数学分析第三版答案下册

合集下载

数学分析课本(华师大三版)-习题及答案4

数学分析课本(华师大三版)-习题及答案4

1.按定义证明下列函数在其定义域连续:()||.f x x =2. 指出下列函数的间断点,并说明其类型:(1).()[|cos |];f x x =(2) ()sgn(cos );f x x =(3),();,x x f x x x ⎧=⎨-⎩为有理数为无理数1,77(4) (), 711(1)sin ,11x x f x x x x x x ⎧-∞<<-⎪+⎪=-≤≤⎨⎪-<<+∞⎪-⎩3.延拓下列函数,使其在R 上连续.(1) 38();2x f x x -=- (2) 21();cox f x x -= (3) 1()cos .f x x x = 4. 证明:若f 在点0x 连续,则2||,f f 也在0x 连续.又问:若2||,f f 都在I 连续,那么f 在I 上是否必连续.5. 设,f g 在点0x 连续,证明:(1) 若00()(),f x g x >则存在0(;),U x δ使在其内有()();f x g x >(2) 若在某00()U x 内有()(),f x g x >则()(),f x g x >则00()().f x g x ≥6.设,f g 在区间I 上连续。

记()max{(),()},()min{(),()}.F x f x g x G x f x g x ==证明F 和G 都在I 连续。

7.设f 为R 上连续函数,常数0,c >记 ,()()(),|()|,,()c f x c F x f x f x c c f x c -<-⎧⎪=≤⎨⎪>⎩若若若证明()F x 在R 上连续。

提示:()max{,min{,()}}.F x c c f x =-8.设,0()sin ,(),,0x x f x x g x x x ππ-≤⎧==⎨+>⎩证明:复合函数f g 在0x =连续,但g 在0x =不连续。

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)
101
(4) b•
ê§ lim
x→∞
xb eax
=
lim
x→∞
bxb−1 aeax
=
··· =
lim
x→∞
b! abeax
=0
bؕ
ê§K[b]
b
<
[b]+1§u´
|x|[b] eax
|x|b eax
<
|x|[b]+1 eax (|x|
> 1)§
þ¡®y²§‚ 4••0§Ïd§¥m 4•••0.
l
§é?¿a, b§þk lim
lim
+
=
x→0
24
24
1
6
ax − bx
ax ln a − bx ln b
a
(9) lim
= lim
= ln a − ln b = ln (a = 0, b = 0)
x→0 x
x→0
1
b
x−1
1
(10) lim
x→1
ln x
= lim
x→1
1
=1
x
(11) lim ax − xa = lim ax ln a − axa−1 = aa(ln a − 1)
(x2 − 1) sin x
(4) lim x→1 ln
1 + sin π x
2

x2 sin 1
1
1
2x sin − cos
1 cos
(1) Ï
x ©f!©1Óžéx¦ ê§
x

x x → 0ž4•Ø•3§Ïdâ
sin x
cos x
cos x

数学分析课本(华师大三版)-习题及答案第三章

数学分析课本(华师大三版)-习题及答案第三章

第三章第三章函数极限 一、填空题一、填空题 1.若[]2)(1ln lim20=+®x x f x ,则=®20)(lim xx f x _________ 2.=--+-®xxe e x x x x x 340sin 21sin lim _______________ 3.设xx x x f ÷øöçèæ+-=11)(,则=+¥®)1(lim x f x ____________ 4.已知ïîïíì>-=<+=2,12,02,1)(x x x x x x f ,1)(+=xe x g ,[]=®)(lim 0x gf x ________ 5.()x x x x ln cos arctan lim -+¥®=_________________ 6.[]=®x x x tan)sin(sin sin lim0_____________7.________24tan lim =÷øöçèæ+¥®n n x p8.________ln 1ln ln lim 20=÷øöçèæ+®x x x x9.)1ln(lim 2cos 0x x e e x x x x +-®=__________ 10.=×+-¥®x xx x x cos 1sin 21lim 22_________ 11.=÷øöçèæ-®x x xx tan 11lim 2_________ 12.310)(1lim e x x f x xx =úûùêëé++®,则úûùêëé+®20)(1lim x xf x =_______13.()=+++®)1ln(cos 11cos sin 3lim 20x x xx x x ___________二、选择填空二、选择填空1.=-®tt t cos 1lim( ) A.0 B.1C.2D.不存在不存在 2.函数x x x f 1cos 1)(=,在0=x 点的任何邻域内都是() A.有界的有界的 B.无界的无界的 C.单增单增 D.单减单减 3.已知()25lim 2=++-+¥®cyx ax x ,则必有() A.20,25-==b a B. 25==b a C.0,25=-=b aD.2,1==b a 4.设nn n x n x f ÷øöçèæ-+=+¥®2lim )1(,则=)(x f ( ) A.1-x eB.2+x eC.1+x eD.xe -5.若22lim222=--++®x x b ax x x ,则必有() A.8,2==b a B.5,2==b a C. 8,0-==b aD. 8,2-==b a 6.0)(6sin lim30=+®x x xf x x ,则=+®20)(6lim xx f x ( ) A. 0 B.6 C.36D.¥ 7.设对任意x 点有)()()(x g x p x ££j ,且[]0)()(lim =-¥®x x g x j ,则=¥®)(lim x f x () A.存在且一定为0B.存在且一定不为0C.一定不存在一定不存在D.不一定存在不一定存在 8.当0®x 时,变量x x 1sin12是( ) A.无穷小无穷小 B.无穷大无穷大C.有界,但不是无穷小有界,但不是无穷小D.无界的,但不是无穷大无界的,但不是无穷大9.=-+÷øöçèæ+¥®p 21sin 1])1(1[lim n nn n() A.peB.p 1eC.1D.p 2e 10.=--®xx x xx x tan )(arctan 1lim 220()A.0B.1C.21D.21-11.x x x g dt t x f xsin )(,tan )(sin 02-==ò,则当0®x 时,)(x f 是)(x g 的() A.高阶无穷小高阶无穷小 B.低阶无穷小低阶无穷小 C.同阶非等价无穷小同阶非等价无穷小 D.等价无穷小等价无穷小三、计算题三、计算题1.求下列极限:求下列极限:(1))x x cos x (sin 2lim 22x --p ®; (2)1x x 21x lim 220x ---®; (3)1x x 21x lim 221x ---®; (4)3230x x2x )x 31()1x (lim +-+-®;(5)1x 1x lim m n 1x --®,(n ,m 为自然数);(6)2x 3x 21lim 4x --+®;(7))0a (,xa x a lim 20x >-+®;(8)x x cos x lim x -¥®; (9)4x xsin x lim 2x -¥® ;(10).)1x 5()5x 8()6x 3(lim 902070x --+¥® 2.设,0a ,b x b x b x b a x a x a x a )x (f 0n1n 1n 1n 0m 1m 1m 1m 0¹++++++++=---- 0b 0¹,m ≤n ,试求).x (f lim x ¥® 3.求下列极限(其中n 为自然数):(1)2x x 11x xlim +®;(2)20x x 11x x lim ++®; (3)1x nx x x lim n 21x --+++® ;(4)x1x 1lim nx -+®;(5)úûùêëé®x 1lim 0x ;(6)[]x x1lim x +¥®. 4.求下列函数在0x =处的左右极限或极限。

数学分析Ⅲ练习册参考答案

数学分析Ⅲ练习册参考答案

1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭ 为整数为整数3、设(,)ln 1f x y x y=--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000limlim (,)limlim lim11x y x y x x y f x y x y →→→→→-===+()222200000limlim (,)limlim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y =的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D )A 、闭区域B 、开区域C 、开集D 、闭集 解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域.2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A ) A 、开区域必为开集 B 、闭区域必为有界闭集 C 、开集必为开区域 D 、闭集必为闭区域4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+ 证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y ¹时2222222220x y y xx x y x y ?祝++,而200lim 0x y x →→=所以222200lim 0x y x y xy →→=+. 2、2200x y →→解因为())2222221111x y x y +==++-所以)22000lim12x x y y ==.1、设xy e z =,则z x ∂=∂ ,z y∂=∂ . 解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x ∆→+∆=∆ ,000(,)lim y f x y y y∆→+∆=∆ .解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解 2222cos(),cos()z zxy x y x x y x y ∂∂==∂∂ ()22222c o s ()c o s ()c o s ()2d z x y x y d x x x y d y x x y y d x x d y∴=+=+ 5、求曲面arctany z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y ⅱ=-=++ 11(1,1),(1,1)22x y z z ⅱ\=-=故曲面arctan y z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim ),(),(lim00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim 00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)0l i ml i m 0,l i m l i m 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''==4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件 解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为00000()()()0y x x x yy z z -+---= 由已知切平面与平面093=+++z y x 平行,故001131y x -== 于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==- 2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解 2221(,)(0,0)02x y x y x x y ≠≤≤+ 当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆(,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 222l n 2z z x z y u x y x v x v y v vy∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u u f f s t∂∂==∂∂,则11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =- 的方向导数. 解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB上的方向导数.解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y ∂=∂∂ .解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解 222221,1,0,1,0,0(2)n m n m f f f f f fy x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x yf f f f f f n m +''''''''∴======+> (,)f x y x y x y ∴=++在点)2,1(的泰勒公式为 (,)f x y x y x y =++ 1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(x y x y =+-+-+-- 4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A ) A 、(1,0) B 、(1,2) C 、(-3,0) D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C ) A 、(-1,-1) B 、(0,0) C 、(1,1) D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B C B A C =>=-=∆=-=-< 故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2 D、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点.③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令0xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B A C ===∆=-=> 故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B ) A 、最大值点 B 、稳定点 C 、连续点 D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题1、求函数333(0)z axy x y a =-->的极值.解 令22330330xy z ay x z ax y ¢ï=-=ïí¢ï=-=ïî 得稳定点(0,0)和(,)a a .226,3,6xy x yz x z a z y ⅱ =-==- 对于点(0,0),220,3,0,90A B a C B AC a ===D =-=>故点(0,0)不是极值点.对于点(,)a a ,2260,3,6,270A a B a C a B AC a =-<==-D =-=-< 故点(,)a a 是极大点,极大值为3(,)z a a a =.2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令()()22162054216205xy x y S x x y S y ì+-ïï¢=+=ïïïíï+-ï¢ï=+=ïïî得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S ⅱⅱⅱ===2124180,,,80555A B C B A C =>==D =-=-< 故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2c o s 20x d y d y y e y x y d x d x ⎛⎫⋅+-+⋅= ⎪⎝⎭ 2cos 2xdy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则z x ∂=∂ ,zy∂=∂ . 解法一 令(,,)z F x y z e xyz =-,则 (,,),(,,),(,,)z x y zF x y z y z F x y z x z F x y z ex y'''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yzx F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u v u y x xv u v u x x x ì抖ïï--=ïï抖íï抖ï---=ïï抖ïî解此方程组得24u v uy x uv xy ?=?,224v u xx xy uv?=?1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y d y F x y x yd x F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=. 法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---== 法平面方程为(1)2(1)3(1)x y z -+-+-=,即2360x y z ++-=. 4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 .解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)x yz -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B ) A 、只有一条 B 、只有二条 C 、至少有三条 D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线22260x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩ 该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为()20,a a >则问题转换为求函数(),,,f x y z xyz =在条件()22xy yz xz a ++=下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得x y z ===根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x yìï++=ïíï=+ïî在点(1,1,2)-的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y =++-=--,在点(1,1,2)-处有4,6,4x y z F F F ⅱ ==-=,6,2,4x y zG G G ⅱ =-== (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y 抖 =-=-=-抖所以切线的法向量为(8,10,7),切线方程为1128107x y z -+-== 法平面方程为8(1)10(1)7(2)0x y z -+++-=或8107120x y z ++-=.1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、20x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x +∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛. 二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立. 2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a ⎰+∞收敛,则 )(dx x f c ⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故l i m ()()l i m (x x xaac A A e f x dx e f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰ 即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞adx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x +∞⎰收敛,但无穷积分sin a x dx x+∞⎰发散(P275,例11).三、讨论下列无穷限积分的敛散性(1)+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x+∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰收敛.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛. (4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性201dx x +0100x + 解 (1) 由于()22sgn sin 111x x x≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令(),()cos 100f x g x x x ==+,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分⎰收敛.另一方面)21cos 2121002(100)2100100x x x xx x x ⎡⎤+=≥==+⎢⎥++++⎣⎦可证0⎰发散,而0⎰收敛,故0dx ⎰发散,原积分条件收敛. 五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有 ()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、1=⎰.解 由于1lim x →=∞,故1x =为瑕点,由瑕积分定义知()11120000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=-=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0l i m l n (1)1εεεε→+=---=- 3、 是积分0sin xdx xπ⎰的瑕点. 解 0lim1,lim sin sin x x x x x xπ→+→-==∞ x π∴=是积分0sin xdx xπ⎰的瑕点. 4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解 0x = 是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散.二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是(C )A 、0⎰B 、11211--⎰x dxC 、2211ln dx x x⎰D 、1⎰解 对于积分10sin dxx⎰,0x =为瑕点,由于 0lim 1sin xx →= 故瑕积分10sin dx x⎰收敛.对于积分11211--⎰xdx ,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰badx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b a dxx f )(2发散;取()f x =,则瑕积分⎰b a dxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim (0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于 1200ln lim(0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛. (4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy x xyx = . 解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰ 2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011lnln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰ 3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0y e dy +∞-⎰收敛,故含参变量无穷积分20x y edy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故2240221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰3、2x edx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 2x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2πD 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分220x x e dx +∞-⎰,令x=则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰22x x e d x+∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭C 、111,222n B +⎛⎫ ⎪⎝⎭D 、112,22n B +⎛⎫⎪⎝⎭解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于s i n ,t x a x e x e a t --≤≤<+∞ 而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于232c o s 10,1101t t x t x t x ≤≤≤++ 而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰ (2)642sin cos x xdx π⎰解 (1)()()111220331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰. 2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df x y dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰ ()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+2242220),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y d x d y f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D ) A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.。

数学分析三习题答案

数学分析三习题答案

数学分析三习题答案【篇一:《数学分析》第三版全册课后答案 (1)】class=txt>------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第页(共)------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------【篇二:数学分析三试卷及答案】lass=txt>一. 计算题(共8题,每题9分,共72分)。

111.求函数f(x,y)??在点(0,0)处的二次极限与二重极限.yx11解:f(x,y),因此二重极限为0.……(4分)yx1111因为与均不存在,x?0yxy?0yx故二次极限均不存在。

……(9分)zxf(xy),yy(x),2. 设? 是由方程组?所确定的隐函数,其中f和f分别f(x,y,z)?0z?z(x)??dz数,求.dx解:对两方程分别关于x求偏导:dy?dzf(xy)xf(xy)(1),??dxdx?……(4分)dydz?f?f?fz?0。

xydxdxdzfy?f(x?y)?xf?(x?y)(fy?fx)?解此方程组并整理得.……(9分) dxfy?xf?(x?y)fz3. 取?,?为新自变量及w?w(?,v)为新函数,变换方程2z2zzz。

2?x?x?y?xx?yx?y设??,??,w?zey (假设出现的导数皆连续).22解:z看成是x,y的复合函数如下:wx?yx?y。

数学分析课本(华师大三版)-习题及答案Part-II

数学分析课本(华师大三版)-习题及答案Part-II

x = x(t ) x + y + 2t (1 − t ) = 1 is determined by . Find the y y = y (t ) te + 2 x − y = 2
equations of the tangent line and the normal line of the curve at t = 0 . 3. Suppose
Part II
Differentials with one-variable
x = 3t 2 + 2t + 3 . y e sin t − y + 1 = 0
1. Suppose the function y = y ( x ) is determined by the equation system Find the differentials dy |t = 0 and dy 2 |t = 0 . 2. Suppose that the curve
1 (1 + ) x − e x (2) lim ; x →0 x
1
sin x x2 (3) lim( ) . x →0 x
1
lim
x →0
x 2e 2 + 2 cos x − 2 . tgx − sin x
f ( x) x →0
x 6. Suppose that f (0) = 0 , and suppose f ' (0) exists. Find the limit lim +
d2y 1 y . ln( x 2 + y 2 ) = arc tg . Find the second differential 2 x dx 2

数学分析课本(华师大三版)-习题及答案第十一章

数学分析课本(华师大三版)-习题及答案第十一章

第十一章 反常积分一、填空题 1.⎰+∞-++131xx ee dx= 2.⎰-+-31)3()1(x x dx =3.⎰+∞2)(ln kx x dx其中k 为常数,当1≤k 时,这积分 ,当1<k 时,这积分当这积分收敛时,其值为4.=++⎰+∞284x x dx5.=-+⎰∞+22)7(x x dx___________6.=+⎰∞---02)1(dx e xe x x____________二、选择填空 1. ⎰--=1121xxdx I 则( )A 可以令t x sin =求得⎰-=22sin ππtdt I 之值B 可从凑微分求得⎰----=11221)1(21xx d I 之值C 因被积函数在]1 ,1[-内不连续,不能直接换元D 因被积函数在]1 ,1[-内不连续,I 之值不存在 2.)(x f 在] ,[∞+a 连续c a <,则( ) A)(dx x f a⎰+∞收敛, )(dx x f c⎰+∞也必收敛,但 )(dx x f a⎰+∞发散, )(dx x f c⎰+∞不一定发散。

B)(dx x f a⎰+∞发散, )(dx x f c⎰+∞也必发散,但 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛。

C )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散。

D)(dx x f a⎰+∞收敛, )(dx x f c⎰+∞必发散。

3.若xx x f 104)5(2-=-,则积分=+⎰40)12(dx x f ( ) A.0 B.4πC.是发散的广义积分D.是收敛的广义积分 4.=+⎰-222)1(x dx( )A.34-B.34C.32- D. 不存在 5.下列广义积分发散的是( )A.⎰-11sin x dx B.⎰--1121x dxC.⎰+∞-02dx e xD.⎰∞+22ln x x dx 三.计算题1.计算下列无究限积分:(1)⎰∞+12x dx ; (2)()⎰∞++12x 1x dx; (3)⎰∞+∞-++1x 2x 2dx2; (4)⎰∞+0x e dx ; (5)⎰+∞-0x dx xe 22.讨论下列无穷限积分的敛散性:(1)⎰∞++0341x dx ;(2)⎰∞+-axdx e 1x; (3)⎰∞++0x1dx ;(4)⎰∞++13dx x 1xarctgx;(5)()⎰∞+->+01a 1a dx x1x ;(6)()⎰∞+≥+0nm0n ,m dx x 1x ; (7)()⎰∞++1ndx xx 1ln ; (8)()⎰∞+3x ln ln x dx3.讨论下列非正常积分的绝对收敛与条件收敛:(1)⎰+∞02dx x sin ;(2)()dx x 1x sin sgn 02⎰∞++; (3)⎰∞++0dx x 100xcos x ;(4)()⎰∞+3xdx sin xln x ln ln 4.计算下列瑕积分的值:(1)⎰1xdx ln ; (2)⎰-1dx x1x; (3)()()()⎰≠--bab a x b a x dx5.判别下列非正常积分的敛散性:(1)()⎰-221x dx;(2)⎰123dx xx sin ;(3)⎰-104dx x1x ;(4)⎰-10dx x 1xln ; (5)⎰-103dx x 1arctgx; (6)⎰∞-0x dx x ln e ;(7)⎰1xln x dx ;(8)⎰π-20mdx xxcos 1 6.仿照无究限积分的阿贝耳判别法和狄利克雷判别法,写出瑕积分的相应判别法,并用来讨论下列非正常积分的绝对收或条件收敛:(1)⎰10dx xx 1cos ;(2)dx x x2sin e 02x sin ⎰∞+;7.计算下列瑕积分的值(其中n 为自然数): (1)()⎰10ndx x ln ; (2)dx x1x 1n ⎰-8.求()⎰-2211dx x9.求dx ex x x-+∞∞-+⎰)(10.求⎰+∞-11x x dx11.求dx xx ⎰-2322cos 1sin ππ12.求⎰+∞∞--++dx e x x x 2)1(213.求dx x⎰-312lnπ14.判断下列广义积分的敛散性(1)dx x⎰20sin 1π(2)⎰-+-1122)1)(1(1dx x x15.判别广义积分dx x x xx ⎰∞+-03421ln 的敛散性16.计算积分⎰--23212xx dx四、证明题 1.假定⎰∞)(dx xx f 对a 取任何正值时收敛,且)(x f 为连续函数,L f =)0(,证明αββαln )()(⋅=-⎰∞L dx x x f x f a2.证明无穷限积分的性质3:若f 在任何有限区间[a ,A]上可积,且⎰+∞af 收敛,则⎰+∞af 也收敛,且⎰⎰+∞+∞≤aaf f3.证明定理10.22:设定义在[]+∞,a 上的非负函数f 与g 在任何有限区间[a ,A]上都可积。

数学分析课本(华师大三版)-习题及答案Part-IV

数学分析课本(华师大三版)-习题及答案Part-IV

(1)
fn ( x ) =
(i )
x ∈ [ a, +∞ )
( ii )
x ∈ ( 0, +∞ ) ;
( 2)
∑x e
n =1 ∞

2 − nx
, x ∈ [ 0, +∞ ) .
5. Find the convergence domain of the following series.
(1)
1 n 1 ∑ 1 + + ... + x ; n 2 n =1

1

27. Suppose that the derivative f ′ of f is continuous on ( a, b ) and
fn ( x ) = n f
Show that
1 x + − f ( x ) . n
{ f ( x )}
n n
{ f ( x )}
n
converges
[ a, b ] .
21. Prove that f ( x ) =


sin nx is continuous on (1, +∞ ) . nx n =1
2

nπ x . Find lim f ( x ) and lim f ( x ) . 22. Let f ( x ) = ∑ cos x →1 n →1 x n =1 1 + 2 x
an n +1 r . n =0 n + 1
converges if and only if

{nan } converges.

数学分析(下册)(华东师大第三版)

数学分析(下册)(华东师大第三版)

!!第十二章数项级数内容提要!一!定义给定一个数列!!""#对它的各项依次用$!%号连接起来的表示式!"!!#!&&!"!&&!称为数项级数或无穷级数’也常简称级数(#其中!"称数项级数!的通项#数项级数!记作"$"$"!"或"!"#二!级数收敛的柯西准则级数!收敛的充要条件是)任给!#%#总存在自然数%#使得当&#%和任意的自然数’#都有$!&!"!!&!#!&!!&!’$%!反之#级数!发散的充要条件是)存在某正数!%#对任何自然数%#都存在&%#%和自然数’%#有$!&%!"!!&%!#!&!!&%!’%$&!由此易得)若级数!收敛#则&’()’!$*)+*,三!正项级数收敛性的判别方法"-正项级数!"!!#!&!!"!&&收敛的充要条件是)部分和数列!(""有界#即存在某正数)#对一切自然数"有("%)##-比较判别法.-比较原则的极限形式/-达朗贝尔判别法’或称比较判别法(0-比较判别法的极限形式*!*!!数学分析同步辅导及习题全解"下册#1-柯西判别法’或称根式判别法(2-根式判别法的极限形式3-积分判别法4-拉贝判别法"%-拉贝判别法的极限形式四!一般项级数收敛性的判别方法"-级数"$!"$收敛#则级数"!"绝对收敛#若"!"收敛#"$!"$发散#称级数"!"为条件收敛##-莱布尼兹判别法.-阿贝尔判别法/-狄利克雷判别法典型例题与解题技巧$例!%!设"$"$"*#"收敛#证明)"$"$#*"!"&)"收敛’*"#%(#分析!本题主要考查正项级数的判敛#要求灵活运用正项级数的几种判敛法#证明!%%*"!"&)"%"#*#"!""&)#’("易知)"$"$#""&)#"收敛’积分判别法(#又"$"$#*#"收敛#所以"$"$#"#*#"""&)#’("收敛#由比较判别法知"$"$#*"!"&)"收敛’*"#%(#$例"%!设+’,(在点,+%的某一邻域内具有连续的二阶导数#且&’(,’%+’,(,+%#证明)级数"$"$"+’""(绝对收敛#分析!本题考查级数与之前所学知识的综合运用#级数的绝对收敛的判定#证明!由&’(,’%+’,(,+%#又+’,(在,+%的某邻域内具有连续的二阶导数#可推出+’%(+%#!+’-%(+%将+’,(在,+%的某邻域内展成一阶泰勒公式+’,(++’%(!+’-%(,!"#+.’"(,#+"#+.’"(,#!’"在%与,之间(又由题设+’.,(在属于邻域内包含原点的一个小闭区间连续#因此()#%#使$+’.,($)!#于是$+’,($+"#$+.’"($,#)!#,#令,+""#则$+’""($)!#*""##因为"$"$"""#收敛#故"$"$"+’""(绝对收敛#*"*第十二章!数项级数历年考研真题评析!$题!%!’中山大学##%%1年(级数"$"$"*"收敛的充要条件是)对任意的正整数序列/"#/##&#/"#&都有&’("’!$’*"!"!*"!#!&!*"!/"(+%#分析!本题考查对级数收敛的定义的理解程度#证明!必要性!因为"$"$"*"收敛#所以对*!#%#(%#%#当"#%及*0+%#有$*"!"!*"!#!&!*"!’$%!特别地$*"!"!*"!#!&!*"!/"$%!所以&’("’!$’*"!"!*"!#!&!*"!/"(+%充分性!用反证法#若"*"发散#则(!%#%#*%#%#("#%及自然数’#使$*""!"!&!*"!’$&!%特别地%"+"#(""#"及自然数/"使$*"!"!&!*""!/"$&!%%#+(56!""##"#("##%##及自然数/##使$*""!"!&!*"#!/#$&!%&&&&这与&’("’!$’*"!"!*"!#!&!*"!/"(+%的假设矛盾#$题"%!’同济大学##%%1年(证明)级数"$"$"’7"("8’),"*,,%都是条件收敛的#分析!本题考查条件收敛的判断#莱布尼兹判别法与比较判别法的灵活运用#证明!不妨设,#%#则(%,#%#当"#%,时#%%,"%###此时8’),"#%#且8’),!""为单调递减数列#且&’("’!$8’),"+%#由莱布尼兹判别法知"$"$"’7"("8’),"收敛#而当"#%,时#’7"("8’),"+8’),"#%#&’("’!$8’),","+"#又"$"$","发散#由比较判别法知"$"$"8’),"也发散#所以*,,%#级数"$"$"’7"("8’),"都是条件收敛的#课后习题全解!!!9"!级数的收敛性-"-证明下列级数的收敛性#并求其和数)*#*!!数学分析同步辅导及习题全解"下册#’"(""*11"1*""1"""*"11&1"’0"2/(’0"1"(1&+’#(’"#1".(1’"##1".#(1&1’"#"1"."(1&+’.(""$"$""’"1"(’"1#(+’/(""$"$’"1!#2#"1!"1!"(+’0(""$"$#"2"#"-!分析!’"(进行积分和差的转化#’/(以某一项拆分为两项的方式重新组合原式#!解!’"(("$"3$"""’032/(’031"($"0"3$""’"032/2"031"($"0’"2"0"1"(于是($&’("’$("$"0#故级数收敛且其和为"0-’#(("$"3$""’"#31".3($"3$"""#31"3$""".3$"#2"#"1""2"#1".2"."1""2".$.#2"#"2"#4."于是($&’("’$("$.##故级数收敛且其和为.#-’.(("$"3$"""3’31"(’31#($"#"3$"","3’31"(2"’31"(’31#(-$"#,"#2"’"1"(’"1#(-于是($&’("’$("$"/#故级数收敛且其和为"/-’/(("$"3$""’31!#2#31!"1!3($"3$""’31!#231!"(2"3$""’31!"2!3($’"1!#2!#(2’"1!"2"($"2!#1""1!#1"1!"于是("$&’("’$("$"2!##故级数收敛且其和为"2!#-’0(("$#("2("$"3$""#32"#32"2"3$""#32"#3$"1"3$#"#32"#32"2"3$""#32"#3$"1"3$""2"##32#"2"#"*$*第十二章!数项级数$"1"2"#"2""2"#2#"2"#"$.2"#"2#2#"2"#"’"&#(于是($&’("’$("$.#故级数收敛且其和为.-.#-证明)若级数"!"发散#5,%#则"5!"也发散-!证明!因为级数"!"发散#即(!%#%#对任何%+:1#总有&%+:1和’%+:1使6!&%1"1!&%1#1&1!&%1’%6&!%所以65!&%1"15!&1#1&15!&%1’%6$6566!&%1"1!&%1#1&1!&%1’%6&656!%于是"5!"亦发散-..-设级数"!"与"7"都发散#试问"’!"17"(一定发散吗.又若!"与7"’"$"###&(都是非负数#则能得出什么结论.!解!若"!"#"7"都发散#则"’!"17"(不一定发散-例如#""和"’2"(是发散的#但"’"1’2"((是收敛的+""和"#是发散的#"’"1#($".亦是发散的-若"!"#"7"都发散且!&%#7"&%#则"’!"17"(发散-由柯西收敛准则#知(!%#!"#%#对任何的%+:1#总存在&%#’%#&"+:1#使6!&%1"1!&%1#1&1!&%1’%6$!&%1"1!&%1#1&1!&%1’%&!%和67&"1"17&"1#1&17&"1’"6$7&"1"17&"1#1&17&"1’"&!"故6’!&%1"17&%1"(1’!&%1#17&%1#(1&1’!%1’%17&%1’%(6$’!&%1"1!&%1#1&1!&%1’%(1’7&%1"17&%1#1&7&%1’%(&!%即"’!"17"(必发散--/-证明)若数列!*""收敛于*#则级数"$"$"’*"2*"1"($*"2*#!分析!单项收敛则和也收敛#!证明!由已知条件知#数列!*""收敛于*#即&’("’$*"$*#故("$"3$""’*32*31"($*"2*"1"从而($&’("’$("$&’("’$’*"2*"1"($*"2&’("’$*"1"$*"2*-0-证明)若数列!8""有&’("’$8"$$#则’"(级数"’8"1"28"(发散+’#(当8",%时#级数""8"2"8"1’("$"8"-分析!’#(中间项相互抵消即可#证明!’"(因为("$"3$""’831"283($8"1"28"($&’("’$("$&’("’$’8"1"28"($$*%*!!数学分析同步辅导及习题全解"下册#故"’8"1"28"(发散-’#(当8",%时("$"3$"""832"831’("$"8"2"8"1"即($&’("’$("$"8"2&’("’$"8"1"$"8"故级数""8"2"8"1’("收敛于"8"--1-应用第/#0题的结果求下列级数的和)’"(""$"$"’*1"2"(’*1"(+!!!!!!’#(""$"$’2"("1"#"1""’"1"(+’.(""$"$#"1"’"#1"(,’"1"(#1"--!分析!’"(积化和差将原式拆分#简化了问题#’.(识记&’("’$""#$%#!解!’"(因为""$"$"’*1"2"(’*1"($""$"$"*1"2"2"*1’("而数列"*1"2!""收敛于%#故由第/题的结论#可知""$"$"’*1"2"(’*1"($"*1"2"2%$"*’*,%(’#(因为""$"$’2"("1"#"1""’"1"($""$"$,2’2"(""2’2’2"("1""1"(-而数列2’2"("!""收敛于%#故""$"$’2"("1"#"1""’"1"($2’2"(""2%$"’.(因为""$"$#"1"’"#1"(,’"1"(#1"-$""$"$,""#1"2"’"1"(#1"-而数列""#1!""收敛于%#故""$"$#"1"’"#1"(,’"1"(#1"-$""#1"2%$"#-2-应用柯西准则判别下列级数的敛散性)’"("8’)#"#"+!!!!’#("’2"("2""##"#1"+’.("’2"(""+’/("""1"!#-分析!’"(运用柯西准则进行判别#’/(注意取"%时#应考虑合适的取法#*&*第十二章!数项级数解!’"(由于!6!&1"1!&1#1&1!&1’6$68’)#&1"#&1"18’)#&1##&1#1&8’)#&1’#&1’6!!%"#&1"1"#&1#1&1"#&1’$"#&2"#&1’%"#&因此#对任意的!#%-取&$&;<#",-!使得当&#%及*’+:1#由上式就有6!&1"1!&1#1&1!&1’6%!成立#故由柯西准则可推出"8’)#"#"收敛-’#(因&’("’$’2"("2""##"#1"$"##"/#故取!%$"/-对任一%+:1#总存在&%#%#和’%$"#有6!&%1"6$’&%1"(##’&%1"(#1"#"/$!%由柯西准则可知"’2"("2""##"#1"发散-’.(由于数列"!""单调减小#故6!&%1"1!&%1#1&1!&%1’6$"&%1"2"&%1#1&1’2"(’2""&%1’%"&%1"%"&%因此#*!#%#取%$",-!1"当&%#%及’+:1时#都有6!&%1"1!&%1#1&1!&%1’6%!成立-由柯西准则可知级数"’2"("""收敛-’/(取!%$"!##*%+:1#及取&%$#%#’%$&%#则当&%#%时#就有"3$"’%"’&%13(1’&%13(!##"3$"’%"#’&%13(!#$"’%3$""!#’&%13(#"3$"’%"!#’&%1&%($"!##由柯西准则知"""1"!#发散-/3-证明级数"!"收敛的充要条件是)任给正数!#存在某正整数%#对一切"#%总有6!%1!%1"1&1!"6%!-!分析!由结论6!%1&1!"6%"的形式推出用柯西准则证明#!证明!必要性!若"!"收敛#则由柯西准则可知*!#%#(%"+:1使得*"#&#%"时有*’*!!数学分析同步辅导及习题全解"下册#6!&1"1!&1#1&1!"6%!取%#%"1"#则*"#%#有6!%1!%1"1&1!"6%!充分性!若*!#%#(%+:1#*"#%#总有6!%1!%1"1&!"6%!/#则*&#%及’+:1有!6!&1"1!&1#1&1!&1’6)6!%1!%1"1&1!&1’616!%1!%1"1&1!&6%!/#1!/#$!由柯西准则知级数"!"收敛-!小结!"/#和"都是表示无穷小的数#形式不一样但含义一样#.4-举例说明)若级数"!"对每个固定的’满足条件&’("’$’!"1"1&1!"1’($%#此级数仍可能不收敛-!解!调和级数"""对每一个固定自然数’#有&’("’$""1"1""1#1&1""1’(’$&’("’$""1"1&’("’$""1#1&1&’("’$""1’$%但该级数""#是发散的-/"%-设级数"!"满足)加括号后级数"3$"$’!"31"1!"31#1&1!"31"(收敛’""$%(#且在同一括号的!"31"#!"31##&#!"31"符号相同#证明"!"亦收敛-分析!证明"!"收敛需要证其和表达式("收敛于某数(#证明!因为级数"3$"$’!"31"1!"31#1&1!"31"(收敛#则有&’("’$’!"31"1!"31#1&1!"31"($%所以*"+:1#总存在3+:1#使"$"319’")9)"31"2"3(时#有("$":$""!"$":$"32"’!":1"1!":1#1&1!":1"(1’!"31"1!"31#1&!"319($(-32"1’!"31"1!"31#1&1!"319(其中(-32"表示加括号级数的前32"项之和-当"’$时#32"’1$#从而有($&’("’$("$&’("’$(-32"1&’("’$’!"31"1!"31#1&1!"319($&’("’$(-32"故"!"收敛#其和不变-小结!此题根据3’1$时和(3与(31"的极限一样得出结论#9#正项级数-"-应用比较原则判别下列级数的敛散性)*(*第十二章!数项级数’"("""#1*#+!!!!!!!!!!’#("#"8’)#."+’.("""1"!#+’/(""$#$"’&)"("+’0("’"2=;8""(+’1(""""!"+’2("’"!*2"(’*#"(+’3(""$#$"’&)"(&)"+’4("’*""1*2""2#(’*#%(-!分析!’"(将原式同""#比较得出结果#’#(考虑8’)#."*#"$#’#.("#’1(识记"""数列是发散的#’2(先做代换;$""#!解!’"(因为%)""#1*#%""#而正项级数"""#收敛#所以级数"""#1*#收敛-’#(因为%%#"8’)#."$#’(#."!’"’$(而正项级数"#’(#."收敛#所以级数"#"8’)#."收敛-’.(因为""1"!#&""1"&%而正项级数"""1"发散#所以级数"""1"!#发散-’/(因为%%"’&)"("%"#"!’"#>#(而正项级数""#"收敛#所以级数""’&)"("收敛-’0(因为"2=;8""$"#"’("#’"’1$(而正项级数""#"#收敛#所以级数""2=;8"’("收敛-’1(因为&’("’$"!"$"#故(%+:1#当"#%时#有"!"%#即"""!"#"#"而正项级数""#"发散-所以级数""""!"发散-’2(因为&’("’$"!*2"""令;$"000000"&’(;’%*;2";$&’(;’%*;&)*"$&)**)*!!数学分析同步辅导及习题全解"下册#而正项级数"""发散#所以级数"’"!*2"(发散-’3(因为"’&)"(&)"$">&)’&)"(&)"$"’>&)"(&)’&)"($""&)’&)"(%""#而正项级数"""#收敛#所以级数""’&)"(&)"收敛-’4(因为&’("’$*""1*2""2#’"#"(#$&’("’$’*"#"2*2"#"(#’"#"(#令;$"#000000"&’(;’%1*;2*2;’(;#$’#&)*(#而正项级数"’"#"(#收敛#所以级数"’*""1*2""2#(收敛--#-用比式判别法或根式判别法鉴定下列级数的敛散性)’"(""*.*&*’#"2"("0+!!!’#("’"1"(0"%"+’.("’"#"1"("+’/(""0""+’0(""##"+’1("."*"0""+’2("8*’(""’其中*"’*’"’$(+*"#8#*#%#且#*,8(-分析!’/(运用到&’(,’%’"1,(",$>知识点#’2(根据*18不同取值情况考虑#解!’"(因为!&’("’$!"1"!"$&’("’$"*.*&*’#"1"(’"1"(0*"0"*.*&*’#"2"($&’("’$#"1""1"$#所以由比式判别法知正项级数""*.*&*’#"2"("0发散-’#(因为&’("’$!"1"!"$&’("’$’"1#(0"%"1"*"%"’"1"(0$&’("’$"1#"%$1$所以由比式判别法知正项级数"’"1"(0"%"发散-’.(因为&’("’$"’"#"1"(!"$&’("’$"#"1"$"#%"所以由根式判别法知正项级数"’"#"1"("收敛-’/(因为&’("’$!"1"!"$&’("’$’"1"(0’"1"("1"*"""0$&’("’$"’"1""("$">%"所以由比式判别法知正项级数""0""收敛-’0(因为&’("’$"!!"$&’("’$""!##$&’("’$’"!"(##$"#%"**!*所以由根式判别法知正项级数""##"收敛-’1(因为&’("’$!"1"!"$&’("’$."1"’"1"(0’"1"("1"*"".""0$&’("’$.’"1""("$.>#"所以由比式判别法知正项级数".""0""发散-’2(因为&’("’$"!!"$&’("’$8*"$8*所以由根式判别法知#当*#8时#正项级数"’8*"("收敛+当*%8时#正项级数"’8*"("发散--.-设"!"和"7"为正项级数#且存在正数%%#对一切"#%%#有!"1"!")7"1"7"-证明)若级数"7"收敛#则级数"!"也收敛+若"!"发散#则"7"也发散-!分析!运用比式判别法进行证明即可#!证明!若"7"收敛#由题意#知当"#%%时#有!"1"!")7"1"7"#即%%!"1"7"1")!"7")&)!%%1"7%%1"故!"1")!%%1"7%%1"*7"1"!’"#%%(而!%%1"7%%1"是常数#所以由比式判别法知正项级数"!"亦收敛-若正项级数"!"发散#同理可证正项级数"7"亦发散-./-设正项级数"*"收敛#证明"*#"亦收敛+试问反之是否成立.!证明!由正项级数"*"收敛可知!!&’("’$*"$%即(%%+:1#当"#%%时#有!!%)*"%"从而%)*#"%*"由比较原则可知#正项级数"*#"收敛#但反之不一定成立#例如正项级数"""#收敛#但正项级数"""发散--0-设*"&%#"$"###&#且!"*""有界#证明"*#"收敛-!分析!注意条件$!"*""有界%#可由此设%)"*"%)再进行证明#!证明!由题意可知()#%#*"+:1#有%)"*"%)*!!*即%)*"%)"从而%)*#"%)#"#而级数"""#收敛#由比较原则可知级数"*#"亦收敛-.1-设级数"*#"收敛#证明"*""’*"#%(也收敛-!证明!对*"#%及任意正整数"#有%%*"")"#*#"1""’(#而"*#"#"""#都收敛#故"*""亦收敛--2-设正项级数"!"收敛#证明级数"!"!"1!"也收敛-!分析!注意运用!*8)"#’*18(#!证明!对!"#%#及任意正整数"#有%)!"!"1!")"#’!"1!"1"(而级数"!"收敛#故由比较原则知级数"!"!"1!"收敛-.3-利用级数收敛的必要条件#证明下列等式)’"(&’("’$""’"0(#$%+!!!’#(&’("’$’#"(0*"0$%!’*#"(-!解!’"(设!"$""’"0(##则正项级数"!"$"""’"0(#是收敛的#这是因为&’("’$!"1"!"$&’("’$’"1"("1",’"1"(0-#*’"0(#""$&’("’$""1""1"’(""$%故由柯西准则可知&’("’$!"$&’("’$""’"0(#$%-’#(设!"$’#"(0*"0则正项级数"!"$"’#"(0*"0是收敛的#这是因为&’("’$!"1"!"$&’("’$’#’"1"((0*’"1"(0**"’#"(0$&’("’$’#"1"(’#"1#(*"1"$%故由柯西准则知&’("’$!"$&’("’$’#"(0*"0$%--4-用积分判别法讨论下列级数的敛散性)’"("""#1"+!!!!!!!’#("""#1"+’.(""$."""&)"&)’&)"(+’/(""$.$""’&)"(’’&)&)"(<#!分析!’.(运用积分判别法#’/(分别讨论’1<的不同取值情况#!解!’"(设+’,($",#1"*"!*则+’,(在,"#1$(上为非负递减函数#而11$"?,"1,#$#/故由积分判别法知"""#1"收敛-’#(设+’,($,,#1"则+’,(在,"#1$(上为非负递减函数#而&’(,’$,*,,#1"$"由11$",,#1"?,发散#于是由积分判别法知"""#1"发散-’.(设+’,($",&),&)’&),(则+’,(在,.#1$(上为非负递减#而11$.+’,(?,$11$.?,,&),&)’&),($11$&)&).?!!$1$故由积分判别法知""$."""&)"&)’&)"(发散-’/(设+’,($",’&),(’’&)&),(<则+’,(在,.#1$(上非负递减-$(若’$"#这时有11$.?,,&),’&)&),(<$11$&)&).?!!<当<#"时级数收敛#当<)"时级数发散-%(若’,"#这时有11$.?,,’&),(’’&)&),(<$11$&)&).?!>’’2"(!!<对任意的<#当’2"#%时#取;#"#有&’(!’$!;*">’’2"(!!<$%即该积分收敛#当’2"%%时#有&’(!’$!;*">’’2"(!!<$1$即该积分发散-即对任意的<#当’#"时级数收敛+当’%"时级数发散-/"%-设!*""为递减正项数列#证明)级数""$"$*"与"#&*#&同时收敛或同时发散-!分析!首先证明(")="#即可证="收敛2("收敛+证发散也可类似此法#!证明!设正项级数"*"的部分和为("#正项级数"#&*#&的部分和为="#则由于!*""为递减正项数列#即有*#!*("$*"1’*#1*.(1’*/1*01*11*2(1&1*")*"1’*#1*.(1’*/1*01*11*2(1&’*#91&1*#91"2"()*"1#*#1&1#9*#9$=9!’")#9(故若正项级数"#&*#&收敛#则正项级数"*"亦收敛-反之当"&#9时#则("&*"1*#1’*.1*/(1&1’*#92"1"1&1*#9(#"#’*"1#*#1/*/1&1#9*#9($"#=9故若正项级数"*"收敛#则正项级数"#&*#&亦收敛-发散的情况类似可证-!小结!需要对"的取值分类讨论#.""-用拉贝判别法判别下列级数的敛散性)’"(""*.*&*’#"2"(#*/*&*’#"(*"#"1"+’#(""0’,1"(’,1#(&’,1"(!’,#%(-!解!’"(因为!&’("’$""2!"1"!’("$&’("’$,"2"*.*&*’#"1"(#*/*&*’#"1#(*’#"1.(*#*/*&*’#"(*’#"1"("*.*&*’#"2"(-$&’("’$"’1"10(’#"1#(’#"1.($.##"所以由拉贝判别法知级数收敛-’#(因为!&’("’$""2!"1"!’("$&’("’$""2’"1"(0’,1"(’,1#(&’,1"1"(’,1"(’,1#(&’,1"(",-0$&’("’$",,1"1"$,所以由拉贝判别法知+当,#"时级数收敛+当,)"时级数发散--"#-用根式判别法证明级数"#2"2’2"("收敛#并说明比式判别法对此级数无效-!分析!此题是说明比式与根式判别法并不是在任何地方都有效的例子#!证明!设!"$#2"2’2"("#则&’("’$"!!"$&’("’$"#""#’2"(!"$"#由根式判别法知"!"收敛#但&’("’$!"1"!"$&’("’$#2"1#’2"("不存在#所以比式判别法对此级数无效-*$!*.".-求下列极限’其中’#"()’"(&’("’$"’"1"(’1"’"1#(’1&1"’#"(,-’+’#(&’("’$"’"1"1"’"1#1&1"’#’("-!解!’"(因为’#"#"""’收敛-由柯西准则知*!#%#(%+:1#当"#%时#有"’"1"(’1"’"1#(’1&1"’#"(’%!所以&’("’$"’"1"(’1"’"1#(’1&1"’#"(,-’$%’#(因为’#"#级数""’"收敛#由柯西准则知*!#%#(%+:1使得对一切"#%时#有"’"1"1"’"1#1&1"’#"%!所以&’("’$"’"1"1"’"1#1&1"’#’("$%/"/-设*"#%#证明数列!’"1*"(’"1*#(&’"1*"("与级数"*"同时收敛或同时发散-!分析!由题意可知两数列有相同敛散性#只需证明一种即可#!证明!由于数列!’"1*"(’"1*#(&’"1*"("与级数"&)’"1*"(有相同的敛散性-因而本题只需证"*"和"&)’"1*"(的敛散性相同-这两者之一若收敛#必有&’("’$*"$%且当&’("’$*"$%时&’("’$&)’"1*"(*"$"故由比较原则的推论可知"&)’"1*"(与"*"有相同的敛散性-故数列!’"1*"(’"1*#(&’"1*"("与级数"*"有相同的敛散性-!小结!注意运用比较原则的推论#9.!一般项级数-"-下列级数哪些是绝对收敛#条件收敛或发散的)’"("8’)","0+!!!!!!!’#("’2"("""1"+’.("’2"(""’1""+’/("’2"("8’)#"+’0("’2"("!"1"’("+’1("’2"("&)’"1"("1"+*%!*’2("’2"("#"1"%%."1’(""+’3(""0,’(""-!分析!’.(需要将’分为’2%#%-#’%#"-#’"#1$(三段讨论#’1(通常是先证绝对收敛#再证条件收敛#!解!’"(因为8’)","0)""0而"""0收敛#所以"8’)","0为绝对收敛-’#(因为&’("’$’2"("""1"$",%所以"’2"("""1"发散-’.(当’)%时&’("’$’2"(""’1"",%故这时级数发散-当’#"时#由于’2"(""’1""$""’而"""’收敛#故这时级数绝对收敛-当%%’)"时#令!!!"$""’1""则!"1"!"$"""’"1""(’’"1"(""1"%"""’"1""(’"""1"$"""’"1"(’"1""(’而"1"’("’’>’#"#"""’"1"(’"!’"’$(从而当"充分大时#有!"1"%!"即!!""为单调递减#又有&’("’$!"$%故由定理"#-""’莱布尼茨判别法(可知#级数"’2"(""’1""在%%’)"时条件收敛-’/(因为’2"("8’)#"$#"’"’$(而"""发散#即原级数不是绝对收敛级数#但8’)#!""是单调递减且&’("’$8’)#"$%-所以由莱布尼茨判别法可知"’2"("8’)#"条件收敛-’0(由于"""发散#"’2"(""!"收敛#故"’2"("!"1"’("发散-’1(因为&)’"1"("1"#""1"*&!*。

数学分析Ⅲ习题及参考答案

数学分析Ⅲ习题及参考答案

一、填空题1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭为整数为整数3、设(,)ln 1f x y x y =--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000lim lim (,)lim lim lim11x y x y x x y f x y x y →→→→→-===+ ()222200000lim lim (,)lim lim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y=的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D )A 、闭区域B 、开区域C 、开集D 、闭集 解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域. 2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A )A 、开区域必为开集B 、闭区域必为有界闭集C 、开集必为开区域D 、闭集必为闭区域 4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.5、下列说法正确的是( A )A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y ¹时2222222220x y y xx x y x y ?祝++,而200lim 0x y x →→=所以222200lim 0x y x y x y →→=+. 2、2200x y →→解 因为())2222221111x y x y +==++-所以()2222000limlim11211x x y y x y x y =+++=++-.1、设xy e z =,则z x∂=∂ ,zy ∂=∂ .解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x∆→+∆=∆ ,000(,)limy f x y y y ∆→+∆=∆ . 解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解2222cos(),cos()z zxy x y x x y x y ∂∂==∂∂ ()22222c o s ()c o s ()c o s ()2d z x y x y d x x x y d y x x y y d x x d y∴=+=+ 5、求曲面arctany z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y ⅱ=-=++ 11(1,1),(1,1)22x y z z ⅱ\=-=故曲面arctan y z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim),(),(lim 00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)0l i ml i m 0,l i m l i m 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''== 4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为00000()()()0y x x x yy z z -+---= 由已知切平面与平面093=+++z y x 平行,故001131y x -==于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==-2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解2221(,)(0,0)02x y x y x x y ≠≤≤+当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂222l n 2z z x z y u x y xv x v y v vy∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u uf f s t∂∂==∂∂,则 11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =-的方向导数.解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB 上的方向导数. 解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y∂=∂∂ . 解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解222221,1,0,1,0,0(2)n m n m f f f f f f y x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂ 22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x yf f f f f f n m +''''''''∴======+> (,)f x y x y x y ∴=++在点)2,1(的泰勒公式为 (,)f x y x y x y=++ 1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(x y x y =+-+-+-- 4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A )A 、(1,0)B 、(1,2)C 、(-3,0)D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C )A 、(-1,-1)B 、(0,0)C 、(1,1)D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B CB AC =>=-=∆=-=-< 故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2D 、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点. ③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令00xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B A C ===∆=-=> 故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B )A 、最大值点B 、稳定点C 、连续点D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题1、求函数333(0)z axy x y a =-->的极值.解 令22330330xy z ay x z ax y ¢ï=-=ïí¢ï=-=ïî 得稳定点(0,0)和(,)a a .226,3,6xy x yz x z a z y ⅱ?=-==- 对于点(0,0),220,3,0,90A B a C B AC a ===D =-=>故点(0,0)不是极值点.对于点(,)a a ,2260,3,6,270A a B a C a B AC a =-<==-D =-=-< 故点(,)a a 是极大点,极大值为3(,)z a a a =.2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令()()22162054216205xy x y S x x y S y ì+-ïï¢=+=ïïïíï+-ï¢ï=+=ïïî得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S ⅱⅱⅱ===2124180,,,80555A B C B A C =>==D =-=-<故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2c o s20x d y d y y e y x y d x d x ⎛⎫⋅+-+⋅= ⎪⎝⎭ 2cos 2x dy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则zx∂=∂ ,z y ∂=∂ .解法一 令(,,)z F x y z e xyz =-,则 (,,),(,,),(,,)zx y zF x y z y z F x y z x z F x y z ex y'''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yzx F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u v u y x xv u v u x x x ì抖ïï--=ïï抖íï抖ï---=ïï抖ïî解此方程组得24u v uy x uv xy ?=?,224v u x x xy uv?=?1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y d y F x y x yd x F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=.法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---==法平面方程为(1)2(1)3(1)x y z -+-+-=,即2360x y z ++-=. 4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 . 解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)x yz -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B )A 、只有一条B 、只有二条C 、至少有三条D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线2226x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为()20,a a >则问题转换为求函数(),,,f x y z xyz =在条件()22xy yz xz a ++=下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得x y z === 根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x y ìï++=ïíï=+ïî在点(1,1,2)-的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y =++-=--,在点(1,1,2)-处有4,6,4x y z F F F ⅱ?==-=,6,2,4x y zG G G ⅱ?=-== (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y 抖?=-=-=-抖?所以切线的法向量为(8,10,7),切线方程为1128107x y z -+-==法平面方程为8(1)10(1)7(2)0x y z -+++-=或8107120x y z ++-=.1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、2x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x+∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛.二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立.2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a⎰+∞收敛,则 )(dx x f c⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故l i m ()()l i m (x x xaac A A e f x dxe f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰ 即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞adx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x+∞⎰收敛,但无穷积分sin a x dx x +∞⎰发散(P275,例11). 三、讨论下列无穷限积分的敛散性(1)0+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x +∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛.(4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性00 解 (1) 由于()22sgn sin 111x x x ≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令()()cos f x g x x ==,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分dx ⎰收敛.另一方面)21cos 2121002(100)2100100x x x xx x x ⎡⎤+=≥==+⎢⎥++++⎣⎦可证0100dx x +∞+⎰发散,而02100x dx x +∞+⎰收敛,故0⎰发散,原积分条件收敛.五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有 ()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、10=⎰. 解 由于1limx →=∞,故1x =为瑕点,由瑕积分定义知()1112000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=--=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0l i m l n (1)1εεεε→+=---=- 3、 是积分0sin xdx xπ⎰的瑕点. 解 0lim 1,lim sin sin x x x xx xπ→+→-==∞x π∴=是积分0sin xdx xπ⎰的瑕点.4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解 0x =是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散. 二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是( C )A 、10sin dx x ⎰B 、11211--⎰x dx C 、2211ln dx x x⎰D 、1⎰解 对于积分0⎰,0x =为瑕点,由于 0lim 1x→= 故瑕积分0⎰收敛. 对于积分11211--⎰x dx,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰ba dx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b adx x f )(2发散;取()f x =,则瑕积分⎰b adxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim(0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim ,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于1200ln lim (0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛.(4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy xxyx = .解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011ln ln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0ye dy +∞-⎰收敛,故含参变量无穷积分20x yedy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故 22400221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰ 3、2x e dx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 22x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2π D 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分22x x e dx +∞-⎰,令x =则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰222x x e d x+∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭ C 、111,222n B +⎛⎫⎪⎝⎭ D 、112,22n B +⎛⎫⎪⎝⎭ 解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰ 三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于s i n ,t x a x e x e a t --≤≤<+∞而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于 232c o s 10,1101t t x t x t x ≤≤≤++ 而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰(2)642sin cos x xdx π⎰解 (1) ()()1112200331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰.2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df xy dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+224222),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y d x d y f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D ) A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.。

数学分析课本(华师大三版)-习题及答案02

数学分析课本(华师大三版)-习题及答案02

数学分析课本(华师大三版)-习题及答案02第二章数列极限习题§1数列极限概念1、设n a =nn)1(1-+,n=1,2,…,a=0。

(1)对下列ε分别求出极限定义中相应的N :1ε=0.1,2ε=0.01,3ε=0.001;(2)对1ε,2ε,3ε可找到相应的N ,这是否证明了n a 趋于0?应该怎样做才对;(3)对给定的ε是否只能找到一个N ? 2、按ε—N 定义证明:(1)∞→n lim 1+n n =1;(2)∞→n lim 2312322=-+n n n ;(3)∞→n lim n n n !;(4)∞→n lim sinn π=0;(5)∞→n lim n an=0(a >0)。

3、根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)∞→n limn1;(2)∞→n limn3;(3)∞→n lim 31n ;(4)∞→n lim n 31;(5)∞→n limn21;(6)∞→n limn10;(7)∞→n lim n21。

4、证明:若∞→n lim n a = a ,则对任一正整数k ,有∞→n lim k n a += a 。

5、试用定义1'证明:(1)数列{n1}不以1为极限;(2)数列{n n )1(-}发散。

6、证明定理2.1,并应用它证明数列{nn)1(1-+}的极限是1。

7、证明:若∞→n lim n a = a ,则∞→n lim |n a |= |a|。

当且仅当a 为何值时反之也成立?8、按ε—N 定义证明:(1)∞→n lim )1(n n -+=0;(2)∞→n lim3321n n++++ =0;(3)∞→n lim n a =1,其中,1nn -n 为偶数, n a =nnn +2,n 为奇数。

§2收敛数列的性质1、求下列极限:(1)∞→n lim 32413323++++n n n n ;(2)∞→n lim 221n n +;(3)∞→n lim 113)2(3)2(+++-+-n n nn ;(4)∞→n lim )(2n n n -+;(5)∞→n lim )1021(n n n +++ ;(6)∞→n lim n n31313121212122++++++ 。

最新数值分析第三版课本习题及答案资料

最新数值分析第三版课本习题及答案资料

第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i)()(0,1,,);nkkj jj x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.24. 给定数据表如下:j x0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='=ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x . 11. 试证{}*()nT x 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下: 时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4.用辛普森公式求积分1xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x 1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析第三版答案下册【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分):1、126;2、2;3、1?x?x2???xn?o(xn);4、arcsinx?c(或?arccosx?c);5、2.二、选择题(每小题3分,共15分)1、c;2、a;3、a;4、d;5、b三、求极限(每小题5分,共10分)1??1、lim1?2? 2、limxlnx ?n??x?0?n??n1???lim?1?2?n??n??1nn2?1n1lnx(3分) ?lim?li??x?0x?011?2xx(3分)(?x)?0 (2分)?lime?1(2分) ?lim?n??x?03n2?3 。

四、利用数列极限的??n定义证明:lim2(10分)n??n?3证明:当n?3时,有(1分)3n299(3分) ?3??22n?3n?3n993n2因此,对任给的??0,只要??,即n?便有2 ?3?? (3分)n?n?33n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2分) ?3??成立。

?n?393n2?3(1分)即得证lim2n??n?3五、证明不等式:arctanb?arctana?b?a,其中a?b。

(10分)证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分)f(b)?f(a)?f?(?)(b?a)?1(b?a),21??(a???b) (3分)所以有 f(b)?f(a)?(b?a) (2分)bn?arctaan?b?a (2分)即 arcta六、求函数的一阶导数:y?xsinx。

(10分)解:两边取对数,有: lny?sinxlnx (4分)两边求一次导数,有:y??xsinx(cosxlnx?y?sinx(4分) ?cosxlnx?yxsinx)(2分) x七、求不定积分:?x2e?xdx。

(10分)解:2?x2?xxedx?xde = (2分) ??= ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分)= ?x2e?x?2xe?x?2?e?xdx (2分)=?e?x(x2?2x?2)?c (2分)15八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。

(1042分)15解:函数f(x)在闭区间[?,]上连续,故必存在最大最小值。

(2分) 42?2?x(2x?9x?12),??由于f(x)?|2x3?9x2?12x|???x(2x2?9x?12),????6(x?1)(x?2),??因此 f?(x)???6(x?1)(x?2),???1?x?04(2分) 50?x?2?1?x?04(2分)50?x?2又因f?(0?0)??12,f?(0?0)?12,可知函数f(x)在 x?0处不可导。

求出函数15的稳定点x?1,2,不可导点x?0,以及端点x??,的函数值:4211155f(1)?5,f(2)?4,f(0)?0,f()?,f()?5 (2分)43225可知函数f(x)在x?0处取得最小值0,在x?1和x?处取得最大值5.(2分)2九、求摆线x?a(t?sint),y?a(1?cost).(a?0),t?[0,2?]的弧长。

(10分)解:x?(t)?a(1?cost),y?(t)?asint,根据弧长计算公式有(2分)s??2?02?x?2(t)?y?2(t)dt (3分) 2a2(1?cost)dt (2分)2?0???2a?sintdt?8a (3分) 2【篇二:《数学分析下册》期末考试卷及参考答案】ss=txt>一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u?则?u?u?,??y?xdu?。

2、设l:x2?y2?a2,则??xdy?ydx?。

l?x=3cost,l:3、设?(0?t?2?),则曲线积分?(x2+y2)ds=。

?y=3sint.l4、改变累次积分?dy?(fx,y)dx的次序为。

2y33x?y?1,则??1)dxdy 。

5、设dd共15分)px0,y0)px0,y0)1、若函数(在点(连续,则函数(点(必存在一fx,y)fx,y)阶偏导数。

( )px0,y0)px0,y0)2、若函数(在点(可微,则函数(在点(连续。

fx,y)fx,y)( )px0,y0)3、若函数(在点(存在二阶偏导数fxy(x0,y0)和fyx(x0,y0),则 fx,y)?必有 fxy(x0,y0)fyx(0x,0y) 。

l(b,a)( ) ( ) 4、l(a,b)?f(x,y)dx??f(x,y)dx。

5、若函数(在有界闭区域d上连续,则函数(在d上可积。

( ) fx,y)fx,y)第 1 页共 5 页三、计算题(每小题9分,共45分)1、用格林公式计算曲线积分i??(exsiny?3y)dx?(excosy?3)dy ,?aoao为由a(a,0)到o(0,0)经过圆x2?y2?ax上半部分的路线。

其中?、计算三重积分???(xv2?y2)dxdydz,是由抛物面z?x2?y2与平面z?4围成的立体。

第 2 页共 5 页3、计算第一型曲面积分i???ds,s其中s是球面x2?y2?z2?r2上被平面z?a(0?a?r)所截下的顶部(z?a)。

4、计算第二型曲面积分22 i????y(x?z)dydz?xdzdx?(y?xz)dxdy,s其中s是立方体v??0,b???0,b???0,b?的外表面。

第 3 页共 5 页5、设d?(x,y)2?y2?r曲顶柱体的体积。

四、证明题(每小题7分,共14分)1、验证曲线积分第 4 页共 5 页 ?2?. 求以圆域d为底,以曲面z?e?(x2?y2)为顶的l与路线无关,并求被积表达式的一个原函数u(x,y,z)。

2、证明:若函数(在有界闭区域d上连续,则存在(?,?)?d, fx,y)使得参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、xyxy;;dx?dy。

22222222x?yx?yx?yx?y2??f(x,dy)?d?f?(?,?)d s ,这里sd是区域d的面积。

2、2?a;3、54? ; 4、?dx?f(x,y)dy;5、1)。

223x第 5 页共 5 页【篇三:数学分析简明教程第二版第二章课后答案】1 函数概念1.证明下列不等式: (1) x?y?x?y;(2) x1?x2???xn?x1?x2???xn;(3) x1?x2???xn?x?x?(x1?x2???xn).证明(1)由x?(x?y)?y?x?y?y,得到x?y?x?y,在该式中用x与y互换,得到 y?x?y?x,即x?y??x?y,由此即得,x?y?x?y.(2)当n?1,2时,不等式分别为x1?x1,x1?x2?x1?x2,显然成立.假设当n?k时,不等式成立,即 x1?x2???xk?x1?x2???xk,则当n?k?1时,有x1?x2???xk?xk?1?(x1?x2???xk)?xk?1?x1?x2???xk?xk?1?(x1?x2???xk)?xk?1?x1?x2???xk?xk?1有数学归纳法原理,原不等式成立.(3)x1?x2???xn?x?x?(x1?x2???xn)?x?x1?x2???xn ?x?(x1?x2??? xn). 2.求证a?b1?a?b?a1?a?b1?b.证明由不等式 a?b?a?b,两边加上a?b(a?b)后分别提取公因式得, a?b(1?a?b)?(a?b)(1?a?b),即a?b1?a?b?a?b1?a?b?a1?a?bb1?a?b?a1?a?b1?b.3.求证max(a,b)?a?ba?b; ?22a?ba?b. min(a,b)??22证明若a?b,则由于a?b?a?b,故有a?ba?ba?ba?b,min(a,b)?b?, max(a,b)?a???2222若a?b,则由于a?b??(a?b),故亦有max(a,b)?b?a?ba?ba?ba?b,min(a,b)?a?, ??2222因此两等式均成立.4.已知三角形的两条边分别为a和b,它们之间的夹角为?,试求此三角形的面积s(?),并求其定义域.1absin?,定义域为开区间(0,?). 25.在半径为r的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数解 s(?)?的定义域.x2解设内接圆柱高为x,则地面半径为r??r?,因而体积42x2v??r?x??x(r?),22定义域为开区间(0,2r).6.某公共汽车路线全长为20km,票价规定如下:乘坐5km以下(包括5km)者收费1元;超过5km但在15km以下(包括15km)者收费2元;其余收费2元5角. 试将票价表为路程的函数,并作出函数的图形.解设路程为x,票价为y,则?1,0?x?5,?y??2,5?x?15,?2.5,15?x?20.?函数图形见右图.7.一脉冲发生器产生一个三角波.若记它随时间t的变化规律为f(t),且三个角分别有对应关系f(0)?0,f(10)?20,f(20)?0,求f(t)(0?t?20),并作出函数的图形.解 f(t)??0?t?10,?2t,?40?2t,10?t?20.函数图形如右图所示.8.判别下列函数的奇偶性:x4?x2?1;(1)f(x)?2(2)f(x)?x?sinx;(3)f(x)?x2e?x;(4)f(x)?lg(x??x2).解(1)定义域为(??,??),由于?x?(??,??),有?x?(??,??),且有2(?x)4x42f(?x)??(?x)?1??x2?1?f(x),22x4?x2?1是偶函数.即得f(x)?2(2)定义域为(??,??),由于?x?(??,??),有?x?(??,??),且有f(?x)?(?x)?sin(?x)??x?sinx??(x?sinx)??f(x),因此,f(x)?x?sinx是奇函数.(3)定义域为(??,??),由于?x?(??,??),有?x?(??,??),且有f(?x)?(?x)2e?(?x)?x2e?x?f(x),即f(x)?x2e?x是偶函数.(4)定义域为(??,??),由于?x?(??,??),有?x?(??,??),且有222f(?x)?lg(?x??(?x)2)?lg(?x??x2)?lg??lg(x??x2)??f(x),因此,f(x)?lg(x??x2)是奇函数.1x??x29.判别下列函数是否是周期函数,若是,试求其周期:(1)f(x)?cosx2;(2)f(x)?cos(3)f(x)?cos(4)f(x)?xx?2sin; 23?4x;tanx.解(1)不是.若为周期函数,设周期为t,则?x?r,有f(x?t)?f(x),即t2t2)sin(tx?)?0,移项并使用三角公式化简得,sin(x?tx?cos(x?t)?cosx,22222由x?r的任意性知道这是不可能的,故f(x)?cosx2不是周期函数.(2)是.周期为2?2??6?的最小公倍数12?. ?4?和1132(3)是.周期是2??4?8.(4)定义域是使tanx?0的一切x的取值,即d(f)?{xk??x?k??由于?x?d(f),必有x???d(f),且f(x??)?此f(x)??2,k?z},tan(x??)?tanx?f(x),因tanx是周期函数,周期为?.x在(??,??)有界. 21?x10.证明f(x)?证明实际上,?x?(??,??),都有xx11?x21f(x)?????, 222221?x1?x1?x由定义,f(x)?x在(??,??)有界. 21?x1在(0,1)无界. x211.用肯定语气叙述函数无界,并证明f(x)?解叙述:若?m?0,?xm?x,使得f(xm)?m,则称函数f(x)在x无界.?m?0,要使f(x)?1?m,只须x?x21m,取xm?1m?1?(0,1),则有f(xm)?11f(x)?,所以在(0,1)无界. ?m?1?m22xxm12.试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.证明设f(x),g(x)是定义于x偶函数,h(x),?(x)是定义于x奇函数.则由于以下事实f(?x)g(?x)?f(x)g(x),h(?x)?(?x)?[?h(x)][??(x)]?h(x)?(x),f(?x)h(?x)?f(x)[?h(x)]??f(x)h(x),知两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.13.设f(x)为定义在(??,??)内的任何函数,证明f(x)可分解成奇函数和偶函数之和.证明由于f(x)的定义域为(??,??),故?x?(??,??),f(?x)有意义.令g(x)?f(x)?f(?x)2,h(x)?f(x)?f(?x)2,则g(x)是偶函数,h(x)是奇函数,且有f(x)?g(x)?h(x).14.用肯定语气叙述:在(??,??)上 (1) f(x)不是奇函数; (2) f(x)不是单调上升函数; (3) f(x)无零点; (4) f(x)无上界.解(1)?x0?(??,??),使得f(?x0)??f(x0),则f(x)在(??,??)不是奇函数;(2)?x1,x2?(??,??),虽然x1?x2,但f(x1)?f(x2),则f(x)在(??,不是单调上升函数;(3)?x?(??,??),均有f(x)?0,则f(x)在(??,??)无零点;(4)?b?(??,??),?xb?(??,??),使得f(xb)?b,则f(x)在(??,??))无??。

相关文档
最新文档