40651.68140569(603)168,9140584.9603604.676.7,9140651.68(604.6)35.9956.9ˆˆˆ(1)0.4565,/9/ii ii i i i i i i i xx xy yy xyi i i xx xy x x y y S S S S b a x b x S ============-==-⨯⨯==-====-⨯∑∑∑∑∑∑91936.5891,i ==∑故回归方程:ˆ36.58910.4565.yx =+20.05(2) 35.0172,35.995635.01720.9784,250.5439(1,7) 5.59./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.00.025/2ˆ(3)36.58910.45657068.5474,ˆ0.05,(7) 2.3646,0.3739,1.0792, (2) 2.36460.3739 1.079yt t n αασσ=+⨯========-=⨯⨯给定故20.9540.=从而其儿子的身高的置信度为95%的预测区间为 (68.5474±0.9540)=(67.5934,69.5014).3.随机抽取了10个家庭,调查了他们的家庭月收入x (单位:百元)和月支出y (单位:百元),记录于下表:求:(1) 在直角坐标系下作x 与y 的散点图,判断y 与x 是否存在线性关系. (2) 求y 与x 的一元线性回归方程.(3) 对所得的回归方程作显著性检验.(α=0.025)【解】(1) 散点图如右,从图看出,y 与x 之间具有线性相关关系. (2) 经计算可得10101010102211111191,170,3731,3310,2948,82.9,63,58.170191ˆˆ0.7600,0.76 2.4849,1010ii ii i i i i i i i xx xy yy xy xx xy x x y y S S S S b a S ================-⨯=∑∑∑∑∑故从而回归方程:ˆ 2.48490.76.yx =+题3图20.05(3) 47.8770,5847.87710.1230,37.8360(1,8)7.57./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.4.设y 为树干的体积,x 1为离地面一定高度的树干直径,x 2为树干高度,一共测量了31棵树,数据列于下表,作出y 对x 1,x 2的二元线性回归方程,以便能用简单分法从x 1和x 2估计一棵树的体积,进而估计一片森林的木材储量.x 1(直径) x 2(高)y (体积)x 1(直径) x 2(高)y (体积)8.3 7010.312.9 8533.88.6 6510.313.3 8627.48.8 6310.213.7 7125.710.5 7210.413.8 6424.9【解】根据表中数据,得正规方程组01201201231411.72356923.9,411.75766.5531598.713798.85,235631598.718027472035.6.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得,b 0=-54.5041,b 1=4.8424,b 2=0.2631. 故回归方程:^y =-54.5041+4.8424x 1+0.2631x 2.5.一家从事市场研究的公司,希望能预测每日出版的报纸在各种不同居民区的周末发行量,两个独立变量,即总零售额和人口密度被选作自变量.由n =25个居民区组成的随机样本所给出的结果列表如下,求日报周末发行量y 关于总零售额x 1和人口密度x 2的线性回归方程.8 4.3 31.6 66.8 9 4.7 35.5 76.4 10 3.5 25.1 53.0 11 4.0 30.8 66.9 12 3.5 25.8 55.9 13 4.0 30.3 66.5 14 3.0 22.2 45.3 15 4.5 35.7 73.6 16 4.1 30.9 65.1 17 4.8 35.5 75.2 18 3.4 24.2 54.6 19 4.3 33.4 68.7 20 4.0 30.0 64.8 21 4.6 35.1 74.7 22 3.9 29.4 62.7 23 4.3 32.5 67.6 24 3.1 24.0 51.3 254.433.970.8【解】类似于习题4,可得正规方程组01201201225 739.5 1576.6 98.2,739.5 22429.15 47709.1 2968.58,1576.6 47709.1 101568 6317.95.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得,b 0=0.3822,b 1=0.0678,b 2=0.0244.故回归方程:ˆy=0.3822+0.0678x 1+0.0244x 2. 6.一种合金在某种添加剂的不同浓度之下,各做3次试验,得数据如下: 浓度x10.0 15.0 20.0 25.030.0抗压强度y25.2 29.8 31.2 31.7 29.427.3 31.1 32.6 30.130.828.7 27.8 29.7 32.332.8(1) 作散点图.(2) 以模型y =b 0+b 1x 1+b 2x 2+ε,ε~N (0,σ2)拟合数据,其中b 0,b 1,b 2,σ2与x 无关,求回归方程ˆy =0ˆb +1ˆb x +2ˆb x 2. 【解】 散点图如下图.题6图(2) 令x 1=x ,x 2=x 2,根据表中数据可得下表根据上表中数据可得正规方程组01201201215 300 6750 450.5,300 6750 165000 9155,6750 165000 4263750 207990.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得:b 0=19.0333,b 1=1.0086,b 2=-0.0204.故y 关于x 1与x 2的回归方程:=19.0333+1.0086x 1-0.0204x 2,从而抗压强度y 关于浓度x 的回归方程: ˆy=19.0333+1.0086x -0.0204x 2.。

概率论课后习题解答

概率论课后习题解答

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

1—7章概率论课后习题及答案

1—7章概率论课后习题及答案

第一章 随机事件及其概率§1.1-2 随机试验、随机事件1. 多项选择题:⑴ 以下命题正确的是 ( ) A .()()AB AB A =; B .,A B AB A ⊂=若则;C .,A B B A ⊂⊂若则;D .,A B A B B ⊂=若则.⑵某学生做了三道题,以i A 表示“第i 题做对了的事件”)3,2,1(=i ,则该生至少做对了两道题的事件可表示为 ( ) A .123123123A A A A A A A A A ; B .122331A A A A A A ; C .122331A A A A A A ; D .123123123123A A A A A A A A A A A A .2. A 、B 、C 为三个事件,说明下述运算关系的含义:⑴ A ; ⑵ B C ; ⑶ AB C ; ⑷ A B C ; ⑸ AB C ; ⑹ABC .3. 一个工人生产了三个零件,以i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正 品、次品的事件.试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品.§1.3-4 事件的概率、古典概型1. 多项选择题:⑴ 下列命题中,正确的是 ( ) A .B B A B A =;B .B A B A =;C .C B A C B A = ;D .()∅=)(B A AB . ⑵ 若事件A 与B 相容,则有 ( ) A .()()()P AB P A P B =+; B .()()()()P A B P A P B P AB =+-;C .()1()()P A B P A P B =--;D .()1()()P A B P A P B =-.⑶ 事件A 与B 互相对立的充要条件是 ( ) A .()()()P AB P A P B = ; B .()0()1P AB P AB ==且;C .AB A B =∅=Ω且;D . AB =∅.2. 袋中有12只球,其中红球5只,白球4只,黑球3只. 从中任取9只,求其中恰好有4只红球,3只白球,2只黑球的概率.3. 求寝室里的六个同学中至少有两个同学的生日恰好同在一个月的概率.4. 10把钥匙中有三把能打开门,今任取两把,求能打开门的概率.5. 将三封信随机地放入标号为1、2、3、4的四个空邮筒中,求以下概率:(1) 恰有三个邮筒各有一封信;(2)第二个邮筒恰有两封信;(3)恰好有一个邮筒有三封信.6. 将20个足球球队随机地分成两组,每组10个队,进行比赛.求上一届分别为第一、二名的两个队被分在同一小组的概率.§1.5 条件概率1. 多项选择题:⑴ 已知0)(>B P 且∅=21A A ,则( )成立.A .1(|)0P AB ≥; B .1212(()|)(|)(|)P A A B P A B A B =+;C .12(|)0P A A B =;D . 12(|)1P A A B =.⑵ 若0)(,0(>>B P A P )且)(|(A P B A P =),则( )成立.A .(|)()PB A P B =;B .(|)()P A B P A =;C .,A B 相容;D .,A B 不相容.2. 已知61)|(.41)|(,31)(===B A P A B P A P ,求)(B A P3. 某种灯泡能用到3000小时的概率为0.8,能用到3500小时的概率为0.7.求一只已用到了3000小时还未坏的灯泡还可以再用500小时的概率.4.两个箱子中装有同类型的零件,第一箱装有60只,其中15只一等品;第二箱装有40只,其中15只一等品.求在以下两种取法下恰好取到一只一等品的概率:⑴将两个箱子都打开,取出所有的零件混放在一堆,从中任取一只零件;⑵从两个箱子中任意挑出一个箱子,然后从该箱中随机地取出一只零件.5.某市男性的色盲发病率为7 %,女性的色盲发病率为0.5 % .今有一人到医院求治色盲,求此人为女性的概率.(设该市性别结构为男:女=0.502:0.498)6.袋中有a只黑球,b只白球,甲、乙、丙三人依次从袋中取出一只球(取后不放回),分别求出他们各自取到白球的概率.§1.6 独立性1. 多项选择题 :⑴ 对于事件A 与B ,以下命题正确的是( ).A .若B A 、互不相容,则B A 、也互不相容;B .若B A 、相容,则B A 、也相容;C .若B A 、独立,则B A 、也独立;D .若B A 、对立,则B A 、也对立. ⑵ 若事件A 与B 独立,且0)(,0)(>>B P A P , 则( )成立.A .(|)()PB A P B =;B .(|)()P A B P A =;C .B A 、相容;D .B A 、不相容.2. 已知C B A 、、互相独立,证明C B A 、、也互相独立.3. 一射手对同一目标进行四次独立的射击,若至少射中一次的概率为8180,求此射手每次射击的命中率.*4. 设C B A 、、为互相独立的事件,求证B A AB B A -、、 都与C 独立.5. 甲、乙、丙三人同时各用一发子弹对目标进行射击,三人各自击中目标的概率分别是0.4、0.5、0.7.目标被击中一发而冒烟的概率为0.2,被击中两发而冒烟的概率为0.6,被击中三发则必定冒烟,求目标冒烟的概率.6. 甲、乙、丙三人抢答一道智力竞赛题,他们抢到答题权的概率分别为0.2、0.3、0.5 ;而他们能将题答对的概率则分别为0.9、0.4、0.4.现在这道题已经答对,问甲、乙、丙三人谁答对的可能性最大.7. 某学校五年级有两个班,一班50名学生,其中10名女生;二班30名学生,其中18名女生.在两班中任选一个班,然后从中先后挑选两名学生,求(1)先选出的是女生的概率;(2)在已知先选出的是女生的条件下,后选出的也是女生的概率.第二章 一维随机变量及其分布§2.1 离散型随机变量及其概率分布1.填空题:⑴ 当c = 时()/,(1,,)P X k c N k N ===是随机变量X 的概率分布,当c = 时()(1)/,(1,,)P Y k c N k N ==-=是随机变量Y 的概率分布; ⑵ 当a = 时)0,,1,0(!)(>===λλ k k a k Y P k是随机变量Y 的概率分布;⑶ 进行重复的独立试验,并设每次试验成功的概率都是0.6. 以X 表示直到试验获得成功时所需要的试验次数,则X 的分布律为; ⑷ 某射手对某一目标进行射击,每次射击的命中率都是,p 射中了就停止射击且至多只 射击10次. 以X 表示射击的次数,则X 的分布律为; ⑸ 将一枚质量均匀的硬币独立地抛掷n 次,以X 表示此n 次抛掷中落地后正面向上的次数,则X 的分布律为 .2.设在15只同类型的零件中有2只是次品,从中取3次,每次任取1只,以X 表示取出的3只中次品的只数. 分别求出在 ⑴ 每次取出后记录是否为次品,再放回去;⑵ 取后不放回,两种情形下X 的分布律.3.一只袋子中装有大小、质量相同的6只球,其中3只球上各标有1个点,2只球上各标有2个点,1只球上标有3个点.从袋子中任取3只球,以X 表示取出的3只球上点数的和. ⑴ 求X 的分布律;⑵ 求概率(46),(46),(46),(46)P X P X P X P X <≤≤<<<≤≤.4.某厂有7个顾问,假定每个顾问贡献正确意见的可能性都是6.0. 现在为某件事的可行与否个别地征求每个顾问的意见,并按多数顾问的意见作决策.求作出正确决策的概率.5.袋子中装有5只白球,3只黑球,从中任取1只,如果是黑球就不放回去,并从其它地方取来一只白球放入袋中,再从袋中取1只球. 如此继续下去,直到取到白球为止. 求直到取到白球为止时所需的取球次数X 的分布律.§2.2 连续型随机变量及其概率分布1.多项选择题:以下函数中能成为某随机变量的概率密度的是 ( )A .⎪⎩⎪⎨⎧<<=它其20,0,cos )(πx x x f ;B .⎪⎩⎪⎨⎧<<=它其πx x x f 0,0,2cos )( ; C .⎪⎩⎪⎨⎧<<-=它其22,0,cos )(ππx x x f ; D .⎩⎨⎧<<=它其10,0,)(x xe x f x . 2.设随机变量X 的概率分布律如右,求X 的分布函数及)32(),30(),2(≤≤<<≤X P X P X P .3.设一只袋中装有依次标有数字-1、2、2、2、3、3的六只球,从此袋中任取一只球,并以X 表示取得的球上所标有的数字.求X 的分布律与分布函数.4.设连续型随机变量X 的概率密度如右,试求:⑴ 系数A ;⑵ X 的分布函数;⑶ (0.10.7)P X <<5.设连续型随机变量X ⑴ 系数k ;⑵ X 的概率密度;⑶ (||0.5)P X <.6.设连续型随机变量X 的分布函数为()arctan ()F x A B x x R =+∈,试求:⑴ 系数A 与B ;⑵ X 的概率密度;⑶ X 在区间(,)a b 内取值的概率.(),011,1F x kx x x ⎧⎪=≤≤⎨⎪≥⎩,§2.31.设离散型随机变量X 的分布律如右,求12,22,12+=-=+=X W X V X U 的分布律.2.设随机变量X 的概率密度为,0,0,)(<≥⎩⎨⎧=-x x e x f x 求随机变量X e Y =的概率密度.3.设随机变量X 在区间(0,)π上服从均匀分布,求:⑴ 随机变量2ln Y X =-的概率密度;⑵ 随机变量sin Z X =的分布函数与概率密度.4.设连续型随机变量X 的概率密度为2/2()()x f x e x R -=∈,求||Y X =的密度.*5.设1()F x 与2()F x 分别为两个随机变量的分布函数,证明:当0,0a b ≥≥且1a b +=时,)()()(21x bF x aF x +=φ可以作为某个随机变量的分布函数.§2.4 一维随机变量的数字特征1.一批零件中有9件合格品与3件次品,往机器上安装时任取一件,若取到次品就弃置一边. 求在取到合格品之前已取到的次品数的期望、方差与均方差.2.设随机变量X 的概率密度为||()0.5,,x f x e x -=-∞<<+∞求,EX DX .3.设随机变量X 的概率密度为2(1),01(),0,x x f x -≤≤⎧=⎨⎩其它求EX 与DX .4.某路公汽起点站每5分钟发出一辆车,每个乘客到达起点站的时刻在发车间隔的5分钟内均匀分布.求每个乘客候车时间的期望(假定汽车到站时,所有候车的乘客都能上车).5.某工厂生产的设备的寿命X(以年计)的概率密度为/400.25,()0,x xef xx->⎧=⎨<⎩,工厂规定,出售的设备若在一年之内损坏可以调换.若出售一台设备可赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望.*6.某工厂计划开发一种新产品,预计这种产品出售一件将获利500元,而积压一件将损失2000元. 而且预测到这种产品的销售量Y(件)服从指数分布(0.0001)E. 问要获得利润的数学期望最大,应生产多少件产品?第三章 多维随机变量及其分布§3.1 二维随机变量1.设随机变量),(Y X 只取下列数组中的值:)0,0(、)1,1(-、)31,1(-、)0,2(且相应的概率依次为61、31、121、125.求随机变量),(Y X 的分布律与关于X 、Y 的边缘分布律.2.一只口袋中装有四只球,球上分别标有数字1、2、2、3. 从此袋中任取一只球,取后不放回,再从袋中任取一只球.分别以X 与Y 表示第一次、第二次取到的球上标有的数字,求X 与Y 的联合分布律与关于X 、Y 的边缘分布律.3.设随机变量),(Y X 的概率密度,其它+∞≤≤+∞≤≤⎩⎨⎧=+-y x ce y x f y x 0,0,0,),()(2 试求:⑴ 常数c ;⑵ ),(Y X 的分布函数),(y x F ;⑶ }1{≤+Y X P .4.设随机变量),(Y X 的概率密度为 4.8(2),01,0(,)0,y x x y xf x y -≤≤≤≤⎧=⎨⎩,其它求关于X 、Y 的边缘概率密度.5.设随机变量),(Y X 在G 上服从均匀分布,其中G 由x 轴、y 轴及直线12+=x y 所围成,试求:⑴ ),(Y X 的概率密度),(y x f ;⑵ 求关于X 、Y 的边缘概率密度.*6.设某班车起点站上车的人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<乘客中途下车与否相互独立,并以Y 表示在中途下车的人数.求:⑴ 在发车时有n 个乘客的条件下,中途有m 人下车的概率;⑵ (,)X Y 的分布律.§1.设随机变量X 与Y 相互独立右表给出二维随机变量),(Y X 律及边缘分布律中的部分数值.试将 其余数值填入表中的空白处.2.设随机变量),(Y X 分布律如右:⑴ a 、b 、c 时X 与Y 相互独立?⑵写出),(Y X 的分布律与边缘分布律.3.设随机变量X 在1、2、3、4四个整数中等可能地取值,而随机变量Y 在X ~1中等可能地取一个整数.求:⑴=X 2时Y ,的条件分布律;⑵=Y 1时X ,的条件分布律.4.设随机变量),(Y X 的概率密度为其它0,0,0,),()(>>⎩⎨⎧=+-y x e y x f y x .⑴ 求)|(|x y f X Y ;⑵ 求)|(|y x f Y X ;⑶ 说明X 与Y 的独立性.*5. 箱子中装有12只开关(其中2只是次品),从中取两次,每次取一只,并定义随机变量如下:0,1,X ⎧=⎨⎩若第一次取出的是正品若第一次取出的是次品; 0,1,Y ⎧=⎨⎩若第二次取出的是正品若第二次取出的是次品 ,试在放回抽样与不放回抽样的两种试验中,求关于X 与Y 的条件分布律,并说明X 与Y 的独立性.* 6.设随机变量),(Y X 的概率密度为,||,10(,)0,cy x x f x y <--<<⎧=⎨⎩,其它求参数c 与条件概率密度)|(,)|(||y x f x y f Y X X Y .§3.31. 设),(Y X 的分布律如右,求 ⑴0|3{,}2|2{====X Y P Y X P ⑵ ),max(Y X V =的分布律;⑶ ),min(Y X U =的分布律;⑷ Y X W +=的分布律.2.设X 与Y 是相互独立的随机变量,它们分别服从参数为1λ、2λ的泊松分布. 证明Y X Z +=服从参数为21λλ+的泊松分布.3.设随机变量X 与Y 相互独立,且都服从参数为0.25p =的两点分布,记随机变量Z 为1,0,X Y Z X Y +⎧=⎨+⎩为奇数,非为奇数求X 与Z 的联合分布律与EZ .4.设随机变量X 与Y 相互独立,其概率密度分别为321100,,(),(),32000,0,yxX Y x y e e f x f y x y --⎧⎧≥≥⎪⎪==⎨⎨<<⎪⎪⎩⎩求随机变量U X Y =+的概率密度.5.某种商品一周的需求量X 是一个随机变量,其概率密度为⎩⎨⎧≤>=-0,0,)(x x xe x f x .设各周的需求量是相互独立的,试求:⑴ 两周;⑵ 三周的需求量的概率密度.6.设某种型号的电子管的寿命(以小时记)近似地服从(1160)E 分布. 随机地选取4只,将其串联在一条线路中,求此段线路的寿命超过180小时的概率。

概率论课后习题答案学版

概率论课后习题答案学版

概率论课后习题答案学版概率作业答案:第一章1―5节一(1) 仅A 发生; AB C (2) A、B、C都发生; ABC (4) A、B、C 不都发生; ABC(3) A、B、C都不发生; A B C(5) A不发生,且B、C中至少有一发生; A( B C )(6) A、B、C中至少有一个发生;A B C(7) A、B、C中恰有一个发生;AB C A BC A B C (8) A、B、C中至少有两个发生;ABC A BC AB C ABC 或AB BC AC(9) A、B、C中最多有一个发生。

A B C AB C A BC A B C 或AB BC AC 或A B B C A C概率作业答案:第一章1―5节二、单项选择题1.以A表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为( ) (A “甲种产品滞销,乙种) 产品畅销”; (B “甲、乙两种产品均畅) 销”; (C“甲、乙两种产品均滞) 销”; (D “甲种产品滞销或乙种) 产品畅销” 答案:A2.对事件A、B有B A, 则下述结论正确的是( ) ( A) A与B必同时发生;( B ) A发生,B必发生;(C ) B发生,A必发生;( D ) B 不发生,A必不发生。

答案:C3.对于任意两个事件A、B,与A B B不等价的是( ) ( A)A B;( B)B A;(C ) AB ;( D) A B .概率作业答案:第一章1―5节3.对于任意两个事件A、B,与A B B不等价的是( ) ( A) A B;( B) B A;(C ) AB ;( D) A B .A AB B, B A , AB AA , B B A B, 推不出A B= , 答案选D4.设A、B为任意两个事件,则下列各选项中错误的是( ) ( A)若AB , 则A ,B 可能不相容;( B )若AB , 则A , B 也可能相容; (C )若AB , 则A , B 也可能相容;(D )若AB , 则A , B一定不相容;.( A) AB , B A , A A B , 令B A , A B A A , A正确(B )若B A,AB , 则A B A A B , A B A B A , B 也对.__________概率作业答案:第一章1―5节对(C)令B A , 则AB , 但A B A A A .C也对正确答案; D。

概率论课后答案1-7章(修改版)

概率论课后答案1-7章(修改版)

第1章 随机变量及其概率1,写出下列试验的样本空间:连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412131425=C C C C ; (2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ⋃,)|(),|(AB A P B A AB P ⋃.(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。

概率论课后习题答案

概率论课后习题答案

概率论课后习题答案概率论与数理统计习题及答案习题⼀4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.66.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C ⾄少有⼀事件发⽣的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=3413. ⼀个袋内装有⼤⼩相同的7个球,其中4个是⽩球,3个是⿊球,从中⼀次抽取3个,计算⾄少有两个是⽩球的概率. 【解】设A i ={恰有i 个⽩球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-33. 三⼈独⽴地破译⼀个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】设A i ={第i ⼈能破译}(i =1,2,3),则310.6534=-= 34. 甲、⼄、丙三⼈独⽴地向同⼀飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有⼀⼈击中,则飞机被击落的概率为0.2;若有两⼈击中,则飞机被击落的概率为0.6;若三⼈都击中,则飞机⼀定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i ⼈击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458习题⼆1.⼀袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表⽰取出的3只球中的最⼤号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ========== 故所求分布律为4.(1)设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !ka λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.8.已知在五重贝努⾥试验中成功的次数X 满⾜P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 21.设X ~N (3,22),(1)求P {222X P X P ---??<≤=<≤11(1)(1)1220.841310.69150.5328ΦΦΦΦ=--=-+ ? ?=-+=433103(410)222X P X P ----??(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----=>+< ? ?=--+-=+- ? ? ? ?????????=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器⽣产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求⼀螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ?-?->=>1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-==??得11A B =??=-?(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-?≥'==?44.若随机变量X 在(1,6)上服从均匀分布,则⽅程y 2+Xy +1=0有实根的概率是多少?0,x f x ?<24(40)(2)(2)(2)5P X P X P X P X -≥=≥+≤-=≥=习题三(1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独⽴?【解】(1)X 和Y 的边缘分布如下表(2) 因{2}{0.4}0.20.8P X P Y ===? 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独⽴.习题四1.设随机变量X 的分布律为求【解】(1) 11111()(1)012;82842E X =-?+?+?+?= (2) 2222211115()(1)012;82844E X =-?+?+?+?=(3) 1(23)2()32342E X E X +=+=?+=5.设随机变量X 的概率密度为f (x )=??≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞=332011 1.33x x x ??=+-=?122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=故 221()()[()].6D XE X E X =-=7.设随机变量X ,Y 相互独⽴,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=?-?=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=?+?=习题七2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ?-<X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022()()d ,233x x E X x x x θθθθθθθ??=-=-=令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极⼤似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-?≥?(2) f (x ,θ)=1,01,0,.x x θθ-?<【解】(1)似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑i i g L n x θθθ===-=∑知 1 nii nxθ==∑所以θ的极⼤似然估计量为1 Xθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11?ln ln nniii i n nxx θ===-=-∑∏ii nxθ==-∑10.设某种砖头的抗压强度X ~N (µ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求µ的置信概率为0.95的置信区间. (2)求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) µ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n-== ? ?????(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-??--??=??= ?--其中θ(0<θ<2)是未知参数,利⽤总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极⼤似然估计值. 【解】8i x E X E X x x x θθ=-=-====∑令得⼜所以θ的矩估计值31 .44x θ-== (2)似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==----解2628240θθ-+=得 1,2θ=.由于71,122+>所以θ的极⼤似然估计值为 7?2θ=。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6. 习题7习题9 习题10习题12 习题13 习题14习题15 习题16习题18习题20 习题21习题23 习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,?,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3}, 定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22?1C53=110, P{X=4}=C32?1C53=310, P{X=5}=C42?1C53=35,所以X的分布律为X 3 4 5pk 1/10 3/10 3/5习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:X 10 20 30 40pi 0.15 0.25 0.45 0.15求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,?;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于 5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为X 0 1P 0.4 0.6习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,?,k,?.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×?×310×710=(310)k-1×710,k=1,2,?.习题10设随机变量X~b(2,p),Y~b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X~b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y~b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{?0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ?λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,?x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0?A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π?π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=ˉ~N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ~N(0,1), 所以Y=3+X2~N(0,1).习题2已知X~f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X~N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X~N(3,22), 所以X-32=Z~N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X~N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y~b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ, 所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X~N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997, 因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X~N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X~N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X~N(170,36), 则X-1706~N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X~N(40,102),Y~N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725, P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为X -2 -1 0 1 2 3pi 2a 1/10 3a a a 2a试求:(1)a; (2)Y=X2-1的概率分布.解答:(1)\because2a+1/10+3a+a+a+2a=1,∴a=1/10.(2)Y -1 0 3 8pi 3/10 1/5 3/10 1/5习题2设X的分布律为P{X=k}=12k,k=1,2,?, 求Y=sinπ2X的分布律.解答:因为sinxnπ2={1,当n=4k-10,当n=2k-1,当n=4k-3,所以Y=sin(π2X)只有三个可能值-1,0,1. 容易求得P{Y=-1}=215,P{=0}=13,P{Y=1}=815故Y的分布律列表表示为Y -101P 21513815习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数.解答:fY(y)={fX(y-dc)?1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它. 习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X~N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12?y-12?122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2?f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{?}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(°F)是一个随机变量, 且有T~N(98.6,2), 已知θ=5(T-32)/9, 试求θ(°F)的概率密度.解答:已知T~N(98.6,2). θ=59(T-32), 反函数为T=59θ+32, 是单调函数,所以fθ(y)=fT(95y+32)?95=12π?2e-(95y+32-98.6)24?95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1~20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,?,20.因为P(?K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪?∪A20} =1210(2+4+?+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X~b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X~b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X~b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,?,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:X -101pi 1/22-13/2-2(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=ˉ,P{∣X∣<π/6}=ˉ.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)?A=1.因F(x)在x=π6处连续,故P{X=π6=12, 于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx), 其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(?)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx), 而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx), 即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx, 积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0, 故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X~f(x)={cλe-λx,x>a0,其它(λ>0), 求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λvlinea+∞=ce-λa,所以ce-λa=1, 从而c=eλa. 于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X~f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度?(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-a?(x)dx=∫a+∞?(-t)dt=∫a+∞?(x)dx=1-∫-∞a?(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K~U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4?4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X~N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X~N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为X -2-1013pi 1/51/61/51/1511/30试求Y=X2的分布律.解答:pi 1/51/61/51/1511/30X -2-1013X2 41019所以X2 0149pi 1/57/301/511/30注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i?jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:X\Y 01/31-1 01/121/30 1/6002 5/1200(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732. (4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为X\Y 0101 7/157/307/301/15(1)求Y的边缘分布律;(2)求P{Y=0∣X=0},P{Y=1∣X=0};(3)判定X与Y是否独立?解答:(1)由(x,y)的分布律知,y只取0及1两个值.P{y=0}=P{x=0,y=0}+P{x=1,y=0}=715+730=0.7 P{y=1}=∑i=01P{x=i,y=1}=130+115=0.3.(2)P{y=0∣x=0}=P{x=0,y=0}P{x=0}=23, P{y=1∣x=0}=13.(3)已知P{x=0,y=0}=715, 由(1)知P{y=0}=0.7, 类似可得P{x=0}=0.7.因为P{x=0,y=0}≠P{x=0}?P{y=0}, 所以x与y不独立.习题2将某一医药公司9月份和8份的青霉素针剂的订货单分别记为X与Y. 据以往积累的资料知X和Y 的联合分布律为X\Y 51525354555152535 4550.060.050.050.010.010.070.050.010.010.010.050.100.100.050.050.050.020.010.010.03 0.050.060.050.010.03(1)求边缘分布律;(2)求8月份的订单数为51时,9月份订单数的条件分布律.解答:(1)边缘分布律为X 5152535455pk 0.180.150.350.120.20对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.Y 5152535455pk 0.280.280.220.090.13(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:k 5152535455P{X=k∣Y=51}6/287/285/285/285/28习题3已知(X,Y)的分布律如下表所示,试求:(1)在Y=1的条件下,X的条件分布律;(2)在X=2的条件下,Y的条件分布律.X\Y 012012 1/41/8001/301/601/8解答:由联合分布律得关于X,Y的两个边缘分布律为X 012pk 3/81/37/24Y 012pk 5/1211/241/8故(1)在Y=1条件下,X的条件分布律为X∣(Y=1)012pk 3/118/110(2)在X=2的条件下,Y的条件分布律为Y∣(X=2)012pk 4/703/7习题4已知(X,Y)的概率密度函数为f(x,y)={3x,0<x<1,0<y<x0,其它, 求:(1)边缘概率密度函数;(2)条件概率密度函数.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={3x2,0<x<10,其它,fY(y)=∫-∞+∞f(x,y)dx={32(1-y2),0<y<10,其它.(2)对?y∈(0,1), fX∣Y(x∣y)=f(x,y)fY(y)={2x1-y2,y<x<1,0,其它,对?x∈(0,1), fY∣X(y∣x)=f(x,y)fX(x)={1x,0<y<x0,其它.习题5X与Y相互独立,其概率分布如表(a)及表(b)所示,求(X,Y)的联合概率分布,P{X+Y=1}, P{X+Y≠0}.X -2-101/2pi 1/41/31/121/3表(a)Y -1/213pi 1/21/41/4表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为X\Y -1/2 1 3-2-1 01/2 P{X=-2}P{Y=-1/2}P{X=-1}P{Y=-1/2}P{X=0}P{Y=-1/2}P{X=1/2}P{Y=-1/2}P{X=-2}P{Y=1}P{X=-1}P{Y=1}P{X=0}P{Y=1}P{X=1/2}P{Y=1}P{X=-2}P{Y=3}P{X=-1}P{Y=3}P{X=0}P{Y=3}P{X=1/2}P{Y=3}亦即表X\Y -1/213-2-101/2 1/81/161/161/61/121/121/241/481/481/61/121/12 P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55~8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则?a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}?P{∣X∣≤a},而事件{∣X∣≤a}?{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}?P{∣X∣≤a}, P{∣X∣≤a}(1-P{X≤a})=0P{∣X≤a∣}=0或1=P{X≤a}?(?a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)?fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413, Φ(0)=0.5, 于是Φ(1)-Φ(0)=0.3413, 所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为概率\U 1 2 31 1/9 2/9 2/92 0 1/9 2/9 30 0 1/9习题2设(X,Y)的分布律为X\Y -112-121/101/53/101/51/101/10 试求:(1)Z=X+Y; (2)Z=XY;(3)Z=X/Y;(4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z 的相同值的概率要合并. 概率1/101/53/101/51/101/10(X,Y)X+YXYX/Ymax{x,Y}(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221112222于是(1)(2)X+Y -20134 pi1/101/51/21/101/10(3)(4)X/Y -2-1-1/212 pi1/51/53/101/51/10习题3设二维随机向量(X,Y)服从矩形区域D={(x,y ∣0≤x ≤2,0≤y ≤1}的均匀分布,且U={0,X ≤Y1,X>Y,V={0,X ≤2Y1,X>2Y,求U 与V 的联合概率分布.解答:依题(U,V)的概率分布为P{U=0,V=0}=P{X ≤Y,X ≤2Y}=P{X ≤Y}=∫01dx ∫x112dy=14,P{U=0,V=1}=P{X ≤Y,X>2Y}=0,P{U=1,V=0}=P{X>Y,X ≤2Y}=P{Y<X ≤2Y}=∫01dy ∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2, 即U\V 01 011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z 的分布密度.解:FZ(z)=P{Z ≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(?)=0;当z ≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e -x2+y22dxdy=12π∫02πd θ∫0ze -ρ22ρd ρ=∫0ze -ρ22ρd ρ=1-e-z22.故Z 的分布函数为FZ(z)={1-e-z22,z ≥00,z<0.XY -20134 pi1/21/51/101/101/10max{X,Y} -112 pi1/101/57/10Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0?e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案
第 1 章习题解案
总 5 页第 1 页
第一章
(一)基本题答案 1、 (1 ) Ω 1 = { 0 , 1 , 2 , 3 } (3) Ω 3 = {( x , y ) | x 2 + y 2 < 1 } (5 ) Ω 5 = { 2 , 3 , 4 , 2、 (1) AB C
,12}
随机事件与概率
(2 ) Ω 2 = { 1 , 2 ,
C
2 M −m
+C C
1 m
1 M −m
=
2m M + m −1
注:这里采用的是在缩减的样本空间中计算条件概率的方法,且题中“有一件”其意应在 “至少有一件”而不能理解为“只有一件” ,这是因为对另一件是否是不合格还不知道。 2、 (1 )这是条件概率,下面考虑在缩减的样本空间中去求,第一、第二次取到正品有 15 × 14 × 18 种取法,在此条件下第三次取到次品有 15 × 14 × 5 种取法,故所求概率为 15 × 14 × 5 5 = 15 × 14 × 18 18 注: 上述是将样本空间中的元素看成是三次取完后的结果, 更简单的也可只考虑以第三次 取的结果作为样本空间中的元素,即在第一、第二次取到正品时,第三次取时有 18 种取法, 5 而在第一次、第二次取到正品时,第三次取次品有 5 种取法,故所求概率为 18 (2)此问是要求事件“第一、第二次取到正品,且第三次取到次品”的概率(与(1)不 同的在于这里没有将第一、第二次取到正品作为已知条件,而是同时发生) ,按题意,三次取 产品共有 20 × 19 × 18 种取法,而第三次才取到次品共有 15 × 14 × 5 种取法,故所求概率为
4、 P ( AB ) = P ( A − AB ) = P ( A) − P ( AB )

概率论课后题答案.

概率论课后题答案.

7. 人体血型的一个简化模型包括4种血型和2种抗体: A、B、AB与O型, 抗A与抗B. 抗体根据血型与人的血液以
不同的形式发生作用. 抗A只与A、AB型血发生作用, 不与
B、O型血作用, 抗B只与B、AB型血发生作用, 不与A、O
型血作用, 假设一个人的血型是O型血的概率为0.5, 是A
型血的概率为0.34, 是B型血的概率为0.12, 求: (1) 抗A, 抗B分别与任意一人的血型发生作用的概率;
求P(B).
解 由于 P(AB)=P(A)+P(B)-P(A+B)
=P(A)+P(B)-1+P(A+B) =P(A)+P(B)-1+P(A B) 所以, P(A)+P(B)-1=0 即, P(B)=1-P(A)=1-p
第一章习题1.3(第19页)
2. 在1500个产品中, 有400个次品, 1100个正品, 从
5. 进行一个试验: 先抛一枚均匀的硬币, 然后抛一个
均匀的骰子,
(1) 描述该试验的样本空间;
(2) 硬币是正面且骰子点数是奇数的概率是多少?
解 (1) 设试验是观察硬币正反面和骰子的点数, 则 ={ (正面, 1点), (正面, 2点), (正面, 3点), (正面, 4点), (正面, 5点), (正面, 6点), (反面, 1点), (反面, 2点), (反面, 3点), (反面, 4点), (反面, 5点), (反面, 6点), } (2) P=3/12=1/4=0.25
1. 某城市共发行三种报纸A, B, C, 已知城市居民订购
A的占45%, 订购B的占35%, 订购C的占30%, 同时订购A
与B的占10%, 同时订购A与C的占8%, 同时订购B与C的占 5%, 同时订购A, B, C的占3%, 求下列事件的概率: (5) 至少订购一种报纸; P{至少订购一种报纸}=P{只订购一种报纸} +P{正好订购两种报纸}+P{订购三种报纸}=0.9 或 P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC) +P(ABC)=0.9 (6) 不订购任何报纸; P{不订购任何报纸}=1-P{至少订购一种报纸} =1-0.9=0.1

(完整版)概率论与数理统计课后习题答案

(完整版)概率论与数理统计课后习题答案

·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

概率论课后习题

概率论课后习题

第一章 概率论的基本概念(一)1、多选题:⑴ 以下命题正确的是( )。

A B A AB a =)()(.Y ; A AB B A b =⊂则若,.;A B B A c ⊂⊂则若,.; B B A B A d =⊂Y 则若,..⑵ 某学生做了三道题,i A 表示第i 题做对了的事件)3,2,1(=i ,则至少做对了两道题的事件可表示为( ). ;.;.133221321321321A A A A A A b A A A A A A A A A a Y Y Y Y ..;.321321321321133221A A A A A A A A A A A A d A A A A A A c Y Y Y Y Y2、A 、B 、C 为三个事件,说明下述运算关系的含义:.)6(.)5(.)4(.)3(.)2(.1ABC C B A C B A C B A C B A Y Y )(3、个工人生产了三个零件,i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正、次品的事件。

试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品。

4、下列命题中哪些成立,哪些不成立: ⑴B B A B A Y Y =;⑵ B A B A Y =;⑶ C B A C B A =Y ;⑷ ()∅=)(B A AB ;⑸ AB A B A =⊂则若;⑹ A B B A ⊂⊂则若。

(二)1、选择题:⑴ 若事件A 与B 相容,则有( ))()()(.B P A P B A P a +=Y ; )()()()(.AB P B P A P B A P b -+=Y ; )()(1)(.B P A P B A P c --=Y ; )()(1)(.B P A P B A P d -=Y⑵ 事件A 与B 互相对立的充要条件是( ),1)(0)(.),()()(.===B A P AB P b B P A P AB P a Y 且∅=Ω=∅=AB d B A AB c .,..Y 且2、袋中有12个球,其中红球5个,白球4个,黑球3个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 写出下列随机试验的样本空间及事件中的样本点:1) 将一枚均匀硬币连续掷两次,记事件=A {第一次出现正面}, =B {两次出现同一面}, =C {至少有一次正面出现}.2) 一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5,从中同时取3只球. 记事件=A {球的最小号码为1}.3) 10件产品中有一件废品,从中任取两件,记事件=A {得一件废品}.4) 两个口袋各装一个白球与一个黑球,从第一袋中任取一球记下其颜色后放入第二袋,搅均后再从第二袋中任取一球.记事件=A {两次取出的球有相同颜色}.5) 掷两颗骰子,记事件=A {出现点数之和为奇数,且其中恰好有一个1点},=B {出现点数之和为偶数,但没有一颗骰子出现1点}.答案:1) }),(),,(),,(),,({T T H T T H H H =Ω, 其中 :H 正面出现; :T 反面出现.}),(),,({T H H H A =;}),(),,({T T H H B =;}),(),,(),,({H T T H H H C =.2) 由题意,可只考虑组合,则⎭⎬⎫⎩⎨⎧=)5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(Ω; {})5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(=A .3) 用9,,2,1 号表示正品,10号表示废品.则⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=)10,9()10,8()10,2(,),4,2(),3,2()10,1(,),4,1(),3,1(),2,1(Ω; {})10,9(,),10,2(),10,1( =A .4) 记第一袋中的球为),(11b w ,第二袋中的球为),(22b w ,则{}),(),,(),,(),,(),,(),,(112121112121b b b b w b w w b w w w =Ω;{}),(),,(),,(),,(11211121b b b b w w w w A =.5) ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=)6,6(,),2,6(),1,6()6,2(,),2,2(),1,2()6,1(,),2,1(),1,1(Ω; {})1,6(),1,4(),1,2(),6,1(),4,1(),2,1(=A ;⎭⎬⎫⎩⎨⎧=)6,6(),4,6(),2,6(),5,5(),3,5(),6,4(),4,4(),2,4(),5,3(),3,3(),6,2(),4,2(),2,2(B . 注: 也可如下表示:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=)6,6()6,2(,),2,2()6,1(,),2,1(),1,1( Ω; {})6,1(),4,1(),2,1(=A ;{})6,6(),5,5(),6,4(),4,4(),5,3(),3,3(),6,2(),4,2(),2,2(=B .2. 一个工人生产了n 个零件,以事件i A 表示“他生产的第i 个零件是正品”)1(n i ≤≤.试用n A A A ,,,21 表示下列事件:1) 没有一个零件是次品; 2) 至少有一个零件是次品;3) 只有一个零件是次品; 4) 至少有两个零件不是次品.答案: 1) n i i A 1=; 2) n i i A 1=; (亦即:全部为正品的对立事件) 3))]([11 n i n i j j j i A A =≠=⋂; 4) )])(([)(111 n i n ij j j i n i i A A A =≠==⋂⋃.3.设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列各事件:1)A 发生;2)只有A 发生;3)A 与B 发生而C 不发生;4)三个事件都发生;5) 三个事件中至少有一个发生;6) 三个事件中至少有两个发生;7) 三个事件中恰好发生一个;8) 三个事件中恰好发生两个;9) 三个事件都不发生;10) 三个事件中不多于两个发生;11) 三个事件中不多于一个发生.解:1) A ; 2) C B A ; 3) C AB ; 4) ABC ; 5) C B A ⋃⋃; 6) BC A C B A C AB ABC ⋃⋃⋃(AC BC AB ⋃⋃= B A C A C B ⋃⋃=) (等价说法:至少有两个不发生的对立事件); 7) C B A C B A C B A ⋃⋃; 8) BC A C B A C AB ⋃⋃; 9) C B A (=C B A ⋃⋃);10)ABC (=C B A ⋃⋃)(等价说法:至少有一个不发生.); 11) C B A C B A C B A C B A ⋃⋃⋃ (=B A C A C B ⋃⋃)(即:至少有两个不发生).4. 试把事件n A A A ⋃⋃⋃ 21表示成n 个两两互不相容事件之并.答案: n n A A A A A A A A A 11321211-⋃⋃⋃⋃ .7. 一栋10层楼中的一架电梯在底层上了7位乘客,电梯在每层都停,乘客从第二层起离开电梯,设每位乘客在每层离开是等可能的.求没有2位乘客在同一层离开的概率.解: 所有可能情况为79种,则所求概率为 7799A p =.9. 设甲袋中有a 只白球b 只黑球,乙袋中有c 只白球d 只黑球.在两袋中各任取一只球,求所得两球颜色不同的概率.解: 所有可能情况有))((d c b a ++种,则所求概率为 ))((d c b a bc ad p +++=. 11. 从n 双尺码不同的鞋子中任取r 2(n r <2)只,求下列事件的概率:1) 所取r 2只鞋子中没有两只成对;2) 所取r 2只鞋子中只有两只成对;3) 所取r 2只鞋子恰好配成r 对.解: 样本空间可考虑有⎪⎭⎫ ⎝⎛r n 22种可能结果,古典概型,则所求概率分别为 1) ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=r n r n p r 22]12[221⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=r n r n r 22222;2) ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛--⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=-r n r n n p r 22]12[221221222⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛--=-r n n r n r 22222122; 3) ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=r n r n p r 22]22[3⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=r n r n 22.12. 设有n 个人,每人都被等可能地分配到)(n N N ≥个房间中的任一间.求下列事件的概率:1) 指定的n 间房里各住一人;2) 恰有n 间房,其中各住一人.解: 所有可能情况为n N 种,则所求概率分别为 1) 1!n n n n A n p N N ==; 2) 2!n N n n N n n A p N N⎛⎫⨯ ⎪⎝⎭==.13. 甲乙两人从装有a 个白球与b 个黑球的口袋中轮流摸取一球,甲先摸,不放回,直至有一人取到白球为止.求甲先摸到白球的概率.解: 甲先摸到白球,则可能结果如下(注: 至多有限次摸球):W 甲,W B B 甲乙甲,W B B B B 甲乙甲乙甲,W B B B B B B 甲乙甲乙甲乙甲,① 当b 为偶数时,则所求概率为211-+⋅-+-⋅+++=b a a b a b b a b b a a p 甲 4332211-+⋅-+-⋅-+-⋅-+-⋅++b a a b a b b a b b a b b a b aa a ab a b b a b ⋅+⋅+-+-⋅+++112211 )2()1()1(1[-+⋅-+-++=b a b a b b b a a ])1()2()1(!aa b a b a b ⋅+-+⋅-+++ .② 当b 为奇数时,则所求概率为211-+⋅-+-⋅+++=b a a b a b b a b b a a p 甲 4332211-+⋅-+-⋅-+-⋅-+-⋅++b a a b a b b a b b a b b a b 12121b b a a b a b a a -++⋅⋅++-++ )2()1()1(1[-+⋅-+-++=b a b a b b b a a ])1()2()1(!+-+⋅-+++a b a b a b . 17.口袋中有12-n 只白球,n 2只黑球,一次取出n 只球,发现都是同色球,问这种颜色是黑色的概率为多少?解: 记事件}{个球为同一种颜色所取n A =, }{个球全为黑球所取n B =, 要求 =)|(A B P ?则 )()()|(A P AB P A B P =⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=n n n n n n n n n n 14]212[142 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=n n n n n n 2122!!)!2()!1(!)!12(!!)!2(n n n n n n n n n ⨯+-⨯-⨯=32=.18. 设M 件产品中有m 件废品,从中任取两件.1) 在这两件中有一件是废品的条件下,求另一件也是废品的概率;2) 在这两件中有一件是正品的条件下,求另一件是废品的概率.解: 1) 记事件},{有废品任取两件=A , },{均为废品任取两件=B ,则所求概率为 )()()|(1A P AB P A B P p ==)()(A P B P = ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=22122M m M M m ⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=222m M M m 121---=m M m . 2) 记事件},{有正品任取两件=C ,},{有一正品一件废品任取两件=D ,则所求概率为)()()|(2C P CD P C D P p ==)()(C P D P =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛-=221211M m M m m M ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=22)(m M m M m 12-+=m M m .19. 袋中有黑、白球各一个,一次次从中摸球,如果摸到白球,则放回白球,且再加入一个白球,直至摸到黑球为止.求摸了n 次都没有摸到黑球的概率.解: 记事件i A :第i 次摸到白球, n i ,,2,1 =, 要求: =)(21n A A A P ?由计算概率的乘法定理,则所求概率为=)(21n A A A P )(1A P )|(12A A P ⋅)|(213A A A P ⋅)|(11-n n A A A P1433221+⨯⨯⨯⨯=n n 11+=n .21.某射击小组有20名射手,其中一级射手4人,二级8人,三级7人,四级1人,各级射手能通过选拔进入比赛的概率依次为0.9,0.7,0.5,0.2.求任选一名射手能通过选拔进入比赛的概率.解: 记事件=B {所选射手能进入比赛}, =i A {所选射手为第i 级}, 4,3,2,1=i . 已知 204)(1=A P , 208)(2=A P , 207)(3=A P , 201)(4=A P , 9.0)|(1=A B P , 7.0)|(2=A B P , 5.0)|(3=A B P , 2.0)|(4=A B P .用全概率公式,则所求概率为∑=⋅=41)|()()(i i i A B P A P B P2.02015.02077.02089.0204⨯+⨯+⨯+⨯=645.0=.23.甲、乙、丙三台机器生产螺丝钉,它们的产量各占25%,35%,40%,并且在各自的产品中,废品各占5%,4%,2%.从它们的产品中任取一个恰好是废品,问此废品是甲、乙、丙生产的概率各为多少?解: 记事件321,,A A A 表示所取产品分别是甲、乙、丙机器所生产;事件=B {所取产品是废品}. 要求:=)|(B A P i ? (3,2,1=i )已知 25.0)(1=A P , 35.0)(2=A P , 40.0)(3=A P ,05.0)|(1=A B P , 04.0)|(2=A B P , 02.0)|(3=A B P .则 ∑=⋅=31)|()()(i i i A B P A P B P02.04.004.035.005.025.0⨯+⨯+⨯=0345.0=.由贝叶斯公式,则所求概率分别为)|(1B A P )()(1B P B A P =)()|()(11B P A B P A P ⋅=0345.005.025.0⨯=3623.06925≈=, )|(2B A P )()|()(22B P A B P A P ⋅=4058.06928≈=, )|(3B A P )()|()(33B P A B P A P ⋅=2319.06916≈=.24.有朋友自远方来,他乘火车、轮船、汽车、飞机来的概率分别是0.3,0.2,0.1,0.4.如果他乘火车、轮船、汽车,则迟到的概率分别是1/4,1/3,1/12;而乘飞机不会迟到.可他迟到了,问他是乘火车来的概率为多少?解: 记事件4321,,,A A A A 分别表示朋友乘火车、轮船、汽车、飞机来.事件=B {朋友迟到}. 要求:=)|(1B A P ?已知 3.0)(1=A P , 2.0)(2=A P , 1.0)(3=A P , 4.0)(4=A P ,41)|(1=A B P , 31)|(2=A B P , 121)|(3=A B P , 0)|(4=A B P . 则 ∑=⋅=41)|()()(i i i A B P A P B P04.01211.0312.0413.0⨯+⨯+⨯+⨯=15.0=. 由贝叶斯公式,则所求概率为)|(1B A P )()|()(11B P A B P A P ⋅=5.015.0413.0=⨯=.25. 装有)3(≥m m 个白球和n 个黑球的罐子中丢失一球,但不知其颜色.现随机地从罐中摸取两个球,结果都是白球,求丢失的是白球的概率.解: 记事件=A {丢失白球},=B {任取两个球都是白球}.要求:=)|(B A P ?由 )|()()|()()|()()()()|(A B P A P A B P A P A B P A P B P AB P B A P ⋅+⋅⋅==, 已知n m m A P +=)(, nm n A P +=)(, )|(A B P ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2121n m m )2)(1()2)(1(-+-+--=n m n m m m , )|(A B P ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=212n m m )2)(1()1(-+-+-=n m n m m m . 则所求概率为=)|(B A P )2)(1()1()2)(1()2)(1()2)(1()2)(1(-+-+-⨯++-+-+--⨯+-+-+--⨯+n m n m m m n m n n m n m m m n m m n m n m m m n m m 22-+-=n m m .27. 一架轰炸机袭击1号目标,另一架袭击2号目标,击中1号目标的概率为0.8,击中2号目标的概率为0.5,求至少击中一个目标的概率.解: 记事件=i A {击中i 号目标}, 2,1=i .要求:=⋃)(21A A P ?方法一: =⋃)(21A A P )()()(2121A A P A P A P -+)()()()(2121A P A P A P A P ⋅-+=90.05.08.05.08.0=⨯-+=.方法二: =⋃)(21A A P )(121A A P ⋃-)(121A AP -= )()(121A P A P ⋅-=90.0)5.01()8.01(1=-⨯--=.29.今有甲、乙两名射手轮流对同一目标进行射击,甲、乙命中的概率分别为21,p p ,甲先射,谁先命中谁得胜.问甲、乙两人获胜的概率各为多少?解: 记事件=i A {第i 轮甲命中目标}, =i B {第i 轮乙命中目标}, ,2,1=i . 则{甲获胜} ⋃⋃⋃=322112111A B A B A A B A A ,所以 =}{甲获胜P )(322112111 ⋃⋃⋃A B A B A A B A A P+++=)()()(322112111A B A B A P A B A P A P+⋅⋅⋅⋅+⋅⋅+=)()()()()()()()()(322112111A P B P A P B P A P A P B P A P A P+⋅-⋅-+⋅-⋅-+=12211211)]1()1[()1()1(p p p p p p p )1()1(1211p p p -⋅--=21211p p p p p ⋅-+=.由于 {乙获胜} ⋃⋃⋃=332211221111B A B A B A B A B A B A ,所以 =}{乙获胜P )(332211221111 ⋃⋃⋃B A B A B A B A B A B A P +++=)()()(332211221111B A B A B A P B A B A P B A P+⋅-⋅-+⋅-⋅-+⋅-=22231222121)1()1()1()1()1(p p p p p p p p )1()1(1)1(2121p p p p -⋅--⋅-=212121)1(p p p p p p ⋅-+⋅-=. 或: =}{乙获胜P }{1甲获胜P -212111p p p p p ⋅-+-=212121)1(p p p p p p ⋅-+⋅-=.2. 一口袋中装有m 个白球,n − m 个黑球,连续无放回地从袋中取球,直到取出黑球为止,此时取出了X 个白球,求X 的分布律。

相关文档
最新文档