温差电致冷导体致冷也叫温差电致冷是利用半导体材料的温差电效应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温差电致冷
导体致冷也叫温差电致冷是利用半导体材料的温差电效应——即珀尔帖效应来实现致冷的一门新兴技术。如果把不同极性的两种半导体材料(P型、N型),联接成电偶对,通过直流电流时就发生能量的转移;电流由N型元件流向P型元件时便吸收热量,这个端面为冷面,电流由P型元件流向N型元件时便放出热量,这个端面为热面。如图所示:
2、温差电致冷的优越性
a、体积小重量轻,具有致冷和加热两种功能:改变直流电源的极性,同一致冷器可实现加热和致冷两种功能。
b、精确温控:使用闭环温控电路,精度可达+-0.1oC。
c、高可靠性:致冷组件为固体器件,无运动部件,因此失效率低。寿命大于二十万小时。
d、工作时无声:与机械制冷系统不一样,工作时不产生噪音。
e、可使用常规电源:致冷器对电源要求不高。可使用一般直流电源,工作电压和电流可在大范围内调整。12V额定电压,实际可使用到8V-14V,开关电源和变压器电源均可,波纹系数在10%以内。
f、可实现点致冷:可只冷却一专门的元件或特定的面积。
g、具有发电能力:若在致冷组件两面建立温差,则可产生直流电。一、预备知识:
1.Peltier effect(珀尔帖效应):
珀尔帖效应的论述很简单——当电流通过热电偶时,其中一个结点散发热而另一个结点吸收热,这个现象由法国物理学家Jean Peltier在1834年发现。
2.P型半导体
半导体材料的一种形式,其导带中的电子密度超过了价带中的空穴密度。P型材料通过增加受主(acceptor)杂质来形成,例如在硅上掺杂硼。
3.N型半导体
半导体材料的一种形式,在导带中的电子密度大于在价带中的空穴密度的半导体,N型材料通过对硅的晶体结构中加入施主杂质(掺杂)——比如砷或磷——来得到。
二、珀尔帖效应应用
半导体致冷器是由半导体所组成的一种冷却装置,於1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。如图是由X及Y两种不同的金属导线所组成的封闭线路。
由X及Y两种不同的金属导线所组成的封闭线路
通上电源之後,冷端的热量被移到热端,导致冷端温度降低,热端温度升高,这就是著名的Peltier effect 。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背後真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家Jean Peltier,才发现背後真正的原因,这个现象直到近代随著半导体的发展才有了实际的应用,也就是[致冷器]的发明(注意,这种叫致冷器,还不叫半导体致冷器)。
三、半导体致冷法的原理以及结构:
半导体致冷法的原理
半导体热电偶由N型半导体和P型半导体组成。N型材料有多余的电子,有负温差电势。P型材料电子不足,有正温差电势;当电子从P型穿过结点至N型时,结点的温度降低,其能量必然增加,而且增加的能量相当于结点所消耗的能量。相反,当电子从N型流至P型材料时,结点的温度就会升高。
直接接触的热电偶电路在实际应用中不可用,所以用下图的连接方法来代替,实验证明,在温差电路中引入第三种材料(铜连接片和导线)不会改变电路的特性。
这样,半导体元件可以用各种不同的连接方法来满足使用者的要求。把一个P型半导体元件和一个N 型半导体元件联结成一对热电偶,接上直流电源后,在接头处就会产生温差和热量的转移。
在上面的接头处,电流方向是从N至P,温度下降并且吸热,这就是冷端;而在下面的一个接头处,电流方向是从P至N,温度上升并且放热,因此是热端。
因此是半导体致冷片由许多N型和P型半导体之颗粒互相排列而成,而N/P之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最後由两片陶瓷片像夹心饼乾一样夹起来,陶瓷片必须绝缘且导热良好,外观如下图所示。
半导体致冷片
四、难点解析
1.为什么要使用半导体材料?
所谓热电偶就是一对不同元素的金属导体,在实际使用的时候其制冷效率并不高。本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于一九五四年发表了研究成果,表明碲化铋化合物固溶体有良好的制冷效果,这是最早的也是最重要的热电半导体材料,至今还是温差制冷中半导体材料的一种主要成份。约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体制冷材料的优值系数,才达到相当水平,得到大规模的应用,也就是我们现在的半导体制冷片件。
2.电能是如何“搬运”热量的?
不少朋友在看过评测后已经提出了能量守恒解释的论点。而实际上,半导体制冷并没有想象中的简单。这从技术理论的提出到真正的实际应用所用的时间就能看出来。人们常常将电流比喻成水流,电源就像水泵,不断的将低电势的电荷“搬运”至高电位,而产生的电动势驱动电荷定向移动。
而能量的形势也是多种多样的,粒子不但具有电势能,同时还具有热能等各种能量。在能量的不断转换中,各种能量以不同的方式进行转换。在珀尔帖效应中,如果使用的是半导体,那么半导体中的“自由电子”(相信高中物理学已经说得很透彻,金属的导电性和导热性都是通过“自由电子”作用的)将会在不同导体间的节点处通过电势能转换热量(放热或者吸热),而其具体表现就是制冷片的制冷效果。而半导体中的电动势解析就必须涉及更多的专业知识了。
五、详细解说P型/N型半导体
根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体,半导体的电阻率为10-3~10-9 W·cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。它在物理结构上呈单晶体形态。而化学成分纯净的半导体我们称之为本征半导体。
硅和锗是四价元素,在原子最外层轨道上的四个电子称为价电子。它们分别与周围的四个原子的价电子形成共价键。共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。
(a) 硅晶体的空间排列(b) 共价键结构平面示意图