(完整)2019-2020年高考数学压轴题集锦——数列(二)
高考数学压轴专题新备战高考《数列》全集汇编含答案解析
【高中数学】数学《数列》试卷含答案一、选择题1.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q ∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.2.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺 B .2.5尺C .3.5尺D .4.5尺【答案】C 【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.3.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++L 的值 A .1n n- B .1n n+ C .11n n -+ D .1n n + 【答案】A 【解析】分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111na a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=,则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以1111(1)1n a n n n n==--- 所以231111111111(1)()()12231n n a a a n n n n-+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.4.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a .【详解】设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.5.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.6.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.7.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1,∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.8.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.10.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A.4B .19 C .20 D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.11.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( )A .3 971B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<, 解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.12.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a = ∴1999()272a a S ⨯+== 故选D.13.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈, 所以当1n =时,得11a =, 当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.14.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---.其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-, 所以11222n n n n S n S nS n S n++++==++,又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.15.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,则20a 等于( ). A .1- B .1C .3D .7【答案】B 【解析】 【分析】利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出20a . 【详解】解:{}n a Q 为等差数列,135105a a a ++=,24699a a a ++=,13533105a a a a ∴++==,2464399a a a a ++==,335a ∴=,433a =,4333352d a a =-=-=-, 13235439a a d =-=+=, 20139391921a a d ∴=+=-⨯=.故选:B 【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.16.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】 依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.17.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =,设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.18.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715 【答案】B【解析】【分析】计算出3a 的值,推导出()3n n a a n N*+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和.【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=, 202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.19.设函数()221x f x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( )A .9B .11C .92D .112【答案】B【解析】【分析】 先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值.【详解】()221x f x =+Q ,()()()22222212121221xx x x x x f x f x --⋅∴+-=+=+++++()2122222211221x x x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++,则()()()()()54045S f f f f f =+++++-+-L L ,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =.故选:B.【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >所以当1300n S =时,n 的最大值为49故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。
压轴题01 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题01数列压轴题题型/考向一:等差数列、等比数列性质的综合题型/考向二:以古文化、实际生活等情境综合题型/考向三:数列综合应用一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一等差数列、等比数列性质的综合1.已知等比数列{}n a 满足123434562,4a a a a a a a a +++=+++=,则11121314a a a a +++=()A .32B .64C .96D .128【答案】B【详解】设{}n a 的公比为q ,则()234561234a a a a q a a a a +++=+++,得22q =,所以()()1051112131412341234264a a a a a a a a q a a a a +++=+++⨯=+++⨯=.故选:B2.已知等比数列{}n a 的公比0q >且1q ≠,前n 项积为n T ,若106T T =,则下列结论正确的是()A .671a a =B .781a a =C .891a a =D .9101a a =【答案】C3.已知等差数列n 满足15,36,数列n 满足12n n n n ++=⋅⋅.记数列{}n b 的前n 项和为n S ,则使0n S <的n 的最小值为()A .8B .9C .10D .11【答案】C【分析】设等差数列{}n a 的公差为d ,则由1536446a a a a =⎧⎨=+⎩得:111141624206a a da d a d =+⎧⎨+=++⎩,解得:1163a d =⎧⎨=-⎩,()1631319n a n n ∴=--=-+,则当6n ≤时,0n a >;当7n ≥时,0n a <;∴当4n ≤时,0n b >;当5n =时,0n b <;当6n =时,0n b >;当7n ≥时,0n b <;11613102080b =⨯⨯= ,213107910b =⨯⨯=,31074280b =⨯⨯=,474128b =⨯⨯=,()54128b =⨯⨯-=-,()()612510b =⨯-⨯-=,()()()725880b =-⨯-⨯-=-,()()()85811440b =-⨯-⨯-=-,()()()9811141232b =-⨯-⨯-=-,()()()101114172618b =-⨯-⨯-=-,532900S ∴=>,915480S =>,1010700S =-<,100S < ,当10n ≥时,0n b <,∴当10n ≥时,0n S <,则使得0n S <的n 的最小值为10.()()()()()()102120232022k k k k k k k T f a f a f a f a f a f a =-+-++- ,1,2k =,则1T ,2T 的大小关系是()A .12T >TB .12T T <C .12T T =D .1T ,2T 的大小无法确定()()101322022...a f a +-)()22023f a -1=125.数列n 满足12,21n n n ++=+∈N ,现求得n 的通项公式为n nn F A B ⎛=⋅+⋅ ⎝⎭⎝⎭,,A B ∈R ,若[]x 表示不超过x 的最大整数,则812⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦的值为()A .43B .44C .45D .46○热○点○题○型二以古文化、实际生活等情境综合6.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为P ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还()万元.A .10MB .()()1010111MP P P ++-C .()10110M P +D .()()99111MP P P ++-7.传说国际象棋发明于古印度,为了奖赏发明者,古印度国王让发明者自己提出要求,发明者希望国王让人在他发明的国际象棋棋盘上放些麦粒,规则为:第一个格子放一粒,第二个格子放两粒,第三个格子放四粒,第四个格子放八粒……依此规律,放满棋盘的64个格子所需小麦的总重量大约为()吨.(1kg麦子大约20000粒,lg2=0.3)A.105B.107C.1012D.1015次日脚痛减一半,六朝才得到其关,要见末日行里数,请公仔细算相还.”其意思为:有一个人一共走了441里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走的路程是()A.7里B.8里C.9里D.10里【答案】A【详解】设第六天走的路程为1a,第五天走的路程为2a……第一天走的路程记为6a,9.2022年10月16日上午10时,中国共产党第二十次全国代表大会在北京人民大会堂隆重开幕.某单位组织全体党员在报告厅集体收看党的二十大开幕式,认真聆听习近平总书记向大会所作的报告.已知该报告厅共有10排座位,共有180个座位数,并且从第二排起,每排比前一排多2个座位数,则最后一排的座位数为()A .23B .25C .27D .2910次差成等差数列的高阶等差数列.现有一个高阶等差数列的前6项分别为4,7,11,16,22,29,则该数列的第18项为()A .172B .183C .191D .211【答案】C【详解】设该数列为{}n a ,则11,(2)n n a a n n --=+≥,○热○点○题○型三数列综合应用11.在数列{}n a 中,11a =,11n n a a n +=++,则122022111a a a +++= ()A .20211011B .40442023C .20212022D .2022202312.已知正项数列{}n a 的前n 项和为n S ,且12a =,()()1133n nn n n n S S S S ++-=+,则2023S =()A .202331-B .202331+C .2022312+D .2023312+13.已知一族曲线n .从点向曲线n 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .则下列结论错误的是()A .数列{}n x 的通项为1n nx n =+B .数列{}n y 的通项为n yC .当3n >时,1352111nn nx x x x x x--⋅⋅⋅>+ Dnnxy <故D 正确.故选:B.14.在数列{}n a 中给定1a ,且函数()()311sin 213n n f x x a x a x +=-+++的导函数有唯一零点,函数()()()112πcos π2g x x x x =-且()()()12918g a g a g a +++= ,则5a =().A .14B .13C .16D .1915.已知函数()()*ln N f x nx x n =+∈的图象在点,fn n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为n a ,则数列11n n a a +⎧⎫⎨⎩⎭的前n 项和n S 为()A .11n +B .()()235212n nn n +++C .()41nn +D .()()235812n nn n +++。
历届高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。
(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x =.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-; (Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈. 证明:当*N n ∈时, (I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤; (III )1-21122n n n x -≤≤.高考压轴题答案一、2019年上海卷: 解:(1)等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.当120,3a d π==,集合22S ⎧⎪=⎨⎪⎪⎩⎭. (2)12a π=,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.∴④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,S =⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-()0,∞+,且:()3'4f x x =-==, 因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <当0a <()f x 2ln 0x -≥,令1t a=,则t ≥设()22ln g t t x =,t ≥则2()2ln g t t x=-,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭则()(22)2ln g x g x =,记1()ln ,7p x x x =≥,则1()p x x '===∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥,令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=>,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x ≤综上所述,所求的a 的取值范围是⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+, 则011111111222n n n n b a ---=+-=-<,*n N ∈, 可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列, 可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意; ④若2d-,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+,11111n n n a b a +++-+, 可得()111120n n n n b b a a d ++-+--=+,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x ++=.设()ln g x x =,则1()4)4g x x'=,所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则 ()?0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<, 所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点. 由()f x kx a =+得k =.设()h x =,则22ln 1()12()x a g x a h x x x +--+'==,其中()ln g x x =-. 由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立 故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+≤…,) 化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+---≤…, 因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11nb q n m n->=+-…) 所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立 当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=-,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m nn n n --+---=-==--… 设()(1)f n q n q =--,因为10q ->,所以()f n 单调递增,又因为q ∈所以11()(1)(1)2(1)2111m m m f m q m q m m m m ⎛⎫ ⎪⎛⎫=----=-- ⎪ ⎪-⎝⎭ ⎪-⎝⎭≤ 设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =-- 因为2ln 22ln 2x ≤,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。
历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
2019-2020年高考压轴卷 理科数学试题
2019-2020年高考压轴卷理科数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.注意事项:1.答卷前,考生务必用2B铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.参考公式:1.如果事件、相互独立,那么2.如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率:.3.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合和,则A.或B.C.D.2.已知复数和,其中是虚数单位,则复数的虚部为A.B.C.D.3. “”是“直线与圆相交”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4. 某调查机构对某地区小学学生课业负担情况进行了调查,设平均每人每天做作业的时间为分钟,有名小学生参加了此项调查,调查所得数据用程序框图处理,若输出的结果是,则平均每天做作业的时间在~分钟(包括60分钟)内的学生的频率是A.B.C.D.5. 已知,且是第二象限的角,那么等于A.B.C.D.6. 设是不同的两条直线,、、是不同的三个平面,有以下四个命题①;②;③;④;其中正确的命题是A.①④B.②③C.①③D.②④7.通过随机询问名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:由,算得参照独立性检验附表,得到的正确结论是A.有的把握认为“选择过马路的方式与性别有关”B.有的把握认为“选择过马路的方式与性别无关”C.在犯错误的概率不超过的前提下,认为“选择过马路的方式与性别有关”D.在犯错误的概率不超过的前提下,认为“选择过马路的方式与性别无关”8.若函数与函数在上的单调性相同,则的一个值为A.B.C.D.9. 在三棱锥中,已知,平面,,若其直观图、正视图、俯视图如图所示,则其侧视图的面积为A. B. C. D.10.如图所示,为了在一条河上建一座桥,施工前先要在河两岸打上两个桥位桩,若要测算两点之间的距离,需要测量人员在岸边定出基线.现测得米,,,则两点的距离为A.米B.米C.米 D. 米11. 已知函数是定义在上的奇函数,且满足,当时,,则满足的的值是A.B.C.D.12. 设均为区间上的实数,则函数在实数集上有两个相异极值点的概率是A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数的图象经过点,则不等式的解集为_________________;14.已知抛物线的焦点与双曲线的一个焦点重合,则该双曲线的离心率为______________;15.若的展开式中所有项的系数和是,则展开式的第三项系数是_______;16.平行于直线且过点的直线与函数图象所围成的图形的面积等于____________________.三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)在如图所示的平面直角坐标系中,已知点和点,,且,其中为坐标原点.(Ⅰ)若,设点为线段上的动点,求的最小值;(Ⅱ)若,向量,,求的最小值及对应的值.18.(本小题满分12分)为了体现国家“民生工程”,某市政府为保障居民住房,现提供一批经济适用房.现有条件相同的甲、已、丙、丁四套住房供、、三人自主申请,他们的申请是相互独立的.(Ⅰ)求、两人都申请甲套住房的概率;(Ⅱ)求、两人不申请同一套住房的概率;(Ⅲ)设名参加选房的人员中选择甲套住房的人数为,求的分布列和数学期望.19.(本小题满分12分)在如图1所示的等腰梯形中, ,且,为中点.若沿将三角形折起,使平面平面,连结,得到如图2所示的几何体,在图2中解答以下问题:(Ⅰ)设为中点,求证:;(Ⅱ)求二面角的正弦值.20.(本小题满分12分)设是数列()的前项和,已知,,设.(Ⅰ)证明:数列是等比数列,并求数列的通项公式;(Ⅱ)令,求数列的前项和.21.(本小题满分12分)已知函数和,其中且,设.(Ⅰ)若,求在处的切线方程;(Ⅱ)若恰有一解,求实数的取值情况.22.(本小题满分14分)已知椭圆:的左焦点为,其左右顶点为、,椭圆与轴正半轴的交点为,的外接圆的圆心在直线上.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线,是椭圆上的动点,,垂足为,是否存在点,使得为等腰三角形?若存在,求出点的坐标,若不存在,请说明理由.数学 (理科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. CCACA CADDA DC二、填空题:本大题共4小题,每小题4分,共16分. 13. 14. 15. 16. 三、解答题:本大题共6小题,共74分. 17. (本小题满分12分) 解:(Ⅰ) 设(),又 所以所以 22211||122OC OD t t +=-++=-+……………3分所以当时,最小值为………………6分 (Ⅱ)由题意得,则221cos sin 2sin cos 1cos2sin 2m n x x x x x x ⋅=-+-=-- ……………9分 因为,所以所以当,即时,取得最大值 所以时,取得最小值所以的最小值为,此时…………………………12分18.(本小题满分12分) 解:(Ⅰ)设“申请甲套住房”为事件,“申请甲套住房”为事件 那么,两人都申请甲套住房的概率所以甲、乙两人都申请甲套住房的概率为……………3分 (Ⅱ)设“,两人选择同一套住房”为事件所以,两人不选择同一套住房的概率是……7分 (Ⅲ)(方法一)随机变量可能取的值为,,,,那么 ; ;;;所以的分布列为…………………11分所以27279130123646464644Eξ=⨯+⨯+⨯+⨯=……………12分(方法二)依题意得所以的分布列为3333133()()()4464kk k k kP k C Cξ--==⨯⨯=⨯,.即…………11分所以……………12分19.(本小题满分12分)证明:(Ⅰ)取中点,连结,连结因为为等边三角形,所以因为平面平面所以平面,平面所以…………………………2分因为为平行四边形,所以,为菱形,因为分别为、中点,所以所以………………………4分因为平面,平面,且所以平面,又平面所以……………………6分(Ⅱ)连结由题意得三角形为等边三角形所以,由(Ⅰ)知底面以为原点,分别以所在直线为轴建立空间直角坐标系,如图所示 则333(,0,0),,0),),(,0)2a A B D C a - 所以,,设面的法向量为,则不妨设…………………………………8分 设面的法向量,又则,取……………………10分 所以所以二面角的正弦值为……………………12分 20.(本小题满分12分) 解: (Ⅰ)因为,所以 即 则所以……………………4分又所以是首项为,公比为的等比数列故数列的通项公式为……………………6分 (Ⅱ)由(Ⅰ)得:……………………8分 设………………①则n n nn M 22124232221211432+-+++++=- ……………② ①-②得: n n n n nn M 22122212121212112111432--=-++++++=--所以所以……………………12分 21.(本小题满分12分) 解: (Ⅰ) 时, ,所以在处的切线斜率则过的切线方程为,即所求切线方程为……………4分 (Ⅱ) 21()()()ln 112f xg xh x a x x x ax =+=+--+-所以2'(1)(1)()()(1)a x a x a x x a f x x a x x x-++--=+-+==…………………6分(i)由题意得:定义域为若,令,可得 因为在上且在上 所以在处取得极小值 即由恰有解,则,即,解得…………………8分由上表可知, 在处取得极小值11()(1)(1)022f x f a a ==-+=--<极小值 由上表得在处取得极大值2211()()ln (1)ln 022f x f a a a a a a a a a a ==+-+=--<极大值所以满足恰有一解成立即满足条件…………………………10分 (iii)当时,,在上单调递增,且,所以,满足条件…………………………11分综上,若恰有一解,实数的取值范围是或……………12分 22.(本小题满分14分) 解:(Ⅰ)由题意知,圆心既在的垂直平分线上,也在的垂直平分线上, 设的坐标为,则的垂直平分线方程为………① 因为的中点坐标为, 的斜率为 所以的垂直平分线的方程为…② 联立①②解得:, 即,因为在直线上所以…………………4分 即因为,所以 再由求得所以椭圆的方程为…………………7分 (Ⅱ)由(Ⅰ)知:,椭圆上的点横坐标满足 设,由题意得 则,, ①若,即与联立,解得,显然不符合条件………………9分 ②,即 与联立,解得:(显然不符合条件,舍去)所以满足条件的点的坐标为………………11分③若,即解得,(显然不符合条件,舍去)此时所以满足条件的点的坐标为………………13分综上,存在点或,使得为等腰三角形……………14分 .。
高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ;(2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤求a 的取值范围.注: 2.71828e =L 为自然对数的底数.设2*012(1),4,nnn x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a =+*,a b ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。
(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b L ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x -=.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-;(Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列.(Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈.证明:当*N n ∈时,(I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤;(III )1-21122n n n x -≤.高考压轴题答案一、2019年上海卷:解:(1) 等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.∴当120,3a d π==,集合S ⎧⎪=⎨⎪⎪⎩⎭.(2)12a π= ,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴=当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,22S =⎨⎬⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件.当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件.当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意.综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-+,函数的定义域为()0,∞+,且:()3'4f x x -+=-+,因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <≤,当204a <时,()f x ,等价于2ln 0x ≥,令1t a=,则t ≥,设()22ln g t t x =--,t ≥,则2()2ln g t t x=--,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g x g x =-- ,记1()ln ,7p x x x =--≥,则1()p x x '==列表讨论:x17117⎛⎫ ⎪⎝⎭,1(1,)+∞()'p x ﹣0+()P x 17P ⎛⎫⎪⎝⎭单调递减极小值()1P 单调递增∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥=令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=-,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a≤,综上所述,所求的a 的取值范围是4⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n=+02233445555555C C C C C C =++++a =+因为*,ab ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+,则011111111222n n n n b a ---=+-=-<,*n N ∈,可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列,可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =,可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,,M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(),①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意;④若2d - ,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+ ,11111n n n a b a +++-+ ,可得()111120n n n n b b a a d ++-+--=+ ,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-,由12()()f x f x ''=1211x x -,因为12x x ≠,所以12+=.=+.因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=-+-=.设()ln g x x =-,则1()4)4g x x'=-,所以()g x 在[256,)+∞上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-.(Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则()–0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<,所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得k =.设ln ()x x a h x x --=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2x g x x =-.由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+ ≤…,)化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+--- ≤…,因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11n b q n m n ->=+- …)所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=- ,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m n n n n --+---=-==-- …设()(1)f n q n q =--,因为10q ->,所以()f n单调递增,又因为q ∈所以11()(1)(1)(1)2111m m f m q m q m m m m ⎛⎫ ⎪⎫=---=-- ⎪⎪-⎭ ⎪-⎝⎭ ≤设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =--因为2ln 2ln 2x ,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<- 在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。
历届高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。
1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。
2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。
1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。
3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。
1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。
4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。
1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。
新高考数学高考数学压轴题多选题专项训练分类精编含解析(2)
一、数列多选题1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 2022答案:BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}na 满足递推关系()12211,1,+3nn n aa a aan --===≥,依次判断四个选项,即可得正确答案.【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确;对于C ,可得()112nn n a aan +-=-≥,则()()()()1234131425311++++++++++nn n a a a a aa a a aa a a aa+-=----即212++1nnn n S a a aa++=-=-,∴202020221Sa=-,故C 正确;对于D ,由()112n n n a aan +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a aaa=---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3nn n a a a aan --===≥,能根据数列性质利用累加法求解.2.已知数列{}na 中,11a =,1111n na a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212n at a t a a n<--++-+恒成立,则实数a 可能为( )A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n =-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解. 【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.3.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}na 称为“斐波那契数列”,记Sn为数列{}na 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .13520192022a a a aa++++=D .22212201920202019a a a aa+++=答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n aaa ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n naaa ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确;7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,可得13572019a a a a a+++++=242648620202018a a a a a a a aa+-+-+-++-2020a=,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a aaaa=+-+-+-+-20192020aa=,所以22212201920202019a a a aa+++=,故D 正确.故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.4.已知数列{}na 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( ) A .2-B .23C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--; 32131a a==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3;故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.5.设数列{}na 的前n 项和为*()nS n N ∈,关于数列{}na ,下列四个命题中正确的是( ) A .若1*()n naa n N +∈=,则{}na 既是等差数列又是等比数列B .若2nS An Bn =+(A ,B 为常数,*n N ∈),则{}na 是等差数列C .若()11n nS =--,则{}na 是等比数列D .若{}na 是等差数列,则nS ,2n n SS -,*32()n nS S n N -∈也成等差数列答案:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】 选项A: 1*()n n a a n N +∈=,10n n aa +∴-=得{}na 是等差数列,当0n a =时不是等比数列,故错; 选项B:2nS An Bn =+,12nn a aA -∴-=,得{}na 是等差数列,故对;选项C: ()11n nS =--,112(1)(2)n nn nS Sa n --∴-==⨯-≥,当1n =时也成立,12(1)n na -∴=⨯-是等比数列,故对;选项D: {}na 是等差数列,由等差数列性质得nS ,2n n SS -,*32()n nS S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.6.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .8答案:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N,所以n 为200的因数,()20012n n+-≥且为偶数,验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.7.公差不为零的等差数列{}na 满足38aa =,n S 为{}n a 前n 项和,则下列结论正确的A .110S =B .10nnS S-=(110n ≤≤)C .当110S >时,5nS S ≥D .当110S <时,5nS S ≥答案:BC 【分析】设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;若,解得,,故C 正确;D 错误; 故选:BC解析:BC 【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+, 即1127a d a d +=--,解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确;若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;8.设{}na 是等差数列,nS是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为nS 的最大值答案:BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,解析:BD 【分析】设等差数列{}na 的公差为d ,依次分析选项即可求解.【详解】根据题意,设等差数列{}na 的公差为d ,依次分析选项:{}na 是等差数列,若67SS =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a+>,又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.∵56S S <,678S S S =>,∴6S 与7S 均为nS 的最大值,故D 正确;故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.9.已知等差数列{}na 的前n 项和为nS ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a=-C .当且仅当10n =时,nS 取最大值D .当0nS <时,n 的最小值为22答案:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0nS <解不等式可判断D .【详解】等差数列{}na 的前n 项和为nS,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222na n n =--=-,21(20222)212n S n n n n =+-=-, 由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102nS n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 10.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}na的公差0d >,则{}na 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列D .若数列{}na是等差数列,则数列{}12++nn aa也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}na必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立;D 选项:数列{}na是等差数列公差为d ,所以11112(1)223(31)nn a aa n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.11.在下列四个式子确定数列{}na 是等差数列的条件是( )A .na knb =+(k ,b 为常数,*n N ∈); B .2n naa d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}na 的前n 项和21nSn n =++(*n N ∈).答案:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中(为常数,),不符合从第二项起解析:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中na knb =+(k ,b 为常数,*n N ∈),数列{}na 的关系式符合一次函数的形式,所以是等差数列,故正确, B 选项中2n naa d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误; C 选项中()*2120n n n aaa n ++-+=∈N ,对于数列{}na 符合等差中项的形式,所以是等差数列,故正确;D 选项{}na 的前n 项和21nSn n =++(*n N ∈),不符合2nS An Bn =+,所以{}na 不为等差数列.故错误. 故选:AC 【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 答案:ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}n a 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.二、等差数列多选题13.在等差数列{}na 中,公差0d ≠,前n 项和为nS,则( )A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2nS n n a =-+,则0a =解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案;对于D ,由nS 求出na 及1a ,根据数列{}na 为等差数列可求得0a =.【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}na 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}na 递减,则12130,0aa ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2nS n n a =-+,则11a S a ==,2n ≥时,221(1)(1)nnn a S Sn n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确.故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.14.题目文件丢失!15.已知数列{}na 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,nn a n ⎧=⎨⎩为奇数为偶数B .1(1)1n na -=-+C .2sin 2n n a π=D .cos(1)1na n π=-+解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}na 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos012,a =+=2cos 10,a π=+=3cos212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.16.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4 B .5 C .7D .8解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+=整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 17.已知数列{}na :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记nS为数列{}na 的前n 项和,则下列结论正确的是( )A .68S a = B .733S =C .13520212022a a a aa++++=D .2222123202020202021a a a a aa++++=解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确;对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020aaa=-,可得13520212022a a a aa +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n aaa ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018aaaa-,220202020202120202019a aaaa=-,故2222123202020202021a a a a a a+++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n na aa ++=+对所给式子进行变形.18.已知等差数列{}na 的公差不为0,其前n 项和为nS,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( )A .59823a a S +=B .27S S =C .5S 最小D .50a =解析:BD【分析】设等差数列{}na 的公差为d ,根据条件12a 、8S、9S 成等差数列可求得1a 与d 的等量关系,可得出na 、nS 的表达式,进而可判断各选项的正误.【详解】设等差数列{}na 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122nnn d n n dS na --=+=.对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d S d -⨯==-,()2779772d S d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误;对于D 选项,50a =,D 选项正确.故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和nS 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 19.定义11222n nna a a H n-+++=为数列{}na 的“优值”.已知某数列{}na 的“优值”2n nH =,前n 项和为nS ,则( )A .数列{}na 为等差数列 B .数列{}na 为等比数列C .2020202320202S =D .2S ,4S ,6S 成等差数列解析:AC 【分析】由题意可知112222n n nna a a H n-+++==,即112222n n na a a n -+++=⋅,则2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅,可求解出1na n =+,易知{}na 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出nS ,判断C ,D 的正误.【详解】 解:由112222n n nna a a H n-+++==,得112222n n na a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a an ---+++=-⋅,②得2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅, 即2n ≥时,1na n =+,当1n =时,由①知12a =,满足1na n =+.所以数列{}na 是首项为2,公差为1的等差数列,故A 正确,B 错,所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错, 故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.20.数列{}n a 满足11,121n n naa a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2nS n =C .数列{}na 的通项公式为21nan =-D .数列{}na 为递减数列解析:ABD【分析】首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1na ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n naa a +=+,11a =, 所以121112n n nna a a a ++==+,即1112n na a+-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确.对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121nn a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.21.设等差数列{}na 的前n 项和为nS,若39S =,47a =,则( )A .2nS n =B .223nS n n =-C .21na n =-D .35na n =-解析:AC 【分析】利用等差数列{}na 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出na 与nS .【详解】等差数列{}na 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221na n n ∴+-⨯=-=.()21212nn nS n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.22.已知数列{}na 满足:13a =,当2n ≥时,()21111nn a a-=++-,则关于数列{}na 说法正确的是( )A .28a =B .数列{}na 为递增数列C .数列{}na 为周期数列D .22na n n =+解析:ABD【分析】由已知递推式可得数列{}1na +是首项为112a +=,公差为1的等差数列,结合选项可得结果. 【详解】()21111nn a a-=++-得()21111nn a a-+=++,∴1111nn a a-+=++,即数列{}1na +是首项为112a +=,公差为1的等差数列,∴12(1)11na n n +=+-⨯=+,∴22na n n =+,得28a =,由二次函数的性质得数列{}na 为递增数列,所以易知ABD 正确, 故选:ABD. 【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.23.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列 B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}na 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列.故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.24.等差数列{}na 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( )A .109S S >B .170S <C .1819S S >D .190S>解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722aaa Sa <+⨯⨯===,()1191019101921919022aaa S a +⨯⨯===>,故BD 正确.【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确;()1191019101921919022aaa S a +⨯⨯===>,故D 正确;190a >,181919S S a ∴=-, 1819S S ∴<,故C 不正确. 故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.三、等比数列多选题25.题目文件丢失! 26.题目文件丢失!27.在数列{}na 中,如果对任意*n N ∈都有211n n n na a k aa+++-=-(k 为常数),则称{}na 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0 C .若32n na =-+,则数列{}na是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 解析:BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}na ,考虑121,1,1nn n aaa++===,211n n n na aa a+++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na aa a a a+++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32n n a =-+,2113n n n na aa a+++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n na q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.28.已知数列{}na 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列B .13n S n= C .13(1)n a n n =--D .{}3nS 是等比数列解析:ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得nS ,利用nS 求出na ,并确定3n S 的表达式,判断D.【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113nn S S--=,所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3nn n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错; 由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确. 故选:ABD. 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.29.已知数列{}na 前n 项和为nS.且1a p =,122(2)nn S Sp n --=≥(p 为非零常数)测下列结论中正确的是( )A .数列{}na 为等比数列 B .1p =时,41516S = C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+解析:AC 【分析】 由122(2)nn S Sp n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n SSp ---=,相减可得120nn a a--=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得mnm na a a+⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确;故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题.30.设等比数列{}na 的公比为q ,其前n 项和为nS,前n 项积为nT ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q << B .8601a a <<C .nS 的最大值为7SD .nT 的最大值为6T解析:ABD 【分析】先分析公比取值范围,即可判断A,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾;若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确;因为0na >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)na ∈,当16n ≤≤时,(1,)na ∈+∞,所以nT 的最大值为6T ,即D正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题.31.记单调递增的等比数列{}na 的前n 项和为nS,若2410a a +=,23464a a a =,则( ) A .112n n nSS ++-=B .12n naC .21n nS =-D .121n nS -=-解析:BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,nnn na S SS +-,进而判断出正确选项.【详解】由23464a a a =得3334a =,则34a =.设等比数列{}na 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q 或12q =.又因为数列{}na 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na,()1122112n nnS ⨯-==--,所以()1121212n n n n n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.32.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1 B .1<b 12< C .S 2n <T 2nD .S 2n ≥T 2n解析:ABC 【分析】利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解.【详解】∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n+a n +1=2n ,∴122324a a a a +=⎧⎨+=⎩; ∴12123212244a a aa a a a +⎧⎨+=-⎩>> ∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n}为递增数列;∴b 1<b 2<b 3; ∵b n•b n +1=2n∴122324b b b b =⎧⎨=⎩; ∴2132b b b b⎧⎨⎩>>; ∴1<b 12<,故B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )()()()()121212122122nnn b b b b⋅--=+=+-()()122212221n n b b ≥-=-; ∴对于任意的n ∈N*,S 2n <T 2n;故C 正确,D 错误.故选:ABC 【点睛】本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}na ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2x f x =C .()f x x =D .()ln f x x =解析:AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}na 的公比为q .对于A ,则2221112()()n n n n n nf a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n na a a n a nf a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C ,则111()()n n n nnnaf a aq f a aa+++=== ,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n nnnnna a q a q q f a f a a a a a++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.34.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0 B .a 9>a 10C .b 10>0D .b 9>b 10解析:AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列,则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误; ∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d ,由于910,a a 异号,因此90a <或100a<故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.35.等差数列{}na 的公差为d ,前n 项和为nS,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( )A .7aB .8aC .15SD .16S解析:BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a aS a +==为定值,但()()11616891682a aS a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.36.对于数列{}na ,若存在正整数()2k k ≥,使得1kk aa-<,1kk a a+<,则称ka 是数列{}na 的“谷值”,k 是数列{}na 的“谷值点”,在数列{}na 中,若98nan n=+-,下面哪些数不能作为数列{}na 的“谷值点”?( )A .3B .2C .7D .5解析:AD。
19年数二压轴题
19年数二压轴题
2019年全国2卷理科数学压轴题是一个圆锥曲线最值问题,难度较大,计
算量也很大。
这道题分为三问,按梯度层层递进,难度步步高升。
最后一问技巧性强,运算比较复杂,要表达出面积,最后用对勾函数的性质及函数单调性完成证明。
如果对历年高考题目比较熟悉,就会发现其实本题是一个非常常见的结构,第一问求轨迹是利用椭圆的“第三定义”——斜率乘积为定值。
第二问中的第一小问也是常见的俗套问题,几乎和2011年江苏高考题原题、2012年
湖北高考理科第22题类似。
可以尝试从不同角度对题目进行分析和解答,以便更全面地理解问题并寻找最合适的解决方法。
2019-2020年高考压轴卷理科数学含解析
2019-2020年高考压轴卷理科数学含解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2},B={x|x=2a ,a ∈A},则A ∩B 中元素的个数为( ) A.0 B.1 C.2 D.3 2. 复数21i z ()i=-,则复数1z +在复平面上对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知直线l ⊥平面α,直线m ∥平面β,则“//αβ”是“l m ⊥”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既非充分也非必要条件4. 设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k+2﹣S k =36,则k 的值为( ) A . 8 B .7 C .6 D . 55.如图是某一几何体的三视图,则这个几何体的体积为( )A .4 B .8 C .16 D .20 6.一个算法的程序框图如图所示,如果输入的x 的值为2014,则输出的i 的结果为( )A.3B.5C.6D.87.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是()A.[6K-1,6K+2](K∈Z)B. [6k-4,6k-1] (K∈Z)C.[3k-1,3k+2] (K∈Z)D.[3k-4,3k-1] (K∈Z)8. .在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线围成的区域内(阴影部分)的概率为()A.B.C.D.9.已知抛物线22(0)y px p =>的焦点F 与双曲22145x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且AK =,则A 点的横坐标为(A)10.已知函数f (x )对任意x ∈R 都有f (x+6)+f (x )=2f (3),y=f (x ﹣1)的图象关于点(1,0)对称,则f (2013)=( )A.10B.-5C.5D.0二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.(3x+)6的展开式中常数项为 (用数字作答).12. 若等边△ABC 的边长为1,平面内一点M 满足,则= .13. 设x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的最大值为12,则+的最小值为( ) A . 4 B .C .1 D .214.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2,若对任意x ∈[a ,a+2],不等式f (x+a )≥f (3x+1)恒成立,则实数a 的取值范围是 ________ .15. 已知集合A={f (x )|f 2(x )﹣f 2(y )=f (x+y )•f (x ﹣y ),x 、y ∈R},有下列命题: ①若f (x )=,则f (x )∈A ; ②若f (x )=kx ,则f (x )∈A ;③若f (x )∈A ,则y=f (x )可为奇函数; ④若f (x )∈A ,则对任意不等实数x 1,x 2,总有成立.其中所有正确命题的序号是 ______ .(填上所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.在△ABC 中,已知A=4π,cos B =. (I)求cosC 的值;(Ⅱ)若D 为AB 的中点,求CD 的长.17.如图,已知PA ⊥平面ABC ,等腰直角三角形ABC 中,AB=BC=2,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E . (Ⅰ)求证:PC ⊥DE ;(Ⅱ)若直线AB 与平面ADE 所成角的正弦值为,求PA 的值.18. 在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为x 、y ,设O 为坐标原点,点P 的坐标为(2,)x x y --,记2OP ξ=. (I )求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;(Ⅱ)求随机变量ξ的分布列和数学期望. 19. 设数列{}n a 的前n 项和为n S ,点(,)n n a S 在直线312y x =-上. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列, 求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T ,并求使-184055327n n n T +≤⨯成立的正整数n 的最大值. 20. 给定椭圆C :,称圆心在坐标原点O ,半径为的圆是椭圆C 的“伴随圆”,已知椭圆C 的两个焦点分别是.(1)若椭圆C 上一动点M 1满足||+||=4,求椭圆C 及其“伴随圆”的方程;(2)在(1)的条件下,过点P (0,t )(t <0)作直线l 与椭圆C 只有一个交点,且截椭圆C 的“伴随圆”所得弦长为2,求P 点的坐标;(3)已知m+n=﹣(0,π)),是否存在a ,b ,使椭圆C 的“伴随圆”上的点到过两点(m ,m 2),(n ,n 2)的直线的最短距离.若存在,求出a ,b 的值;若不存在,请说明理由. 21.已知函数f (x )=ax 2﹣(2a+1)x+2lnx (a >0). (Ⅰ) 若a ≠,求函数f (x )的单调区间;(Ⅱ)当<a <1时,判断函数f (x )在区间[1,2]上有无零点?写出推理过程.KS5U2014山东省高考压轴卷理科数学参考答案1.【KS5U 答案】C【KS5U 解析】:由A={0,1,2},B={x|x=2a ,a ∈A}={0,2,4}, 所以A ∩B={0,1,2}∩{0,2,4}={0,2}. 所以A ∩B 中元素的个数为2. 故选C .2. 【KS5U 答案】D【KS5U 解析】因为22211()1(1)22i i z ii i i -====----,所以1112z i +=-,所以复数1z +在复平面上对应的点位于第四象限. 3. 【KS5U 答案】A.【KS5U 解析】当//αβ时,由l ⊥平面α得,l β⊥,又直线m ∥平面β,所以l m ⊥。
2020年高考数学压轴题专题复习: 数列与不等式的综合问题【解析版】
第二章 数列与不等式专题 数列与不等式的综合问题纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.数列与不等式的结合,一般有两类题:一是利用基本不等式求解数列中的最值;二是与数列中的求和问题相联系,证明不等式或求解参数的取值范围,此类问题通常是抓住数列通项公式的特征,多采用先求和后利用放缩法或数列的单调性证明不等式,求解参数的取值范围. 本专题通过例题说明此类问题解答规律与方法.①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; ③比较方法:作差或者作商比较.【压轴典例】例1.(2013·全国高考真题(理))设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,… 若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ) A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B 【解析】因为11b c >,不妨设111142,33a a b c ==,13()22p a b c a =++=;故211S ==; 21a a =,112125326a ab a +==,112147326a a c a +==,2216S a ==; 显然21S S >;同理,31a a =,112159428a a b a +==,113137428a a c a +==,231S ==,显然32S S >.例2. (2018·江苏高考真题)已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________. 【答案】27 【解析】设=2kn a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥ 所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >. 由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27. 例3.(2018·浙江高考模拟)设数列的前项和分别为,其中,使成立的最大正整数__________,__________.【答案】 6. 114. 【解析】根据题意,数列{a n }中,a n =-3n+20,则数列{a n }为首项为17,公差为-3的等差数列,且当n≤6时,a n >0,当n >7时,a n <0,又由b n =|a n |,当n≤6时,b n =a n ,当n >7时,b n =-a n , 则使T n =S n 成立的最大正整数为6,T 2018+S 2018=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(b 1+b 2+……+b 6+b 7+b 8+……+b 2018)=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(a 1+a 2+……+a 6-a 7-a 8-……-a 2018) =2(a 1+a 2+……+a 6)=,故答案为:6,114 例4.(2019·江西师大附中高考模拟(文))数列{}n a 中的项按顺序可以排成如图的形式,第一行1项,排1a ;第二行2项,从左到右分别排2a ,3a ;第三行3项,……依此类推,设数列{}n a 的前n 项和为n S ,则满足2019n S >的最小正整数n 的值为( )A .20B .21C .26D .27【答案】B 【解析】第一行为4,其和为4,可以变形为:1232T =⨯-;第二行为首项为4,公比为3的等比数列,共2项,其和为:()22241323213T -==⨯--;第三行为首项为4,公比为3的等比数列,共3项,其和为()33341323213T -==⨯--;依此类推:第n 行的和:232nn T =⨯-;则前6行共:12345621+++++=个数 前6行和为:()()()()26267212322322322333123152172S =⨯-+⨯-+⋅⋅⋅+⨯-=⨯++⋅⋅⋅+-=-=满足2019n S >而第六行的第6个数为:543972⨯=,则202197212002019S S =-=<∴满足2019n S >的最小正整数n 的值为:21本题正确选项:B例5.(2019·内蒙古高考模拟(理))数列()11n a n n =+的前n 项和为n S ,若1S ,m S ,n S 成等比数列()1m >,则正整数n 值为______. 【答案】8 【解析】∵()11111n a n n n n ==-++,∴11111122311n nS n n n =-+-++-=++, 又1S ,m S ,n S 成等比数列()1m >,∴()21m n S S S =⋅, 即()221211m n n m =⋅++,()22211m n n m =++, ∴()2221m m <+,即2210m m --<,解得1212m -<<+,结合1m 可得2m =, ∴8n =,故答案为8.例6.(2016·天津高考真题(理))已知{}是各项均为正数的等差数列,公差为d ,对任意的,是和的等比中项.(Ⅰ)设求证:数列{}是等差数列;(Ⅱ)设求证:【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】(Ⅰ)证明:由题意得,有,因此,所以是等差数列.(Ⅱ)证明:所以.例7.(2016·四川高考真题(理))已知数列{}的首项为1,为数列{}的前n 项和,,其中q>0,.(Ⅰ)若成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线的离心率为,且,证明:.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由已知,两式相减得到.又由得到,故对所有都成立.所以,数列是首项为1,公比为q的等比数列.从而.由成等差数列,可得,即,则,由已知,,故.所以.(Ⅱ)由(Ⅰ)可知,.所以双曲线的离心率.由解得.因为,所以.于是,故.例8.(2016·浙江高考真题(理))设数列满足,.(Ⅰ)证明:,;(Ⅱ)若,,证明:,.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)由得,故,,所以,因此.(Ⅱ)任取,由(Ⅰ)知,对于任意,,故.从而对于任意,均有.由的任意性得.①否则,存在,有,取正整数且,则,与①式矛盾.综上,对于任意,均有.【压轴训练】1.(2019·安徽高考模拟(理))设是等差数列,下列结论一定正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;对于B选项,当,分别为-4,-1,2时,满足a1+a3<0,但a2+a3=1>0,故B不正确;又{a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2,即C 正确;若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确. 故选:C .2.(2018·浙江高考模拟)已知等差数列的前项和是,公差不等于零,若成等比数列,则A .B .C .D .【答案】C 【解析】 由成等比数列.可得,可得(,即,∵公差不等于零,故选:C .3.(2019·山东高考模拟(文))已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得18m n a a a =,则91m n+的最小值为__________. 【答案】2 【解析】正项等比数列{}n a 满足5432a a a +=, 432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =, 存在两项m a ,n a 使得18m n a a a =, 2221164m n a q a +-∴=,整理,得8m n +=,∴9119119()()(10)88m n m n m n m n n m +=++=++ 19(102)28m n n m+=, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,又m ,*n N ∈.8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:24.(2019·湖南师大附中高考模拟(理))已知等比数列{a n }的前n 项积为T n ,若124a =-,489a =-,则当T n 取最大值时,n 的值为_____. 【答案】4 【解析】设等比数列{a n }的公比为q ,因为124a =-,489a =-,可得341127a q a ==,解得13q =,则()()()1112312(2131)(32424)n n nnn n n T a a a a q-+++⋅⋅⋅+-=⋅⋅⋅=-=-, 当T n 取最大值时,可得n 为偶数,函数13xy =()在R 上递减, 又由2192T =,4489T =,66983T =,可得246T T T <>,当6n >,且n 为偶数时,6n T T <, 故当4n =时,T n 取最大值.5.(2019·安徽高考模拟(理))已知数列的各项均为正数,记为的前项和,若,,则使不等式成立的的最小值是________.【答案】11 【解析】由可得,则()()=0,又数列的各项均为正数,∴,即,可得数列{a n }是首项为公比为q =2的等比数列,∴,则n>10,又,∴n 的最小值是11,故答案为11.6.(2019·甘肃天水一中高考模拟(文))已知数列{}n a 满足11a =,0n a >,11n n a a +=,那么32n a <成立的n 的最大值为______ 【答案】5 【解析】11n n a a +=, 所有{}na 11a =,公差d 1=n n a =,2n a n = 解232n a n =<,得n 42<所以32n a <成立的n 的最大值为5 故答案为:57.(2019·河北高考模拟(理))已知数列{}n a 的前n 项和为n S ,且()2119*2n n n nS S n N +-+=∈,若24a <-,则n S 取最小值时n =__________.【答案】10 【解析】由21192n n n nS S +-+=,()21(1)1912n n n n S S ----+=,两式作差可得:1110(2)n n S S n n +--=-≥,即110(2)n n a a n n ++=-≥,由110n na a n ++=-,219n n a a n +++=-,两式作差可得:21(2)n n a a n +-=≥,则328a a +=-,24a <-,故234a a <-<,进一步可得:4567891011,,,a a a a a a a a <<<<,又10110a a +=,则10110a a <<,且111212130a a a a <+<+<,则n S 取最小值时10n =.8.(2019·河南高考模拟(理))记首项为11(0)a a >,公差为d 的等差数列{}n a 的前n 项和为n S ,若1212a d =-,且1n n n S a S λ+≤+,则实数λ的取值范围为__________. 【答案】19,121⎡⎤⎢⎥⎣⎦【解析】由1n n n S a S λ+≤+,得11n n n n S S a a λ++-=≤. 因为10a >,所以0d <,()12312n a a n d n d ⎛⎫=+-=-⎪⎝⎭. 所以当111n ≤≤时,0n a >,当12n ≥时,0n a <. (1)当111n ≤≤时,由1n n a a λ+≥得1211223n n n n n a a d d a a a n λ++≥==+=+-. 因为221911223212321n +≤+=-⨯-,所以1921λ≥.(2)当12n ≥时,由1n n a a λ+≥得121223n n a a n λ+≤=+-. 因为211223n +>-,所以1λ≤.综上所述,λ的取值范围是19,121⎡⎤⎢⎥⎣⎦. 9.(2019·四川重庆南开中学高考模拟(理))在正项递增等比数列{}n a 中,51a =,记12...n n S a a a =+++,12111...n nT a a a =+++,则使得n n S T ≤成立的最大正整数n 为__________. 【答案】9【解析】由题得11111(1)(1)(1)11(1)1n nn nq q a q a q q q a q q--⋅-≤=---,因为数列是正项递增等比数,所以10,1a q >>,所以2111n a q -≤.因为51a =,所以44281111,,a q a q a q --=∴=∴=,所以81901,,9n n q qq q n ---⋅≤∴≤∴≤.所以使得n n S T ≤成立的最大正整数n 为9. 故答案为:910.(2017·吉林高考模拟(理))已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈ (1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列; (2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++,求证:()1.2n n n T ->【答案】(1) 见解析;(2)见解析. 【解析】(1) 由题可知()*n N∈,从而有13n n b b +=,11112b a =-=,所以{}n b 是以1为首项,3为公比的等比数列.(2) 由(1)知13n n b -=,从而1132n n a -=+,11331log 3log 312n n n c n --⎛⎫=+>=- ⎪⎝⎭,有()12101212n n n n T c c c n -=+++>+++-=,所以()12n n n T ->.11.(2019·江苏金陵中学高考模拟)已知各项均为正整数的数列{a n }的前n 项和为S n ,满足:S n ﹣1+ka n =ta n 2﹣1,n≥2,n∈N *(其中k ,t 为常数).(1)若k =12,t =14,数列{a n }是等差数列,求a 1的值; (2)若数列{a n }是等比数列,求证:k <t . 【答案】(1)a 1=(2)见解析 【解析】(1)∵k=12,t =14,∴2111124n n n S a a -+=-(n≥2),设等差数列{a n }的公差为d ,令n =2,则212211a a a 124+=-,令n =3,则2123311124a a a a ++=-,两式相减可得:()()()2332321124a a a a a a +=+-,∵a n >0,∴a 3﹣a 2=2=d .由212211124a a a +=-,且d =2,化为2112a a -﹣4=0,a 1>0.解得a 1=(2)∵S n ﹣1+ka n =ta n 2﹣1①,n≥2,n∈N *,所以S n +ka n+1=2n 1ta +﹣1②, ②-①得a n +ka n+1﹣ka n =2n 1ta +﹣2n ta ,∴a n =(a n+1﹣a n )[t (a n+1+a n )﹣k], 令公比为q >0,则a n+1=a n q ,∴(q ﹣1)k+1=ta n (q 2﹣1), ∴1=(q ﹣1)[ta n (q+1)﹣k];∵对任意n≥2,n∈N *, 1=(q ﹣1)[ta n (q+1)﹣k]成立;∴q≠1,∴a n 不是一个常数; ∴t=0,∴S n ﹣1+ka n =﹣1,且{a n }是各项均为正整数的数列,∴k<0, 故k <t .12.(2019·天津高考模拟(理))已知单调等比数列{}n a ,首项为12,其前n 项和是n S ,且3312a S +,5S ,44a S +成等差数列,数列{}n b 满足条件1231(2)n b na a a a =(1)求数列{}n a 、{}n b 的通项公式; (2)设1n n nc a b =-,记数列{}n c 的前n 项和是n T . ①求n T ;②求正整数k ,使得对任意*n N ∈,均有k n T T ≥.【答案】(1)12nn a ⎛⎫= ⎪⎝⎭,(1)n b n n =+;(2)①.1112n n T n =-+;②.4k =. 【解析】(1)设11n n a a q -=.由已知得53344122S a S a S =+++,即5341222S a S =+, 进而有()543122S S a -=.所以53122a a =,即214q =,则12q =±.由已知数列{}n a 是单调等比数列,且112a =,所以取12q =.数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭. 1231(2)n b na a a a =,(1)2322222222n b n nn+∴⨯⨯⨯⨯==,则(1)n b n n =+.即数列{}n b 的通项公式为(1)n b n n =+. (2)①.由(1)可得:1111112(1)21n n n n n c a b n n n n ⎛⎫=-=-=-- ⎪++⎝⎭, 分组求和可得:1111112112n n nT n n ⎛⎫=---=- ⎪++⎝⎭. ②由于11111111(1)(2)222122(1)(2)n n n n n n n n T T n n n n ++++++--=--+=++++, 由于12n +比()()12n n ++变化快,所以令10n n T T +->得4n <. 即1234,,,T T T T 递增,而456,,n T T T T 递减.所以,4T 最大.即当4k =时,k n T T ≥.13.(2019·安徽高考模拟(文))已知数列为等差数列,且公差,其前项和为,,且,,成等比数列. (1)求等差数列的通项公式;(2)设,记数列的前项和为,求证.【答案】(1);(2)证明见解析.【解析】 (1)由题意得: ,解得:,∴(2)由(1)得,∴ ∴14.(2019·广东高考模拟(理))已知数列{}n a 满足11*121(22)2()n n n a a a n N n-++++=∈.(1)求12,a a 和{}n a 的通项公式;(2)记数列{}n a kn -的前n 项和为n S ,若4n S S ≤对任意的正整数n 恒成立,求实数k 的取值范围. 【答案】(1) 1a 4= 26;a = 22n a n =+ (2) 125[,].52【解析】(1)由题意得111222?2n n n a a a n -++++=,所以23112124,222,a a a =⨯=+=⨯得26;a =由111222?2n n n a a a n -++++=,所以()2121221?2n n n a a a n --+++=-(2n ≥),相减得()1+12?21?2n n n n a n n -=--,得22,1n a n n =+=当也满足上式. 所以{}n a 的通项公式为22n a n =+.(2)数列{}n a kn -的通项公式为()2222,n a kn n kn k n -=+-=-+ 是以4k -为首项,公差为2k -的等差数列,若4n S S ≤对任意的正整数n 恒成立,等价于当4n =时,n S 取得最大值,所以()()4544220,55220.a k k a k k ⎧-=-+≥⎪⎨-=-+≤⎪⎩解得125.52k ≤≤ 所以实数k 的取值范围是125,.52⎡⎤⎢⎥⎣⎦ 15.(2017·浙江高考模拟)已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<;(Ⅱ) 记()211n n nn n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)证明:①当1n =时显然成立;②假设当n k = ()*k N ∈时不等式成立,即01k a <<, 那么当1n k =+时,11112k k k a a a +⎛⎫=+ ⎪⎝⎭ > 1·12=,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知, 01n a <<对任意*n N ∈成立. (Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列. 又1111112n n n n n a a a a a +⎛⎫-=-+ ⎪⎝⎭ 112n n a a ⎛⎫=- ⎪⎝⎭,易知1n n a a ⎧⎫-⎨⎬⎩⎭为递减数列, 所以111nn a a +⎧⎫-⎨⎬⎩⎭也为递减数列, 所以当2n ≥时,111n n a a +-22112a a ⎛⎫≤- ⎪⎝⎭154245⎛⎫=- ⎪⎝⎭ 940= 所以当2n ≥时, ()211n n nn n a a b a a ++-== ()()11111940n n n n n n a a a a a a +++⎛⎫--<- ⎪⎝⎭当1n =时, 11934010n T T b ===<,成立; 当2n ≥时, 12n n T b b b =+++ < ()()()32431994040n n a a a a a a +⎡⎤+-+-++-⎣⎦()12994040n a a +=+- ()2999942731140404040510010a ⎛⎫<+-=+-=< ⎪⎝⎭ 综上,对任意正整数n , 310n T <16.(2017·浙江高考模拟)已知数列{}n a 满足: 11p ap +=, 1p >, 11ln n n na a a +-=.(1)证明: 11n n a a +>>; (2)证明:12112n nn n a a a a ++<<+; (3)证明:()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】(1)先用数学归纳法证明1n a >. ①当1n =时,∵1p >,∴111p a p+=>; ②假设当n k =时, 1k a >,则当1n k =+时, 1111ln 1k k k k k a a a a a +--=>=-. 由①②可知1n a >. 再证1n n a a +>.111ln ln ln n nn nn n n n na a a a a a a a a +----=-=, 令()1ln f x x x x =--, 1x >,则()'ln 0f x x =-<, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=,所以1ln 0ln n n nna a a a --<,即1n n a a +>.(2)要证12112n nn n a a a a ++<<+,只需证2111ln 2n n n n n a a a a a -+<<+, 只需证()2210,{1220,n n n n n na lna a a lna a -+<+-+>其中1n a >, 先证22ln 10n n n a a a -+<,令()22ln 1f x x x x =-+, 1x >,只需证()0f x <. 因为()()'2ln 2221220f x x x x x =+-<-+-=, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=. 再证()1ln 220n n n a a a +-+>,令()()1ln 22g x x x x =+-+, 1x >,只需证()0g x >,()11'ln 2ln 1x g x x x x x +=+-=+-, 令()1ln 1h x x x =+-, 1x >,则()22111'0x h x x x x -=-=>,所以()h x 在()1,+∞上单调递增,所以()()10h x h >=,从而()'0g x >,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=, 综上可得12112n nn n a a a a ++<<+. (3)由(2)知,一方面, 1112n n a a ---<,由迭代可得()1111111122n n n a a p --⎛⎫⎛⎫-<-= ⎪⎪⎝⎭⎝⎭,因为ln 1x x ≤-,所以111ln 12n n n a a p -⎛⎫≤-< ⎪⎝⎭,所以()1212ln ln ln ln n n a a a a a a ⋯=++⋯+ 0111111222n p -⎡⎤⎛⎫⎛⎫⎛⎫<++⋯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 111112121212nn n p p -⎛⎫- ⎪-⎝⎭=⨯=⨯-;另一方面,即11112n n n na a a a ++-->, 由迭代可得111111111212n n nn a a a a p ----⎛⎫⎛⎫>⨯= ⎪ ⎪+⎝⎭⎝⎭.因为1ln 1x x ≥-,所以1ln 1n n a a ≥- 11112n p -⎛⎫> ⎪+⎝⎭,所以()01112121111ln ln ln ln 1222n n n a a a a a a p -⎡⎤⎛⎫⎛⎫⎛⎫⋯=++⋯+>⨯++⋯+⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦112112n n p --=⨯+;综上,()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+.。
2019-2020年高考压轴卷 数学 含解析
(图1) 2019-2020年高考压轴卷数学含解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知复数的实部为,虚部为1,则的模等于 .2.已知集合,集合,则 .3.右图1是一个算法流程图,若输入的值为,则输出的值为 .4.函数的定义域为 .5.样本容量为10的一组数据,它们的平均数是5,频率如条形图2所示,则这组数据的方差等于.6.设是两个不重合的平面,是两条不重合的直线,给出下列四个命题:①若则;②若,,则;③若,则;④若,则.其中正确的命题序号为7.若圆上有且只有两个点到直线的距离等于1,则半径的取值范围是 .8.已知命题在上为减函数;命题,使得.则在命题,,,中任取一个命题,则取得真命题的概率是9.若函数,其图象如图3所示,则 .10.函数的图象经过四个象限,则a的取值范围是.11.在中,已知角A,B,C的对边分别为a,b,c,且,则函数在上的单调递增区间是 .12. “已知关于的不等式的解集为,解关于的不等式.”给出如下的一种解法:解:由的解集为,得的解集为,即关于的不等式的解集为.x y12图3图2参考上述解法:若关于的不等式的解集为,则关于的不等式的解集为 .13.xx 年第二届夏季青年奥林匹克运动会将在中国南京举行,为了迎接这一盛会,某公司计划推出系列产品,其中一种是写有“青奥吉祥数”的卡片.若设正项数列满足,定义使为整数的实数k 为“青奥吉祥数”,则在区间[1,xx]内的所有“青奥吉祥数之和”为________14.已知,设集合,,若对同一x 的值,总有,其中,则实数的取值范围是 二、 解答题(本大题共6小题,共90分) 15.在中,角,,的对边分别为,,,向量,且 (1)求的值;(2)若,求边c 的长度.16.如图4,在四棱锥中,平面平面,AB ∥DC , 是等边三角形, 已知,.(1)设是上的一点,证明:平面平面; (2)求四棱锥的体积.17.如图5,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设AB = y km ,并在公路同侧建造边长为x km 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知AB = AC 1,且∠ABC = 60o .(1)求y 关于x 的函数解析式;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:x 取何值时,该公司建中转站围墙和两条道路总造价M 最低?ABCMPD图4公 路HG F E DC B A 图5OMNF 2F 1yx(图6)18. 如图6,椭圆过点,其左、右焦点分别为,离心率,是椭圆右准线上的两个动点,且. (1)求椭圆的方程; (2)求的最小值;(3)以为直径的圆是否过定点?请证明你的结论.19.已知函数(1)求曲线在点处的切线方程; (2)求函数的单调增区间;(3)若存在,使得是自然对数的底数),求实数的取值范围.20. 已知数列{a n }中,a 2=a(a 为非零常数),其前n 项和S n 满足S n =n(a n -a 1)2(n N*).(1)求数列{a n }的通项公式; (2)若a=2,且,求m 、n 的值;(3)是否存在实数a 、b ,使得对任意正整数p ,数列{a n }中满足的最大项恰为第项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由.数学Ⅱ(附加题)21A .[选修4-1:几何证明选讲](本小题满分10分) 如图,从圆外一点引圆的切线及割线,为切点. 求证:.21B .已知矩阵,计算.21C .已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是是参数).若直线与圆相切,求正数的值.21D .(本小题满分10分,不等式选讲)已知不等式对于满足条件的任意实数恒成立,求实数的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.P(第21 - A 题)(第22题)22.(本小题满分10分)22. 如图,在四棱锥P -ABCD 中,底面ABCD ,底面ABCD 是边长为2的菱形,,,M 为PC 的中点.(1)求异面直线PB 与MD 所成的角的大小;(2)求平面PCD 与平面P AD 所成的二面角的正弦值.23.(本小题满分10分)袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为X n . (1)求随机变量X 2的概率分布及数学期望E (X 2);(2)求随机变量X n 的数学期望E (X n )关于n 的表达式.xx 江苏高考压轴卷数学答案一、填空题1. 2.. 3.2 4. 5.7.2 6. ①③ 7. 8. 9.4 10. 11. 12. 13.2047 14. 提示: 1.,则,则. 2.{}{}{}2022≤=≥-=-==x x x x x y x B ,又,所以.3. 当时,,则;当时,,;当时,,;当时,不成立,则输出.4.要使原式有意义,则,即且.5.2出现次,5出现次,8出现次,所以[]2.7)55(4)55(2)52(41012222=-⨯+-⨯+-⨯=s . 6. 逐个判断。
新高考数学高考数学压轴题 等差数列选择题专项训练分类精编及答案(2)
一、等差数列选择题1.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21 D .6、10、14、18、22解析:C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21. 故选:C2.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15 B .30C .3D .64解析:A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A3.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020 D .2021解析:B 【分析】根据递推关系式求出数列的通项公式即可求解. 【详解】由121()2n n a a n N *++=∈,则11()2n n a a n N *+=+∈, 即112n n a a +-=, 所以数列{}n a 是以1为首项,12为公差的等差数列, 所以()()11111122n n a a n d n +=+-=+-⨯=, 所以2021a =2021110112+=. 故选:B4.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36 B .48 C .56 D .72解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.5.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .5解析:A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-,对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A6.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26C .52D .56解析:B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B.7.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .13解析:B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B8.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60 B .120C .160D .240解析:B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B.9.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( ) A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++ 解析:D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++,()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确; D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.故选:D . 【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 10.已知数列{}n a 中,132a =,且满足()*1112,22n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有n a nλ≥成立,则实数λ的最小值是( ) A .2 B .4C .8D .16解析:A 【分析】 将11122n n n a a -=+变形为11221n n n n a a --=+,由等差数列的定义得出22n n n a +=,从而得出()22n n n λ+≥,求出()max22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,11122n n n a a -=+,所以11221n n n n a a --=+,而1123a = 所以数列{}2n n a 是首项为3公差为1的等差数列,故22nn a n =+,从而22n n n a +=. 又因为n a n λ≥恒成立,即()22n n n λ+≥恒成立,所以()max22n n n λ+⎡⎤≥⎢⎥⎣⎦.由()()()()()()()1*121322,221122n n nn n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨+-+⎪≥⎪⎩N 得2n = 所以()()2max2222222n n n +⨯+⎡⎤==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A11.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10 B .9C .8D .7解析:A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A12.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85解析:C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a k b k ⨯-==⨯-,故选:C .13.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( )A .21B .20C .19D .19或20解析:B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 14.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4 D .-4解析:A 【详解】 由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.15.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .0解析:A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解.二、等差数列多选题16.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2 B .5C .3D .4解析:BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD .【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 17.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值解析:AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定; 18.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD19.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S += B .27S S =C .5S 最小D .50a =解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.20.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.21.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k N k ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k kk aa a a a a a a kp +++++--+-+-++-=,222k k aa kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.22.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 解析:ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7nnN,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 23.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( ) A .2n S n = B .223n S n n =-C .21n a n =-D .35n a n =-解析:AC 【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.24.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 解析:ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.25.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值解析:AC 【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC . 【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。
2019-2020年高考压轴卷 数学 含答案
2019-2020年高考压轴卷 数学 含答案注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸内.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知全集U =R ,集合A ={x |x ≤-2,x ∈R },B ={x |x <1,x ∈R },则(∁U A )∩B = ▲ . 2.已知(1+2i)2=a +b i(a ,b ∈R ,i 为虚数单位),则a +b = ▲ .3.某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为 ▲ .4.现有红心1,2,3和黑桃4,5共五张牌,从这五张牌中随机取2张牌,则所取2张牌均为红心的概率为 ▲ .5.执行右边的伪代码,输出的结果是 ▲ .6.已知抛物线y 2=2px 过点M (2,2),则点M 到抛物线焦点的距离为 ▲ . 7.已知tan α=-2,,且π2<α<π,则cos α+sin α= ▲ .8.已知m ,n 是不重合的两条直线,α,β是不重合的两个平面.下列命题: ①若α⊥β,m ⊥α,则m ∥β; ②若m ⊥α,m ⊥β,则α∥β; ③若m ∥α,m ⊥n ,则n ⊥α; ④若m ∥α,m β,则α∥β.S ←1 I ←3While S ≤200 S ←S ×II ←I +2 End While Print I(第5题图)其中所有真命题的序号是 ▲ .9.将函数f (x )=sin(3x +π4)的图象向右平移π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在[π3,2π3]上的最小值为 ▲ .10.已知数列{a n }满足a n =a n -1-a n -2(n ≥3,n ∈N *),它的前n 项和为S n .若S 9=6,S 10=5,则a 1的值为 ▲ .11.已知函数f (x )=⎩⎨⎧x ,x ≥0,x 2,x <0, ,则关于x 的不等式f (x 2)>f (3-2x )的解集是 ▲ .12.在R t △ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围为 ▲ .13.在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线P A ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60,则圆M 的方程为 . 14.设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2a 2+c2的最大值为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且tan B tan A +1=2ca. (1)求B ;(2)若cos(C +π6)=13,求sin A 的值.如图,在四棱锥P -ABCD 中,O 为AC 与BD 的交点,AB 平面P AD ,△P AD 是正三角形,DC //AB ,DA =DC =2AB .(1)若点E 为棱P A 上一点,且OE ∥平面PBC ,求AEPE的值; (2)求证:平面PBC 平面PDC.17.(本小题满分14分)某种树苗栽种时高度为A (A 为常数)米,栽种n 年后的高度记为f (n ).经研究发现f (n )近似地满足 f (n )=9A a +bt n ,其中t =2-23,a ,b 为常数,n ∈N ,f (0)=A .已知栽种3年后该树木的高度为栽种时高度的3倍.(1)栽种多少年后,该树木的高度是栽种时高度的8倍; (2)该树木在栽种后哪一年的增长高度最大.18.(本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (-1,-1),c 为椭圆的半焦距,且c =2b .过点P 作两条互相垂直的直线l 1,l 2与椭圆C 分别交于另两点M ,N . (1)求椭圆C 的方程;(2)若直线l 1的斜率为-1,求△PMN 的面积; (3)若线段MN 的中点在x 轴上,求直线MN 的方程.PAB CDOE (第16题图)已知函数f (x )=ln x -mx (m ∈R ).(1)若曲线y =f (x )过点P (1,-1),求曲线y =f (x )在点P 处的切线方程; (2)求函数f (x )在区间[1,e]上的最大值;(3)若函数f (x )有两个不同的零点x 1,x 2,求证:x 1x 2>e 2.20.(本小题满分16分)已知a ,b 是不相等的正数,在a ,b 之间分别插入m 个正数a 1,a 2,…,a m 和正数b 1,b 2,…,b m ,使a ,a 1,a 2,…,a m ,b 是等差数列,a ,b 1,b 2,…,b m ,b 是等比数列. (1)若m =5,a 3b 3=54,求ba的值;(2)若b =λa (λ∈N *,λ≥2),如果存在n (n ∈N *,6≤n ≤m )使得a n -5=b n ,求λ的最小值及此时m 的值;(3)求证:a n >b n (n ∈N *,n ≤m ).数学附加题注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸内.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲已知圆O 的内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线,求证:CD 2=BD ·EC .B .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1 (k ≠0)的一个特征向量为α=⎣⎡⎦⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a ,k 的值.C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知M 是椭圆x 24+y 212=1上在第一象限的点,A (2,0),B (0,23)是椭圆两个顶点,求四边形OAMB 的面积的最大值.D .选修4—5:不等式选讲(第21题A 图)已知a ,b ,c ∈R ,a 2+2b 2+3c 2=6,求a +b +c 的最大值.【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正四棱锥P -ABCD 中,P A =AB =2,点M ,N 分别在线段P A 和BD 上,BN =13BD .(1)若PM =13P A ,求证:MN ⊥AD ;(2)若二面角M -BD -A 的大小为π4,求线段MN 的长度.23.(本小题满分10分)已知非空有限实数集S 的所有非空子集依次记为S 1,S 2,S 3,……,集合S k 中所有元素的平均值记为b k .将所有b k 组成数组T :b 1,b 2,b 3,……,数组T 中所有数的平均值记为m (T ).(1)若S={1,2},求m (T );(2)若S ={a 1,a 2,…,a n }(n ∈N *,n ≥2),求m (T ).C··PM ABDN (第22题图)参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.(-2,1) 2.-7 3.30 4.310 5.11 6.52 7.558.② 9.-22 10.1 11.(-∞,-3)∪(1,3) 12.[32,2] 13.(x -1)2+y 2=1 14.22-2 二、解答题:15.(本小题满分14分)解:(1)由tan B tan A +1=2c a 及正弦定理,得sin B cos A cos B sin A +1=2sin Csin A,…………………………2分所以sin B cos A +cos B sin A cos B sin A =2sin C sin A ,即sin(A +B )cos B sin A =2sin C sin A ,则sin C cos B sin A =2sin C sin A .因为在△ABC 中,sin A ≠0,sin C ≠0,所以cos B =12. ………………………5分因为B ∈(0,π),所以B =π3. ……………………………7分(2)因为0<C <2π3,所以π6<C +π6<5π6.因为cos(C +π6)=13,所以sin(C +π6)=223. ……………………10分所以sin A =sin(B +C )=sin(C +π3)=sin[(C +π6)+π6] ……………………12分=sin(C +π6)cos π6+cos(C +π6)sin π6=26+16. ……………………14分16.(本小题满分14分)证 (1)因为OE ∥平面PBC ,OE Ì平面P AC ,平面P AC ∩平面PBC =PC ,所以OE ∥PC ,所以AO ∶OC =AE ∶EP . ……………………………3分 因为DC //AB ,DC =2AB ,所以AO ∶OC =AB ∶DC =1∶2.所以AE PE =12. ………………………6分(2)法一:取PC 的中点F ,连结FB ,FD . 因为△P AD 是正三角形,DA =DC ,所以DP =DC .因为F 为PC 的中点,所以DF ⊥PC . …………………………8分 因为AB 平面P AD ,所以AB ⊥P A ,AB ⊥AD ,AB ⊥PD . 因为DC //AB ,所以DC ⊥DP ,DC ⊥DA .设AB =a ,在等腰直角三角形PCD 中,DF =PF =2a .在Rt △P AB 中,PB =5a .在直角梯形ABCD 中,BD =BC =5a .因为BC =PB =5a ,点F 为PC 的中点,所以PC ⊥FB .在Rt △PFB 中,FB =3a .在△FDB 中,由DF =2a ,FB =3a ,BD =5a ,可知DF 2+FB 2=BD 2,所以FB ⊥DF .…………………………12分由DF ⊥PC ,DF ⊥FB ,PC ∩FB =F ,PC 、FB Ì平面PBC ,所以DF ⊥平面PBC . 又DF 平面PCD ,所以平面PBC 平面PDC . ……………………………14分 法二:取PD ,PC 的中点,分别为M ,F ,连结AM ,FB ,MF , 所以MF ∥DC ,MF =12DC .因为DC //AB ,AB =12DC ,所以MF ∥AB ,MF =AB ,即四边形ABFM 为平行四边形,所以AM ∥BF . ………………………8分 在正三角形P AD 中,M 为PD 中点,所以AM ⊥PD . 因为AB ⊥平面P AD ,所以AB ⊥AM . 又因为DC //AB ,所以DC ⊥AM . 因为BF //AM ,所以BF ⊥PD ,BF ⊥CD .又因为PD∩DC=D,PD、DCÌ平面PCD,所以BF⊥平面PCD.………………12分因为BF Ì平面PBC ,所以平面PBC ^平面PDC . …………………14分 17.(本小题满分14分)解:(1)由题意知f (0)=A ,f (3)=3A .所以⎩⎪⎨⎪⎧9Aa +b =A ,9A a +14b =3A ,解得a =1,b =8. ………………4分所以f (n )=9A 1+8×tn ,其中t =2-23. 令f (n )=8A ,得9A 1+8×t n=8A ,解得t n =164,即2-2n 3=164,所以n =9.所以栽种9年后,该树木的高度是栽种时高度的8倍. ……………………6分(2)由(1)知f (n )=9A1+8×t n.第n 年的增长高度为△=f (n )-f (n -1)=9A 1+8×t n -9A1+8×t n -1. (9)分所以△=72At n -1(1-t )(1+8t n )(1+8t n -1)=72At n -1(1-t )1+8t n -1(t +1)+64t 2n -1=72A (1-t )1t n -1 +64t n+8(t +1) …………………12分≤72A (1-t )264t n ×1tn -1+8(t +1)=72A (1-t ) 8(1+t )2=9A (1-t )1+t. 当且仅当64t n=1tn -1,即2-2(2n -1)3=164时取等号,此时n =5. 所以该树木栽种后第5年的增长高度最大. ………………14分 18.(本小题满分16分)解:(1)由条件得1a 2+1b 2=1,且c 2=2b 2,所以a 2=3b 2,解得b 2=43,a 2=4.所以椭圆方程为:x 24+3y 24=1. ……………………3分(2)设l 1方程为y +1=k (x +1),联立⎩⎨⎧y =kx +k -1,x 2+3y 2=4,消去y 得(1+3k 2)x 2+6k (k -1)x +3(k -1)2-4=0. 因为P 为(-1,1),解得M (-3k 2+6k +11+3k 2,3k 2+2k -11+3k 2).……………………5分当k ≠0时,用-1k 代替k ,得N (k 2-6k -3k 2+3,-k 2-2k +3k 2+3). ………………………7分将k =-1代入,得M (-2,0),N (1,1). 因为P (-1,-1),所以PM =2,PN =22,所以△PMN 的面积为12×2×22=2. ……………………9分(3)解法一:设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧x 12+3y 12=4,x 22+3y 22=4,两式相减得(x 1+x 2)(x 1-x 2)+3(y 1+y 2)(y 1-y 2)=0, 因为线段MN 的中点在x 轴上,所以y 1+y 2=0,从而可得(x 1+x 2)(x 1-x 2)=0.…………………12分若x 1+x 2=0,则N (-x 1,-y 1).因为PM ⊥PN ,所以PM →·PN →=0,得x 12+y 12=2.又因为x 12+3y 12=4,所以解得x 1=±1,所以M (-1,1),N (1,-1)或M (1,-1),N (-1, 1).所以直线MN 的方程为y =-x . …………14分 若x 1-x 2=0,则N (x 1,-y 1), 因为PM ⊥PN ,所以PM →·PN →=0,得y 12=(x 1+1)2+1. 又因为x 12+3y 12=4,所以解得x 1=-12或-1,经检验:x =-12满足条件,x =-1不满足条件.综上,直线MN 的方程为x +y =0或x =-12. ………………16分解法二:由(2)知,当k ≠0时,因为线段MN 的中点在x 轴上,所以3k 2+2k -11+3k 2=--k 2-2k +3k 2+3,化简得4k (k 2-4k -1)=0,解得k =2±5. ………………12分若k =2+5,则M (-12,52),N (-12,-52),此时直线MN 的方程为x =-12.若k =2-5,则M (-12,-52),N (-12,52),此时直线MN 的方程为x =-12.………………………………14分 当k =0时,M (1,-1),N (-1,1),满足题意,此时直线MN 的方程为x +y =0. 综上,直线MN 的方程为x =-12或x +y =0. …………………16分19.(本小题满分16分)解:(1)因为点P (1,-1)在曲线y =f (x )上,所以-m =-1,解得m =1.因为f ′(x )=1x -1,所以切线的斜率为0,所以切线方程为y =-1.………………3分(2)因为f ′(x )=1x -m =1-mx x.①当m ≤0时, x ∈(1,e), f ′(x )>0,所以函数f (x )在(1,e )上单调递增,则f (x ) max =f (e )=1-me .②当1m ≥e ,即0<m ≤1e 时,x ∈(1,e),f ′(x )>0,所以函数f (x )在(1,e )上单调递增,则f (x )max =f (e )=1-me . ……………………5分③当1<1m <e ,即1e <m <1时,函数f (x )在 (1,1m )上单调递增,在(1m ,e )上单调递减,则f (x ) max =f (1m )=-ln m -1. ……………………7分④当1m ≤1,即m ≥1时,x ∈(1,e), f ′(x )<0,函数f (x )在(1,e )上单调递减,则f (x ) max=f (1)=-m .………………………………………9分综上,①当m ≤1e时,f (x )max =1-me ;②当1e<m <1时,f (x )max =-ln m -1;③当m ≥1时,f (x )max =-m . …………………10分(3)不妨设x 1>x 2>0.因为f (x 1)=f (x 2)=0,所以ln x 1-mx 1=0,ln x 2-mx 2=0, 可得ln x 1+ln x 2=m (x 1+x 2),ln x 1-ln x 2=m (x 1-x 2).要证明x 1x 2>e 2,即证明ln x 1+ln x 2>2,也就是m (x 1+x 2)>2.因为m =ln x 1-ln x 2x 1-x 2,所以即证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2.……12分令x 1x 2=t ,则t >1,于是ln t >2(t -1)t +1. 令(t )=ln t -2(t -1)t +1(t >1),则 ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0.故函数(t )在(1,+∞)上是增函数,所以(t )>(1)=0,即ln t >2(t -1)t +1成立.所以原不等式成立. ………………………16分 20.(本小题满分16分)解:(1)设等差数列的公差为d ,等比数列的公比为q ,则d =b -a6,q =6b a. a 3=a +3d =a +b2,b 3=aq 3=ab . ……………………2分因为a 3b 3=54,所以2a -5ab +2b =0,解得b a =4或14. ………………………4分(2)因为λa =a +(m +1)d ,所以d =λ-1m +1a ,从而得a n =a +λ-1m +1a ×n .因为λa =a ×qm +1,所以q =λ1m +1,从而得b n =a ×λnm +1.因为a n -5=b n ,所以a +(λ-1)(n -5)m +1×a =a ×λnm +1.因为a >0,所以1+(λ-1)(n -5)m +1=λnm +1(*). …………………………6分因为λ,m ,n ∈N *,所以1+(λ-1)(n -5)m +1为有理数.要使(*)成立,则λn m +1必须为有理数.因为n ≤m ,所以n <m +1. 若λ=2,则λn m +1为无理数,不满足条件.同理,λ=3不满足条件. ……………………8分 当λ=4时,4n m +1=22n m +1.要使22n m +1为有理数,则2nm +1必须为整数.又因为n ≤m ,所以仅有2n =m +1满足条件. 所以1+3(n -5)m +1=2,从而解得n =15,m =29.综上,λ最小值为4,此时m 为29. …………………………10分 (3)证法一:设c n >0,S n 为数列{c n }的前n 项的和. 先证:若{c n }为递增数列,则{S nn }为递增数列.证明:当n ∈N *时,S n n <nb n +1n=b n +1.因为S n +1=S n +b n +1>S n +S n n =n +1n S n ,所以S n n <S n +1n +1,即数列{S nn }为递增数列.同理可证,若{c n }为递减数列,则{S nn }为递减数列. ……………………12分①当b >a 时,q >1.当n ∈N *,n ≤m 时,S m +1m +1>S nn. 即aq (q m +1-1)q -1m +1>aq (q n -1)q -1n ,即aq m +1-a m +1>aq n -a n .因为b =aq m +1,b n =aq n ,d =b -a m +1,所以d >b n -an ,即a +nd >b n ,即a n >b n .②当b <a 时,0<q <1,当n ∈N *,n ≤m 时,S m +1m +1<S nn .即aq (q m +1-1)q -1m +1<aq (q n -1)q -1n .因为0<q <1,所以aq m +1-a m +1>aq n -an .以下同①.综上, a n >b n (n ∈N *,n ≤m ). ……………16分证法二:设等差数列a ,a 1,a 2,…,a m ,b 的公差为d ,等比数列a ,b 1,b 2,…,b m ,b 的公比为q ,b =λa (λ>0,λ≠1).由题意,得d =λ-1m +1a ,q =aλ1m +1,所以a n =a +nd =a +λ-1m +1an ,b n =a λnm +1.要证a n >b n (n ∈N *,n ≤m ),只要证1+λ-1m +1n -λnm +1>0(λ>0,λ≠1,n ∈N *,n ≤m ).…………………12分构造函数f (x )=1+λ-1m +1x -λxm +1(λ>0,λ≠1,0<x <m +1),则f′(x )=λ-1m +1-1m +1λxm +1ln λ.令f′(x )=0,解得x 0=(m +1)log λλ-1ln λ.以下证明0<log λλ-1ln λ<1.不妨设λ>1,即证明1<λ-1ln λ<λ,即证明ln λ-λ+1<0,λln λ-λ+1>0.设g (λ)=ln λ-λ+1,h (λ)=λln λ-λ+1(λ>1),则g′(λ)=1λ-1<0,h′(λ)=ln λ>0,所以函数g (λ)=ln λ-λ+1(λ>1)为减函数,函数h (λ)=λln λ-λ+1(λ>1)为增函数. 所以g (λ)<g (1)=0,h (λ)>h (1)=0.所以1<λ-1ln λ<λ,从而0<log λλ-1ln λ<1,所以0<x 0<m +1.……………14分因为在(0,x 0)上f′(x )>0,函数f (x )在(0,x 0)上是增函数;因为在(x 0,m +1)上f′(x )<0,函数f (x )在(x 0,m +1)上是减函数. 所以f (x )>min{f (0),f (m +1)}=0. 所以a n >b n (n ∈N *,n ≤m ).同理,当0<λ<1时,a n >b n (n ∈N *,n ≤m ). ……………16分数学附加题参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷.纸.指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲证:因为AE 为圆O 的切线,所以∠ABD =∠CAE . ………………2分因为△ACD 为等边三角形,所以∠ADC =∠ACD ,所以∠ADB =∠ECA ,所以△ABD ∽△EAC . ……………6分 所以AD BD =ECCA,即AD ·CA =BD ·EC . ………………8分因为△ACD 为等边三角形,所以AD =AC =CD ,所以CD 2=BD ·EC . ……………………10分 B .选修4—2:矩阵与变换 解:设特征向量为α=⎣⎡⎦⎤ k -1对应的特征值为λ,则⎣⎢⎡⎦⎥⎤a k 0 1 ⎣⎡⎦⎤ k -1=λ⎣⎡⎦⎤ k -1,即⎩⎨⎧ak -k =λk , λ=1.因为k ≠0,所以a =2. …………………5分因为A -1⎣⎡⎦⎤31=⎣⎡⎦⎤11,所以A ⎣⎡⎦⎤11=⎣⎡⎦⎤31,即⎣⎢⎡⎦⎥⎤2 k 0 1 ⎣⎡⎦⎤11=⎣⎡⎦⎤31,所以2+k =3,解得 k =1.综上,a =2,k =1. …………………………10分 C .选修4—4:坐标系与参数方程 解:设M (2cos θ,23sin θ),θ∈(0,π2).由题知OA =2,OB =23, …………………………2分 所以四边形OAMB 的面积S =12×OA ×23sin θ+12×OB ×2cos θ=23sin θ+23cos θ=26sin(θ+π4). ……………………8分所以当θ=π4时,四边形OAMB 的面积的最大值为26. ……………………10分D .选修4—5:不等式选讲解:由柯西不等式,得[a 2+(2b )2+(3c )2][12+(12)2+(13)2]≥(a +b +c )2.…………8分 因为a 2+2b 2+3c 2=6,所以(a +b +c )2≤11, 所以-11≤a +b +c ≤11. 所以a +b +c 的最大值为11,当且仅当a =2b =3c =61111. ………………………………10分 22.(本小题满分10分)证明:连接AC ,BD 交于点O ,以OA 为x 轴正方向,以OB 为y 轴正方向,OP 为z 轴建立空间直角坐标系.因为P A =AB =2,则A (1,0,0),B (0,1,0),D (0,-1,0),P (0,0,1). (1)由BN →=13BD →,得N (0,13,0),由PM →=13PA →,得M (13,0,23),所以MN →=(-13,13,-23),AD →=(-1,-1,0).因为MN →·AD →=0.所以MN ⊥AD . ………………………………………4分(2)因为M 在P A 上,可设PM →=λPA →,得M (λ,0,1-λ). 所以BM →=(λ,-1,1-λ),BD →=(0,-2,0). 设平面MBD 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BD →=0,n ·BM →=0,得⎩⎨⎧-2y =0,λx -y +(1-λ)z =0,其中一组解为x =λ-1,y =0,z =λ,所以可取n =(λ-1,0,λ).…………………8分 因为平面ABD 的法向量为OP →=(0,0,1),所以cos π4=|n ·OP →|n ||OP →||,即22=λ(λ-1)2+λ2,解得λ=12, 从而M (12,0,12),N (0,13,0),所以MN =(12-0)2+(0-13)2+(12-0)2=226. ………………………10分 23.(本小题满分10分)解:(1)S ={1,2}的所有非空子集为:{1},{2},{1,2},所以数组T 为:1,2,32.因此m (T )=1+2+323=32. ………………………………………3分(2)因为S ={a 1,a 2,…, a n },n ∈N *,n ≥2,所以m (T )=∑i =1na i +(12C 1n -1)∑i =1n a i +(13C 2n -1)∑i =1n a i +…+(1n C n -1n -1)∑i =1n a i C 1n +C 2n +C 3n +…+C nn=1+12C 1n -1+13C 2n -1+…+1n C n -1n -1 C 1n +C 2n +C 3n +…+C nn∑i =1na i . ………………………………………6分 又因为1k C k -1n -1=1k ·(n -1)!(k -1) ! (n -k ) !=(n -1)!k ! (n -k ) !=1n ·n !(n -k ) ! k !=1n C kn ,……………8分所以m (T )=1n C 1n +1n C 2n +1n C 3n +…+1n C n n C 1n +C 2n +C 3n +…+C nn∑i =1n a i =1n ∑i =1na i .…………………………………10分可编辑修改 .精选文档。
2024年新高考数学选填压轴题汇编二(解析版)
2024年新高考数学选填压轴题汇编(二)一、单选题1.(2023·广东东莞·高三校考阶段练习)已知a=e0.1,b=1110,c=101.9,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【答案】C【解析】由ln a=ln e0.1=0.1,ln b=ln 1110=ln1.1,则ln a-ln b=0.1-ln1.1=0.1-ln1+0.1,令f x =x-ln1+x,f x =1-11+x=x1+x,当x∈0,+∞时,f x >0,则f x 单调递增,即f0.1>f0 =0,故0.1-ln1.1>0,可得ln a>ln b,即a>b;由b10=111010=1+0.110=1+C1100.1+C2100.12+⋯+C10100.110=1+10×0.1+C2100.12+⋯+C10100.110=2+C2100.12+⋯+C10100.110>2,且c10=1.9<2,则b10>c10,即b>c.综上,a>b>c.故选:C.2.(2023·广东梅州·高三梅州市梅江区梅州中学校考阶段练习)已知数列a n的前n项和为S n,且a1=4,a n +a n+1=4n+2n∈N*,则使得S n>2023成立的n的最小值为()A.32B.33C.44D.45【答案】D【解析】a n+a n+1=4n+2①,当n≥2时,a n-1+a n=4n-1+2②,两式相减得a n+1-a n-1=4,当n为奇数时,a n为等差数列,首项为4,公差为4,所以a n=4+4n-12=2n+2,a n+a n+1=4n+2中,令n=1得a1+a2=6,故a2=6-4=2,故当n为偶数时,a n为等差数列,首项为2,公差为4,所以a n=2+4n2-1=2n-2,所以当n为奇数时,S n=a1+a3+⋯+a n+a2+a4+⋯+a n-1=n+124+2n+2+n-122+2n-42=n2+n+2,当n为偶数时,S n=a1+a3+⋯+a n-1+a2+a4+⋯+a n=n24+2n+n22+2n-22=n2+n,当n为奇数时,令n2+n+2>2023,解得n≥45,当n为偶数时,令n2+n>2023,解得n≥46,所以S n>2023成立的n的最小值为45.故选:D3.(2023·广东·高三统考阶段练习)数列a n满足a n+1=2a n-14a n+2,且a1=1,则数列a n的前2024项的和S2024=()A.-2536B.-2538C.-17716D.-17718【答案】C【解析】由题意知:a1=1,a2=2-14+2=16,a3=2×16-14×16+2=-14,a4=2×-14-14×-14+2=-32,a5=2×-32-14×-32+2=1,.....,易知数列a n是周期为4的数列,S2024=506×1+16-14-32=-17716.故选:C.4.(2023·广东·高三统考阶段练习)已知a,b,c均大于1,满足2a-1a-1=2+log2a,3b-2b-1=3+log3b,4c-3c-1=4+log4c,则下列不等式成立的是()A.c<b<aB.a<b<cC.a<c<bD.c<a<b 【答案】B【解析】∵2a-1a-1=2+log2a⇒1a-1=log2a,3b-2 b-1=3+log3b⇒1b-1=log3b,4c-3 c-1=4+log4c⇒1c-1=log4c,∴考虑y=1x-1x>1和y=log m x m=2,3,4的图象相交,在同一平面直角坐标系中画出y=log2x、y=log3x、y=log4x与y=1x-1x>1的图象如下:根据图象可知a<b<c.故选:B.5.(2023·广东佛山·高三校考阶段练习)已知函数f(x)=x2-8x+8,x≥02x+4,x<0.若互不相等的实根x1,x2,x3满足f x1=f x2=f x3,则x1+x2+x3的范围是()A.(2,8)B.(-8,4)C.(-6,0)D.(-6,8)【答案】A【解析】根据函数的解析式可得如下图象若互不相等的实根x 1,x 2,x 3满足f x 1 =f x 2 =f x 3 ,根据图象可得x 2与x 3关于x =4,则x 2+x 3=8,当2x 1+4=-8时,则x 1=-6是满足题意的x 1的最小值,且x 1满足-6<x 1<0,则x 1+x 2+x 3的范围是(2,8).故选:A .6.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知函数f x 的定义域为R ,设f x 的导数是f x ,且f x ⋅f x +sin x >0恒成立,则()A.f π2<f -π2 B.f π2>f -π2 C.f π2 <f -π2D.f π2 >f -π2 【答案】D【解析】设g x =f 2x -2cos x ,则g x =2f x ⋅f x +2sin x >0,故y =g x 在定义域R 上是增函数,所以g π2 >g -π2,即f 2π2 >f 2-π2 ,所以f π2 >f -π2 .故选:D .7.(2023·湖南长沙·高三湖南师大附中校考阶段练习)若正三棱锥P -ABC 满足AB +AC +AP=1,则其体积的最大值为()A.172B.184C.196D.1108【答案】C【解析】设正三棱锥的底边长为a ,侧棱长为b ,1=AB +AC +AP 2=AB 2+AC 2+AP 2+2AB ⋅AC +2AC ⋅AP +2AB ⋅AP ,=a 2+a 2+b 2+a 2+2ab ⋅b 2+a 2-b 22ab +2ab ⋅b 2+a 2-b 22ab=5a 2+b 2⇒b 2=1-5a 2,设该三棱锥的高为h ,由正弦定理可知:AO =12⋅a sin π3=33a ,所以h =PO =b 2-13a 2,又V P -ABC =13⋅S △ABC ⋅h =13⋅34a 2⋅b 2-13a 2=1123a 4-16a 6.由3a 4-16a 6>0⇒0<a <34设f x =3x 4-16x 60<x <34,f x =12x 3-96x 5=12x 31-8x 2 ,当x ∈0,24 时,fx >0,f x 单调递增,当x ∈24,34时,fx <0,f x 单调递减,y =f x 在0,34 上存在唯一的极大值点x =24,且在x =24时取得最大值为164.故正三棱锥P -ABC 体积的最大值为196,故选:C 8.(2023·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是A.0,18B.0,14 ∪58,1C.0,58D.0,18 ∪14,58【答案】D【解析】由题设有f (x )=1-cos 2ωx +12sin ωx -12=22sin ωx -π4,令f x =0,则有ωx -π4=k π,k ∈Z 即x =k π+π4ω,k ∈Z .因为f (x )在区间(π,2π)内没有零点,故存在整数k ,使得k π+π4ω≤π<2π<k π+5π4ω,即ω≥k +14ω≤k 2+58,因为ω>0,所以k ≥-1且k +14≤k 2+58,故k =-1或k =0,所以0<ω≤18或14≤ω≤58,故选:D .9.(2023·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=x 2-x 2-a2x -4 在区间-∞,-2 ,3,+∞ 上都单调递增,则实数a 的取值范围是()A.0<a ≤23 B.0<a ≤4C.0<a ≤43D.0<a ≤83【答案】D【解析】设g (x )=x 2-a 2x -4,其判别式Δ=a 24+16>0,∴函数g (x )一定有两个零点,设g (x )的两个零点为x 1,x 2且x 1<x 2,由x 2-a2x -4=0,得x 1=a2-a 24+162,x 2=a2+a 24+162,∴f (x )=a 2x +4,x <x 12x 2-a 2x -4,x 1≤x ≤x 2a 2x +4,x >x 2,①当a ≤0时,f (x )在-∞,x 1 上单调递减或为常函数,从而f (x )在-∞,-2 不可能单调递增,故a >0;②当a >0时,g -2 =a >0,故x 1>-2,则-2<x 1<0,∵f (x )在-∞,x 1 上单调递增,∴f (x )在-∞,-2 上也单调递增,g (3)=-32a -1<0,3<x 2,由f (x )在a 8,x 2和x 2,+∞ 上都单调递增,且函数的图象是连续的,∴f (x )在a 8,+∞ 上单调递增,欲使f (x )在3,+∞ 上单调递增,只需a8≤3,得a ≤83,综上:实数a 的范围是0<a ≤83.故选:D .10.(2023·湖南益阳·高三统考阶段练习)若m >0,双曲线C 1:x 2m -y 22=1与双曲线C 2:x 28-y 2m=1的离心率分别为e 1,e 2,则()A.e 1e 2的最小值为94B.e 1e 2的最小值为32C.e 1e 2的最大值为94D.e 1e 2的最大值为32【答案】B【解析】由题意可得e 21=m +2m ,e 22=8+m 8,则e 1e 2 2=m +2m ⋅8+m 8=54+2m +m8,由基本不等式,e 1e 2 2=54+2m +m 8≥54+214=94,即e 1e 2≥32,当且仅当2m =m 8,即m =4时等号成立,故e 1e 2的最小值为32.故选:B .11.(2023·湖南益阳·高三统考阶段练习)给定事件A ,B ,C ,且P C >0,则下列结论:①若P A >0,P B>0且A ,B 互斥,则A ,B 不可能相互独立;②若P A C +P B C =1,则A ,B 互为对立事件;③若P ABC =P A P B P C ,则A ,B ,C 两两独立;④若P AB=P A -P A P B ,则A ,B 相互独立.其中正确的结论有()A.1个 B.2个C.3个D.4个【答案】B【解析】对于①,若A ,B 互斥,则P AB =0,又P A P B >0,∴P AB ≠P A P B ,∴A ,B 不相互独立,①正确;对于②,∵P A C +P B C =P AC P C +P BCP C=1,∴P AC +P BC =P C ;扔一枚骰子,记事件A 为“点数大于两点”;事件B 为“点数大于五点”;事件C 为“点数大于一点”,则P AC =P A =46=23,P BC =P B =16,P C =56,满足P AC +P BC =P C ,但A ,B 不是对立事件,②错误;对于③,扔一枚骰子,记事件A 为“点数大于两点”;事件B 为“点数大于五点”;事件C 为“点数大于六点”,则P A =46=23,P B =16,P C =0,P ABC =0,P AB =P B =16,满足P ABC =P A P B P C ,此时P AB ≠P A P B ,∴事件A ,B 不相互独立,③错误;对于④,∵A =AB ∪AB ,事件AB 与AB 互斥,∴P A =P AB +P AB,又P AB=P A -P A P B ,∴P A -P AB =P A -P A P B ,即P AB =P A P B ,∴事件A ,B 相互独立,④正确.故选:B .12.(2023·湖南永州·高三校联考开学考试)已知函数f x =x 3+3x 2+x +1,设数列a n 的通项公式为a n =-2n +9,则f a 1 +f a 2 +⋯+f a 9 =()A.36B.24C.20D.18【答案】D【解析】f x =x 3+3x 2+x +1=x +1 3-2x +1 +2,所以曲线f x 的对称中心为-1,2 ,即f x +f -2-x =4,因为a n =-2n +9,易知数列a n 为等差数列,a 5=-1,a 1+a 9=a 2+a 8=a 3+a 7=a 4+a 6=2a 5=-2,所以f a 1 +f a 9 =f a 2 +f a 8=f a 3 +f a 7 =f a 4 +f a 6 =4,所以f a 1 +f a 2 +⋯+f a 9 =4×4+2=18.故选:D .13.(2023·湖南长沙·高三长郡中学校联考阶段练习)在矩形ABCD 中,AB =3,AD =4,现将△ABD 沿BD 折起成△A 1BD ,折起过程中,当A 1B ⊥CD 时,四面体A 1BCD 体积为()A.2B.372C.37D.972【答案】B【解析】由题可知A 1B ⊥A 1D ,A 1B ⊥CD ,又A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD ,故A 1B ⊥平面A 1CD ,又A 1C ⊂平面A 1CD ,所以A 1B ⊥A 1C ,即此时△A 1BC 为直角三角形,因为A 1B =CD =3,AD =BC =4,所以A 1C =7,又BC ⊥CD ,A 1B ∩BC =B ,A 1B ,BC ⊂平面A 1BC ,所以CD ⊥平面A 1BC ,所以四面体A 1BCD 的体积为13×3×12×3×7=372.故选:B .14.(2023·湖南长沙·高三长郡中学校联考阶段练习)在三角形ABC 中,AB ⋅AC =0,BC=6,AO=12AB +AC ,BA 在BC 上的投影向量为56BC ,则AO ⋅BC =()A.-12 B.-6C.12D.18【答案】A【解析】由题意,∠BAC =90°,O 为BC 中点,由BA 在BC 上的投影向量为BA cos B ⋅BCBC=56BC,即BAcos B BC=56,又BC =6,所以BA ⋅BC =BA BC cos B =56BC2=30,所以AO ⋅BC =BO -BA ⋅BC =BO ⋅BC -BA ⋅BC=3×6-30=-12.故选:A .15.(2023·湖南株洲·高三株洲二中校考开学考试)如图,在xOy 平面上有一系列点P 1x 1,y 1 ,P 2x 2,y 2 ,⋯,P nx n ,y n ⋯,对每个正整数n ,点P n 位于函数y =x 2x ≥0 的图像上,以点P n 为圆心的⊙P n 都与x 轴相切,且⊙P n 与⊙P n +1外切.若x 1=1,且x n +1<x n n ∈N * ,T n =x n x n +1,T n 的前n 项之和为S n ,则S 20=()A.3940B.4041C.8041D.2041【答案】D【解析】因为⊙P n 与⊙P n +1外切,且都与x 轴相切,所以x n -x n +12+y n -y n +1 2=y n +y n +1,即x n -x n +1 2+y n -y n +1 2=y n +y n +1 2,所以x n -x n +1 2=4y n y n +1=4x 2n x 2n +1,因为x n +1<x n n ∈N * ,所以x n -x n +1=2x n x n +1,所以1x n +1-1x n=2,所以数列1x n 为等差数列,首项1x 1=1,公差d =2,所以1x n=1+n -1 ×2=2n -1,所以x n =12n -1n ∈N * ,所以T n =x n x n +1=12n -1×12n +1=12n -1-12n +1 ×12,所以S n =12×1-13+13-15+⋯+12n -1-12n +1 =12×1-12n +1 =n2n +1n ∈N *所以S 20=2020×2+1=2041,故选:D16.(2023·湖南株洲·高三株洲二中校考开学考试)已知定义在R 上的可导函数f x 满足xf x +f x <xf x ,若y =f x -3 -1e是奇函数,则不等式xf x +3e x +2>0的解集是()A.-∞,-2B.-∞,-3C.-2,+∞D.-3,+∞【答案】B【解析】构造函数g x =x ⋅f x e x ,依题意可知g x =f x +xf x -xf x e x<0,所以g x 在R 上单调递减.由于y =f x -3 -1e是奇函数,所以当x =0时,y =f -3 -1e =0,所以f -3 =1e ,所以g -3 =-3⋅f -3e -3=-3⋅1e e-3=-3e 2,由xf x +3e x +2>0得e x g x +3e x +2>0,即g x >-3e 2=g -3 ,所以x <-3,故不等式的解集为-∞,-3 .故选:B17.(2023·湖南·高三临澧县第一中学校联考开学考试)已知圆台O 1O 2的上底面圆O 1的半径为2,下底面圆O 2的半径为6,圆台的体积为104π,且它的两个底面圆周都在球O 的球面上,则OO 1OO 2=( ).A.3B.4C.15D.17【答案】D【解析】设圆台的高为h ,依题意V =134π+36π+12π h =104π,解得h =6.设O 1O =x ,则22+x 2=62+6-x 2,解得x =173,故OO 1OO 2=1736-173=17.故选:D .18.(2023·湖南·高三临澧县第一中学校联考开学考试)已知sin α-β =13,则当函数f x =79sin x -sin 2α-2β cos x 取得最小值时,sin x =( ).A.-79B.-19C.19D.79【答案】A【解析】依题意,cos 2α-β =1-2sin 2a -β =79,所以f x =sin x cos 2α-2β -cos x sin 2α-2β=sin x -2α-β ,当x -2α-β =-π2+2k πk ∈Z ,即x =2α-β -π2+2k πk ∈Z ,f x 取最小值,此时sin x =-cos 2α-β =-79,故选:A .19.(2023·湖南衡阳·高三衡阳市八中校考开学考试)已知函数f x =4ex 21+ln2x,则不等式f x >e 2x 的解集是()A.0,1B.12e ,14C.1e ,1D.12e ,12【答案】D【解析】不等式4ex 21+ln2x >e 2x 可整理为2ex 1+ln2x >e 2x 2x ,令g x =e xx,定义域为0,+∞ ,则原不等式可看成g 1+ln2x >g 2x ,g x =e x x -1 x 2,令g x >0,解得x >1,令gx <0,解得0<x <1,所以g x 在0,1 上单调递减,1,+∞ 上单调递增,令h x =1+ln2x -2x ,则h x =1x -2=1-2x x ,令h x >0,则0<x <12,令h x <0,则x >12,所以h x 在0,12 上单调递增,12,+∞ 上单调递减,且h 12 =0,所以h x ≤0,即1+ln2x -2x ≤0,即1+ln2x ≤2x ,当0<x <12时,1+ln2x <1,2x <1,所以1+ln2x <2x0<1+ln2x <10<2x <1,解得12e <x <12;当x >12时,1+ln2x >1,2x >1,所以1+ln2x >2x ,不成立;综上可得,不等式f x >e 2x 的解集为12e ,12.故选:D .二、多选题20.(2023·广东东莞·高三校考阶段练习)已知四面体ABCD 的所有棱长均为2,则下列结论正确的是()A.异面直线AC 与BD 所成角为60°B.点A 到平面BCD 的距离为263C.四面体ABCD 的外接球体积为6πD.动点P 在平面BCD 上,且AP 与AC 所成角为60°,则点P 的轨迹是椭圆【答案】BC【解析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC ,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误.取BD 中点E ,连接AE ,CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF =AB 2-BF 2=236,即点A 到平面BCD 的距离为263,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径,因为V A -BCD =13S △BCD ⋅AF =4×13S △BCD ⋅OF ,所以AF =4OF ,即OF =66,AO =62,所以四面体ABCD 的外接球体积V =43πR 3=43πOA 3=6π,故C 正确;建系如图:A 0,0,263 ,C 0,233,0 ,设P (x ,y ,0),则AP =x ,y ,-263 ,AC =0,233,-263 因为AP ⋅AC =AP AC cos60°,所以233y +249=x 2+y 2+83×129+247×12,即233y +83=x 2+y 2+83,平方化简可得:x 2-y 23-3239y -409-0,可知点P 的轨迹为双曲线,故D 错误.故选:BC .21.(2023·广东梅州·高三梅州市梅江区梅州中学校考阶段练习)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;⋯;第n n ∈N * 次得到数列1,x 1,x 2,x 3,⋯,x k ,2;⋯记a n =1+x 1+x 2+⋯+x k +2,数列a n 的前n 项为S n ,则()A.k +1=2n B.a n +1=3a n -3C.a n =32n 2+3n D.S n =343n +1+2n -3 【答案】ABD【解析】由题意可知,第1次得到数列1,3,2,此时k =1第2次得到数列1,4,3,5,2,此时k =3第3次得到数列1, 5,4,7,3,8,5,7,2,此时k =7第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k =15第n 次得到数列1,x 1,x 2,x 3,⋯,x k ,2此时k =2n -1所以k +1=2n ,故A 项正确;结合A 项中列出的数列可得:a 1=3+3a 2=3+3+9a 3=3+3+9+27a 4=3+3+9+27+81 ⇒a n =3+31+32+⋯+3n (n ∈N *)用等比数列求和可得a n =3+33n -12则a n +1=3+33n +1-1 2=3+3n +2-32=3n +22+32又3a n -3=33+33n -1 2-3=9+3n +22-92-3=3n +22+32所以a n +1=3a n -3,故B 项正确;由B 项分析可知a n =3+33n -1 2=323n +1即a n ≠32n 2+3n ,故C 项错误.S n =a 1+a 2+a 3+⋯+a n=322+332+⋯+3n +12 +32n =321-3n 1-32+32n=3n +24+3n 2-94=343n +1+2n -3 ,故D 项正确.故选:ABD .22.(2023·广东·高三统考阶段练习)已知O 为坐标原点,F 为抛物线E :y 2=2x 的焦点,过点P (2,0)的直线交E 于A ,B 两点,直线AF ,BF 分别交E 于C ,D ,则()A.E 的准线方程为x =-12B.∠AOB =90°C.FA +FB 的最小值为4D.AC +2BD 的最小值为3+3664【答案】ABD【解析】对于A ,由题意p =1,所以E 的准线方程为x =-12,故A 正确:对于B ,设A y 212,y 1 ,B y 222,y 2,设直线AB :x =my +2,与抛物线联立可得y 2-2my -4=0,Δ>0⇒m ∈R ,y 1y 2=-4,所以OA ⋅OB =y 1y 24y 1y 2+4 =0,所以∠AOB =90°,故B 正确;对于C ,FA +FB =y 21+y 222+1≥y 1y 2 +1=5>4,故C 错误;对于D ,设直线AC :x =ty +12,与抛物线联立可得y 2-2ty -1=0,Δ>0⇒t ∈R ,y 1y C =-1,同理y 2y D =-1,所以y C =-1y 1,y D =-1y 2,所以x C =y 2C2=12⋅1y 21,x D =y 2D 2=12⋅1y 22所以AC =x A +x C +1=1+12y 21+1y 21 ,BD =x B +x D +1=1+12y 22+1y 22,y 1y 2=-4,所以AC +2BD =3+916y 21+332y 21≥3+3664,当且仅当y 21=2663时等号成立,故D 正确.故选:ABD .23.(2023·广东·高三统考阶段练习)已知函数f x =ae x -x 2+x ln x -ax ,则()A.当a =0时,f x 单调递减 B.当a =1时,f x >0C.若f x 有且仅有一个零点,则a ≤1 D.若f x ≥0,则a ≥1e -1【答案】ABD【解析】当a =0时,f x =x ln x -x 2,f x =1+ln x -2x x >0 ,设g x =1+ln x -2x ,则g x =1x -2=1-2xx,当x ∈0,12 时,g x >0,f x 单调递增,当x ∈12,+∞ 时,g x <0,f x 单调递减,当x =12时,f x 取得最大值,因为f 12 =1+ln 12-2×12=-ln2<0,所以fx <0,f x 单调递减,故A 正确;当a =1时,f x =e x +x ln x -x 2=x e x -ln x -(x -ln x )-1t =m x =x -ln x ,则m x =1-1x =x -1x,当x ∈0,1 时,m x <0,m x 单调递减,当x ∈(1,+∞)时,m x >0,m x 单调递增,当x =1时,m x 取得最小值,m 1 =1,所以t =m x ≥1.设h (t )=e t -t -1,h (t )=e t -1,因为t ≥1,所以h (t )=e t -1≥e -1>0,h (t )单调递增,所以h (t )≥h 1 =e -2>0,所以f x =e x +x ln x -x 2=x e x -ln x -(x -ln x )-1 =xh m (x ) >0,故B 正确;f x =x ae x -ln x -(x -ln x )-a ,若f x =0,则ae x -ln x -(x -ln x )-a =0,设t =m x =x -ln x ≥1,即a =te t -1,设F (t )=t e t -1,则F(t )=(1-t )e t -1e t -12,因为t ≥1,所以(1-t )e t -1<0,F (t )<0,F (t )单调递减,若f x 有且仅有一个零点,则t =1,此时a =1e -1,故C 错误;若f x ≥0,则ae t -t -a ≥0,即a ≥te t -1=F t ,因为F t 单调递减,所以a ≥F (1)=1e -1,故D 正确.故选:ABD .24.(2023·广东佛山·高三校考阶段练习)我们知道,函数y =f (x )的图象关系坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数. 有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )-b 为奇函数. 现在已知,函数f (x )=x 3+mx 2+nx +2的图像关于点(2,0)对称,则()A.f (2)=0B.f (1)=3C.对任意x ∈R ,有f (2+x )+f (2-x )=0D.存在非零实数x 0,使f 2+x 0 -f 2-x 0 =0【答案】ACD【解析】由题意,因为函数f (x )=x 3+mx 2+nx +2的图像关于点(2,0)对称,所以函数y =f x +2 为奇函数,所以f x +2 +f -x +2 =0,故C 正确;又y =f x +2 =x 3+m +6 x 2+12+4m +n x +4m +2n +10,则f x +2 +f -x +2 =2m +6 x 2+24m +2n +10 =0,所以m +6=04m +2n +10=0,解得m =-6n =7 ,所以f x =x 3-6x 2+7x +2,f x +2 =x 3-5x ,则f 2 =0,f 1 =4,故A 正确,B 错误;令f 2+x -f 2-x =0,则2x 3-10x =0,解得x =0或±5,所以存在非零实数x 0,使f 2+x 0 -f 2-x 0 =0,故D 正确.故选:ACD .25.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知函数f x =sin ωx +φ ω>0 满足f x 0 =f x 0+1 =22,且f x 在x 0,x 0+1 上有最大值,无最小值,则下列结论正确的是()A.f x 0+12 =1B.若x 0=0,则f x =sin πx +π4 C.f x 的最小正周期为4 D.f x 在0,2024 上的零点个数最少为1012个【答案】AC【解析】A ,由题意f x 在x 0,x 0+1 的区间中点处取得最大值,即f x 0+12=1,正确;B ,假设若x 0=0,则f x =sin πx +π4成立,由A 知f 12 =1,而f 12=sin π2+π4 =22≠1,故假设不成立,则错误;C ,f x 0 =f x 0+1 =22,且f x 在x 0,x 0+1 上有最大值,无最小值,令ωx 0+φ=2k π+π4,ωx 0+1 +φ=2k π+3π4,k ∈Z ,则两式相减,得ω=π2,即函数的最小正周期T =2πω=4,故正确;D ,因为T =4,所以函数f x 在区间0,2024 上的长度恰好为506个周期,当f 0 =0,即φ=k π,k ∈Z 时,f x 在区间0,2024 上的零点个数至少为506×2-1=1011个,故错误.故选:AC .26.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知直线y =a 与曲线y =xe x相交于A ,B 两点,与曲线y =ln xx相交于B ,C 两点,A ,B ,C 的横坐标分别为x 1,x 2,x 3.则()A.x 2=ae x 2B.x 2=ln x 1C.x 3=ex 2D.x 1+x 3>2x 2【答案】ACD 【解析】设f x =x e x ,得fx =1-x ex ,令f x =0,可得x =1,当x <1时,f x >0,则函数f x 单调递增,当x >1时,f x <0,则函数f x 单调递减,则当x =1时,f x 有极大值,即最大值f x max =f 1 =1e.设g x =ln x x ,得g x =1-ln xx2,令g x =0,则x =e ,当x <e 时,g x >0,则函数g x 单调递增,当x >e 时,g x <0,则函数g x 单调递减,则当x =e 时,g x 有极大值,即最大值g x max =f e =1e,从而可得0<x 1<1<x 2<e <x 3.由x 2ex 2=a ,得x 2=ae x2,故A 正确;由x 1e x 1=ln x 2x 2,得x 1e x 1=ln x 2e ln x 2,即f x 1 =f ln x 2 ,又0<x 1<1<x 2<e ,得0<ln x 2<1,又f x 在0,1 上单调递增,则x 1=ln x 2,故B 错误;由x 2e x 2=ln x 3x 3,得ln e x2ex 2=ln x 3x 3,即g e x 2=g x 3 .又1<x 2<e <x 3,得e x 2>e ,又g x 在e ,+∞ 上单调递减,则e x 2=x 3,故C 正确;由前面知x 1=ln x 2,e x 2=x 3,得x 1x 3=e x2ln x 2,又由x 2ex 2=ln x 2x 2=a ,得e x2=x 2a ,ln x 2=ax 2,则x 1x 3=x 22,x 1+x 3>2x 1x 3=2x 2.故D 正确.故选:ACD .27.(2023·湖南长沙·高三长郡中学校考阶段练习)由两个全等的正四棱台组合而得到的几何体1如图1,沿着BB 1和DD 1分别作上底面的垂面,垂面经过棱EP ,PH ,HQ ,QE 的中点F ,G ,M ,N ,则两个垂面之间的几何体2如图2所示,若EN =AB =EA =2,则()A.BB 1=22B.FG ⎳ACC.BD ⊥平面BFB 1GD.几何体2的表面积为163+8【答案】ABC【解析】将几何体1与几何体2合并在一起,连接BB 1,FG ,PQ ,EH ,AC ,BD ,记FG ∩PQ =K ,易得K ∈BB 1,对于A ,因为在正四棱台ABCD -EPHQ 中,AB ⎳EP ,F 是EP 的中点,所以AB ⎳EF ,又N 是EQ 的中点,EN =2,所以EQ =4,则EP =4,EF =2,又AB =2,所以AB =EF ,所以四边形ABFE 是平行四边形,则BF =AE =2,同理:B 1F =B 1G =BG =2,所以四形边B 1FBG 是边长为2菱形,在边长为4的正方形EPHQ 中,HE =42,因为F ,G 是EP ,PH 的中点,所以FG ⎳EH ,FG =12EH =22,所以BB 1=222-2222=22,故A 正确;对于B ,因为在正四棱台ABCD -EPHQ 中,面ABCD ⎳面EPHQ ,又面AEHC ∩面ABCD =AC ,面AEHC ∩面EPHQ =EH ,所以AC ⎳EH ,又FG ⎳EH ,所以FG ⎳AC ,故B 正确;对于C ,在四边形EPHQ 中,由比例易得PK =14PQ =2,由对称性可知BK =12B 1B =2,而PB =2,所以PK 2+BK 2=PB 2,则PK ⊥BK ,即PQ ⊥BK ,而由选项B 同理可证BD ⎳PQ ,所以BD ⊥BK ,因为在正方形ABCD 中,BD ⊥AC ,而FG ⎳AC ,所以BD ⊥FG ,因为BK ∩FG =K ,BK ,FG ⊂面BFB 1G ,所以BD ⊥面BFB 1G ,对于D ,由选项A 易知四边形BGB 1F 是边长为2的正方形,上下底面也是边长为2的正方形,四边形ABFE 是边长为2的菱形,其高为22-4-222=3,所以几何体2是由4个边长为2正方形和8个上述菱形组合而成,所以其表面积为4×22+8×2×3=16+163,故D 错误.故选:ABC .28.(2023·湖南长沙·高三长郡中学校考阶段练习)已知随机变量ξ~B (2n ,p ),n ∈N *,n ≥2,0<p <1,记f (t )=P (ξ=t ),其中t ∈N ,t ≤2n ,则()A.2nt =0f (t ) =1 B.2nt =0tf (t ) =2npC.n t =0f (2t )<12<nt =1f (2t -1) D.若np =6,则f (t )≤f (12)【答案】ABD【解析】对于A ,2nt =0f (t )=2nt =0P (ξ=t )=1,所以A 正确;对于B ,因为2nt =0t f (t )=E (ξ)=2np ,所以B 正确;对于C ,当p =q =12时,n t =0f (2t )=nt =1f (2t -1)=12,所以C 错误;对于D ,因为(2n +1)p =12+p ,所以当t =12时,f (t )最大,所以D 正确;证明如下:若ξ~B (n ,p ),则P (ξ=k )P (ξ=k -1)=C k n p k(1-p )n -k C k -1n p k -1(1-p )n -k +1=(n -k +1)pk (1-p ),若P (ξ=k )>P (ξ=k -1),则(n -k +1)pk (1-p )>1,解得k <(n +1)p ,故当k <(n +1)p 时,P (ξ=k )单调递增,当k >(n +1)p 时,P (ξ=k )单调递减,即当(n +1)p 为整数时,k =(n +1)p 或k =(n +1)p -1时,P (ξ=k )取得最大值,当(n +1)p 不为整数,k 为(n +1)p 的整数部分时,P (ξ=k )取得最大值.故选:ABD .29.(2023·湖南长沙·高三长郡中学校考阶段练习)已知ab ≠0,函数f x =e ax +x 2+bx ,则()A.对任意a ,b ,f x 存在唯一极值点B.对任意a ,b ,曲线y =f x 过原点的切线有两条C.当a +b =-2时,f x 存在零点D.当a +b >0时,f x 的最小值为1【答案】ABD【解析】对于A ,由已知ab ≠0,函数f x =e ax +x 2+bx ,可得f x =ae ax +2x +b ,令g x =ae ax +2x +b ,∴g x =a 2e ax +2>0,则g x 即f x =ae ax +2x +b 在R 上单调递增,令f x =ae ax +2x +b =0,则ae ax =-2x -b ,当a >0时,作出函数y =ae ax ,y =-2x -b 的大致图象如图:当a <0时,作出函数y =ae ax ,y =-2x -b 的大致图象如图:可知y =ae ax ,y =-2x -b 的图象总有一个交点,即f x =ae ax +2x +b =0总有一个根x 0,当x <x 0时,f x <0;当x >x 0时,f x >0,此时f x 存在唯一极小值点,A 正确;对于B ,由于f 0 =1,故原点不在曲线f x =e ax +x 2+bx 上,且f x =ae ax +2x +b ,设切点为(m ,n ),n =e am+m 2+bm ,则fm =ae am+2m +b =n m =e am +m 2+bm m,即ae am+m=e amm,即eam(am-1)+m2=0,令h(m)=e am(am-1)+m2,h (m)=ae am(am-1)+ae am+2m=m(a2e am+2),当m<0时,h (m)<0,h(m)在(-∞,0)上单调递减,当m>0时,h (m)>0,h(m)在(0,+∞)上单调递增,故h(m)min=h(0)=-1,当m→-∞时,e am(am-1)的值趋近于0,m2趋近于无穷大,故h(m)趋近于正无穷大,当m→+∞时,e am(am-1)的值趋近于正无穷大,m2趋近于无穷大,故h(m)趋近于正无穷大,故h(m)在(-∞,0)和(0,+∞)上各有一个零点,即e am(am-1)+m2=0有两个解,故对任意a,b,曲线y=f x 过原点的切线有两条,B正确;对于C,当a+b=-2时,b=-2-a,f x =e ax+x2-(a+2)x,故f x =ae ax+2x-a-2,该函数为R上单调增函数,f 0 =-2<0,f 1 =ae a-a=a(e a-1)>0,故∃s∈(0,1),使得f s =0,即e as=-2as+1+2a,结合A的分析可知,f(x)的极小值也即最小值为f(s)=e as+s2-(a+2)s=-2as+1+2a+s2-(a+2)s,令m(s)=-2as+1+2a+s2-(a+2)s,则m s =2s-a+2a+2,且为增函数,当a<0时,m (0)=-a+2a+2≥22-2>0,当且仅当a=-2时取等号,故当s>0时,m s >m 0 >0,则f(s)在(0,1)上单调递增,故f(s)>f(0)=2a+1,令a=-3,则f(0)=2a+1=13>0,∴f(s)>f(0)>0,此时f(x)的最小值为f(s)>0,f x 无零点,C错误;对于D,当a+b>0时,f x为偶函数,考虑x>0视情况;此时f x=f(x)=e ax+x2+bx,(x>0),f (x)=ae ax+2x+b,结合A的分析可知f (x)=ae ax+2x+b在R上单调递增,f (0)=a+b>0,故x>0时,f (x)>f (0)>0,则f(x)在(0,+∞)上单调递增,故f(x)在(-∞,0)上单调递减,f x为偶函数,故f xmin=f(0)=1,D正确,故选:ABD30.(2023·湖南益阳·高三统考阶段练习)已知函数f x =e x-1,x≥0x2+2x,x<0,则()A.f x 有两个零点B.直线y=x与f x 的图象有两个交点C.直线y=12与f x 的图象有四个交点D.存在两点a,b,-2-a,ba>0,b>0同时在f x 的图象上【答案】ABD【解析】画出f x 的图象,如下:A 选项,f x 有两个零点,即-2和0,A 正确;B 选项,当x ≥0时,f x =e x -1,则f x =e x ,令f x =e x =1,解得x =0,又f 0 =0,故y =e x -1在x =0的切线方程为y =x ,令m x =e x -1-x ,x >0,则m x =e x -1>0,故m x =e x -1-x 在0,+∞ 上单调递增,故m x >m 0 =0,即e x -1>x 在0,+∞ 上恒成立,故y =e x -1在x ∈0,+∞ 上与y =x 只有一个交点,当x <0时,f x =x 2+2x ,联立y =x ,可得x 2+2x =x ,解得x =-1或0(舍去),结合函数图象,可知直线y =x 与f x 的图象有两个交点,B 正确;C 选项,在同一坐标系内画出f x 与直线y =12的图象,可知直线y =12与f x 的图象有2个交点,C 错误;D 选项,点a ,b ,-2-a ,b a >0,b >0 是关于x =-1对称的两点,因为a >0,b >0,故a ,b 是位于第一象限的点,-2-a ,b 位于第二象限,-2-a ,b 在f x =x2+2x ,x <-2上,要想满足a ,b 同时在f x 的图象上,只需g x =x 2+2x ,x >0与h x =e x -1,x >0在第一象限内有交点,因为g 1 =3,h 1 =e -1,故g 1 >h 1 ,又g 3 =15,h 3 =e 3-1,故g 3 <h 3 ,两函数均在0,+∞ 单调递增,故一定存在x 0∈1,3 ,使得g x 0 =h x 0 ,D 正确.故选:ABD31.(2023·湖南益阳·高三统考阶段练习)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别是线段A 1B ,B 1D 1上的点,则下列结论正确的是()A.三棱锥P -CB 1D 1的体积是43B.线段PQ 的长的取值范围是233,23C.若P ,Q 分别是线段A 1B ,B 1D 1的中点,则PQ 与平面AC 所成的角为π6D.若P ,Q 分别是线段A 1B ,B 1D 1的中点,则PQ 与直线AC 所成的角为π3【答案】AC【解析】建立如图所示空间直角坐标系:因为棱长为2,所以A 2,0,0 ,B (2,2,0),C (0,2,0),A (2,0,2),D (0,0,2),A B =(0,2,-2),DC =(0,2,-2),AC =(-2,2,0),对于A ,∵A B =(0,2,-2),D C =(0,2,-2),∴A B =D C,则A B ⎳D C,所以A B ⎳D C ,又A B ⊄平面CB D ,D C ⊂平面CB D ,所以A B ⎳平面CB D ,又点P ∈A B ,故点P 到平面CB D 的距离等价于点B 到平面CB D 的距离,所以V P -CB 1D 1=V B -CB 1D 1=V D 1-BCB 1=13×2×2=43,故A 正确;对于B ,设P (2,m ,2-m ),Q (n ,n ,2),m ,n ∈[0,2]则PQ =n -22+n -m 2+m 2=2m 2+2n 2-2mn -2n +4=2m -n 2 2+32n -232+103,故m =n2n =23及m =13n =23时,PQ min =103=303≠233,故B 错误;对于C ,若P ,Q 分别是线段A 1B ,B 1D 1的中点,则P (2,1,1),Q (1,1,2),PQ =(-1,0,1),取平面AC 的法向量n=(0,0,1),设θ为PQ 与平面AC 所成的角,则sin θ=cos PQ , n =PQ ⋅nPQ n=12=22,所以θ=π4,即PQ 与平面AC 所成的角为π4,故C 错误;对于D ,若P ,Q 分别是线段A 1B ,B 1D 1的中点,则P (2,1,1),Q (1,1,2),PQ =(-1,0,1),则PQ ⋅AC =(-1,0,1)⋅(-2,2,0)=2,则cos PQ ,AC =PQ ⋅ACPQ AC=22×22=12,则PQ ,AC =π3,即PQ 与直线AC 所成的角为π3,故D 正确.故选:AD .32.(2023·湖南永州·高三校联考开学考试)已知函数f x =x 3-3x ,x <02x-2,x ≥0,若关于x 的方程f 2x -2a +1 f x +a2+a =0有6个不同的实根,则实数a 可能的取值有()A.-12B.12C.34D.2【答案】BC【解析】当x <0时,f x =x 3-3x ,则f x =3x 2-3=3x -1 x +1 ,当x ∈-∞,-1 时,f x >0,f x 单调递增,当x ∈-1,0 时,f x <0,f x 单调递减,作出f x 的图象,如图所示,f 2x -2a +1 f x +a 2+a =f x -a f x -a -1 =0,即f x =a 与f x =a +1共六个不等实根,由图可知f x =2时,x =-1或x =2,即f x =2有两个根,若使f x =a 与f x =a +1共六个不等实根,只需满足0<a <20<a +1<2 ,即0<a <1.故选:BC .33.(2023·湖南长沙·高三长郡中学校联考阶段练习)若数列a n 中任意连续三项a i ,a i +1,a i +2,均满足a i -a i +2 a i +2-a i +1 >0,则称数列a n 为跳跃数列.则下列结论正确的是()A.等比数列:1,-13,19,-127,181,⋯是跳跃数列B.数列a n 的通项公式为a n =cos n π2n ∈N *,数列a n 是跳跃数列C.等差数列不可能是跳跃数列D.等比数列是跳跃数列的充要条件是该等比数列的公比q ∈-1,0 【答案】ACD【解析】对于选项A ,由跳跃数列定义知,等比数列:1,-13,19,-127,181,⋯是跳跃数列,故A 正确;对于选项B ,数列的前三项为a 1=0,a 2=-1,a 3=0,不符合跳跃数列的定义,故B 错误;对于选项C ,当等差数列公差d >0时,它是单调递增数列;公差d <0时,它是单调递减数列;公差d =0时,它是常数列,所以等差数列不可能是跳跃数列,故C 正确;对于选项D ,等比数列a n 是跳跃数列,则a i -a i +2 a i +2-a i +1 =a 2i 1-q 2 q 2-q >0,整理得q +1 q (q -1)2<0,即-1<q <0,若比数列a n 的公比-1<q <0,则q +1 q (q -1)2<0,可得a i -a i +2 a i +2-a i +1 =a 2i 1-q 2 q 2-q >0,所以等比数列a n 是跳跃数列,故D 正确.故选:ACD .34.(2023·湖南长沙·高三长郡中学校联考阶段练习)已知函数f x 的定义域为R ,函数f x 的图象关于点1,0 对称,且满足f x +3 =f 1-x ,则下列结论正确的是()A.函数f x +1 是奇函数B.函数f x 的图象关于y 轴对称C.函数f x 是最小正周期为2的周期函数D.若函数g x 满足g x +f x +3 =2,则2024k =1g k =4048【答案】ABD【解析】因为函数f x 的图象关于点1,0 对称,所以f x +1 =-f 1-x ,所以函数f x +1 是奇函数,故A 正确;因为f x +1 =-f 1-x ,所以f x +2 =-f -x ,又f x +3 =f 1-x ,所以f x +3 =-f x +1 ,所以f x +2 =-f x ,所以f -x =f x ,所以f x 为偶函数.故B 正确;因为f x +4 =-f x +2 =f x ,所以f x 是最小正周期为4的周期函数,故C 错误;因为g x +f x +3 =2,所以g x =2-f x +3 ,那么g x +4 =2-f x +7 =2-f x +3 =g x ,所以g x 也是周期为4的函数,g 1 +g 2 +g 3 +g 4 =2-f 4 +2-f 5 +2-f 6 +2-f 7 =8-f 4 +f 5 +f 6 +f 7 ,因为f x +2 =-f x ,所以f 4 +f 6 =0,f 5 +f 7 =0,所以g 1 +g 2 +g 3 +g 4 =8,所以2024i =1g k =506g 1 +g 2 +g 3 +g 4 =4048,故D 正确.故选:ABD .35.(2023·湖南株洲·高三校考阶段练习)如图,在正方体ABCD -A 1B 1C 1D 1中,AD =4,点E ,F 分别为A 1B 1,BC 的中点,点P 满足AP =λAD +μAA 1,λ∈0,1,μ∈ 0,1 ,则下列说法正确的是()A.若λ+μ=1,则四面体PEFD 1的体积为定值B.若λ=12,μ=14,则C 1P ⊥平面EFD 1C.平面EFD 1截正方体ABCD -A 1B 1C 1D 1所得的截面的周长为5+42+35D.若λ=1,μ=0,则四面体PEFD 1外接球的表面积为344π9【答案】BD【解析】如图1,取AB 的中点G ,连接DG ,易得D 1E ∥DG ,取CD 的中点H ,连接BH ,易得BH ∥DG ,再取CH 的中点M ,连接FM ,D 1M ,则FM ∥BH ,所以FM ∥D 1E ,则FM 是平面EFD 1与正方体底面ABCD 的交线,延长MF ,与AB 的延长线交于N ,连接EN ,交BB 1于P ,则BB 1=3BP ,且五边形D 1EPFM 即平面EFD 1交正方体ABCD -A 1B 1C 1D 1的截面,由F 是BC 中点且BN ⎳CM 得BN =CM =12CH =12B 1E ,又由BN ⎳B 1E 得BP =12B 1P =13BB 1,从而可计算得ED 1=25,D 1M =5,MF =5,EP =103,PF =2133,所以平面EFD 1截正方体ABCD -A 1B 1C 1D 1所得的截面的周长为253+2133+35,故C 错误.对于A ,因为AP =λAD +μAA 1 ,λ+μ=1,所以P ,D ,A 1三点共线,所以点P 在A 1D 上,因为A 1D 与平面EFD 1不平行,所以四面体PEFD 1的体积不为定值,A 错误.对于B ,如图2,以A 为原点,分别以AB ,AD ,AA 1所在直线为x ,y ,z 轴建立空间直角坐标系,则AP =12AD+14AA 1 =0,2,1 ,C 1P =C 1A +AP =-4,-2,-3 ,D 1E =2,-4,0 ,EF =2,2,-4 ,则C 1P ⋅D 1E =0,C 1P ⋅EF =0,C 1P是平面EFD 1的一个法向量,所以C 1P ⊥平面EFD 1,故B 正确.对于D ,若λ=1,μ=0,则点P 即点D .易知EG ⎳DD 1,DD 1⊥D 1E (由DD 1⊥平面A 1B 1C 1D 1可得),同理EG ⊥D 1E ,即四边形EGDD 1是矩形,则四面体PEFD 1的外接球与四棱锥F -ED 1DG 的外接球相同,在△GFD 中,GF =22,GD =25,FD =25,在图3四棱锥F -DD 1EG 中,取U 是GF 中点,则DU ⊥GF ,△DGF 的外心T 在DU 上,sin ∠DGU =(25)2-(2)225=31010,则△GFD 外接圆的半径为DT =2531010×12=523,设DE ∩GD 1=S ,取GD 中点Q ,连接QT ,QS ,则QT ⊥GD ,同样由DD 1⊥平面DGF ,QT ⊂平面DGF ,得DD 1⊥QT ,而DG 与DD 1是平面DD 1EG 内两相交直线,因此有TQ ⊥平面DD 1EG ,同理可证SQ ⊥平面DGF ,得SQ ⊥QT ,作矩形SQTO ,可得OT =SQ =12DD 1=2,OS ⊥平面DD 1EG ,OT ⊥平面DGF ,从而知O 是四棱锥F -ED 1DG 的外接球的球心,所以四面体PEFD 1外接球的半径R =OD =DT 2+OT 2=5232+22=863,即四面体PEFD 1外接球的表面积为344π9,D 正确.故选:BD .36.(2023·湖南株洲·高三株洲二中校考开学考试)已知数列a n 满足a 1=1,a n +1=2a n ln a n +1 +1,则下列说法正确的有()A.2a 3a 1+a 2<5 B.a n +1-a 2n ≤a 2n +1C.若n ≥2,则34≤ni =11a i +1<1D.ni =1ln a i +1 ≤2n -1 ln2【答案】BCD【解析】a 2=2a 1ln a 1+1 +1=3,a 3=2a 2ln a 2+1 +1=6ln3+7,则2a 3-5a 1+a 2 =12ln3-6>0,又a 1+a 2>0,所以2a 3a 1+a 2>5,A 不正确.令函数f x =x -ln x -1,则f x =1-1x,则f x 在0,1 上单调递减,在1,+∞ 上单调递增,f x ≥f 1 =0,即x ≥ln x +1,又易得a n 是递增数列,a n ≥a 1=1,故a n ≥ln a n +1,所以a n +1≤2a 2n +1,B 正确.易知a n 是递增数列,所以a n ≥a 1=1,则ln a n +1≥1,a n +1=2a n ln a n +1 +1≥2a n +1,则a n +1+1≥2a n +1 ,即a n +1+1a n +1≥2,所以a n +1a n -1+1⋅a n -1+1a n -2+1⋯⋯⋅a 2a 1≥2n -1,即a n +1≥2n -1a 1+1 =2n ,所以1a n +1≤12n,所以ni =11a i +1≤12+122+⋯+12n =121-12n1-12=1-12n<1,而当n ≥2时,则有ni =11a i +1≥1a 1+1+1a 2+1=34,C 正确.令函数g x =2ln x -x +1x ,则gx =2x -1-1x 2=-x 2+2x -1x 2≤0,所以g x 在0,+∞ 上单调递减,所以当x ≥1时,g x ≤g 1 =0,则ln x ≤12x -1x,所以a n +1≤2a n 12a n -1a n+1+1=a 2n +2a n ,a n +1+1≤a n +1 2,ln a n +1+1 ln a n +1 ≤2,ln a n +1 ln a n -1+1⋅ln a n -1+1 ln a n -2+1 ⋅⋯⋅ln a 2+1ln a 1+1≤2n -1,ln a n +1 ≤2n -1ln a 1+1 =2n -1ln2,所以∑ni =1ln a i +1 ≤(1+2+⋯+2n -1 ln2=2n -1 ln2,D 正确.故选:BCD .37.(2023·湖南·高三临澧县第一中学校联考开学考试)已知函数f x ,g x 是定义在R 上的非常数函数,f x +1 的图象关于原点对称,且f x +g 1-x =4,f x +1 +g x -2 =4,则( ).A.f x 为奇函数 B.f x 为偶函数C.2024k =1f k =0D.2024k =1g k =8096【答案】BCD【解析】因为f x +1 的图象关于原点对称,故f 1+x +f 1-x =0,即f x +f 2-x =0①,f x +1 +g x -2 =4中,用3-x 代替x 得f 4-x +g 1-x =4,而f x +g 1-x =4,故f 4-x +g 1-x =4f x +g 1-x =4,两式相减可得f x =f 4-x ,即f x +2 =f 2-x ②,由①②可得f x =-f x +2 =f x +4 ③,故f x 的周期为4,所以f -x =f 4-x =f x ,故f x 为偶函数,因为f x 不是常数函数,所以f x 不是奇函数,故A 错误,B 正确.由①可得,f x +f x -2 =0,故f 1 +f 3 =0,f 2 +f 4 =0,于是2024k =1f k =506f 1 +f 2 +f 3 +f 4 =0,故C 正确.由f x +g 1-x =4可得f 1-x +g 1-1+x =4,即f 1-x +g x =4,因为f x 为偶函数,且f x =-f x -2 ,所以f -x =-f x -2 ,f 1-x =-f -1+x -2 =。
2019-2020年高考数学压轴试卷 含解析
2019-2020年高考数学压轴试卷含解析一、填空题(本大题满分56分)本大题共有14题.考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数f(x)=sin(ωx+)的周期为π,则ω=_______.2.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若B⊆A,则实数m=_______.3.已知复数z满足:z(1﹣i)=2+4i,其中i为虚数单位,则复数z的模为_______.4.若在行列式中,元素a的代数余子式的值是_______.5.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[50,70)中的学生人数是_______.6.如图,圆锥形容器的高为h,圆锥内水面的高为h1,且=,若将圆锥倒置,水面高为h2,则等于_______.7.已知函数f(x)=x3+lg(+x),若f(x)的定义域中的a、b满足f(﹣a)+f(﹣b)﹣3=f (a)+f(b)+3,则f(a)+f(b)=_______.8.的二项展开式中,常数项的值是_______.9.已知直线Ax+By+1=0.若A,B是从﹣3,﹣1,0,2,7这5个数中选取的不同的两个数,则直线的斜率小于0的概率为_______.10.从抛物线y2=4x上一点P引其准线的垂线,垂足为M,设抛物线的焦点为F,且|PF|=5,则△MPF的面积为_______.11.满足线性约束条件的可行域中共有_______个整数点.12.已知D是△ABC边BC延长线上一点,记=λ+(1﹣λ).若关于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有两解,则实数λ的取值范围是_______.13.对于给定的正整数n,若等差数列a1,a2,a3,…满足a12+a2n+12≤10,则S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值为_______.14.正整数a、b满足1<a<b,若关于x、y的方程组有且只有一组解,则a的最大值为_______.二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15.“函数f(x)(x∈R)存在反函数”是“函数f(x)在R上为增函数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件16.已知函数,(a>0),x∈(0,b),则下列判断正确的是()A.当时,f(x)的最小值为B.当时,f(x)的最小值为C.当时,f(x)的最小值为D.对任意的b>0,f(x)的最小值均为17.给出下列命题,其中正确的命题为()A.若直线a和b共面,直线b和c共面,则a和c共面B.直线a与平面α不垂直,则a与平面α内所有的直线都不垂直C.直线a与平面α不平行,则a与平面α内的所有直线都不平行D.异面直线a、b不垂直,则过a的任何平面与b都不垂直18.已知函数f(x)=x3﹣3ax2﹣9a2x+a3.若a>,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,则a的取值范围为()A.(,] B.(,1] C.[﹣,1] D.[0,]三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.19.如图,在直三棱柱ABC﹣A1B1C1中,CC1=AC=BC=2,∠ACB=90°.(1)如图给出了该直三棱柱三视图中的主视图,请据此画出它的左视图和俯视图;(2)若P是AA的中点,求四棱锥B﹣C A PC的体积.20.设函数f(x)=x+|2x﹣a|(x∈R,a为实数).(1)若f(x)为偶函数,求实数a的值;(2)设a>2,求函数f(x)的最小值.21.经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接xx“双十一”网购狂欢节,某厂商拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量P万件与促销费用x万元满足P=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品P万件还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求.(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;(Ⅱ)促销费用投入多少万元时,厂家的利润最大?22.如图,在平面直角坐标系xoy中,已知椭圆C:=1(a>b>0)的离心率e=,左顶点为A (﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.(1)求椭圆C的方程;(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;(3)若过O点作直线l的平行线交椭圆C于点M,求的最小值.23.设数列{a n}共有m(m≥3)项,记该数列前i项a1,a2,…a i中的最大项为A i,该数列后m﹣i项a i+1,a i+2,…,a m中的最小项为B i,r i=A i﹣B i(i=1,2,3,…,m﹣1).(1)若数列{a n}的通项公式为a n=2n,求数列{r i}的通项公式;(2)若数列{a n}满足a1=1,r i=﹣2,求数列{a n}的通项公式;(3)试构造一个数列{a n},满足a n=b n+c n,其中{b n}是公差不为零的等差数列,{c n}是等比数列,使得对于任意给定的正整数m,数列{r i}都是单调递增的,并说明理由.xx上海市高考数学压轴试卷参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题.考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数f(x)=sin(ωx+)的周期为π,则ω=±2.【考点】正弦函数的图象.【分析】利用y=Asin(ωx+φ)的周期等于T=||,得出结论.【解答】解:函数f(x)=sin(ωx+)的周期为||=π,则ω=±2,故答案为:±2.2.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若B⊆A,则实数m=1.【考点】集合的包含关系判断及应用.【分析】根据题意,若B⊆A,必有m2=2m﹣1,而m2=﹣1不合题意,舍去,解可得答案,注意最后进行集合元素互异性的验证.【解答】解:由B⊆A,m2≠﹣1,∴m2=2m﹣1.解得m=1.验证可得符合集合元素的互异性,此时B={3,1},A={﹣1,3,1},B⊆A满足题意.故答案为:13.已知复数z满足:z(1﹣i)=2+4i,其中i为虚数单位,则复数z的模为.【考点】复数代数形式的乘除运算.【分析】把已知的等式变形,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:由z(1﹣i)=2+4i,得,∴.故答案为:.4.若在行列式中,元素a的代数余子式的值是﹣2.【考点】三阶矩阵.【分析】根据余子式的定义,要求a的代数余子式的值,a这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到a的代数余子式,解出即可.【解答】解:在行列式中,元素a在第一行第二列,那么化去第一行第二列得到a的代数余子式为:解这个余子式的值为﹣2.故元素a的代数余子式的值是﹣2.5.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[50,70)中的学生人数是25.【考点】频率分布直方图.【分析】根据频率分布直方图中频率和为1,求出a的值,计算模块测试成绩落在[50,70)中的频率以及频数即可.【解答】解:根据频率分布直方图中频率和为1,得;10(2a+3a+7a+6a+2a)=1,解得a=;∴模块测试成绩落在[50,70)中的频率是10(2a+3a)=50a=50×=,∴对应的学生人数是100×=25.故答案为:25.6.如图,圆锥形容器的高为h,圆锥内水面的高为h1,且=,若将圆锥倒置,水面高为h2,则等于.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据水的体积不变列出方程解出h2.【解答】解:设圆锥形容器的底面积为S,则未倒置前液面的面积为.∴水的体积V=Sh﹣××(h﹣h1)=.设倒置后液面面积为S′,则=()2,∴S′=.∴水的体积V==.∴=,解得h2=.∴=.故答案为:.7.已知函数f(x)=x3+lg(+x),若f(x)的定义域中的a、b满足f(﹣a)+f(﹣b)﹣3=f (a)+f(b)+3,则f(a)+f(b)=﹣3.【考点】函数的值.【分析】由已知得f(x)是奇函数,由此利用奇函数的性质能求出f(a)+f(b).【解答】解:∵f(x)=x3+lg(+x),∴f(﹣x)=﹣x3﹣lg(+x)=﹣f(x),∵f(x)的定义域中的a、b满足f(﹣a)+f(﹣b)﹣3=f(a)+f(b)+3,∴2[f(a)+f(b)]=﹣6,∴f(a)+f(b)=﹣3.故答案为:﹣3.8.的二项展开式中,常数项的值是1080.【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数等于0,求出常数项.【解答】解:展开式通项T r+1=(﹣2)r35﹣r C5r x10﹣5r令10﹣5r=0解得r=2故常数项为4×27C52=1080故答案为10809.已知直线Ax+By+1=0.若A,B是从﹣3,﹣1,0,2,7这5个数中选取的不同的两个数,则直线的斜率小于0的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数,由直线的斜率k=﹣<0,得A,B同号,利用列举法求出A,B的可能取值的情况,由此能求出直线的斜率小于0的概率.【解答】解:∵直线Ax+By+1=0,A,B是从﹣3,﹣1,0,2,7这5个数中选取的不同的两个数,∴基本事件总数n==20,∵直线的斜率p=﹣<0,∴A,B同号,∴A,B的可能取值为(﹣3,﹣1),(﹣1,﹣3),(2,7),(7,2),共4个,∴直线的斜率小于0的概率k=.故答案为:.10.从抛物线y2=4x上一点P引其准线的垂线,垂足为M,设抛物线的焦点为F,且|PF|=5,则△MPF的面积为10.【考点】抛物线的简单性质.【分析】设出P的坐标,利用抛物线的定义可知|PF|=|PM|进而可求得y0,最后利用三角性的面积公式求得答案.【解答】解:由题意,设P(,y0),则|PF|=|PM|=+1=5,所以y0=±4,∴S△MPF=|PM||y0|=10.故答案为:10.11.满足线性约束条件的可行域中共有15个整数点.【考点】计数原理的应用.【分析】满足线性约束条件的可行域如图所示,结合图象,根据分类计数原理可得.【解答】解:满足线性约束条件的可行域如图所示:当x=0时,y=0,1,2,3,4共5个,当x=1时,y=0,1,2,3,共4个,当x=2时,y=0,1,2共3个,当x=3时,y=0,1共2个,当x=4时,y=0,共1个,根据分类计数原理,共有5+4+3+2+1=15个,故答案为:15.12.已知D是△ABC边BC延长线上一点,记=λ+(1﹣λ).若关于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有两解,则实数λ的取值范围是λ<﹣4或.【考点】三点共线;一元二次方程的根的分布与系数的关系.【分析】根据题意,由D是BC延长线上一点,=(﹣λ),得到λ<0;令sinx=t,方程2t2﹣(λ+1)t+1=0在(﹣1,1)上有唯一解,(2﹣(λ+1)+1)•(2+(λ+1)+1)<0①,或△=(λ+1)2﹣8=0②,解出λ 范围.【解答】解:∵=λ+(1﹣λ)=+λ(﹣)=+λ=+(﹣λ).又∵=+,∴=(﹣λ),由题意得﹣λ>0,∴λ<0.∵关于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有两解,令sinx=t,由正弦函数的图象知,方程2t2﹣(λ+1)t+1=0 在(﹣1,1)上有唯一解,∴[2﹣(λ+1)+1]•[2+(λ+1)+1]<0 ①,或△=(λ+1)2﹣8=0 ②,由①得λ<﹣4 或λ>2(舍去).由②得λ=﹣1﹣2,或λ=﹣1+2(舍去).故答案为λ<﹣4或λ=﹣1﹣2.13.对于给定的正整数n,若等差数列a1,a2,a3,…满足a12+a2n+12≤10,则S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值为10n+5.【考点】数列的求和.【分析】根据等差数列的关系整理得S=(2n+1)a3n+1,由a12+a2n+12≤10得到关于d的二次方程,10n2d2﹣8da3n+1+2a3n+12﹣10≤0有解,根据判别式即可求出.【解答】解:因为数列a2n+1+a4n+1=a2n+2+a4n=…=2a3n+1是等差数列,所以a12+a2n+12=(a3n+1﹣3nd)2+(a3n+1﹣nd)2≤10,化简得:2a3n+12﹣8da3n+1+10n2d2﹣10≤0,关于d的二次方程,10n2d2﹣8da3n+1+2a3n+12﹣10≤0,有解,所以△=64a3n+12﹣4×10n2(2a3n+12﹣10)≥0,所以(64﹣80n2)a3n+12≥﹣400n2,所以a3n+12≤=10(+)≤25,所以﹣5≤a3n+1≤5,即S n≤5(2n+1)=10n+5,故答案为:10n+5.14.正整数a、b满足1<a<b,若关于x、y的方程组有且只有一组解,则a的最大值为4031.【考点】根的存在性及根的个数判断.【分析】化简可得4033﹣2x=|x﹣1|+|x﹣a|+|x﹣b|,从而讨论以去掉绝对值号,并确定方程的解的个数及条件,从而解得.【解答】解:由方程组消y可得,4033﹣2x=|x﹣1|+|x﹣a|+|x﹣b|,当x≤1时,4033﹣2x=1﹣x﹣x+a﹣x+b,故x=b+a﹣4032,故当b+a≤4033时,有一个解;即a≤4031时,有一个解;否则无解;当1<x≤a时,4033﹣2x=x﹣1﹣x+a﹣x+b,故x=4034﹣a﹣b,故当﹣a<4032﹣a﹣b≤1,即b<4032且a+b≥4301时,有一个解;即xx≤a≤4030,有一个解,否则无解;当1<x≤b时,4033﹣2x=x+a+b﹣1,故3x=4034﹣a﹣b,故当3<4034﹣a﹣b≤3b,即a+b<4031且a+4b≥4304时,有一个解;即≤a≤xx,方程有一个解,否则无解;当x>b时,4033﹣2x=3x+a﹣b﹣1,故5x=4034﹣a+b,故当4034﹣a+b>5b,即a+4b<4304时,有一个解;否则无解;综上所述,当a取最大值4031时,方程有一个解,故答案为:4031.二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15.“函数f(x)(x∈R)存在反函数”是“函数f(x)在R上为增函数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】函数f(x)(x∈R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必要条件显然成立【解答】解:“函数f(x)在R上为增函数”⇒“函数f(x)(x∈R)存在反函数”;反之取f(x)=﹣x(x∈R),则函数f(x)(x∈R)存在反函数,但是f(x)在R上为减函数.故选B16.已知函数,(a>0),x∈(0,b),则下列判断正确的是()A.当时,f(x)的最小值为B.当时,f(x)的最小值为C.当时,f(x)的最小值为D.对任意的b>0,f(x)的最小值均为【考点】基本不等式.【分析】通过观察可知,已知解析式可整理成基本不等式的形式,然后根据等号能否取到分情况讨论求解.【解答】解:∵=x+,∴当时,f(x)≥,当且仅当x=,即x=时取等号;当时,y=f(x)在(0,b)上单调递减,∴f(x)<,故f(x)不存在最小值;故选A.17.给出下列命题,其中正确的命题为()A.若直线a和b共面,直线b和c共面,则a和c共面B.直线a与平面α不垂直,则a与平面α内所有的直线都不垂直C.直线a与平面α不平行,则a与平面α内的所有直线都不平行D.异面直线a、b不垂直,则过a的任何平面与b都不垂直【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】根据各命题条件,举出反例判断,使用排除法选出答案.【解答】解:对于A,若b为异面直线a,c的公垂线,则a与b,b与c都相交,但a,c异面,故A错误;对于B,若直线a⊂α,则α内有无数条直线都与直线a垂直,故B错误;对于C,若直线a⊂α,则α内有无数条直线都与直线a平行,故C错误;对于D,假设存在平面α,使得a⊂α,b⊥α,则b⊥a,与条件矛盾,所以假设错误,故D正确故选:D.18.已知函数f(x)=x3﹣3ax2﹣9a2x+a3.若a>,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,则a的取值范围为()A.(,] B.(,1] C.[﹣,1] D.[0,]【考点】利用导数求闭区间上函数的最值.【分析】问题转化为求导函数的绝对值在x∈[1,4a]上的最大值即可.【解答】解:f′(x)=3x2﹣6ax﹣9a2的图象是一条开口向上的抛物线,关于x=a对称.若<a≤1,则f′(x)在[1,4a]上是增函数,从而(x)在[1,4a]上的最小值是f′(1)=3﹣6a﹣9a2,最大值是f′(4a)=15a2.由|f′(x)|≤12a,得﹣12a≤3x2﹣6ax﹣9a2≤12a,于是有3﹣6a﹣9a2≥﹣12a,且f′(4a)=15a2≤12a.由f′(1)≥﹣12a得﹣≤a≤1,由f′(4a)≤12a得0≤a≤.所以a∈(,1]∩[﹣,1]∩[0,],即a∈(,].若a>1,则∵|f′(a)|=15a2>12a.故当x∈[1,4a]时|f′(x)|≤12a不恒成立.所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范围是(,],故选:A.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.19.如图,在直三棱柱ABC﹣A1B1C1中,CC1=AC=BC=2,∠ACB=90°.(1)如图给出了该直三棱柱三视图中的主视图,请据此画出它的左视图和俯视图;(2)若P是AA的中点,求四棱锥B﹣C A PC的体积.【考点】棱柱、棱锥、棱台的体积;简单空间图形的三视图.【分析】(1)由已知中直三棱柱ABC﹣A1B1C1的直观图,及CC1=AC=BC=2,∠ACB=90°,我们易得该几何体的主视图和左视图是以2为边长的正方形,俯视图为直角边长为2的等腰直角三角形;(2)由已知中直三棱柱ABC﹣A1B1C1中,CC1=AC=BC=2,∠ACB=90°,P是AA1的中点,我们计算出四棱锥B1﹣C1A1PC的底面面积及高,代入棱锥体积公式,即可得到答案.【解答】解:(1)如图,该直三棱柱的左视图和俯视图,如下所示:(2)∵P是AA1的中点,CC1=AC=2故四边形C1A1PC的面积S=(A1P+C1C)•A1C1=3而四棱锥B1﹣C1A1PC的高h=B1C1=2故四棱锥B1﹣C1A1PC的V=•Sh=220.设函数f(x)=x2+|2x﹣a|(x∈R,a为实数).(1)若f(x)为偶函数,求实数a的值;(2)设a>2,求函数f(x)的最小值.【考点】函数奇偶性的性质;函数单调性的判断与证明.【分析】(1)根据偶函数的定义可得f(﹣x)=f(x)然后代入即可求出a(2)可根据绝对值的定义可将函数f(x)=x2+|2x﹣a|(x∈R,a为实数)转化为)然后根据a>2再结合一元二次函数的单调性可求出f(x)在各段的最小值然后比较两个最小值的大小则较小的最小值即为所求.【解答】解:(1)由已知f(﹣x)=f(x),即|2x﹣a|=|2x+a|,解得a=0(2)当时,f(x)=x2+2x﹣a=(x+1)2﹣(a+1)由,得x>1,从而x>﹣1故f(x)在时单调递增,f(x)的最小值为当时,f(x)=x2﹣2x+a=(x﹣1)2+(a﹣1)故当时,f(x)单调递增,当x<1时,f(x)单调递减则f(x)的最小值为f(1)=a﹣1由,知f(x)的最小值为a﹣1.21.经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接xx“双十一”网购狂欢节,某厂商拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量P万件与促销费用x万元满足P=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品P万件还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求.(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;(Ⅱ)促销费用投入多少万元时,厂家的利润最大?【考点】根据实际问题选择函数类型.【分析】(Ⅰ)根据产品的利润=销售额﹣产品的成本建立函数关系;(Ⅱ)利用导数基本不等式可求出该函数的最值,注意等号成立的条件.【解答】解:(Ⅰ)由题意知,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣将代入化简得:(0≤x≤a).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)当a≥1时,x∈(0,1)时y'>0,所以函数在(0,1)上单调递增x∈(1,a)时y'<0,所以函数在(1,a)上单调递减促销费用投入1万元时,厂家的利润最大;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当a<1时,因为函数在(0,1)上单调递增在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(注:当a≥1时,也可:,当且仅当时,上式取等号)22.如图,在平面直角坐标系xoy中,已知椭圆C:=1(a>b>0)的离心率e=,左顶点为A (﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.(1)求椭圆C的方程;(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;(3)若过O点作直线l的平行线交椭圆C于点M,求的最小值.【考点】椭圆的简单性质.【分析】(1)由椭圆的离心率和左顶点,求出a,b,由此能求出椭圆C的标准方程.(2)直线l的方程为y=k(x+4),与椭圆联立,得,(x+4)[(4k2+3)x+16k2﹣12)]=0,由此利用韦达定理、直线垂直,结合题意能求出结果.(3)OM的方程可设为y=kx,与椭圆联立得M点的横坐标为,由OM∥l,能求出结果.【解答】解:(1)∵椭圆C:=1(a>b>0)的离心率e=,左顶点为A(﹣4,0),∴a=4,又,∴c=2.…又∵b2=a2﹣c2=12,∴椭圆C的标准方程为.…(2)直线l的方程为y=k(x+4),由消元得,.化简得,(x+4)[(4k2+3)x+16k2﹣12)]=0,∴x1=﹣4,.…当时,,∴.∵点P为AD的中点,∴P的坐标为,则.…直线l的方程为y=k(x+4),令x=0,得E点坐标为(0,4k),假设存在定点Q(m,n)(m≠0),使得OP⊥EQ,则k OP k EQ=﹣1,即恒成立,∴(4m+12)k﹣3n=0恒成立,∴,即,∴定点Q的坐标为(﹣3,0).…(3)∵OM∥l,∴OM的方程可设为y=kx,由,得M点的横坐标为,…由OM∥l,得=…=,当且仅当即时取等号,∴当时,的最小值为.…23.设数列{a n}共有m(m≥3)项,记该数列前i项a1,a2,…a i中的最大项为A i,该数列后m﹣i项a i+1,a i+2,…,a m中的最小项为B i,r i=A i﹣B i(i=1,2,3,…,m﹣1).(1)若数列{a n}的通项公式为a n=2n,求数列{r i}的通项公式;(2)若数列{a n}满足a1=1,r i=﹣2,求数列{a n}的通项公式;(3)试构造一个数列{a n},满足a n=b n+c n,其中{b n}是公差不为零的等差数列,{c n}是等比数列,使得对于任意给定的正整数m,数列{r i}都是单调递增的,并说明理由.【考点】数列的求和;数列递推式.【分析】(1)由a n=2n单调递增,可得A i=2i,B i=2i+1,即可得到r i=A i﹣B i;(2)由题意可得A i<B i,即a i<a i+1,又因为i=1,2,3,…,m﹣1,所以{a n}单调递增,可得{a n}是公差为2的等差数列,进而得到所求通项公式;(3)构造a n=n﹣()n,其中b n=n,c n=﹣()n,运用新定义即可得证.【解答】解:(1)因为a n=2n单调递增,所以A i=2i,B i=2i+1,所以r i=A i﹣B i=﹣2i,1≤i≤m﹣1;(2)根据题意可知,a i≤A i,B i≤a i+1,因为r i=A i﹣B i=﹣2<0,所以A i<B i,可得a i≤A i<B i≤a i+1,即a i<a i+1,又因为i=1,2,3,…,m﹣1,所以{a n}单调递增,则A i=a i,B i=a i+1,所以r i=a i﹣a i+1=﹣2,即a i+1﹣a i=2,1≤i≤m﹣1,所以{a n}是公差为2的等差数列,a n=1+2(n﹣1)=2n﹣1,1≤i≤m﹣1;(3)构造a n=n﹣()n,其中b n=n,c n=﹣()n,下证数列{a n}满足题意.证明:因为a n=n﹣()n,所以数列{a n}单调递增,所以A i=a i=i﹣()i,B i=a i+1=i+1﹣()i+1,所以r i=a i﹣a i+1=﹣1﹣()i+1,1≤i≤m﹣1,因为r i+1﹣r i=[﹣1﹣()i+2]﹣[﹣1﹣()i+1]=()i+2>0,所以数列{r i}单调递增,满足题意.(说明:等差数列{b n}的首项b1任意,公差d为正数,同时等比数列{c n}的首项c1为负,公比q∈(0,1),这样构造的数列{a n}都满足题意.)xx9月8日 .。
2019-2020年高考数学压轴题集锦——数列(二)
2019-2020年高考数学压轴题集锦——数列(二)1.数列{}n a 的前n 项和为n S ,*23()n n S a n n =-∈N . (1)证明数列{}3n a +是等比数列,求出数列{}n a 的通项公式. (2)设21(3)3n n n b a -=+,求数列{}n b 的前n 项和n T . (3)数列{}n b 中是否存在三项,它们可以构成等比数列?若存在,求出一组符合条件的项;若不存在,说明理由.2.设数列{}n a 的前n 项和为n S ,若对于任意的正整数n ,总存在正整数m ,使得n n S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n =∈N ,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值.3.已知点(,)()n n a n ∈N *在函数()22f x x =--的图象上,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且n T 是6n S 与8n 的等差中项.(1)求数列{}n b 的通项公式.(2)设83n n c b n =++,数列{}n d 满足11d c =,()n n l d c n d +∈=N *.求数列{}n d 的前n 项和n D .(3)在(2)的条件下,设()g x 是定义在正整数集上的函数,对于任意的正整数1x ,2x ,恒有121221()()()g x x x g x x g x =+成立,且(2)g a =(a 为常数,0a ≠),试判断数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是否为等差数列,并说明理由.4.已知等比数列{}n a 的公比1q >,11a =,且1a ,3a ,214a +成等差数列,数列{}n b 满足: 1122(1)31n n n a b a b a b n +++=-⋅+,*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式.(Ⅱ)若8n n ma b -≥恒成立,求实数m 的最小值.5.已知每项均为正整数的数列1:A a ,2a ,3a ,4a ,,n a ,其中等于i 的项有k 个(1,2,3)i =,设12(1,2,3)j j b k k k j =+++=,12()(1,2,3)m g m b b b nm m =+++-=.(1)设数列:1A ,2,1,4,求(1)g ,(2)g ,(3)g ,(4)g ,(5)g . (2)若数列A 满足12100n a a a n +++-=,求函数()g m 的最小值.6.已知数列{}n a 是首项为1,公比为q 的等比数列.(Ⅰ)证明:当01q <<时,{}n a 是递减数列.(Ⅱ)若对任意*k ∈N ,都有k a ,2k a +,1k a +成等差数列,求q 的值.7.已知数列{a n }满足a n =2a n-1-2n +5,(n ∈N 且n ≥2),a 1=1,(I )若b n =a n -2n +1,求证数列{b n }(n ∈N *)是常数列,并求{a n }的通项;(II )若S n 是数列{a n }的前n 项和,又c n =(-1)n S n ,且{C n }的前n 项和T n >tn 2在n ∈N *时恒成立,求实数t 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学压轴题集锦——数列(二)1.数列{}n a 的前n 项和为n S ,*23()n n S a n n =-∈N . (1)证明数列{}3n a +是等比数列,求出数列{}n a 的通项公式. (2)设21(3)3n n n b a -=+,求数列{}n b 的前n 项和n T . (3)数列{}n b 中是否存在三项,它们可以构成等比数列?若存在,求出一组符合条件的项;若不存在,说明理由.2.设数列{}n a 的前n 项和为n S ,若对于任意的正整数n ,总存在正整数m ,使得n n S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n =∈N ,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值.3.已知点(,)()n n a n ∈N *在函数()22f x x =--的图象上,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且n T 是6n S 与8n 的等差中项.(1)求数列{}n b 的通项公式.(2)设83n n c b n =++,数列{}n d 满足11d c =,()n n l d c n d +∈=N *.求数列{}n d 的前n 项和n D .(3)在(2)的条件下,设()g x 是定义在正整数集上的函数,对于任意的正整数1x ,2x ,恒有121221()()()g x x x g x x g x =+成立,且(2)g a =(a 为常数,0a ≠),试判断数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是否为等差数列,并说明理由.4.已知等比数列{}n a 的公比1q >,11a =,且1a ,3a ,214a +成等差数列,数列{}n b 满足:1122(1)31n n n a b a b a b n +++=-⋅+L ,*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式.(Ⅱ)若8n n ma b -≥恒成立,求实数m 的最小值.5.已知每项均为正整数的数列1:A a ,2a ,3a ,4a ,L ,n a ,其中等于i 的项有k 个(1,2,3)i =L ,设12(1,2,3)j j b k k k j =+++=L L ,12()(1,2,3)m g m b b b nm m =+++-=L L .(1)设数列:1A ,2,1,4,求(1)g ,(2)g ,(3)g ,(4)g ,(5)g . (2)若数列A 满足12100n a a a n +++-=L ,求函数()g m 的最小值.6.已知数列{}n a 是首项为1,公比为q 的等比数列.(Ⅰ)证明:当01q <<时,{}n a 是递减数列.(Ⅱ)若对任意*k ∈N ,都有k a ,2k a +,1k a +成等差数列,求q 的值.7.已知数列{a n }满足a n =2a n-1-2n +5,(n ∈N 且n ≥2),a 1=1,(I )若b n =a n -2n +1,求证数列{b n }(n ∈N *)是常数列,并求{a n }的通项;(II )若S n 是数列{a n }的前n 项和,又c n =(-1)n S n ,且{C n }的前n 项和T n >tn 2在n ∈N *时恒成立,求实数t 的取值范围。
8.已知数列{},{}n n a b ,2111(,0),(),.1n n n n na R a a a n Nb a λλλ+=∈>=+∈=+ (Ⅰ)记12n n P b b b =⋅⋅⋅L ,求n P 的取值范围; (Ⅱ)记12n n S b b b =+++L ,问:1n n P S λ+是否为定值?如果是,请证明,如果不是,请说明理由。
9.数列{a n }满足:a 1=2,当n ∈N *,n >1时,a 2+a 3+…+a n =4(a n ﹣1﹣1). (Ⅰ)求a 2,a 3,并证明,数列{a n +1﹣2a n }为常数列;(Ⅱ)设c n =5)1(21++nn a a ,若对任意n ∈N *,2a <c 1+c 2+…+c n <10a 恒成立,求实数a的取值范围.10.已知正项数列{}n a 的前n 项和为n S ,满足()2*122n n S a n N ⎛⎫=+∈ ⎪⎝⎭.(1)求数列{}n a 的通项公式; (2)设数列1221n n n n n a a b a a +++=,求数列{}n b 前n 项和n T 的值.11.已知数列{}n a 的满足a 1=1,前n 项的和为n S ,且11241n n n n n a a a a S ++-=-(*n N ∈).(1)求2a 的值; (2)设1nn n na b a a +=-,证明:数列{}n b 是等差数列;(3)设n bn a c n ⋅=2,若21≤≤λ,求对所有的正整数n 都有n c k <+-2322λλ成立的k 的取值范围.12.已知数列{}n x 满足11x =,13n x +=+,求证: (I )09n x <<; (II )1n n x x +<;(III )12983n n x -⎛⎫≥-⋅ ⎪⎝⎭.13.已知数列{}n a 的前n 项和为,n S 且32,2n n n S a =- *n N ∈. (1)求证1{}2n na -为等比数列,并求出数列{}n a 的通项公式; (2)设数列1{}nS 的前n 项和为n T ,是否存在正整数λ,对任意*m n ,,-0m n N T S λ∈<不等式恒成立?若存在,求出λ的最小值,若不存在,请说明理由。
14.已知无穷数列{}n a 的首项112a =,1111,2n n n a n N a a *+⎛⎫=+∈ ⎪⎝⎭.(Ⅰ)证明:01<<n a ; (Ⅱ) 记()211++-=nn nn n a a b a a ,n T 为数列{}n b 的前n 项和,证明:对任意正整数n ,310n T <.15.已知数列{}n a 的前n 项和为n S ,132a =,2(1)1n n S n a =++(2n ≥). (1)求数列{}n a 的通项公式; (2)设21(1)n nb a =+(*n N ∈),数列{}nb 的前n 项和为n T ,证明:3350n T <(*n N ∈).参考答案11.(1)数列{}n a 的前n 项和为n S ,23n n S a n =-,*()n ∈N , ∴1123(1)n n S a n ++=-+,两式相减得:11223n n n a a a ++=--,即123n n a a +=+, ∴132(3)n n a a ++=+,即1323n n a a ++=+, 又当1n =时,11123a S a ==-,得13a =,∴数列{}3n a +是以6为首项,2为公比的等比数列, ∴136232n n n a -+=⋅=⋅, ∴323n n a =⋅-. (2)由题意,2121(3)32(21)233n n n n n n b a n --=+=⋅⋅=-⋅, ∴1231123252(23)2(21)2n n n T n n -=⨯+⨯+⨯++-⨯+-⨯L , 23412123252(23)2(21)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,两式相减得2312222222(21)2n n n T n +=--⨯-⨯-⨯+-⨯L 23122(222)(21)2n n n +=--⨯++++-⨯L2112(12)22(21)212n n n -+-=--⨯+-⨯-31122(12)(21)2n n n -+=-+-+-⋅112822(21)2n n n ++=-+-⋅+-⋅ 16(23)2n n +=+-⋅.(3)假设存在s ,p ,*r ∈N ,且s p r <<,使得s b ,p b ,r b 成等比数列,则2p s r b b b =⋅,∵(21)2pp b p =-⋅,(21)2s s b s =-⋅,(21)2r r b r =-⋅,∴22(21)2(21)(21)2p s r p s r +-⋅=-⋅-⋅, ∴22(21)21(21)(21)p s r p s r ---⋅=--, ∵21p -是奇数,21s -,21r -也是奇数, ∴2(21)(21)(21)p s r ---是奇数, 又22p s r --是偶数,故22(21)21(21)(21)p s r p s r ---⋅=--不成立, 故数列{}n b 中不存在三项,可以构成等比数列.2.(1)证明:当1n =时,112a S ==, 当2n ≥时,111222n n n n n a S S ---=-=-=, ∴12,12,2n n n a n -=⎧=⎨⎩≥,∴对任意的*n ∈N ,2n n S =是数列{}n a 中的第1n +项, ∴数列{}n a 是“H 数列”.(2)依题意,1(1)n a n d =+-,(1)2n n n S n d -=+, 若{}n a 是“H 数列”,则对任意的*n ∈N ,都存在*k ∈N 使得k n a S =, 即(1)1(1)2n n k d n d -+-=+, ∴1(1)2n n n k d --=+, 又∵*k ∈N ,(1)2n n -∈N , ∴对任意的*n ∈N ,1n d-∈Z 且0d <, ∴1d =-.3.(1)依题意得22n a n =--,故14a =-. 又268n n T S n =+,即34n n T S n =+,所以,当2n ≥时,113()43462n n n n n n b T T S S a n --=-=-+=+=--. 又111134348b T S a ==+=+=-也适合上式, 故62n b n =--.(2)因为83628321n n c b n n n n =++=--++=+, 121n n d n d c d +==+,因此112(1)(*)n n d d n ++=+∈N .由于113d c ==,所以{}1n d +是首项为114d +=,公比为2的等比数列. 所以111422n n n d -++=⨯=,所以121n n d +=-.所以23124(21)2222421n n n n D n n n ++-=++⋯+-=-=---(). (3)方法一:111(2)2(2)2(2)2n n n n d g g g g --+⎛⎫==+ ⎪⎝⎭, 则111111111(2)2(2)2(2)(2)221224241n n n n n n n n nn n d d g g g g g a g a d d ----++-++⎛⎫⎛⎫ ⎪ ⎪+⎝⎭⎝⎭===+=+++. 所以111122114n n n n d d g g a d d --++⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=++. 因为已知a 为常数,则数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是等差数列.方法二:因为121221()()()g x x x g x x g x =+成立,且(2)g a =, 所以111(2)2(2)2(2)2n n n n d g g g g --+⎛⎫==+ ⎪⎝⎭, 1221222(2)22(2)2(2)22(2)2(2)n n n n n g g g g g -----⎡⎤=++=⨯+⎣⎦, 123313322(2)22(2)2(2)32(2)2(2)n n n n n g g g g g -----⎡⎤⎣⎦=⨯++=⨯+,1111(1)2(2)2(2)2(2)2n n n n n g g n g an ----==-⨯+=⋅=⋅L ,所以11122124n n n n d g an a n d -++⎛⎫⎪⋅⎝⎭==+. 所以数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是等差数列.4.(1)设1n n a q -=,312214a a a =++, 22114q q =++.且0q >,∴3q =,∴13n n a -=, 又∵11n n a b a b +L 11233n n b b b -=+++L(1)31n n =-⋅+.而212133n n b b b --+++⋅L 1(2)31n n -=-⋅+,2n ≥, ∴有113(1)3(2)3n n n n b n n --=-⋅--⋅, ∴21n b n =-,2n ≥, 当1n =时,111a b =,11b =, 故21n b n =-.(2)若8n n ma b -≥恒成立, 即:2293n n m --≥最大值, 有1293n n n C --=,2n ≥时,122113n n n C ---=, 122443n n n nC C ----=, 当2n =,3,L ,6时,1n n C C -≥, 即:n s =或6时,n C 最大为181. 即:181m ≥,可得m 最小为181.5.(1)根据题目中定义,12k =,21k =,30k =,41k =,0(5,6,7)j k j ==L ,12b =,2213b =+=,32103b =++=,44b =,4(5,6,7)m b m ==L ,1(1)412g b =-⨯=-, 12(2)423g b b =+-⨯=-, 123(3)b 434g b b =++-⨯=-, 1234(4)444g b b b b =+++-⨯=-, 12345(5)454g b b b b b =++++-⨯=-.(2)∵1(1)()m g m g m b n ++-=-,由“数列A 含有n 项”及bj 的含义知1m b n +≤, ∴(1)()0g m g m +-≤, 即()(1)g m g m +≥,又∵设整数{}12max ,n M a a a =L , 当m M ≥时,必有m b n =,∴(1)(2)(1)()(1)g g g M g M g M -==+L ≥≥≥, ∴()g m 最小值为(1)g M -,∵1231(1)(1)M g M b b b b n M --=++++--L 1231()()()()M b n b n b n b n -=-+-+-++-L2334()()()M M M k k k k k k k =----+----++-L L L23[2(1)]M k k M k =-+++-L12312(23)()M M k k k Mk k k k =-++++++++L L12()n M a a a b =-++++L ,∵123100n a a a a n ++++-=L .(1)100g M -=-, ∴()g m 最小值为100-. 6.(Ⅰ)1n n a q -=,111(1)n n n n n a a q q q q --+-=-=-,当01q <<时:有10n q ->,10q -<, ∴10n n a a +-<, ∴{}n a 为递减数列.(Ⅱ)∵k a ,2k a +,1k a +成等差数列, ∴112()0k k k q q q +--+=, 12(21)0k q q q -⋅--=,∵0q ≠, ∴2210q q --=, 解得:1q =或12q =-.7.(1)由a n =2a n-1-2n+5知:a n -2n+1=2[a n-1-2(n-1)+1],而a 1=1 于是由b n =a n -2n+1,可知:b n =2b n-1,且b 1=0 从而b n =0,故数列{b n }是常数列. 于是a n =2n-1.(5分)(2)S n 是{a n }前n 项和,则S n =1+3+5+…+(2n-1)=n 2,c n =(-1)n n 2 当n 为奇数时,即n=2k-1,T n =T 2k-1=-12+22-32+42+…+(2k-2)2-(2k-1)2=-k (2k-1)=-当n 为偶数时,T n =T 2k =T 2k-1+(2k )2=.∴T n =.由T n >tn 2恒成立,则需>tn 2恒成立.只需n 为奇数时恒成立.∴(n=1,3,5,7,), ∴(n=1,3,5,7,)恒成立. 而,∴t <-1,故所需t 的范围为(-∞,-1).(13分)8.(1)212111231111,,0,1n n n n n n n n n n n n a a a a a b P a a a a a a a a a a λ+++++==∴===-=>+Q L Q 1{}(0,]1n n a P λ∴∴+单调递增趋向正无穷,的范围是 (2)21111111111,1(1)n n n n n n n n n n n n n n a a a b S a a a a a a a a a a ++++-====-∴=-++ 1111,.n n P S a λλ∴+==为定值9.(Ⅰ)∵数列{a n }满足:a 1=2,当n ∈N *,n >1时,a 2+a 3+…+a n =4(a n ﹣1﹣1), ∴a 2=4(a 1﹣1)=4(2﹣1)=4,a 2+a 3=4(a 2﹣1),即4+a 3=4(4﹣1)=12,解得a 3=8. 由此猜想{a n }是首项为2,公比为2的等比数列,即,用数学归纳法证明: ①当n=1时,a 1=2,成立.②假设当n=k 时,等式成立,即a 2+a 3+…+a k =4(a k ﹣1﹣1), ∴22+23+…+2k =4(2k ﹣1﹣1), 当n=k+1时,a 2+a 3+…+a k +a k+1 =4(2k ﹣1﹣1)+2k+1=2k+1﹣4+2k+1=4(2k ﹣1)=4(a k ﹣1),成立, 由①②,得,∴a n+1﹣2a n =2n+1﹣2•2n =0, ∴数列{a n+1﹣2a n }为常数列. (Ⅱ)∵c n ==,当n=1时,c 1=,c n =≤,∴c 1+c 2+…+c n <+++…+=+=+(1﹣)<+=,∴=c 1<c 1+c 2+…+c n <,∵对任意n ∈N *,2a <c 1+c 2+…+c n <10a 恒成立,∴,解得≤a <,故实数a 的取值范围为[,).10.(1)当1n =时,即211122S a ⎛⎫=+ ⎪⎝⎭,解得112a =,22112224n n n n n S a S a a ⎛⎫=+⇒=++ ⎪⎝⎭①2111124n n n S a a ---⇒=++② ①-②:22112n n n n n a a a a a --=-+-,所以22110n n n n a a a a -----=,即()()1110n n n n a a a a --+--=,因为{}n a 是正项数列,所以110n n a a ---=,即11n n a a --=,其中2n ≥, 所以{}n a 是以12为首相,1为公差的等差数列,所以()111122n a n n =+-⋅=-. (2)因为12n a n =-,所以112n a n +=+,所以2222221122211112222n n n n b n n n n ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()22221111421211122n n n n ⎡⎤=-=-⎢⎥-+⎢⎥⎛⎫⎛⎫⎣⎦-+ ⎪ ⎪⎝⎭⎝⎭, 所以12n n T b b b =+++L()()22222211111144413352121n n ⎡⎤⎡⎤⎡⎤=-+-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-+⎢⎥⎣⎦L ()222116164144121n n n n n ⎡⎤+=-=⎢⎥+++⎢⎥⎣⎦.11.(1)令n=1得a 2=3.…………2分 (2)因为11241n n n n n a a a a S ++-=-,所以11241n n n n na a S a a ++-=-①.所以12121241n n n n n a a S a a +++++-=-②,由②-①,得12112112n n n n n n n n na a a aa a a a a +++++++=---.………………5分因为10n a +≠,所以22112n nn n n na a a a a a ++++=---.所以121112n n n n n n a a a a a a +++++-=--,即12111n nn n n na a a a a a ++++-=--,即11n n b b +-=,所以数列{}n b 是公差为1的等差数列. …………8分 (其它解法酌情给分) (3)由(2)知,因为b 1=,所以数列{}n b 的通项公式为b n =n.因为,所以 ,所以数列 是常数列.由 .………………11分所以因为所以数列{c n }为单调递增数列 当1n ≥时,c n ≥c 1= ,即c n 的最小值为………………14分由22-k+3<c n ,而当时,,当且仅当时取得,故. ………………16分12.(I )(数学归纳法)当1n =时,因为11x =,所以109x <<成立. 假设当n k =时,09k x <<成立, 则当1n k =+时,123k k x x +=+. 因为12330k k x x +=≥>, 且()1926230k k k x x x +-=-=-<得19k x +<所以09n x <<也成立. (II )因为09n x <<,所以()+123310.n n n n n n x x x x x x -=-++=--+>所以1n n x x +<.(III )因为09n x <<3nn x x >. 从而132332n n n x x x +=>+. 所以()12993n n x x +->-,即()12993n n x x +-<-.所以()112993n n x x -⎛⎫-≤- ⎪⎝⎭.又11x =,故12983n n x -⎛⎫≥-⋅ ⎪⎝⎭.13.1.证明Q 32,2n n n S a =-11132n ,2n n n S a ---∴=-≥(2) ………2分 作差得113112(2),-2(2)222n n n n n n n a a n a a n --=-≥=-≥变形得() ∴1{}2n n a -为首项为1,公比为2等比数列 ………4分 ∴n-1*12+n 2n na N =∈, ………6分 2Q n-1*12+n 2n n a N =∈,代入32,2n n n S a =-得12,2nn nS =- ………8分 11-11111-2-2=2+0,222n n n n n n n n S S ---=-->Q ()nn 2n 12{}b ==21n n S S ∴-为递增数列,令n nn 2n n n22b ==212-12+1-Q ()() ………10分 n n-1n n n n n-1n-1n2211b (2)2-1222-1212-12-1n ∴<==-≥--()()()() 11212n 12n n 224141=b =2=b +b =+=331515241111n 3T =b +b ++b +++-+3153771519119=-152115n T n T ==≥≤-<-L L 当时,,当时,当时,,………13分min 1938151,=13452m n T S λ<=<∴Q 存在∴存在正整数=1λ,对任意*m n ,,-0m n N T S λ∈<不等式恒成立 ………15分14.(Ⅰ)证明:①当1n =时显然成立;②假设当n k =()k N *∈时不等式成立,即01k a <<,那么当1n k =+时,1111()2k k k a a a +=+>112=g ,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知,01n a <<对任意n N *∈成立.--------------------------------5分(Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列。